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Abstract 8 

Data obtained from airborne laser scanning (ALS) are frequently used for acquiring forest data. 9 

Using a relatively low number of laser pulses per unit area (≤ 5 pulses per m2), this technique is 10 

typically used to estimate stand mean values. In this study stand diameter distributions were 11 

also estimated, with the aim of improving the information available for effective forest 12 

management and planning. Plot level forest data, such as stem number and mean height, 13 

together with diameter distributions in the form of Weibull distributions, were estimated using 14 

ALS data. Stand-wise tree lists were then estimated. These estimations were compared to data 15 

obtained from a field survey of 124 stands in northern Sweden. In each stand an average of 16 

seven sample plots (radius 5-10 m) were systematically sampled. The ALS approach was then 17 

compared to a mean value approach where only mean values are estimated and tree lists are 18 

simulated using a forest decision support system (DSS). The ALS approach provided a better 19 

match to observed diameter distributions: ca. 35% lower error indices used as a measure 20 
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of accuracy and these results are in line with the previous studies. Moreover – which is unique 21 

compared to earlier studies – suboptimal losses were assessed. Using the Heureka DSS the 22 

suboptimal losses in terms of net present value due to erroneous decisions were compared. 23 

Although no large difference was found, the ALS approach showed smaller suboptimal loss than 24 

the mean value approach. 25 

Keywords: forest management planning, suboptimal loss, Weibull distribution, Airborne Laser 26 

Scanning, Heureka, decision support system  27 

 28 

Introduction 29 

In forest planning, different potential management actions are analyzed and the actions best 30 

fulfilling stated goals are chosen by the forest owner or a decision maker.  The analyses and 31 

decisions are based upon various characteristics of the particular stands within a forest 32 

property such as timber volume, basal area and mean tree height. These forest variables are 33 

used as inputs in decision support systems (DSS), such as the Swedish Heureka system 34 

(Wikström et al. 2011), to simulate and evaluate different possible treatments.  The outcome 35 

from these systems is a management proposal for each individual forest stand, which aims to 36 

maximize the utility of the forest holding. Utility is often expressed as an economic yield, 37 

typically in terms of net present value (NPV) within a set of constraints based on, e.g., timber 38 

flows and environmental factors. 39 

 40 

Naturally the accuracy of forestland data affects the scope for efficient management planning, 41 

therefore evaluating the quality of the available information is a critical step in forest 42 
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management (Kangas 2010). In general statistical terms the quality of the data is defined as 43 

how far the available data are from the true value (accuracy). The forest information is usually 44 

gathered by sample-based surveying, visual estimations (ocular standwise field inventory) or 45 

remote sensing techniques such as airborne laser scanning (ALS) (McRoberts et al. 2010). 46 

Estimates gathered by visual estimation tends to include both random and systematic errors, 47 

while estimates from sample based surveys remote sensing can be expected to contain random 48 

errors only (estimates based on remote sensing data may contain systematic errors from 49 

different factors such as model lack of fit). Loss occurring from suboptimal decisions due to 50 

erroneous estimates is defined as the difference between NPV based on accurate data and that 51 

based on erroneous estimates on the same forest (Holmström et al. 2003). A method for 52 

maximizing the utility of available data is cost-plus-loss analysis, in which the accuracy level is 53 

chosen such that it minimizes the sum of direct inventory costs and the losses resulting from 54 

inaccurate data (Kangas 2010). 55 

 56 

Forest information compiled in stand register databases tends to consist of stand-level values 57 

such as stem number, mean age and mean tree size.  Given that DSSs typically use individual 58 

tree models in their calculations, models are required to simulate tree lists from the stand 59 

mean values contained in the register databases, as with the Heureka system. It is of interest to 60 

use directly estimated tree list data, such as those obtained from sample plot surveys, in order 61 

to avoid the inherent approximations involved in simulating tree lists from stand mean values. 62 

63 
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The development of forest DSSs is an active research area, one example being the Heureka 64 

system (Borges et al. 2014; Gordon et al. 2013), which was developed at the Swedish University 65 

of Agricultural Sciences (SLU). It enables long term planning, analysis and management of 66 

forestland, and is used in this study. In the planning procedure Heureka is used to maximize a 67 

goal stated by the user, such as maximum NPV, subject to economic and environmental 68 

restrictions. Forest information (forest variables), either in terms of stand mean values (basal 69 

area, number of stems, mean diameter and height etc.), or as individual tree data, needs to be 70 

imported into the Heureka system in order to compute the NPV of different treatments. 71 

 72 

The topic forest information quality was studied in recent papers and found to be essential in 73 

the process of forest management decision making. Inaccurate estimates lead to wrong 74 

management actions and timing of actions, which will lead to economic losses. Nevertheless, 75 

Duvemo & Lämås (2006) found that the quality of forest information had received relatively 76 

little attention, compared to other aspects of forest planning, owing to the complexity of the 77 

associated problems. They also found that evaluations of forest information quality are typically 78 

based on overly simplistic assumptions. Kangas (2010) emphasize the complexity of the subject 79 

and suggests methods, such as Bayesian decision theory, to improve the use of the available 80 

forest information. 81 

 82 

ALS is presently widely used to capture high-quality information for forest management 83 

planning (Gobakken & Næsset 2004; Næsset et al. 2004; McRoberts et al. 2010). This is 84 

generally found to outperform traditional sources of information for management planning. 85 
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Today, nation-wide ALS campaigns have been conducted or are about to be initiated in 86 

countries such as Denmark, Switzerland, the Netherlands, Finland, and Sweden. The Swedish 87 

government decided in 2008 to finance the production of a new and highly accurate national 88 

Digital Elevation Model. The production is carried out between 2009 and 2013 by the Swedish 89 

National Land Survey (Lantmäteriet), using ALS operated by several private sub-contractors 90 

using various scanning systems. This will provide ALS data for all forested parts of Sweden at a 91 

low cost.  ALS data can be used to estimate stand variables, both as stand mean values (area 92 

based method) and data for individual trees.  In general the area based method uses a low 93 

number of laser pulses per area unit (≤5 pulses per m2 (Næsset 2002)) and in the case of 94 

individual trees a higher number of laser pulses per area unit (typically >5 pulses per m2 are 95 

used to detect individual trees and for estimating individual tree variables (e.g. Solberg et al. 96 

2006; Breidenbach et al. 2010).  97 

 98 

Besides estimating stand mean values using area based method there have been attempts to 99 

estimate stand diameter distributions, for example by Næsset (2004) and Gobakken & Næsset 100 

(2004). Gobakken & Næsset (2004) divided the forest area into strata according to age class and 101 

site quality. Weibull diameter distribution was estimated for each stratum. The area based 102 

method was used to relate the ALS information to the Weibull distribution parameters. 103 

Gobakken & Næsset (2005) used ALS information in order to compare the accuracy of 104 

estimating basal area that was assessed by parameter recovery of a two parameter Weibull 105 

distribution and a system of 10 percentiles of the observed diameter range, the latter approach 106 

being a non parametric method. Non parametric methods have also been used by, e.g., 107 
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Gobakken & Næsset (2005) and Maltamo et al. (2009). Using this approach no assumptions are 108 

made regarding the diameter distribution. Imputation techniques such as the kMSN method 109 

are considered to be non parametric method for estimating diameter distributions (Maltamo et 110 

al. 2009). 111 

 112 

In order to analyze the usefulness of diameter distributions estimated from ALS data three 113 

alternatives were used in this study. The first alternative was acquired through a sample plot 114 

field survey of 124 stands. The second alternative contained estimates based on ALS 115 

information. Using the area based method both a set of mean values, such as basal area and 116 

stem number, and diameter distributions, were estimated per plot. Based on the second 117 

alternative stand mean values were estimated to correspond to data in a traditional stand 118 

register and made up the third alternative. Both the first and second alternatives contained 119 

tree lists per plot, which were used in the subsequent DSS calculations. From the mean values 120 

in the third alternative tree lists were simulated in the DSS using built in functions. Suboptimal 121 

losses due to non-perfect data in the second and third alternatives were then estimated. 122 

 123 

The purpose of the study was to estimate diameter distributions using ALS information and – 124 

which is unique compared to earlier studies – to determine if these distributions notably 125 

improved decision making in terms of reduced suboptimal losses compared to traditional 126 

methods of simulating tree lists from stand mean values. As ALS information can now be 127 

acquired cheaply and highly accurately for some stand level variables, such as tree height, basal 128 

area and timber volume, ALS approaches are often preferable to traditional ocular data 129 

  
6 



R. Saad et al. 
Scand. J. For. Res., 2014 

acquisition methods. Use of ALS should therefore reduce losses from suboptimal decisions, 130 

since the quality of information is critical for good decision making. The results of the study 131 

indicate that ALS-based estimates of diameter distributions have the potential to further 132 

improve the process, although the gain in NPV was not very high. The study focused on long-133 

term (strategic) planning, hence details such as distributions of timber assortments in the near 134 

future, which are typically of interest in tactical planning and also affected by diameter 135 

distribution estimations, are not considered.  136 

 137 

Material and methods 138 

Forest area and field survey 139 

The study was performed in a managed boreal forest landscape in northern Sweden (64°06’N, 140 

19°10’E, 245 – 320 m.a.s.l. owned by the state owned forest company Sveaskog. The forest 141 

landscape is dominated by Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus 142 

silvestris (L.)), birch (Betula spp) being the most frequent broad-leaved species. A field survey 143 

was performed in 2008 and 2009 in which all stands where surveyed using  2 - 15 (mean 7.33) 144 

circular sample plots in each stand (except of one stand that was represented by one plot). The 145 

sample plots were located in a systematic grid in each stand. Geographic position of each plot 146 

was determined using post-processed differential GPS with an expected accuracy of less than 1 147 

m. Sapling and young stands were also inventoried, however not used in this study. Plots that 148 

did not include any trees were removed. Plot radii for the stands included were 10 m (117 149 

stands) and 5 m (7 stands). On the plots stem diameter at breast height (1.3 m above the 150 

ground) and species were registered for all trees. The stem diameter at breast height and 151 
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species of all trees on the plots were registered. The height and age of at least three trees on 152 

each plot (typically the two largest diameter trees and one randomly selected tree) were also 153 

registered.  154 

 155 

“<Table 1 here>” 156 

 157 

Airborne laser scanning 158 

Strömsjöliden was scanned using the ALS system TopEye (S/N 425) carried by a helicopter in the 159 

3rd and 5th of August 2008, operated by the contractor Blom Sweden AB. Flying height was 500 160 

m above ground and the mission measured approximately 5 pulses per m2. The point data were 161 

classified using a progressive Triangular Irregular Network (TIN) algorithm (Axelsson 1999) and 162 

(Axelsson 2000) to estimate which returns are measurements of the ground level. Following 163 

this, the height above ground was determined for all returns, using a digital elevation model 164 

produced from the classified ALS data. A set of fundamental ALS metrics were then computed 165 

from the ALS data in accordance to the area based method (Næsset 2002); metrics 166 

corresponding to the elevation information, as well as the density of the vegetation, see Table 167 

2. A cut-off value of 1.0 m was applied for calculation of metrics.  168 

 169 

“<Table 2 here>” 170 

 171 

 Three studied alternatives 172 
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Three alternatives were used in the study. The first alternative was comprised of the field 173 

survey observations. The second alternative was based on the ALS metrics. Stand mean values 174 

estimated from the second alternative that corresponds to traditional stand register 175 

information made up the third alternative, termed later as the mean values alternative, see Fig. 176 

1. Tree lists estimated from the ALS alternative and simulated in the DSS in the mean values 177 

alternative were assumed to have diameter distributions that could be described by a two 178 

parameter Weibull function for each plot in the ALS case and per stand in the mean values case. 179 

In the ALS case each plot was tested according to Kolmogorov-Smirnoff test to measure the 180 

goodness of fit of the estimated Weibull distribution and approximately 96% (869 out of 909) of 181 

the null hypothesizes were not rejected, meaning that the diameter distributions are likely to 182 

follow the Weibull distribution assumption, see appendix 1. That is, in the ALS alternative the 183 

stand level tree list when aggregated over plots did not necessarily follow a Weibull 184 

distribution. As the mean values alternative were estimated from the ALS alternative, these two 185 

alternatives were in many parts comparable, that is, the study is not aiming at comparison of 186 

the accuracy of different forest information acquisition methods. The elaborations of the three 187 

data sets are described below, see also Fig. 1.  188 

Observed alternative 189 

The data acquired in the field survey of the case study area made up the observed alternative. 190 

As all trees on sample plots within the stands were callipered tree lists were available.  191 

 192 

ALS alternative   193 
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Based on the observed alternative and the ALS data functions estimating plot level forest 194 

variables including diameter distribution were elaborated. Along with the ALS metrics also the 195 

proportion basal area of pine was used as it turned out to be an important variable. This 196 

information is typically available in stand registers. 197 

 198 

The diameter distribution of each plot was modeled as a two parameter Weibull distribution 199 

using the following steps: 200 

1- A Weibull distribution was fitted to the stem diameter measurements for each plot in 201 

the observed (field survey) alternative to estimate the two parameters of the 202 

distribution, namely scale and shape. 203 

2- Multiple linear regression was used, after stepwise regression, to relate the ALS metrics 204 

and the proportion of pine from the plot sampling alternative to the scale and shape 205 

parameters estimated from the field survey alternative in step 1. In this process the 206 

scale and shape were the dependent variables, and the ALS metrics and proportion of 207 

pine were the independent variables. 208 

3- Scale and shape parameter estimates were predicted for each plot using the regression 209 

estimation for the ALS independent variables and the proportion of pine estimated from 210 

step 2. 211 

 212 

Expected diameter (ALS estimation) of each plot was compared with the mean diameter of the 213 

sample field survey of each plot in order to validate the estimation. Expected diameter, E(D), 214 

of the fitted two parameters Weibull distribution was computed as follows: D describe the 215 
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diameter and it is a Weibull distributed (Hogg & Tanis 2010, page 170) random variable 216 

D~Weibull(λ, κ), where λ and κ are the two parameter of Weibull distribution. Expected value 217 

of D is given by Equation (1): 218 

(1) 𝐸𝐸(𝐷𝐷) = 𝜆𝜆 ∙ Γ �1 + 1
𝜅𝜅
�, 219 

where λ is the distribution scale, κ is the distribution shape and Γ is the gamma function 220 

Γ(z) = (z − 1)!, where z is a integer and the sign ! is factorial. 221 

 222 

Values for the basal area per hectare, the number of stems per hectare, the basal area 223 

weighted mean height and the quadratic mean diameter were estimated using the ALS 224 

independent variables and the proportion pine from the observed alternative, in the same way 225 

as the scale and shape were estimated in step 3. In order to estimate these variables linear 226 

regression was employed (after applying the stepwise regression) where the dependent 227 

variables were the variables in the observed alternative and the independent variables were 228 

the ALS independent variables and the proportion pine. The variables mentioned above were 229 

predicted for each plot using the regression estimates for the ALS independent variables and 230 

the proportion pine as it was done for scale and shape in step 3. Tree species proportions per 231 

plot and site variables from the observed alternative were used when the different alternatives 232 

were imported to the Heureka DSS. 233 

 234 

An essential step in the processing of the ALS data was the generation of tree lists. This was 235 

achieved by using the fitted Weibull distribution parameters to generate a diameter 236 

distribution for each plot, incorporating the fitted number of stems per hectare (estimated for 237 
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each plot separately). One diameter value was assigned to each 10th percentile of the diameter 238 

distribution. Each percentile represented a diameter class boundary. First the basal areas 239 

corresponding to the upper and lower diameter class boundary were calculated. The diameter 240 

corresponding to the mean of the upper and lower basal area was then the diameter 241 

representing the diameter class. Each diameter that representing the diameter class, was 242 

replicated by the number of trees of each diameter class. The sum of trees over the diameter 243 

classes then made up the total number of trees on the plot.  244 

 245 

Mean values alternative 246 

The mean values alternative (corresponding to stand register mean values) of each stand was 247 

simply averaged from the ALS alternative. That is, the mean value alternative was derived from 248 

the ALS alternative and not the observed alternative.  249 

 250 

“<Figure 1 here>” 251 

 252 

Software used for calculations and handling of the different alternatives 253 

The R Program, the free software programming language and a software environment for 254 

statistical computing and graphics, was used for calculations (regression analysis etc.) and 255 

handling of the three alternatives. 256 

 257 

Accuracy measurement 258 
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To assess the accuracy of the estimated diameter distributions, the tree lists for each plot were 259 

first scaled, using the plot area, to obtain the number of trees per hectare in each stand 260 

separately.  This was done for all three alternatives, and subsequently the estimated diameter 261 

distribution accuracy was determined using two error indices, computed for each stand 262 

separately using the diameter classes’ absolute differences. 263 

 264 

The first error index (e, Equation 2) gives one measure of the degree of the diameter 265 

distribution errors, in which the total number of the trees is taken into account. Its value can 266 

range between 0 to 200, where 0 represents a perfect match between two compared 267 

distributions. 268 

(2) 𝑒𝑒 = ∑ 𝑒𝑒𝑗𝑗15
𝑗𝑗=1 = 100 ∙ ∑

�𝑛𝑛𝑜𝑜𝑜𝑜−𝑛𝑛𝑝𝑝𝑜𝑜�
𝑁𝑁

15
𝑗𝑗=1 , 269 

Here, ej is the error in diameter class j (of 15 classes from 0 to 30 cm with 2 cm increments),  270 

noj is the number of observed trees in diameter class j and npj is the number of predicted trees 271 

in diameter class j, N is the observed total number of trees. The stand level error is the sum of 272 

the diameter class errors ej. This error index, which was first proposed by Reynolds et al. 273 

(1988), has been widely used in previous studies, e.g. Gobakken & Næsset (2004) and 274 

Gobakken & Næsset (2005).  275 

 276 

The second error index (δ, Equation 3), termed the total variation distance index (Levin et al. 277 

2009), measures a degree of the diameter distribution errors that is independent of the total 278 

number of trees. Each diameter class in each stand was divided by the total number of stand 279 
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trees in order to obtain a diameter probability distribution. The value of index  δ can range 280 

between 0 to 1, where 0 represents a perfect match of two compared distributions. 281 

(3) 𝛿𝛿 = ∑ 𝛿𝛿𝑗𝑗15
𝑗𝑗=1 = 1

2
∙ ∑ �𝑃𝑃�𝑥𝑥𝑗𝑗� − 𝑄𝑄�𝑥𝑥𝑗𝑗��15

𝑗𝑗=1 , 282 

where δj is the error in diameter class j, P�xj� is the observed relative frequency of diameter 283 

class j, and  Q�xj� is the relative frequency of diameter class j in the diameter distribution 284 

predicted by either the ALS or mean values alternatives. The error index is multiplied by ½ to 285 

scale the error between 0 and 1. P�xj� is calculated by dividing the observed number of trees in 286 

each class by the observed total number of trees in the stand. Q�xj� is calculated by dividing 287 

the number of predicted trees in each class by the predicted total number of trees in the stand. 288 

The stand level error is the sum of the diameter class errors δj. 289 

 290 

Calculation of suboptimal losses 291 

Each of the three alternatives was imported into the Heureka system (see Fig. 1). The observed 292 

alternative and ALS alternative were imported as tree lists, while Heureka simulated tree lists in 293 

the mean value alternative. This was done using functions implemented in the software that 294 

estimate the scale and shape of stands by taking into account tree species, mean stand age, 295 

tree age uniformity and quadratic mean diameter. The Heureka system simulates tree list in a 296 

similar way as the simulation tree list was done for the ALS alternative with two main 297 

differences. The first difference is that Heureka uses stand level estimated scale and shape 298 

where in the ALS alternative the estimated and fitted scale and shape were used (changed from 299 

plot to plot). The second notable difference is that Heureka takes equal diameter class intervals 300 
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containing different tree numbers, while the ALS simulation uses unequal diameter classes 301 

containing equal numbers of trees. 302 

 303 

In Heureka, a set of potential management alternatives is generated. A management 304 

alternative is a sequence over time of management actions such as regeneration, thinning and 305 

final felling. Each action has a calculated net cost or income, and a NPV is calculated for each 306 

potential management alternative. Then for each stand the alternative providing the highest 307 

NPV is selected. The optimal management strategies selected for the ALS and mean values 308 

alternatives were then applied to the forest information in the observed alternative. The 309 

differences between the NPV of the observed alternative to the NPV of the applied programs 310 

on the forest information in the observed alternative were considered to be the suboptimal 311 

losses. The applied treatment programs were fixed only for the two first periods (10 years) 312 

since it is expected that in the future new and better information is probable after a period of 313 

time (Holmström et al. 2003). The aim was to determine if losses from suboptimal decision can 314 

be decreased by using ALS estimations rather than the mean values alternative which is 315 

traditionally used in forest planning.  316 

 317 

Results 318 

The estimated scale and shape in the ALS alternative were used to estimate the expected 319 

diameter of trees in each plot. This was then compared with the mean diameters obtained from 320 

the field survey data to validate the ALS estimation. Figure 2 shows mean diameters and 321 

quadratic mean diameters from the survey data compared to the expected values estimated in 322 
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the ALS alternative (Equation 1). Figure 2 also shows the Weibull distribution scale and shape 323 

parameters compared to the estimated values in the ALS alternative. 324 

 325 

“<Figure 2 here>” 326 

 327 

The regression results for six dependent forest variables, with 15 independent variables, are 328 

summarized in Table 3. The independent variables are the ALS variables as described in the 329 

Methods section and the proportion of pine from the plot sampling alternative. The 330 

independent variable Percentile70 was not included since it was found to have insignificant 331 

effects (at a significant level of 5%) on the dependent variables. 332 

 333 

“<Table 3 here> 334 

 335 

Calculated error indices, indicating the closeness of the estimated diameter distributions to the 336 

measured stand level diameter distributions, are summarized in Table 4.   337 

 338 

“<Table 4 here>” 339 

 340 

Table 4 shows that the ALS information yields smaller error indices than the mean values. 341 

342 
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NPV results 343 

The NPV calculated in the three alternatives and the suboptimal losses are presented in Table 5. 344 

Two different price lists were used for sensitivity analysis. 345 

 346 

“<Table 5 here>” 347 

 348 

NPVs were calculated using a 3% real interest rate and two different price lists. The effects of 349 

interest rate (3% vs 10%) and the growth model used (a stand growth model vs individual tree 350 

growth model (Fahlvik et al. 2014)) were also checked but were found to have little impact on 351 

suboptimal losses. The default price list used by Heureka, based on pulpwood and sawn timber 352 

pricings in mid-Sweden for 2013 (see Appendix 1), resulted in small suboptimal losses (see 353 

Table 5). However, as can be seen in Appendix 1, this default price list is not very sensitive to 354 

log diameters. This necessitated the construction of a hypothetical price list in which sawn 355 

timber prices increased with log diameter, following the curve for the highest log quality, and 356 

pulpwood prices were decreased by 50 percent of the mid-Sweden prices for 2013 (see 357 

Appendix 1). Use of this hypothetical pricelist increased the estimated difference in suboptimal 358 

losses, the ALS alternative yielding 111 SEK ha-1 smaller suboptimal losses than the mean value 359 

alternative (Table 5). 360 

 361 

Discussion 362 
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In this study diameter distributions of stems on plots within stands were estimated from ALS 363 

information, assuming that they followed Weibull distributions, and the two parameters – scale 364 

and shape – of the distribution for each plot were estimated. Stand level tree lists were then 365 

simulated based on the plotwise diameter distributions and then imported to the Heureka 366 

forest DSS. This approach was compared to an approach were estimated stand mean values 367 

only were used and imported to Heureka. In Heureka tree lists were then simulated using 368 

inbuilt default Weibull distribution parameters corresponding to a single plot per stand but 369 

different parameters for different species. The ALS-derived tree lists yielded smaller suboptimal 370 

losses than the lists generated from stand mean values. Thus, in addition to providing robust 371 

estimates of stand characteristics such as tree height and basal area, ALS can provide valuable 372 

estimates of diameter distributions, thereby improving forest planning. Furthermore the use of 373 

error indexes also showed that the stand level ALS based tree lists was closer to the observed 374 

diameter distributions than the Heureka derived tree lists.  375 

 376 

The use of ALS information resulted in up to 111 SEK ha-1 smaller suboptimal losses (using the 377 

hypothetical price list) than the mean values approach. As ALS information is already available 378 

for estimating mean values of stand characteristics, the only additional costs are in estimating 379 

the diameter distribution, thus the marginal profit can be increased by a similar amount to the 380 

suboptimal loss reduction. These results also reveal that long-term NPV calculations are 381 

substantially less sensitive to estimated diameter distributions than other factors such as 382 

volume, age, height and site index. However, diameter distributions have potentially greater 383 
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impacts on short-term NPVs, for instance those related to the dimensional demands of 384 

sawmills. 385 

 386 

In most cases the Weibull scale parameter was estimated notably more accurately than the 387 

shape parameter. This is to be expected as the area-based ALS approach will provide a low 388 

number of measurements for individual trees. It provides accurate information on the height 389 

and density of trees, but is less able to distinguish whether a forest consists of numerous thin 390 

trees, or fewer thicker trees. Estimates of the shape parameter could also be improved by 391 

higher density ALS sampling and use of larger sample plots, which would provide more accurate 392 

reference data for the subsequent modeling of diameter distributions. 393 

 394 

In the regression modeling of diameter distribution parameters from ALS information the 395 

proportion of pine trees in each plot was used as an independent variable as well as height 396 

percentiles. The proportion of pine trees was needed as the relationship between diameter 397 

distributions and ALS data is different for different tree species.  In this study, the diameter 398 

distribution of all species in each plot was modeled; in order to take the species variations into 399 

account the proportion of tree pine was included as an independent variable. In operational 400 

practice, this information cannot be estimated directly from ALS information but can be 401 

acquired by aerial photo interpretation and potentially also by computerized algorithms using 402 

aerial laser scanning data and digital aerial photos (Packalén & Maltamo 2007). A proxy for plot 403 

level pine proportion is also readily available in existing stand registers. 404 

 405 
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A potential way to further improve the approach is to use non-parametric methods to estimate 406 

plot level diameter distributions, as described by Gobakken (2005) and Maltamo et al. (2009). In 407 

such a case no parametric diameter distribution is assumed (in contrast to our assumption of 408 

Weibull distributions), and in operational applications today imputation techniques, based for 409 

instance on kMSN methods (Maltamo et al. 2009), are usually applied. In this approach, 410 

predictions are made using the actual diameter measurements in the reference data and no 411 

smoothing or distribution assumptions are needed. Such methods can be further evaluated in 412 

future studies to assess their potential for improving data to be used in forest DSSs. 413 

 414 

In conclusion, the results of the study indicate that ALS-based estimates of diameter 415 

distributions have the potential to further improve the planning process, although in this study 416 

the gain in NPV was not very high. Use of ALS data should reduce losses from suboptimal 417 

decisions, but the level of reduction depends on, e.g., the design of timber price list.  418 

 419 

 420 
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fig.2



 
Table 1. Characteristics of the stands used in the study according to the field survey (124 stands, total area 1,135 hectares). 

Variable Mean Minimum  Maximum 
Area (ha) 9 0.14 66.7 
Age (year) 2) 591) 20 169 
Stem volume (m3 ha-1) 1461) 24 569 
Stem diameter 2) (cm) 19.721) 11.27 34.2 
1)  Area weighted mean, stand area as the weight. 
2) Basal area weighted within stand. 

 

Table 2. ALS metrics extracted for the field sampled plots. 

Metric        Variable names 
Height above ground values corresponding to the 10th, 
20th, …, 90th, 95th and 100th percentiles        h10, h20, …, h90, h95, h100 
Mean height above ground        hmean 
Standard deviation of height above ground        hs 
Proportion of returns from the vegetation layer        d 
 

 

 

 

 

 

 

 

 

 

 



Table 3: Regression coefficients for six plot-level variables versus 14 independent variables obtained from the ALS information and the proportion of pine (from the plot sampling data). All 
presented coefficients are statistically significant at the 5% level. Intercepts and F statistics for each dependent variable are also shown. 

 Regression coefficients of the independent variables   
Dependent 
variables 

Intercept Perc10 Perc20 Perc30 Perc40 Perc50 Perc60 Perc80 Perc90 Perc95 *Perc952 perc100 hmean hs d proportion
Pine 

R2 F statistic 

Shape 6.004 -0.493 -0.496  -0.589  -0.354  -0.462   -0.103 2.782 -1.374 -3.066 -.593 0.26 34.87 

Scale 11.195 -0.502    2.216  2.433  1.093 0.015  -4.348 -5.150 -7.704  0.74 347.1 

Basal area per 
hectare 

-20.684 0.854 -1.269 1.603     1.209  -0.022    34.547 1.756 0.69 303.9 

Number of 
stems per 
hectare 

-427.386 73.319  155.038     121.281  -3.434 30.432 -332.325  2804.327  0.55 165.7 

Basal area 
weighted 
mean height 

0.716 -0.031  0.129      0.649  0.088  0.367 -1.078 -0.536 0.81 564.1 

Quadratic 
mean 
diameter 

10.635 -0.647  -0.817  1.687 -1.017 1.532   0.018   -2.829 -7.024  0.76 376 

*Perc952 is the Perc95 rise to the power 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Table 4: Summary of error indices indicating the accuracy of diameter distributions estimated using the ALS and mean values approaches 
compared to the measured diameter distributions. 𝐞𝐞𝐀𝐀𝐀𝐀𝐀𝐀 and 𝐞𝐞𝐇𝐇𝐞𝐞𝐇𝐇𝐇𝐇𝐞𝐞𝐇𝐇𝐇𝐇 are Reynold indices (range 0 – 200), while 𝛅𝛅𝐀𝐀𝐀𝐀𝐀𝐀 and 𝛅𝛅𝐇𝐇𝐞𝐞𝐇𝐇𝐇𝐇𝐞𝐞𝐇𝐇𝐇𝐇 are total 
variation distance indices (range 0 -1) for the ALS and mean values approaches, respectively. The index value 0 in both indices present 
perfect matches of the compared distributions. 
 Error indices 
 Reynolds index Total variation distances index  
 𝑒𝑒𝐴𝐴𝐴𝐴𝐴𝐴  𝑒𝑒𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝛿𝛿𝐴𝐴𝐴𝐴𝐴𝐴 𝛿𝛿𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 
Mean 50.896 79.160 0.251 0.388 
Maximum 123.529 159.191 0.542 0.777 
Minimum 23.348 39.021 0.090 0.145 
Standard deviation 17.454 25.262 0.088 0.122 
 

Table 5: Calculated NPVs. NPVObserved is the NPV of the observed alternative. NPVALS and NPVMean are the NPV based on the forest 
information in the observed alternative where the two first period’s management alternatives from the ALS and mean values alternatives 
were applied on the observed alternative, respectively. The difference between NPVALS and NPVMean is considered to be the suboptimal loss 
when ALS information is utilized. 

 NPV results (SEK ha-1) 
 NPVObserved NPVALS NPVMean Decrease in suboptimal loss utilizing the ALS 

information compared to the mean values 
alternative 

Default price list 38,824 38,778 38,712 66 
Hypothetical price 
list 

34,139 
 

34,090 
 

33,979 111 

 














