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Sex effects of dioecious plants on interactions with insects: 

considering herbivores, pollinators and effects on a third 

trophic level 

Introductory essay  

Kim Karlsson Moritz 

 

supervised by Johan A. Stenberg, Amy Parachnowitsch and Christer Björkman. 

 

Introduction 

 

Aims of this essay 

 

Bioenergy forestry is a viable alternative to fossil fuels, providing a mean to reduce net 

carbon emissions and thus our impact on climate change. It is therefore important that 

bioenergy production is not hampered by herbivory. If plants with certain traits can be chosen 

to maximize biological control, bioenergy forestry can become an even more potent and 

sustainable practice. The aim of my project is to investigate what effects sex in a bioenergy 

crop has on multitrophic interactions and pollinator attraction. Plant sex effects will be 

investigated using the dioecious Salix viminalis (Salicaceae), commonly grown in plantations 

in Sweden, Germany, Denmark, Great Britain and a few more European countries. The 

project will describe how plant sex affects ecosystem services provided by this crop 

(biological control and pollination), and through that the potential to increase these ecosystem 

services through selecting or combining clones of either sex. While the results will be easily 

applied knowledge, my project will also expand our general knowledge of plant sex effects; 

multitrophic interactions between plants and insects and among insects are barely described. 

Insect species under study will be a herbivorous beetle (Phratora vulgatissima, Coleoptera), 

an omnivorous predatory bug (Anthocoris nemorum, Hemiptera), and a parasitoid wasp 

(Perilitus brevicollis, Hymenoptera). I will use these species in a series of field- and 

laboratory based experiments. In addition, plant sex effects on pollinator attraction will be 

tested in the field experiments through observing flower visitation rates and recording berry 

production in adjacent woodland strawberries, Fragaria vesca. The aim of this essay is to 

compile (i) an overview of previous work performed on, or otherwise relevant to, plant sex 

effects on interactions with animals and (ii) necessary information on the study system that I 

will use in the planned experiments. 

 

Knowledge gaps and hypotheses 

 

So far only a handful published experimental studies have investigated plant sex effects on 

multitrophic systems (Mooney et al. 2012; Mooney et al. 2012; Petry et al. 2013). This is 

somewhat surprising since a large proportion of the described plant species, approx. 10%  
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(Geber 1999), are dioecious and all species are involved in multitrophic interactions. The 

substantial body of literature that treats other genetic plant effects on trophic interactions 

contains evidence for effects on insect densities (e.g. Fritz & Price 1988), herbivory ( e.g. 

Stiling et al. 1996), ovipositioning rate (e.g. Lehrman et al. 2012), parasitism ( e.g. Rand et al. 

2012) and preference ( e.g. Cronin & Abrahamson 1999) of insects of different trophic levels. 

Studies of plant sex effects on such traits and interactions in applied systems including 

dioecious plants would allow for evaluation of effects on valuable ecosystem services, such 

as indirect defence through biological control efficiency and pollination. In the part of the 

project that concerns biological control I take an approach where plants, herbivores and 

predators are considered, with a study system encompassing three trophic levels. I will also 

look at plant sex effects on pollinator visitation, but this essay will focus on tritrophic 

interactions and biological control. The only published study of sex-biased herbivory in S. 

viminalis includes gall midges and lepidopterans (Åhman 1997).  There are no studies of 

plant sex effects on the blue willow leaf beetle, the insect herbivores causing the most severe 

damage on Salix Short Rotation Coppice (SRC) (Björkman & Liman 2005). An investigation 

of sex effects on the multitrophic interactions would assess the potential of increased 

biocontrol by choosing plants of either sex, a simple and inexpensive solution to a great 

challenge. I therefore want to investigate S. viminalis sex effects on herbivores and their 

natural enemies, as well as on pollinators. The general questions I will address are whether 

plant sex affects: 1. the plant’s interactions with herbivores; 2. the biological control 

efficiency exerted by natural enemies of the herbivores; 3. pollinator visitation rate on S. 

viminalis, species composition of visiting pollinators, and pollination of. 

 

The project 

 

To assess the above stated hypotheses I will perform several experiments in field conditions. 

I will use 30 plots with female, male or both male and female plants to compare plant sex 

effects on abundances of a herbivore and two types of biological control agents; omnivores 

and parasitoids (Fig. 1.). To better understand the mechanisms that lead to differences in 

abundances, I will also perform experiments where I test whether (i) plant food quality for the 

insects is plant sex dependent, (ii) the insects use olfactory cues to navigate to plants of either 

sex and (iii) the omnivore’s predation efficiency is affected by host plant sex. To test for 

plant sex effects on pollinator attraction I will also study pollinator visitation in terms of 

visitation frequency and pollinator diversity at S. viminalis and neighbouring woodland 

strawberries (F. vesca) in fields with S. viminalis.  

 

All species being common in the study area, all experiments posing low or no risks of 

negatively affecting nearby ecosystems and the project being funded by a governmental 

department, there are to my knowledge no ethical issues connected to my project. 
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Figure 1. An overview of the study system showing interactions that will be examined 

between the plant (bottom), the herbivore (top mid), the parasitoid (right) and an omnivorous 

predator of the herbivore (left). Interspecies interactions are referred to in as (a - e) 

throughout the essay. 

 

Theoretic background 

 

Plant sex effects on interactions 

 

The plant traits that mediate effects on species of different trophic levels have to be identified 

in order for insights to be applicable or used in a more generalised context (e.g. for biological 

control programmes and understanding of other study systems). Plant traits can affect prey or 

predators directly (Fig. 1. a-c), or indirectly one through the other (Fig. 1. d-e), and may have 

feedback effects onto the plant (Mooney & Singer 2012) through the herbivore (Fig. 1. a). 

Below I discuss both direct and indirect plant-induced effects on interactions between trophic 

levels and discuss effects of plant sex that I will investigate in my project. 

 

Sex-biased herbivory  

There is a large body of literature on sex-biased herbivory (Fig. 1. a) on dioecious plants, 

reviewed by Cornelissen & Stiling (2005), Ågren et al. (1999) and Boecklen et al. (1993) 

with male-biased herbivory being the common finding of most studies (e.g. Boecklen 1990; 

Capeda-Cornejo & Dirzo (2010); Elmqvist & Gardfjell 1988, Alliende & Harper 1989, but 

(a) 

(b)
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(c)
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see Åhman 1997; Mooney et al. 2012). There are also many studies of herbivore performance 

on dioecious plants (e.g. Lehrman et al. 2012; Peacock et al. 2004) in which differences in 

herbivory between single genotypes were found. Some of these differences are likely affected 

by plant sex. Differences in resistance to herbivores may be caused by differences in the 

balance of the trade-off between relative fitness cost of lost biomass and defences. Sex-biased 

herbivory, often towards males, may be a result of differences in trade-offs between sinks of 

resource allocation within a plant. An often cited explanatory hypothesis is that male plants 

allocate more resources to vegetative growth and less to defences than female plants, and thus 

compensate for lost biomass, while female plants defend themselves better at a cost of growth 

rate (e.g. Ågren et al. 1999; Cornelissen & Stiling 2005).  This is because female plants can 

have a higher reproductive effort (Lloyd & Webb 1977) that lasts for a longer time period. It 

could thus be that herbivory is a driver in the evolution of dioecy (Cornelissen & Stiling 

2005). 

 

The preference-performance hypothesis 

 

The preference-performance hypothesis, predicting that a herbivore’s host preference should 

agree with its, or with its offspring’s, best performance, has received support in a recent 

meta-analysis (Gripenberg et al. 2010). For a better understanding of ecological relationships, 

and the mechanisms driving them, studies on insect performance alone can be completed with 

those on preference.  In my project, I expect to see that preference and performance (survival, 

development and reproduction) concur for both the herbivore (P. vulgatissima) and for the 

omnivorous predator (A. nemorum) on S. viminalis. 

 

Female insects can be expected to make a better choice than males (Gripenberg et al. 2010) 

because ovipositioning decisions strongly affect fitness. Females can especially be expected 

to make a better choice if the optimal diet differs between insect life stages and the fitness 

advantage of selecting a suitable plant for eggs and larvae supersedes the fitness loss of 

foraging on a food source suboptimal for adult insects. Of course, male insects should also be 

attracted by females, and likely prefer the same plants, but the selectiveness may nonetheless 

be higher for female insects. 

 

Tritrophic interactions and biological control 

 

Our understanding of plant sex effects on higher trophic interactions (Fig. 1. d-e) is in need of 

development. While a large body of studies describes the effects of plant sex on herbivores 

and herbivory (reviewed by Ågren et al. 1999 and Cornelissen & Stiling 2005), less is known 

about effects on species of higher trophic levels such as predators and parasitoids (Fig. 1. b-

c). One study (Mooney, Fremgen, et al. 2012) found differences in abundances of natural 

enemies and aphids between herbivore-induced male and female Valeriana edulis. They did 

however not detect differences between uninduced male and female plants, and Petry et al. 

(2013) found only a marginally significant difference between male and female plants when 

they estimated plant sex effects on abundance of all predators of aphids in the same 

uninduced study system. Since herbivores and omnivorous predators may have different 



8 
 

optimal plant food sources (Stenberg et al. 2010; Stenberg et al. 2011), investigating whether 

predator and herbivore performances are differently affected by sex of dioecious plants is 

important for understanding the function of the predator as biological control agents. If a 

herbivore and its predator both perform better on plants of one sex, or if the predator 

performs equally well on both sexes, the biological control efficiency of the predator may be 

unaffected by sex of the host plant. However, if the herbivore and its predator perform better 

on plants of different sex, that difference may influence the effectiveness of biological control 

agents in single sex commercial plantations. Effects of plant genotype can thus also have 

indirect effects on the plant itself through interactions with herbivores and predators. One 

perspective of viewing the way that a plant can affect (I,) the herbivore (Fig. 1. a) and (II) the 

herbivore’s predators (Fig. 1. b-c) is provided by dividing effects into (a) effects on density 

and (b) effects on traits (Mooney & Singer 2012). The most relevant traits are consumption 

rates, reproduction and longevity. Effects that increase herbivore densities can be expected to 

increase the densities of its predators indirectly through the herbivore density, while higher 

predator density suppresses herbivore density and feed back to the plant as lowered 

herbivory. Traits can be expected to similarly affect the interaction either directly or 

indirectly. 

 

A predator’s response to plant sex (Fig. 1. b-c) may depend on its diet breadth, which in that 

case affects the potential as a biological control agent. Numerous studies have tested the 

efficiency and effectiveness of both generalist (e.g. omnivorous) and specialist (e.g. 

parasitoid) predators, and Symondson et al. (2002) has compiled their advantages and 

disadvantages. Stiling & Cornelissen (2005) found in their meta-analysis of biological control 

agent traits that although specialists have often been held forth as superior biological control 

agents, generalist predators have larger effects on pest abundances than specialists, and 

suggested that this may be due to generalists’ ability to switching target prey. Another paper 

specifically reviewed generalist predators as biological control agents, and concluded that 

about 75% of experimental studies found a significant suppressive effect on abundance of 

targeted species (Symondson et al. 2002).  Omnivorous species can be advantageous as 

biological control agents in that the population may persist during periods of low abundance 

of the intended prey (Ågren et al. 2012; Lehrman et al. 2013). If a generalist predator alters 

its feeding behaviour towards the plant, the predator’s consumption of plant tissue might risk 

overweighing the positive effects (Stenberg et al. 2011; Lehrman et al. 2013), but if the 

predators preference reflects its performance, the predator’s population size may nevertheless 

decrease with its prey. Whether a generalist predator, especially an omnivorous predator, 

reaches its potential as a biological control agent should depend on plant quality because the 

plant may be an even more important as a food source for periods of low prey density. 

Meanwhile, specialists may have higher predation rates in times of high prey abundances and 

may depend on high plant quality during a short time of their life cycles (e.g. nectar foraging 

during nymphal stages). If plant sex determines nutritional quality for predators, it is 

important to investigate whether generalists and specialists are differently affected. 

 

A plant’s maintainability of the predatory (Fig. 1. b) or parasitic (Fig. 1. c) insect’s 

populations is partly determining the insects’ suitability as biological control agents. The 
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maintainability is affected by whether it is a part of their life-cycle to stay within the intended 

area of biological control, not least between growing seasons, and together with their 

prey/host. A predator that overwinters on or close to the plants may be advantageous for 

biological control purposes because of interannual population stability. The population is 

however then likely to collapse at a harvest (see Björkman et al. (2004)) or by other strong 

disturbances in the system. Parasites or parasitoids may on the other hand be naturally re-

introduced as it follows the herbivore to the host plants. Predators that spend part of their life-

cycles away from both the herbivore and the plants may be a challenge to maintain in 

population sizes effective for biological control. Since the dependence on plant food quality 

may differ between these types of biological control agents, any differences in their 

preference and performance on male and female plants is likely to affect their performance 

based on their type of life-cycle or diet. Differences in diet requirements (e.g dependence of 

seasonal dependence on sap or floral nectar) can therefore also affect maintainability of a 

biological control agent’s population, depending on plant sex. 

 

Plant quality may indirectly influence parasitism (Fig. 1. e). Bukovinszky et al. 2009 found 

that the parasitoid Cotesia glomerata had lower parasitism success if the host caterpillar 

Pieris rapae were feeding on herbivore-induced cabbage (Brassica oleracea) than when P. 

rapae were feeding on uninduced plants. They also found a difference between parasitism 

success of C. glomerata on P. rapae feeding on cultivated and wild plants. Both differences 

found were at least partly caused through prey size, which likely indicates the pathways for 

the parasitoids dependence on plant quality. If herbivores prefer plants of either sex it is thus 

likely that the herbivores found on plants of their preferred sex are preferred by parasitoids. 

The finding that pre-induced plants lead to lower parasitism rates of herbivores have also 

been found by other authors (Fellowes et al. 1998), indicating that parasitoid efficiency may 

be lowered by induced defence substances if outbreak levels are low. Another aspect 

speaking against parasitoids as biological control agents is negative density dependence 

through parasitism that fails due to attempts on already parasitized hosts. 

 

Simultaneously utilising several species of biological control agents (Fig. 1. b-c) have been 

reviewed to enhance the suppressive effect on pest abundance by on average 27.7% 

compared to using a single biological control agent (Stiling & Cornelissen 2005). That review 

did however neither consider taxonomy nor predatory guilds. One study has found a 

multitrophic interaction where the addition of generalist predators decreased the parasitism 

rate by a parasitoid wasp on aphids (Snyder & Ives 2001), possibly by mainly foraging upon 

infected, and thus weakened, prey. If energy conversion between prey and parasitoid is 

efficient, and the parasitoid and predator act on the same life stages, infected prey might 

perhaps even be of higher nutritional quality for predators through indirectly varying its 

nutrient content. More studies of predator effects on parasitism rates in pests could contribute 

to the understanding of what effects the combination of biological control agents has, and 

whether plants have different genetic (e.g. plant sex-dependent) effects on generalists and 

specialists performance.  
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Study systems and project description 
 

To investigate the main hypotheses of this project, a system with species of different trophic 

levels and guilds are studied; a dioecious plant, an insect herbivore, pollinator insects, an 

omnivorous insect predator, and an insect parasitoid (Table 1.). 

 

Table 1. Hypothesized effects on effects of S. viminalis sex on interactions with insects. 

Interaction agent Sex effects on interaction 

agent 

Effect on plant 

Herbivore (P. vulgatissima) 

(Fig. 1. a) 

Population size, herbivory rate Herbivory rate (directly); 

growth (directly)  

(Fig. 1. a) 

Predator (A. nemorum) 

(Fig. 1. b) 

Population size, predation 

efficiency 

Herbivory (indirectly) 

(Fig. 1. d) 

Parasitoid (P. brevicollis) 

(Fig. 1. c) 

Parasitism rate Herbivory (indirectly) 

(Fig. 1. e) 

Pollinators (Bumblebees, bees 

and hoverflies) 

Population size, visitation rate, 

visiting species 

None, or on resource 

allocation  

 

Salix viminalis is a dioecious willow species. The main usage of S. viminalis is renewable 

production of energy in SRC, making maintenance of biomass production an important 

challenge (Torp et al. 2013; Lehrman et al. 2012). Most of the plantations are large 

monocultures (Ramstedt 1999; Dalin et al. 2009), which has been criticised for increasing 

risks of disease selection and spread (Ramstedt 1999), and increased risk of pest insect 

outbreaks (Dalin et al. 2009). The plant biodiversity within plantations is very low, although 

some positive effects from plantations on diversity of birds (Berg 2002) and arthropods on a 

landscape level (Rowe et al. 2011) have been found. Many of these monocultures are 

monoclonal and thus monosexual (Reddersen 2001). Whatever effects S. viminalis sex may 

have on trophic interactions, they can therefore be actively influenced by choice of clones of 

either sex or of both sexes. 

 

 It has been noted that dioecious plants are well suited for studies of resource trade-offs 

(Capeda-Cornejo & Dirzo 2010) between costly sinks. One common resource sink is 

secondary substances, and part of the project will address questions of plant sex and their 

direct defence. Since clones of a certain sex can be chosen when planted in a field, it is of 

interest whether either sex have different effects on herbivory. Although S. viminalis is a 

fairly well-studied system, the literature mostly describes differences between single clones 

or female clones, currently limiting the a posteriori generalisations that one can make about 
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differences between clones of different sex. However, secondary metabolites often play a 

major role in plant defence against herbivores and one study of another Salix species, S. 

myrsinifolia, have found sex-related differences in concentrations of phenolic compounds 

(Ruuhola et al. 2001), so it is likely that some differences are present in S. viminalis too. 

Additionally, information on how herbivores and their enemies react on volatiles emitted by 

male and female plants would provide insight into function of indirect defences. 

 

Some work has already been performed on herbivory and traits affecting herbivory in Salix 

systems. One previous study did not find differences in presence of attacks by gall midges 

and lepidopterans between plants of different sex of S. viminalis in a field experiment 

(Åhman 1997), and that is currently the only study of insect herbivory and S. viminalis sex. 

My project will mainly focus on a coleopteran herbivore, P. vulgatissima, and some of its 

natural enemies. Damage by mammal herbivores will also be recorded, the most likely 

mammal herbivores being the European roe deer (Capreolus capreolus) and the European 

hare (Lepus europaeus). There are a couple of studies investigating relationships between 

plant sex and herbivory from mammals in other Salix species. Mountain hares (Lepus 

timidus) have been identified to prefer male twigs of S. caprea and S. pentandra (Hjältén 

1992) and one study found a preference by voles (Microtus agrestis) for bark of male S. 

myrsinifolia (Danell et al. 1985), while another study found no difference in lemming 

herbivory on S. lanata (Predavec & Danell 2013). 

 

Other effects of the sexual dimorphism of plants may origin from the flowers. Pollen can be 

collected along with the nectar for Salix-visiting species (Kevan & Lack 1985), and in S. 

viminalis, male catkins produce both nectar and pollen. The fate of the catkins after the 

species’ peak flowering period differ; male catkins wither and fall off after flowering while 

female catkins develop (Reddersen 2001), and that could cause a difference in nectar 

availability in either direction. Additionally, Reddersen (2001) noted a tendency of female S. 

viminalis to produce more flowers than male plants did. Such differences in nutrient content 

and temporal availability, and any differences in scent, of flowers might affect pollinators and 

shape the fauna of natural enemies of herbivores. I will therefore investigate effects of plant 

sex on a number of species that may act as herbivores, biological control agents, or as 

pollinators. In my experiments, twenty haphazardly selected commercial Swedish clones of 

each sex will be used. 

 

Phratora vulgatissima (Coleoptera: Chrysomelidae) is a herbivorous leaf beetle commonly 

found on different Salix species. Salix viminalis is one of the more susceptible species 

(Stenberg 2012; Torp et al. 2013), and P. vulgatissima is the most serious pest on Salix short-

rotation coppice (Peacock, Lewis & Herrick 2001; Peacock, Lewis & Powers 2001) and the 

risk for outbreaks of  P. vulgatissima is higher in monocultures than in natural conditions 

(Dalin et al. 2009), which above all makes it problematic for agriculture. The adult beetles lay 

eggs from late May to late June (Björkman et al. 2000), and the hatched larvae cause the 

majority of all defoliation (Lehrman et al. 2012) during their development until pupation. The 

pupal stage is spent in the soil after the third instar (Björkman et al. 2000; Torp et al. 2013). 

Differences in susceptibility of Salix spp. to P. vulgatissima has been attributed to feeding 
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preferences (Peacock, Lewis & Powers 2001). Feeding preferences are likely to be dependent 

on defence substances produced by the plants as a direct defence. Studies of phenolic 

substances, which often are associated with defence, have found differences in concentrations 

between clones of S. viminalis and other species of Salix (Lehrman et al. 2012; Torp et al. 

2013). As mentioned in the theory section, females can be expected to make a better choice 

for their total fitness. Furthermore, their ovipositioning will determine where the larvae will 

consume leaf biomass I will therefore keep track of P. vulgatissima sex during my 

experiments. 

 

Anthocoris nemorum (Heteroptera: Anthocoridae) is an omnivorous insect that when present 

in S. viminalis-plantations forage on P.vulgatissima eggs and larvae, other small animals and 

plant material. It overwinters in the Salix stands (Sage et al. 1999) in SRC, and thus the 

population decreases after a harvest, interrupting the biological control effect it exerts 

afterwards (Björkman et al. 2004). However, it has strong advantages. Anthocoris nemorum 

populations persist between non-harvest years and has been demonstrated to be capable of 

survival and development on prey-free S. viminalis plants (Stenberg et al. 2010), where they 

primarily feed on plant sap. Although many studies have investigated plant sex effects on 

herbivores there is a lack of data on plant sex effects on sap feeding herbivores (Mooney, 

Pratt, et al. 2012). Interestingly, A. nemorum has been found to be behaviourally affected by 

Salix spp. clones: They are demonstrated to have a higher chance of survival until adulthood 

when reared on a clone resistant to herbivory exerted by P. vulgatissima than when reared on 

a susceptible clone, corresponding to A. nemorum’s preference when placing potted plants 

randomly in the field (Stenberg et al. 2010). Anthocoris nemorum is also able to discriminate 

between different Salix sp. by their volatiles and have preferences amongst these that alter 

depending on herbivore damage (Lehrman et al. 2013). The concurrence of preference and 

performance is yet to be tested for more genotypes in order to draw broader conclusions, such 

as whether plant sex affects the preference, preference-performance relationship and how that 

relates to herbivore presence. I therefore want to test experimentally whether the preference-

performance conformity is consistent on clones of both sexes.  

 

Perilitus brevicollis (Hymenoptera: Braconidae) is a parasitoid wasp. As an adult, it 

consumes the nectar of Salix spp. It utilizes P. vulgatissima as a vessel for parasitoid larval 

development, after which the leaf beetle dies. Thus it has potential as a biological control 

agent. As P. brevicollis overwinters as a larva in P. vulgatissima, they do not stay by the host 

plants the whole year, but follows P. vulgatissima to their overwintering sites and subsequent 

host plants. The rate of P. vulgatissima interannual returns to S. viminalis fields is presently 

unknown, but can be expected to depend on surrounding habitats, local population size and S. 

viminalis stand age. Over a longer time span, the parasitoid should therefore have population 

dynamics and potential for sustenance closely coupled to P. vulgatissima behaviour. As the 

life cycles differ between P. brevicollis and A. nemorum, I want to detect whether this 

systems behaviour conforms to the idea of plant sex affecting biological control agent life 

cycles differently, as discussed in the theory section. If omnivore populations are negatively 

affecting parasitoid populations, or if plant sex have different effects on these, I also expect to 

find a negative correlation between the P. brevicollis and A. nemorum densities. 
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The main pollinators of Salix sp. are bumblebees (Bombus spp.), but Salix spp. also constitute 

one of the most attractive nectar sources for hoverflies (Diptera: Syrphidae) (Branquart & 

Hemptinne 2000). Salix spp. are important food sources for pollinators early in the season, 

and may therefore affect pollination success in adjacent wild plants and crops that depend on 

insects for pollen transfer. Any differences between sexes (or clones) in Salix viminalis with 

respect to nectar quality, or (and) effects of its pollen as a food source, may therefore affect 

the ecosystem services provided by bumblebees and hoverflies. 

 

Summary 
 

Little is today known of plant sex effects on higher trophic interactions. A majority of the 

studies investigating differences in herbivory on plants of different sex in diocious species 

have found a bias in herbivore abundance or the extent of herbivory, most commonly toward 

male plants. While many studies have investigated plant sex effects on single interacting 

animal species, mostly herbivores, only a handful of publications discuss similar effects on 

multispecies- or multitrophic interactions. Furthermore, most of the knowledge of plant sex 

effects are on direct effects while much less is known about indirect effects and feedback 

effects of plant sex within multitrophic systems. Numerous studies have assessed the 

potential of enemies of pest species as biological control agents in other contexts. I take a 

plant-centred approach and focus on plant sex effects on two indispensable ecosystem 

services; biological control and pollination. My project will describe the plant sex effects on 

species of different trophic levels through experiments comparing traits and densities. I will 

do that using a system with commercial S. viminalis clones commonly used to produce 

bioenergy, and its most important interacting insect species in field- and laboratory based 

experiments. My ambition with this project is to expand our general knowledge of plant 

genetic effects on multitrophic interactions, and while doing so increase the potential of Salix 

SRC to mitigate our impact on the changing climate. 

 

Acknowledgements 

I want to thank my supervisors, Johan A. Stenberg, Amy Parachnowitsch and Christer 

Björkman, and Sönke Eggers for valuable comments on the essay. My project is funded by 

the Swedish Energy Agency. 

 

References 

 

Alliende, M.C. & Harper, J.L., 1989. Demographic Studies of a Dioecious Tree. II. The 

Distribution of Leaf Predation Within and Between Trees. Journal of Ecology, 77(4), 

pp.1048–1058. 



14 
 

Berg, Å., 2002. Breeding birds in short-rotation coppices on farmland in central Sweden—the 

importance of Salix height and adjacent habitats. Agriculture, Ecosystems & 

Environment, 90(3), pp.265–276. Available at: 

http://linkinghub.elsevier.com/retrieve/pii/S0167880901002122. 

Björkman, C. et al., 2000. Effects of leaf beetle damage on stem wood production in 

coppicing willow. Agricultural and Forest Entomology, 2, pp.131–139. 

Björkman, C. et al., 2004. Harvesting Disrupts Biological Control of Herbivores in a Short-

Rotation Coppice System. Ecological Applications, 14(6), pp.1624–1633. 

Björkman, C. & Liman, A.-S., 2005. Foraging behaviour influences the outcome of predator 

– predator interactions. Ecological Entomology, 30, pp.164–169. 

Boecklen, W.J. & Hoffman, M.T., 1993. International Association for Ecology Sex-Biased 

Herbivory in Ephedra trifurca : The Importance of Sex-by-Environment Interactions. 

Oecologica, 96(1), pp.49–55. 

Boecklen, W.J., Price, P.W. & Mopper, S., 1990. Sex and Drugs and Herbivores : Sex-Biased 

Herbivory in Arroyo Willow ( Salix Lasiolepis ). Ecological Society of America, 71(2), 

pp.581–588. 

Branquart, E. & Hemptinne, J.-L., 2000. Selectivity in the exploitation of floral resources by 

hoverflies (Diptera: Syrphinae). Ecography, 23(6), pp.732–742. Available at: 

http://doi.wiley.com/10.1111/j.1600-0587.2000.tb00316.x. 

Bukovinszky, T. et al., 2009. Consequences of constitutive and induced variation in plant 

nutritional quality for immune defence of a herbivore against parasitism. Oecologia, 

160(2), pp.299–308. Available at: http://www.ncbi.nlm.nih.gov/pubmed/19271243 

[Accessed December 19, 2013]. 

Capeda-Cornejo, V. & Dirzo, R., 2010. Sex-Related Differences in Reproductive Allocation , 

Growth , Defense and Herbivory in Three Dioecious Neotropical Palms. PloS one, 5(3), 

p.e9824. 

Cornelissen, T. & Stiling, P., 2005. Sex-biased herbivory: a meta-analysis of the effects of 

gender on plant-herbivore interactions. Oikos, 111(3), pp.488–500. Available at: 

http://doi.wiley.com/10.1111/j.1600-0706.2005.14075.x. 

Cronin, J.T. & Abrahamson, W.G., 1999. Host-plant genotype and other herbivores influence 

goldenrod stem galler preference and performance. Oecologia, 121(3), pp.392–404. 

Available at: http://link.springer.com/10.1007/s004420050944. 

Dalin, P., Kindvall, O. & Björkman, C., 2009. Reduced population control of an insect pest in 

managed willow monocultures. PloS one, 4(5), p.e5487. Available at: 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2674563&tool=pmcentrez&

rendertype=abstract [Accessed December 2, 2013]. 

Danell, K. et al., 1985. Sexuality in willows and preference by bark-eating voles: Defence or 

not ? Oikos, 44(1), pp.82–90. 



15 
 

Elmqvist, T. & Gardfjell, H., 1988. Differences in response to defoliation between males and 

females of Silene dioica. Oecologia, 77(2), pp.225–230. Available at: 

http://link.springer.com/10.1007/BF00379190. 

Fellowes, M.D.. et al., 1998. Pupal parasitoid attack influences the relative fitness of 

Drosophila that have encapsulated larval parasitoids. Ecological Entomology, 23, 

pp.281–284. 

Fritz, R.S. & Price, P.W., 1988. Genetic Variation Among Plants and Insect Community 

Structure : Willows and Sawflies Author ( s ): Robert S . Fritz and Peter W . Price 

Published by : Ecological Society of America GENETIC VARIATION AMONG 

PLANTS AND INSECT COMMUNITY STRUCTURE : WILLOWS AN. Ecology, 

69(3), pp.845–856. 

Geber, M.A., 1999. Gender and Sexual Dimorphism in Flowering Plants 1st ed. M. A. Geber 

& T. E. Dawson, eds., Berlin Heidelberg: Springer-Verlag. 

Gripenberg, S. et al., 2010. A meta-analysis of preference-performance relationships in 

phytophagous insects. Ecology Letters, 13, pp.383–393. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/20100245 [Accessed March 4, 2013]. 

Hjältén, J., 1992. Plant sex and hare feeding preferences. Oecologia, 89, pp.253–256. 

Kevan, P.G. & Lack, A.J., 1985. Pollination in a cryptically dioecious m Ja Scott ( Myrtaceae 

) by pollen-collecting bees i. Biological Journal Of thee Linnean Society, 25, pp.319–

330. 

Lehrman, A. et al., 2013. Constitutive and herbivore-induced systemic volatiles differentially 

attract an omnivorous biological control agent to contrasting Salix clones. AoB PLANTS, 

5, p.plt005. Available at: 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3587182&tool=pmcentrez&

rendertype=abstract [Accessed March 20, 2013]. 

Lehrman, A. et al., 2012. Estimating direct resistance in willows against a major insect pest, 

Phratora vulgatissima, by comparing life history traits. Entomologia Experimentalis et 

Applicata, 144, pp.93–100. Available at: http://doi.wiley.com/10.1111/j.1570-

7458.2012.01244.x [Accessed April 3, 2013]. 

Lloyd, D.G. & Webb, C.J., 1977. Sex Characters in Plants. Botanical Review, 43(2), pp.177–

216. 

Mooney, K.A., Fremgen, A. & Petry, W., 2012. Plant sex and induced responses 

independently influence herbivore performance, natural enemies and aphid-tending ants. 

Arthropod-Plant Interactions, 6(4), pp.553–560. Available at: 

http://www.springerlink.com/index/10.1007/s11829-012-9204-5 [Accessed March 21, 

2013]. 

Mooney, K.A., Pratt, R.T. & Singer, M.S., 2012. The tri-trophic interactions hypothesis: 

interactive effects of host plant quality, diet breadth and natural enemies on herbivores. 

PloS one, 7(4), p.e34403. Available at: 



16 
 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3324533&tool=pmcentrez&

rendertype=abstract [Accessed November 8, 2013]. 

Mooney, K.A. & Singer, M.S., 2012. Trait-Mediated Indirect Interactions. In T. Ohgushi, O. 

Schmitz, & R. D. Holt, eds. Cambridge: Cambridge University Press, pp. 107–130. 

Peacock, L., Harris, J. & Powers, S., 2004. Effects of host variety on blue willow beetle 

Phratora vulgatissima performance. Annals of Applied Biology, 144(1), pp.45–52. 

Available at: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1744-

7348.2004.tb00315.x. 

Peacock, L., Lewis, M. & Herrick, S., 2001. Factors influencing the aggregative response of 

the blue willow beetle, Phratora vulgatissima. Entomologia Experimentalis et Applicata, 

98, pp.195–201. 

Peacock, L., Lewis, M. & Powers, S., 2001. Volatile compounds from Salix spp. varieties 

differing in susceptibility to three willow beetle species. Journal of chemical ecology, 

27(10), pp.1943–1951. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11710603. 

Petry, W.K. et al., 2013. Mechanisms underlying plant sexual dimorphism in multi-trophic 

arthropod communities. Ecology, 94(9), pp.2055–2065. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/24279276. 

Predavec, M. & Danell, K., 2013. The role of lemming herbivore in the sex ratio and shoot 

demography of willow populations. Oikos, 92, pp.459–466. 

Ramstedt, M., 1999. Rust disease on willows – virulence variation and resistance breeding 

strategies. Forest Ecology and Management, 121, pp.101–111. Available at: 

http://linkinghub.elsevier.com/retrieve/pii/S0378112798005593. 

Rand, T. a. et al., 2012. Effects of genotypic variation in stem solidity on parasitism of a 

grass-mining insect. Basic and Applied Ecology, 13(3), pp.250–259. Available at: 

http://linkinghub.elsevier.com/retrieve/pii/S1439179112000278 [Accessed April 23, 

2014]. 

Reddersen, J., 2001. SRC-willow ( Salix viminalis ) as a resource for ower-visiting insects. 

Biomass and Bioenergy, 20, pp.171–179. 

Rowe, R.L. et al., 2011. Potential benefits of commercial willow Short Rotation Coppice 

(SRC) for farm-scale plant and invertebrate communities in the agri-environment. 

Biomass and Bioenergy, 35(1), pp.325–336. Available at: 

http://linkinghub.elsevier.com/retrieve/pii/S096195341000303X [Accessed February 12, 

2014]. 

Ruuhola, T. et al., 2001. Systemic Induction of Salicylates in Salix myrsinifolia(Salisb.). 

Annals of Botany, 88(3), pp.483–497. Available at: 

http://aob.oxfordjournals.org/cgi/doi/10.1006/anbo.2001.1491 [Accessed February 7, 

2014]. 



17 
 

Sage, R.B. et al., 1999. Post hibernation dispersal of three leaf-eating beetles (Coleoptera: 

Chrysomelidae) colonising cultivated willows and popolars. Agricultural and Forest 

Entomology, 1, pp.61–70. 

Snyder, W.E. & Ives, A.R., 2001. Generalist predators disrupt biological control by a 

specialist parasitoid. Ecology, 82(3), pp.705–716. 

Stenberg, J.A., 2012. Plant-mediated effects of different Salix species on the performance of 

the braconid parasitoid Perilitus brevicollis. Biological Control, 60(1), pp.54–58. 

Available at: http://linkinghub.elsevier.com/retrieve/pii/S1049964411002647 [Accessed 

April 3, 2013]. 

Stenberg, J.A., Lehrman, A. & Björkman, C., 2011. Plant defence: Feeding your bodyguards 

can be counter-productive. Basic and Applied Ecology, 12(7), pp.629–633. Available at: 

http://linkinghub.elsevier.com/retrieve/pii/S1439179111001034 [Accessed April 4, 

2013]. 

Stenberg, J.A., Lehrman, A. & Björkman, C., 2010. Uncoupling direct and indirect plant 

defences: Novel opportunities for improving crop security in willow plantations. 

Agriculture, Ecosystems & Environment, 139(4), pp.528–533. Available at: 

http://linkinghub.elsevier.com/retrieve/pii/S0167880910002446 [Accessed April 4, 

2013]. 

Stiling, P. & Cornelissen, T., 2005. What makes a successful biological control agent? A 

meta-analysis of biological control agent performance. Biological Control, 34(3), 

pp.236–246. Available at: 

http://linkinghub.elsevier.com/retrieve/pii/S1049964405000538 [Accessed November 

14, 2013]. 

Stiling, P., Rossi, A.M. & Rossi, M., 1996. Complex Effects of Genotype and Environment 

on Insect Herbivores and Their Enemies. , 77(7), pp.2212–2218. 

Symondson, W.O.C., Sunderland, K.D. & Greenstone, M.H., 2002. Can generalist predators 

be effective biological control agents? Annual Review of Entomology, 47, pp.561–594. 

Torp, M. et al., 2013. Performance of an herbivorous leaf beetle (Phratora vulgatissima) on 

Salix F2 hybrids: the importance of phenolics. Journal of chemical ecology, 39(4), 

pp.516–524. Available at: http://www.ncbi.nlm.nih.gov/pubmed/23456345 [Accessed 

May 31, 2013]. 

Ågren, G.I., Stenberg, J.A. & Björkman, C., 2012. Omnivores as plant bodyguards—A model 

of the importance of plant quality. Basic and Applied Ecology, 13(5), pp.441–448. 

Available at: http://linkinghub.elsevier.com/retrieve/pii/S1439179112000722 [Accessed 

April 4, 2013]. 

Ågren, J. et al., 1999. Sexual Dimorphism and Biotic Interactions. In M. A. Geber, T. E. 

Dawson, & L. F. Delph, eds. Gender and Sexual Dimorphism in Flowering Plants. 

Berlin Heidelberg: Springer-Verlag, pp. 217–246. 



18 
 

Åhman, I., 1997. Growth , herbivory and disease in relation to gender in Salix viminalis L . 

Oecologia, 111(1), pp.61–68. 

 


