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Abstract 

Ossipova, E., 2008. Methods for Mass Spectrometric Proteome Analysis.  
Doctor’s dissertation. 
ISSN 1652-6880, ISBN 978-91-85913-42-8 
 
The major goal of proteome analysis is structure determination, identification, estimation of 
expression level, and understanding of the role of any protein in an organism. In 
combination with genomics, proteomics can provide a holistic understanding of the 
biological processes occurring in any organism. Mass spectrometry-based proteome 
analysis typically utilizes mass spectra of peptides of digested proteins together with 
sequence collection searching for rapid and accurate identification of proteins. Successful 
proteome analysis requires good experimental design, high quality data and optimized 
search conditions for protein identification. 

A mass spectrometry-based method for differential detection and identification of 
proteins in protein mixtures utilizing multivariate methods was developed. The method 
utilizes intensity values from matrix assisted laser desorption/ionization time-of-flight mass 
spectra of tryptically digested protein mixtures for the label-free identification of a protein 
present in different concentrations in two samples. The Probity algorithm, which assigns the 
statistical significance to each identification result, was applied for the protein 
identification.  

A systematic study of the quality of peptide mass fingerprint based (PMF) protein 
identifications under different search constraints was performed.  2244 PMFs from 2-
dimensional gel electrophoreses separated human blood plasma proteins were submitted to 
the Probity algorithm for protein identification under different search conditions. The 
number of significantly identified proteins was counted for each condition in order to find 
the best set of search constraints for successful outcome.  

A study of how the quality of proteolytic peptide identification can be improved by 
optimizing the information content of tandem mass spectra and by optimizing the search 
constraints of the sequence collection searching was done. The X! Tandem algorithm was 
employed for identification of proteolytic peptides from mouse proteins. The influence of 
the mass accuracy of both precursor and fragment mass ions, the number of sequences 
included in the search, and the number of missed proteolytic cleavage sites on the number 
of identified peptides was explored. 

Computer simulations were performed in order to investigate quantitatively the 
information content in tandem mass spectra of proteolytic peptides, required to identify 
peptides and their post-translational modification.   
 
Keywords: Mass Spectrometry, Proteome analysis, Protein Identification, Differential 
Proteomics, Bioinformatics. 
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α-CHCA    α-Cyano-4-hydroxy cinnamic acid 
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ECD      Electron capture dissociation 
ESI       Electrospray ionization 
ETD      Electron-transfer dissociation 
FT-ICR     Fourier transform-ion cyclotron resonance 
HPLC     High performance liquid chromatography 
HAS      Human serum albumin 
IEF       Isoelectric focusing 
IG       Immunoglobulin 
IPG       Immobilized pH gradient 
MALDI     Matrix- assisted laser desorption/ionization 
MOWSE    Molecular weight search 
MS       Mass spectrometry 
MS/MS     Tandem mass spectrometry 
m/z       Mass-to-charge ratio 
PAGE     Polyacrilamide gel electrophoresis 
PC       Principal component 
PCA      Principal components analysis  
pI        Isoelectric point 
PMF      Peptide mass fingerprint 
Q        Quadrupole 
QIT       Quadrupole ion trap 
RNA      Ribonucleic acid 
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RP       Reversed phase 
SDS      Sodium dodecyl sulfate 
SIMCA     Soft independent modeling of class analogy  
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Introduction 

All genetic information of any organism is stored in a genome and is encoded by 
the sequence of nucleotide subunits of deoxyribonucleic acid (DNA) (for some 
viruses, ribonucleic acid, RNA). DNA molecules contain coding and noncoding 
regions, and the coding regions contain the instructions required for synthesis of 
proteins. Regions of the DNA that can serve as a template for the formation of 
proteins are referred to as genes. A gene is transcribed into messenger RNA 
(mRNA) molecules, and proteins are synthesized according to the instructions 
obtained from mRNA in a process called translation. 

The first genome sequencing projects in the late 1990s that yielded complete 
genomic sequences of the bacterium (Haemophilus Influenzae) [1], of yeast 
(Saccharomyces cerevisiae) [2], and of the nematode (Caenorhabditis elegans) [3] 
opened a new era of biology by demonstrating the utility of complete lists of gene 
products that could be present in an organism. Since then, genome sequencing of 
many organisms have been performed and new sequencing projects are 
undertaken at an increasing pace. 

Proteomics is the study of structures and functions of all proteins in an 
organism. The goal of proteomics is global analysis of gene expression and 
function, which requires analytical methods to detect and quantify proteins in their 
modified and unmodified forms. The term “proteome” was introduced by Wilkins 
[4] in the middle of the 1990s as a protein complement expressed by a genome. 

The proteome is a multiprotein organization in which every protein plays its 
own role in a larger system or network. A proteome represents all possible gene 
products and can exist in different forms that vary within a particular cell [5] or 
from cell to cell [6, 7] and most proteins can be found in several modified forms 
[8-11] in a wide range of abundances [12, 13]. Protein modifications can 
determine structure, location and function of each protein [14]. The challenge of 
proteomics is to detect and quantify proteins in their modified and unmodified 
forms. Proteomics studies can be useful for identification of peptide and protein 
biomarkers of disease [15, 16]. Biomarkers are molecules that indicate changes in 
biological processes and can be recognized or monitored. More specifically, a 
biomarker indicates a change in expression of a gene or state of a protein that 
correlates with the risk or progression of a disease. The great interest arises from 
the potential of biomarkers to provide earlier diagnosis and disease classification. 
Biomarkers have a potential to be used as a guideline in the choice of therapies, 
and reflect how well a treatment is working. Accurate proteome analysis is 
important for understanding many physiological processes occurring in an 
organism. Proteome analysis employs several methods, among them is the mass 
spectrometry (MS)-based protein identification, which attempts to identify 
proteins by matching mass information from proteolytically digested proteins with 
information of protein sequences derived from the genome. MS-based proteome 
analysis can potentially provide rapid and accurate identification of proteins in an 
organism. Profiling proteomics encompasses the description of the whole 
proteome of an organism (by analogy with the genome) and includes organelle 
mapping and differential measurement of expression levels between cells or 
conditions (Fig. 1). 



 
 
 

..

..

..

..

Healthy State Disease State

Changed Expression?

Extraction and Digestion of Proteins
Mass Spectrometric Analysis

L L
L

Stable Isotope
Labeling

Label Free

Protein Identification

H
H

H

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Mass spectrometry based proteome analysis utilizes several methods for 
measurement of gene expression level. i) Proteins from two samples can be separated by gel 
electrophoresis and the proteins that differ in amount will show the difference in spot 
density. Spots of interest are cut out and proteins are proteolytically digested prior to MS 
analysis followed by sequence collection searching. ii) Proteins from one sample are 
enriched or labelled with a heavy stable isotope, whereas proteins from another sample are 
treated so that the natural isotope abundance is retained. The two samples are mixed 
together and proteilytically digested, mass spectra of the peptide mixture are acquired, and 
the intensity values of unlabeled (L) and labelled (H) peaks are compared. iii) with label-
free quantitation mass spectra are acquired separately from the two samples, intensity ratios 
at given m/z-values are compared, and mass values obtained from mass spectra are used for 
protein identification. 
 
 

Objectives 

A major objective of proteomics is to characterize in detail the entire proteome of 
any organism. The objective of this thesis is to develop and improve methods 
towards comprehensive proteome analysis, by new experimental and 
computational approaches that can bring the proteome analysis deeper inside of 
known cellular processes and help to discover unknown proteins and their 
functions. 
 

Specific aims of this thesis 
• Explore semi-quantitative information obtained by MALDI-TOF-MS 

followed by multivariate analysis of mass spectra for the identification of 
a protein present in different concentration in two samples of a protein 
mixture using the Probity algorithm. 

• Evaluate the quality of proteolytic peptide mass finger print based protein 
identification results obtained under different search conditions using the 
Probity algorithm. 

 10 
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• Evaluate the quality of peptide fragment mass spectrometry based protein 
identification using the X! Tandem algorithm and investigate how the 
choice of data processing and search conditions impacts the successful 
outcome of proteome analysis. 

• Investigate the information content of proteolytic peptide fragment mass 
spectra required to identify peptides and their post translational 
modifications. 

 
 

Proteomics Tools 

In the past few years, proteomics research has experienced a progress in 
experimental, instrumental, and computational approaches. Proteomics studies 
require protein separation and protein identification, and in many cases protein 
quantitation. Current proteomic technologies exploit e.g. gel electrophoresis, 
liquid chromatography, mass spectrometry and bioinformatics as tools in the 
proteome analysis. 
 

Sample preparation 

 
The study of any proteome begins with taking a biological sample: it can originate 
from a body fluid, a piece of tissue, cultured cells, and so on. Solid samples then 
need to be disrupted (pulverized, homogenized, sonicated) and contain a lot of cell 
components in a buffer solution. Before the analysis of proteins present in the 
sample can start a protein extraction is required. For proteomic analysis protein 
extraction with no or little contamination by other biomaterials (e.g. lipids, 
cellulose, nucleic acids, etc.) is desired. This can be done using detergents, 
reductants, denaturing agents, and enzymes. 

Detergents, 3-([3-cholamidopropyl]dimetylammonio)-1-propane sulfonate 
(CHAPS), cholate) help to solubilize membrane proteins and separate them from 
lipids. Reductants (ditiothreitol (DTT), mercaptoetanol) reduce disulfide bonds 
and prevent protein oxidation. Denaturing agents (e.g., urea) serve to shatter 
protein-protein interactions by changing the ionic strength and pH of the solution. 
Enzymes (e.g., DNAse and RNAse) digest contaminating nucleic acids, 
carbohydrates (e.g., glycosidases), and lipids (e.g., lipases). 

The resulting extract is a mixture that consists of proteins in different 
concentrations of varying molecular weight, solubility, and modifications. Before 
the mixture of proteins is subjected to mass spectrometric analysis it is usually 
necessary to reduce the complexity of the mixture by dividing it into fractions. 

The most common techniques applied for protein mixture separation is 1D- or 
2-D gel electrophoresis (1D-GE or 2D-GE). During the 1D-GE proteins are 
separated according to their molecular weight or isoelectric points (pI), the pH- 
value for which the protein has a zero net charge, while a high voltage is 
connected to the gel. Separation by isoelectric points uses an immobilized pH 
gradient (IPG) strip in which polycarboxylic acid ampholytes are immobilized on 
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a support to create stable pH gradient [17, 18]. The strip is hydrated with a buffer 
and proteins are slowly loaded onto the strip under voltage. Then the voltage is 
increased to achieve focusing. The proteins are thus resolved into bands in order 
of their relative content of acidic and basic residues, whose value is represented by 
the isoelectric point. 

Separation according to molecular weight is based on SDS-polyacrilamide gel 
electrophoresis (1D- or 2D-SDS-PAGE). The protein sample is dissolved in a 
loading buffer containing SDS. The SDS binds to proteins and imparts a negative 
charge in a proportion to the protein weight. The protein-SDS complexes migrate 
through the cross-linked polyacrylamide gel at rates based on their ability to 
penetrate the pores of the gel. The proteins are thus resolved into bands in order of 
molecular weight. The band are visualized by using different staining techniques, 
including e.g. silver, Coomassie, and fluorescent dyes. The degree of resolution 
achieved by 1D is moderate and bands may contain several proteins.  

For highly complex protein mixtures 2D-SDS-PAGE can be a useful tool. This 
method is a combination of two different types of separation. In the first 
dimension, the proteins are separated according to their charge using isoelectric 
focusing (IEF). In the second step, focused proteins are resolved by 
electrophoresis on a polyacrylamide gel. Thus 2D-SDS-PAGE resolves proteins 
by isoelectric point and by molecular weight. 

In proteomics applications, gel bands or gel spots of interest are cut out and 
subjected to digestion by enzymes with high digestion specificity. The goal of 
proteolytic digestion is to cleave proteins at certain amino acid residues to yield 
fragments that are suitable to MS analysis. For MS analysis protein fragments 
about 6-20 amino acids are desired. Trypsin is the most used protease in proteomic 
analysis. This enzyme digests the protein on the carboxyl side of arginine or lysine 
residues (except those followed by proline). The set of proteolytic peptides is 
unique for every protein, and hence, mass spectrometric analysis of proteolytic 
peptides provides a fingerprint of each protein [19]. 

Another method for reducing complexity of protein mixtures (e.g., a whole cell 
lysate or individual proteins) before MS analysis is proteolytic digestion of the 
proteins and separation of the entire proteolytic peptide mixture by 
multidimentional chromatographic technologies [20, 21]. This strategy involves 
proteolytic digestion of the proteins after their isolation from the cells or tissues. 
The tryptic digest of one protein yields on average 30-50 peptides, so a tryptic 
digest of a proteome with 5000-proteins can yield 150 000- 250 000 or even more 
peptides. For fractionation of proteolytic peptides a High Performance Liquid 
Chromatography-instrument (HPLC) is applied. Several chromatographic 
separations such as reverse phase (RP, based on hydrophobicity of peptides), 
anion and cation exchange (based on electrostatic interaction of analyte molecules 
with positively or negatively charged groups), and affinity (based on interactions 
with specific functional groups) are available. The combination of different 
chromatographic techniques for peptide separation can increase the efficiency of 
the subsequent MS-analysis. A simplistic view of the steps of a proteomics 
experiment – from sample via separation to MS and protein identification – is 
given in Fig. 2. 
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Figure 2. The proteomics workflow. Protein sample is taken from an organism. Proteins are 
separated into fractions and proteolytically digested. Peptides in each digested fraction are 
separated and subjected to mass spectrometric analysis. 
 

Mass spectrometry 
Mass spectrometry is the key source of information for protein identification in 
proteomics experiments. Mass spectrometry is an analytical technique based on 
measurement of the mass-to-charge ratio of ions. Mass spectrometry can be used 
for direct determination of the nominal mass of an analyte and to produce and 
detect fragments of the molecule that corresponds to discrete groups of atoms of 
different elements that reveal chemical features of the analyte molecules [22, 23]. 
Mass spectrometry can also, under particular circumstances, be exploited for 
determination of the amount of an analyte [24]. This technique was introduced by 
the British scientist J. J. Thomson [25], who in 1910 designed the first instrument, 
called mass spectrograph. Mass spectrometry’s primary role was for many decades 
in studies of small volatile molecules [26, 27] and isotopes [28, 29]. 

Mass spectrometers consist of two major components: the ion source and the 
mass analyzer. The mass analyzer/filter separates ions according to their mass-to-
charge ratio (m/z) – with the mass of the ion expressed in atomic mass units and 
the charge expressed as the number of charges that the ion possesses. The atomic 
mass scale definition is based on a fraction of a specific isotope of carbon. 1 mass 
unit is equal to 1/12 the mass of the most abundant naturally occurring stable 
isotope of carbon, 12C. This definition of mass is synonymous with 1 Dalton (Da). 
A recording of the number of ions detected (“abundance”) of a given m/z value as 
a function of m/z is a mass spectrum. 
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Ion sources 

The ion source of a mass spectrometer converts the analyte molecules into ions 
that can be transported to and analyzed by the mass analyzer. In the early 1980s 
two new ionization techniques, fast atom bombardment [30, 31] and plasma 
desorption [32, 33] were invented and mass spectrometry became a helpful tool in 
the analysis of small proteins. A few years later these techniques were 
outperformed with respect to mass range and sensitivity by two new methods: 
electrospray ionization (ESI) [34] and matrix-assisted laser desoption/ionization 
(MALDI) [35]. ESI and MALDI opened a new era in protein analysis and are the 
ionization techniques used today for protein and peptide identification in 
proteomics. 

Samples for MALDI-MS are introduced into the mass spectrometer in a solid 
state with the analyte molecules incorporated in matrix crystals. The compound of 
interest is mixed with small organic molecules (matrix), which have a strong 
absorption in the UV-region and must be capable of forming a fine crystalline 
solid during co-deposition with the analyte on to a plane surface. The irradiation in 
the mass spectrometer of this crystalline mixture by a UV laser pulse induces a 
large amount of energy in the condensed phase through electronic excitation of the 
matrix molecules. This causes the desorption of ions formed by proton transfer 
between the matrix and the analyte compound (Fig.3).  
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Figure 3. Ion formation in MALDI. 
 
The matrix also serves to minimize sample damage from the laser radiation by 
absorbing most of the incident energy and the matrix is believed to facilitate the 
ionization process. The number of matrix molecules exceeds those of the analyte, 
thus separating its molecules and thereby preventing the formation of sample 
clusters which inhibit the appearance of molecular ions. Many of the commonly 
used matrix compounds are organic acids (Fig.4). For detection of small proteins 
and peptides (<10 kDa) α-cyano-4-hydroxy cinnamic acid (α-CHCA) [36] and 
2,5-dihydroxybenzoic acid (DHB) [37] are used, and 3,5-dimetoxy-4-hydroxy 
cinnamic acid (sinapinic acid) is usually applied to detection of heavy proteins 
(>10 kDa). 
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Figure 4. Structures of representative compounds used as MALDI matrices. 
 

ESI instruments allow the use of liquid sample solutions. The compound of 
interest is mixed with a solvent, which passes through a capillary tube with a weak 
flux at atmospheric pressure. An electric field is applied between this capillary and 
a counter electrode and induces a charge accumulation in the liquid at the end of 
the capillary, whereby multiply charged droplets are formed and are sprayed out 
from the end of the capillary. These droplets are forced by the electric field to 
enter a region of decreasing pressure, where evaporation of the solvent will cause 
explosion of the droplets and produce singly or multiply charged ions (Fig. 5). 
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Figure 5. Top: Ion formation from electrospray ionization source. Bottom: ESI source 
coupled to a mass analyzer. 
 

The charge can be positive or negative depending on the analyte and the field 
applied. Two mechanisms for the formation of molecular ions in ESI are accepted: 
the charged residue model and the ion evaporation model [38-40]. Since ESI can 
form multiply charged ions, it is often possible to observe very large molecules 
with a mass analyzer having a relatively small m/z range. 
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Mass analyzers 
Mass analyzers distinguish ions according to their m/z ratio and influence the 
accuracy, range, resolution and sensitivity of an instrument. Nowadays, five types 
of mass analyzers are used in proteome analysis: time-of-flight (TOF), quadrupole 
(Q), quadrupole ion trap (QIT), Fourier transform-ion cyclotron resonance (FT-
ICR), and orbitrap. These analyzers are sometimes combined in a single 
instrument, e.g. quadrupole-time-of-flight (Q-TOF). 

The operating principles of the TOF mass spectrometer [41] involve 
measuring the time required for an ion to travel from an ion source to a detector 
usually located 1 or 2 m from the source. Ions obtain their kinetic energy by 
acceleration in an electric field. The ion velocities depend on m/z values and 
correspondingly ions of different m/z will reach the detector at different times. An 
important characteristic of mass analyzers is the resolution – i.e., the ability of a 
mass spectrometer to distinguish between ions of different mass-to-charge ratios. 

The resolution of TOF-analyzers is limited by the length of the flight path, but 
their advantage is no upper mass limitation. Improvement of resolution of TOF 
analyzer was accomplished by the invention of the reflectron (an electrostatic 
mirror), which serves to reduce the velocity distribution of ions and hence narrow 
the spread in time-of-flight for ions with the same m/z (Fig.6) [42].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Principle of MALDI-TOF mass spectrometer with an electrostatic reflector. 
 

The quadrupole analyzer (filter) is a device that consists of four parallel rods 
with a direct current voltage and a superimposed radio- frequency (RF) potential 
applied to the rods. The field on the quadrupole determines which ions are allowed 
to reach the detector. As a field is imposed, ions moving into this field region will 
oscillate depending on their mass-to-charge ratio and, depending on the radio 
frequency field, only ions of a particular m/z are allowed to pass through. The m/z 
of an ion is determined by correlating the field applied to the quadrupole with the 
ion reaching the detector. 
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In the quadrupole ion trap mass analyzer, the quadrupole field is three 
dimensional and ions of specific m/z values, which depend on the level of radio- 
frequency voltage are stored in the device. Ions are affected in all directions so 
that they travel in discrete orbits within the field. The QIT operates at a relatively 
high pressure of ~10-1 Pa as opposite to ~10-4 Pa for the quadrupole filter and ~10-7 
Pa for TOF-analyzers. This increased pressure allows for sufficient resolution to 
be achieved. The proper operating pressure is maintained by a continuous flow of 
helium or argon gas into mass spectrometer. The use of this buffer gas 
collisionally cools the ions, reducing their rotational and vibrational energies so 
that this damping of the ion motion extends the m/z range of ions that can be 
trapped with good efficiency and resolution. A scan sequence is applied to acquire 
the mass spectrum. It starts with a clearance of the ion trap and continues with 
accumulation when the ions are trapped in the RF field using low quadrupolar 
amplitude and cooling with the inert gas. During the subsequent mass analysis the 
field strength is increased to progressively eject ions of increasing m/z values out 
of the trap. 

FT-ICR [43-45] is based on the observation that a charged particle will 
precess in a magnetic field at a frequency related to its m/z value [44, 46, 47]. The 
name of the technology derives from the cyclotron frequency of a precessing ion 
in an orbit, the plane of which is perpendicular to the applied magnetic field, and 
from the fact that energy can be transferred to the oscillating ion provided that the 
energy is available at the cyclotron frequency (i.e., resonance condition). In 
classical ICRMS operation, energy at a specific frequency that corresponds to the 
precession frequency of the ion with the specific m/z- value is transmitted into the 
ICR cell. If an ion of this specific m/z- value is present in the cell, it will absorb the 
energy because of the resonance condition and move to an orbit of increasing 
radius while maintaining its characteristic precession frequency. Once the radius 
of the precession orbit exceed the internal dimension of the ICR cell, the ions of 
that specific m/z- value will collide with the walls of the ICR cell, producing a 
measurable electrical signal, the strength of which can be related to the abundance 
of these ions. In the FT mode a wide variety of frequencies is transmitted to the 
ICR cell and thus ions of many different m/z- values can absorb the energy at the 
same time. Irradiation is very brief and ions after absorbing energy will not 
achieve a cyclotron orbit that exceeds the dimension of the cell but become 
coherent within their cyclotron orbit and will induce an oscillating charge in the 
walls of the ICR cell as they precess. The overall induced charge oscillation in the 
ICR cell walls consists of an overlay of all the component frequencies of different 
ions oscillating in the ICR cell and FT approach allows ions of all m/z- values to 
be determined simultaneously. FTMS is unique in that an increase of the 
measurement time increases both sensitivity and resolution. This advantage 
derives from the fact that in FTMS the ions are not consumed during the detection 
process. 

The orbitrap [48, 49] is a mass analyzer that consists of an outer barrel-like 
electrode and a coaxial inner spindle-like electrode that form an electrostatic field 
with quadro-logarithmic potential distribution. In an orbitrap, ions are injected 
tangentially into the electric field between the electrodes and trapped because their 
electrostatic attraction to the inner electrode is balanced by centrifugal forces. 
Thus, ions cycle around the central electrode in rings at the frequencies which are 
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inversely proportional to the square root of the mass-to-charge ratio. These 
oscillations are detected as a time-domain signal using image current detection as 
sensed by the two electrically isolated components that constitute the barrel 
electrode. The frequencies of oscillating image current are transformed into mass 
spectra using a fast Fourier transform. 

All the mass analyzers mentioned here have a wide spread use in proteomics. 
Specific priorities in a given proteomics experiment can influence the choice of 
mass analyzer e.g. FT-ICR and orbitrap mass analyzers display high performance 
but are unfortunately rather expensive. The experimental proteomic data employed 
in this thesis were generated using either MALDI or ESI ion sources, and either 
TOF or Q-TOF mass analyzers. 

For detection of the ions, which are emerging from the mass analyzer and 
measurement of their m/z and abundances all mass spectrometers are supplied with 
a detector. The detectors most often used in modern mass spectrometers involve 
secondary emission of electrons. Positive or negative ions cause the emission of 
one or several secondary particles (usually electrons) while colliding with the 
detector. These secondary particles pass into an electron multiplier causing the 
emission of more and more electrons as they travel toward the ground potential. 
Thus a cascade of electrons is created that finally results in a measurable current at 
the end of the electron multiplier. The detector signals are transferred to a 
computer for recording of the signal. 

 
 

Mass spectrometry based protein identification 

Peptide mass fingerprinting 
Protein identification using mass spectrometry is based on the information in mass 
spectra acquired from peptides of digested proteins. Typically enzymes that cleave 
proteins at known positions are used, which generate peptides whose masses can 
be predicted (e.g. trypsin digests proteins at the C-terminal of arginine and lysine). 
A measurement by MS of the masses of these peptides yields a peptide mass 
fingerprint (PMF) of the protein [19]. For PMF-based protein identification, a 
sequence collection containing all possible peptide sequences that can be present 
in an organism is needed. A computer performs a virtual digestion of entire 
proteins in a sequence collection in the same way as in a real experiment and 
creates a theoretical mass list of peptides. Mass values obtained from the acquired 
mass spectrum (the PMF) are then compared to the theoretical masses from the 
mass list in order to find matches. Since all mass spectrometers measure m/z 
values with an error, any mass value in the mass spectrum can match several mass 
values from the theoretical mass list. Therefore, a score that describes the degree 
of matching with the data is assigned to each of the proteins in the sequence 
collection, and a software tool is applied to rank the proteins according to their 
respective scores. The protein with the best score is assumed as the identification 
result. 
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Figure 7. The principle of protein identification using peptide mass fingerprinting. 
 

MS/MS- data for protein and peptide identification  
An alternative method for identifying proteins and peptides exploits tandem mass 
spectrometry. This technique employs isolation of a precursor ion which then 
undergoes a fragmentation yielding neutral fragments and fragment ions. A 
number of different fragmentation techniques are available that lead to the 
detection of different types of fragment ions. The most important techniques of 
fragmentation are collision-induced dissociation (CID) [50], electron capture 
dissociation (ECD) [51] [52] and electron-transfer dissociation (ETD) [53]. CID is 
an ion/neutral process wherein the ion of interest (precursor ion) is fragmented as 
a result of collision with inert molecules of argon or helium. 
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Figure 8. Main fragmentation paths of peptides.  In CID b- and y- ions dominate. C- and z- 
ions are typically detected when using the ECD or ETD. 
 
ECD converts a multiprotonated molecule to a radical cation, an odd-electron 
species as represented by following reaction: 
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 MH2

2+ + e-
5 eV MH+. + H.

 
The radical cation formed at the time of electron capture readily fragments via a 
variety of pathways, but favors the formation of c- and z-type ions from proteins 
or peptides [54-56]. ETD adds a low- energy electron to a multiprotonated 
molecule via an ion-ion reaction thereby converting it to a radical cation, which 
dissociates in pathway analogous to those observed in ECD. Multiprotonated ions 
(formed e.g. by ESI) are guided to a reaction chamber for interaction with a beam 
of electron-rich anions formed in a separate ion source: 
 

MH2
2+ + A-· MH+ + AH 

 
A set of proteolytic peptide fragment mass values (e.g. derived from b- and y- 
ions) provide sequence information that can be utilized for identifying the peptide 
that was fragmented. This identification can be done with three different methods. 
The dominating approach is to perform sequence collection searching [57, 58] 
(Fig. 9). The mass information from the fragment mass spectrum is compared with 
theoretical fragment mass spectra generated from a sequence collection. 
Theoretical fragment mass spectra are generated by in silico digestion of proteins, 
assuming the same enzyme as in the experiment, and by assuming the same 
fragmentation pathways as in the experiment. The degree of matching between 
experimental and theoretical fragment mass spectra is described by a score, and 
the peptide sequence in the collection that obtains the best score is assumed as the 
identification result. 

Another approach to peptide identification using MS/MS-data is de novo 
sequencing [59]. This approach is required if a peptide of interest is not present in 
any sequence collection. De novo sequencing means that a peptide sequence is 
derived directly from the mass spectrum. This approach is based on permutation of 
amino acids giving all possible sequence combinations matching the peptide mass 
and generation of theoretical mass spectra for each peptide sequence. All 
candidates are compared with the experimental fragment mass spectrum in order 
to find the best match. This process is time consuming and challenging, and 
requires high quality data. 

A third approach is library searching [60], where peptides are identified by 
comparing the experimental MS/MS spectrum with previously acquired spectra of 
identified peptides stored in a library [61, 62]. This approach can be very 
sensitive, since the comparisons involve real, already existing spectra (intensity 
information is included in the comparison), but of course is useless for analysis of 
peptides not already detected. 

MS/MS- based identification has several advantages since it provides detailed 
information about a peptide sequence and its modifications. It allows working with 
complex peptide mixtures and does not require all the peptides of a given protein 
to be confirmed to achieve confident identification of a protein. 
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Figure 9. Protein identification using MS/MS- data and sequence collection searching. 
 
 

Software tools for peptide and protein identification 
Several software tools have been developed for scoring and ranking proteins or 
peptides in order to find the candidate in the sequence collection that gives the 
best match with the experimental mass spectrometric data. All these tools at some 
point count the number of matching mass values. The number of matches can be 
used directly to rank protein candidates [63]. Ranking by the number of matches 
favours false identification of large proteins [64], since large proteins can yield 
many random matches with the experimental mass spectrum. For PMF data, 
Mascot [65] and Profound [66] are two commercially available tools with more 
sophisticated scoring methods. Mascot is based on the MOWSE scoring scheme 
[67] and it attempts to compute a probability, P, that the number of matching 
fragments is random, resulting in a score -10log (P). However, the details of the 
computation of P have not been described in the literature. Profound, which 
employs a Bayesian scoring function, considers individual mass errors in the 
scoring and ranks the protein sequences in a collection according to their 
probability of producing a PMF [66]. In this thesis the Probity algorithm was 
employed for PMF based protein identification. Probity ranks the protein 
sequences in the collection according to the risk that the matching with the 
experimental PMF is random, and computes a significance level for each result. 
The details of the underlying computations in Probity are described in references 
[68, 69]. 

Commercially available software tools for MS/MS based peptide identification 
include e.g. SEQUEST [58] and Mascot (http://www.matrixscience.com/). In this 
thesis, a freely available open source tool X! Tandem [70] was employed for 
peptide identifications. X! Tandem compares mass spectra with theoretical mass 
information for peptide sequences in the sequence collection searched, calculates a 
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score for each comparison and computes an expectation value (e-value) - i.e., an 
estimate of the risk that the score is associated with a random match. The e-value 
computation utilizes the score distribution of the random matches in an individual 
search (Fig. 10). 
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Figure 10.  The expectation value (e-value) is an estimate of the risk that the score for the 
highest ranked peptide or protein is associated with a random match. In order to estimate 
the e-value, X! Tandem makes a distribution of all the scores for all peptides in the 
sequence collection that to some degree match randomly the MS/MS spectrum. E-values 
are calculated by extrapolating the tail of this distribution to the high scores of top ranked 
protein candidates. The e-value for a protein candidate is the number of protein sequences 
in the collection searched expected to get the same or higher score by random matching. 
 
 

Differential protein quantitation and 
identification by mass spectrometry  

(Paper I) 

Quantitative proteomics investigates the changes in gene expression level in 
different physiological states, e.g. describing the differences between healthy and 
disease cells. 
 

Quantitation based on 2D-GE 
Several methods for differential detection are used in proteomics. Two- 
dimensional gel electrophoresis is a widely used approach for reflecting changes 
in gene expression level. At least two gels need to be compared in order to see 
differences between two samples. The advantage is the ability of 2D-GE to serve 
as image maps to allow investigators to compare changes in the patterns of spots 
on the gel. 2D-GE has some drawbacks. It is often difficult to perform completely 
reproducible 2D-GE analysis. Differences in protein migration in either dimension 
could be misinterpreted as changes in expression level between two samples. 2D-
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GE has a relatively small dynamic range when staining is the technique for protein 
detection. The lowest concentration of protein that could be detected is 
approximately 1 ng/spot by using fluorescence dye [71]. 

Using radioactive isotope protein labeling can lead to 2D-GE detection 
sensitivities at attomol levels, with dynamic range of over six orders of magnitude 
and statistically significant quantification even of changes in the 15-20% range 
[72]. The low abundance proteins cannot be detected by GE, since high-abundant 
proteins can be 10 orders of magnitude higher in total amount of proteins in a 
sample [73]. This disadvantage requires steps that remove high-abundant proteins 
before running 2D-GE. Depletion of abundant, mostly high molecular weight 
proteins are often desired for loading of a much higher amount of the low copy 
and/or low molecular weight proteins for analysis. Various forms of 
immunoglobulins and human serum albumin represent the most abundant proteins 
in human plasma, constituting up to 80% of total plasma proteins. Depletion 
strategies involve the use of a chlorotriazine dye with high affinity for albumin, or 
the use of antibody affinity ligands for HSA and IgGs. Affinity media are made up 
of matrices with covalently attached antibodies to the specific abundant proteins. 
Immunodepletion columns allow removing on average 99.6% of high abundant 
proteins from serum. 
 

Quantitation from MS-data 
 
Stable isotope labeling 
MS is in principal a non-quantitative technique; however, relative quantitative 
estimates may be deduced from mass spectrometric data. MS-based methods for 
relative quantitative determination typically use stable isotope labeling [74, 75]. 
Usually two protein samples are treated with some reagents to “tag” them. The 
tags are chemically identical, except that one is enriched with an isotope that is not 
the most abundant in nature. The samples are mixed together and digested with a 
specific enzyme. LC-MS/MS analysis of the obtained peptide mixture allows 
detecting duplets of molecular ions, separated by a mass corresponding to the 
absolute molecular mass between the isotope unlabeled and isotope labeled forms. 
Comparison of the relative abundances of the peaks corresponding to isotope 
labeled and unlabeled peptides reflect the abundance of the protein in the 
respective sample. This approach represents the relative quantification of a protein 
level in two samples. The sensitivity and dynamic range are determined by the 
mass spectrometer and are typically in the ranges 1-100 fmol and 102-104 
respectively. 
 
 
Label-free quantitation 
Isotope labeling of proteins is not always practical and has several disadvantages. 
Labeling with stable isotopes is expensive and in complex protein mixtures 
experimental variation and noise can affect the quantitative value and accuracy. As 



an alternative, peptide and protein quantitation without isotopic tags by comparing 
signal intensities measured in MS analysis of two or several peptide mixtures can 
be applied. Mass spectra are acquired for each sample separately and mass peak 
intensities of peptide ions are compared in order to find correlation with protein 
abundances [76, 77]. 

The fact that intensities of individual ion signals can vary considerably 
between different spectra acquired from the same sample, suggests the potential 
usefulness of acquiring many spectra and employing statistical methods when 
analyzing the intensities. For example, multivariate analysis have been applied as 
support to MALDI-TOF proteome analysis in order to implement an easier and 
faster way of data handling for elucidating different protein characteristics [78] 
and can also be used for tracing of systematic differences between the digestion 
procedures [79]. Multivariate methods have also been used in comparison of 2D-
gels for identification of proteins responsible for differences occurring between 
healthy and disease samples [80]. 

In this thesis a novel experimental design for MS-based differential detection 
was developed. It is demonstrated that differential analysis can be done without 
labeling procedure by using the semi-quantitative information in mass spectra 
together with the use of multivariate methods (principal components analysis 
(PCA) and soft independent modeling of class analogy (SIMCA)). 

Principal components analysis [81, 82] is a computational method that 
transforms the data to a new coordinate system such that the greatest variance by 
any projection of the data comes to lie on the first coordinate (called the first 
principal component (PC)), the second greatest variance on the second coordinate, 
and so on. Aims of PCA are to discover or reduce the dimensionality of the data 
set and to identify new underlying variables. The reduction of a data set is found 
by new orthogonal axes, which describe the direction of maximum variance in the 
data set. The first PC lies along the direction of maximum variance in the data set. 
The second PC will lie along a direction orthogonal to the first PC and in the 
direction of the second largest variance. Each PC is characterized by two pieces of 
information, the scores and the loadings. The loadings define the orientation of the 
computed PC plane with respect to the original variables and provide information 
on how the old variables are linearly combined to form the new variables, the PC 
scores. The loadings unravel the magnitude (large or small correlation) and the 
manner (positive or negative correlation) in which the measured variables 
contribute to the formation of scores. A set of scores represents the position of the 
object in the new coordinate system, and is calculated for each object and loading. 
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Figure 11. Principal component analysis. 
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Soft independent modeling of class analogy (SIMCA) is useful when two classes of 
data overlap (Fig. 12) [83]. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. Two overlapping classes. 
 
The main idea of this technique is that objects in one class show similar rather 
than identical behaviour because they possess a particular class pattern, which 
makes all these objects more similar to each other than to the objects of any other 
class. The actual classification technique is not applied in this investigation but the 
discriminatory power, Dj, related to SIMCA was calculated by calculating the PCA 
models for each class independently. The number of PCs needed to describe the 
model of each respective class is determined. Each class could be described by a 
different number of PCs. SIMCA can measure how well a variable, j, 
discriminates between two classes by calculating its discriminatory power Dj. In 
order to determine Dj, it is necessary to compare the objects of each respective 
class to both class models by computing the residual matrix, E, for each 
combination of class and class model. The residual matrices describe the 
differences between the objects and the model. 
 
                                   'LoadingsScoresDataE ∗−=  
 
For each E computed the standard deviation sjresid  of the residual of the variable j 
is derived. Knowing sjresid for each combination of class and class model allows 
computation of the discriminatory power Dj that reveals the variables that 
discriminate between two classes: 
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The bigger Dj value, the higher is the discriminatory power. This feature of Dj is 
suitable for the problem of detecting what is causing the differences in signals in 
two different samples- e.g. what protein is present in a different concentration in 
two protein mixtures. 
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The mass spectrometry based method demonstrated in this thesis involved 
acquisition of multiple MALDI-TOF mass spectra of PMF of protein mixtures. 
Three protein mixtures consisting of four different proteins, where the 
concentration of three of those proteins was held constant and the concentration of 
one of the proteins was varied were tryptically digested. Peptide mixtures obtained 
after digestion were subjected to mass spectrometric analysis. On average, 200 
MALDI mass spectra were acquired for each protein mixture. PCA and SIMCA 
were applied for data analysis in order to trace differences in intensity values 
between protein mixtures. Three classes were defined and each class was 
associated with a different protein mixture. All combinations of two classes were 
analyzed using the SIMCA method. The discriminatory power Dj obtained for 
each combination of two classes as a result of SIMCA described the differences 
among two samples. Plotting Dj values against m/z values resulted in a 
transformed proteolytic peptide mass spectrum (a D- spectrum, Fig. 13). M/Z 
values obtained from the D-spectrum were used for sequence collection searching 
in order to identify the compound present in a different amount in two samples. 
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Figure 13. Left: D-spectrum describing the difference between two real protein mixtures. 
The concentration of one protein was four times higher in one of the samples. Right: D-
spectrum for two artificial classes generated by randomly dividing the spectra obtained for 
the same protein mixture into two classes. 
 

The mass values obtained from a D- spectrum were organized in descending 
order of their peak area and submitted to the Probity algorithm [68] starting with 
the mass value corresponding to the strongest peak followed by the strongest 
together with next strongest peak and so on. Probity determines how well any 
particular sequence in a collection matches to the data and assigns a statistical 
significance level. Figure 14 shows the results of protein identification using 
Probity. It is seen that carbonic anhydrase is the first protein to yield a highly 
significant result and therefore it is identified as the protein whose concentration 
was changed in the two protein mixtures. 
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Figure 14. The protein identification results obtained by the Probity algorithm utilizing 
information from D-spectrum. 
 

This demonstrated label-free mass spectrometry based method for detecting 
quantitative changes has e.g. the potential to support 2D-GE-based differential 
analysis by allowing identification of the protein component that differs in cases 
where a gel-spot is poorly resolved and contains several proteins. 
 
 

The influence of search conditions on the quality 
of protein and peptide identification  

(Paper II and III) 

The ability to identify a protein present in a sample depends on three factors: (i) 
the experimental design, (ii) the data quality, and (iii) the choice of protein 
identification algorithm (including search conditions). A good experimental design 
for protein identification must handle the complexity and wide range of protein 
abundances [84]. Algorithms used for protein identification should maximize the 
number of true results, minimize false results, and assign a significance level to all 
results. Various algorithms have their default search conditions, e.g. for mass 
accuracy or the assumed digestion efficiency, but these conditions are not 
necessarily optimal in any given experiment. In this thesis, the effect of search 
conditions was explored for PMF-based as well as MS/MS-based protein 
identification. 
 

The study of the influence of search conditions for PMF-based protein 
identification was done using 2D-GE separated and proteolytically digested 
human plasma proteins analyzed by MALDI-TOF. The Probity algorithm [68] was 
applied to examine the impact of data processing and different search constraints. 
The influence of the mass accuracy Δm, the number of missed cleavage sites, u, 
and the size of a sequence collection on identification results was investigated at 
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three significance levels (0.05, 0.01, and 0.001). The relation between the 
significance level and the number of identified proteins for a given search 
condition is displayed in Figure 15. Data processing in the form of a mass 
correction procedure utilizing deviation between experimental and theoretical 
mass values for matching albumin peptide masses was applied in order to improve 
the mass accuracy. This procedure leads to a minor but measurable improvement 
of the number of significant results (Fig. 16). 
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Figure 15. The significance level as a function of the number of identified proteins for a 
given search condition. 
 

The dependence of the number of significant results on different values of Δm 
was studied by varying of Δm-values from ±0.01 to ±0.3 Da. The maximum 
number of significant results was achieved at Δm= ±0.14. This value was 
employed as an optimum value for further searches of optimal settings of other 
constraints. 
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Figure 16. The number of proteins identified by Probity at different significance levels as a 
function of the Δm employed in the sequence collection search. 
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The number of missed cleavage sites, u, can influence protein identification results 
since the number of potentially matching mass values varies with u. It is seen in 
Figure 17 (left) that the number of significant results decreases as a function of an 
increasing number of missed cleavage sites for this dataset. However, the number 
of missed cleavage sites can vary between different PMFs depending on the 
cleavage efficiency of identified proteins present in the mixture. Figure 17 (right) 
represents a comparison of results obtained for two different ways of choosing u-
values in the search. The number of identified proteins is increased when using the 
u-value that gives the best significance level for each respective PMF compared to 
the use of a fixed u-value for all PMFs. 
 
 

100

200

300

400

500

600

0 1 2

N
um

be
r 

of
 p

ro
te

in
s

Number of missed cleavage sites

5% risk

1% risk

0.1% risk

0

200

400

600

800

1000

0.050.010.001

u=1
u optimized for each PMF

N
um

be
r 

of
 P

ro
te

in
s

Significance Level

 
 
 
 
 
 
 
 
 
 
 
Figure 17. Left: The influence of different u-values on the number of significant results for 
three different significance levels. Right: Comparison of the number of statistically 
significant identification results for different u-value conditions. The white bars represent 
the use of u=1 (fixed) for all PMFs. The cross-hatched bars represent results obtained by 
using the u-value that yielded the lowest risk of obtaining a false result for each respective 
PMF. 
 
 
The study of the influence of search conditions for MS/MS-based protein 
identification was performed under different search constraints using the X! 
Tandem algorithm [70]. X! Tandem computes an expectation value (e-value) for 
each identified peptide (Fig. 10). A large set of tandem mass spectra from 1D-GE 
separated mouse proteins was subjected to X! Tandem searching and the number 
of statistically significant results at three different significance levels (e-value < 
0.05, < 0.01, and < 0.001) was counted for each data processing step and search 
constraint. 

Peptide identification was performed for different settings of the mass 
accuracy of the precursor ion (∆mp), the mass accuracy of fragment ions (∆mf), the 
number of missed cleavage sites (u), and the number of peptide sequences 
searched.  

Using default settings of constraints for X! Tandem, it was found that for 
peptides identified at a good significance level, the deviation between theoretical 
and experimental mass values was pronounced. It was found that the magnitude of 
mass deviations increases with increasing mass and that the distribution of mass 
deviations varies between different LC-MS/MS runs. Therefore, a procedure to 
describe mass deviations for precursor and, fragment mass ions using least-
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squares-fits to linear functions was employed for each respective LC-MS/MS run. 
The resulting functions were applied to correct the measured mass values. Figure 
18 displays the mass deviations before and after applying the mass correction 
procedure. Applying the mass correction procedure noticeably increased the 
number of results identified (Fig. 19). 
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Figure 18. Mass error distributions for one MS/MS run for precursor mass ions and 
fragment mass ions before (a, b) and after (c, d) applying a mass correction procedure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 19. The number of unique peptides identified at three significant levels before and 
after applying a mass correction procedure for precursor and fragment ions. 
 
The impact of the assumed mass accuracy of the precursor ion Δmp and the 
assumed mass accuracy of the fragment ions Δmf  was studied. As can be seen in 
Fig. 20 (left) it was found that the number of peptides identified increased with 
increasing Δmp up to the point where the true error distribution (Fig. 18) is covered 
and unnecessarily high settings of Δmp does not reduce the ability of the algorithm 
to identify peptides. This observation is supported by simulations employing in 
silico generated S. cerevisiae peptide MS/MS spectra and searching the M. 
musculus sequence collection. It is seen in Fig. 20 (right) that the Δmp employed in 
the search has negligible influence on the number of randomly matching 
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fragments. In contrast, it is seen in Fig. 21 that increasing the value of the 
fragment mass error Δmf , beyond the point where it covers the error distribution of 
the data, considerably increases the number of randomly matching fragments. 
Therefore, the maximum number of peptides is identified when Δmf  corresponds 
with the errors of the data and then decreases when increasing Δmf (Fig. 21) . 
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Figure 20. Left: The number of peptides identified at the 0.01 significance level as a 
function of the precursor ion mass tolerance when fragment mass tolerance was set to 0.2 
Da for mass corrected data and data with no correction. Right: Distribution of the number 
of matching fragment masses for in silico generated S. serevisiae peptide MS/MS spectra 
randomly matching M. musculus peptides for different precursor ion mass tolerances. 
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Figure 21. Left: The number of peptides identified at the 0.01 significance level as a 
function of the fragment ion mass tolerance when the precursor mass tolerance was set to 
0.2 Da for mass corrected data and data with no correction. Right: Distributions of the 
number of matching fragment masses for in silico generated S. serevisiae peptide MS/MS 
spectra randomly matching M. musculus peptides for different fragment ion mass 
tolerances. 
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The peptide fragment mass information 
required to identify peptides and their post-
translational modifications  

(Paper IV) 

Current proteomic methods typically utilize information from fragment ion mass 
spectra of proteolytically digested proteins followed by sequence collection 
searching to identify proteins and their post-translational modifications (PTMs). 
PTMs can not be predicted from the genome, but PTMs are important for 
determining protein activity, protein localization and interactions with other 
proteins [14]. Proteins may undergo various types of PTMs [85]. Phosphorylation 
is probably one of the most widespread and better understood PTMs. The 
modification of the side chain of serine, tyrosine, and threonine by a phosphate 
moiety (H3PO4) results in phosphoproteins, which are involved in e.g. metabolic 
pathways, membrane transport, cell growth and signaling processes [11]. 

MS/MS represents a general method for analysis of protein modifications. The 
analysis is however challenging, e.g. because the ionization of modified peptides 
compared with unmodified species is often poor and the dynamic range of the 
mass spectrometers is limited. To overcome existing problems good experimental 
design and protocols and at the same time understanding of the role of the 
information content in MS/MS spectra are needed. In this thesis the examination 
of what features of tandem mass spectra for modified and unmodified peptides are 
important for successful identification of peptide and their PTMs, was performed 
by computer simulation. 

Sets of proteolytic peptide fragment mass spectra were generated in silico from 
S. cerevisiae proteins assuming exposure to trypsin. The peptides were selected 
randomly in a mass region mp ± δ, where δ = 2 Da and mp = 1000, 1500, 2000, and 
2500 Da. 50 peptides were selected for each mp and for each randomly selected 
peptide a set of peptide fragment mass spectra were generated. The number of 
randomly selected b and y fragments in each spectrum was varied over a broad 
range. By adding randomly selected fragment mass values sets of spectra 
containing various numbers of background peaks were generated. Spectra of 
modified peptides were generated by assuming a 100% probability of exactly 1 
phosphorylation in proteolytic peptides containing S, T, and Y amino acid 
residues. 

These various types of in silico generated mass spectra were employed to 
investigate the outcome of S. cerevisiae sequence collection searching with X! 
Tandem under different search constraints. The critical number of fragment 
masses was defined as the number of fragment masses in the spectra that yields a 
50% chance of success (Figure 22). 
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Figure 22. The chance of success – i.e., the fraction of the spectra that yield a true result 
and an e-value below a desired threshold – as a function of the number of fragment masses 
in the spectra. The critical number of fragment masses is the number of fragment masses in 
the spectra that yields a 50% chance of success. 
 

The critical number of fragment masses was studied as a function of the 
precursor ion mass error (varied in the range 0.01-100 Da) and fragment ion mass 
error (varied in the range 0.01-2 Da). The results showed a relatively small 
influence of precursor ion mass error on the outcome of peptide identification 
results (Figure 23, left), whereas the fragment mass error had a much stronger 
influence on the critical number of fragment masses (Figure 23, right). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 23. Left: The critical number of fragment masses as a function of the precursor ion 
mass for two different settings of the precursor ion mass errors; the mass accuracy of 
fragment ion was ±0.5 Da and the e-value threshold was set to 0.001. Right: The critical 
number of fragment masses as a function of the fragment ion mass error for three different 
settings of the precursor ion mass errors at e <0.001. 
 

The simulations revealed that spectra may contain a lot of background peaks 
and still yield significant peptide identification results. Figure 24 displays the 
comparison of results from spectra containing no background with results for 
spectra containing 50% and 80% randomly added background peaks. It is seen 
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from figure 24 that fragment mass spectra with 80% background require more 
fragment masses in tandem mass spectra for successful identification than spectra 
with 50% background or with no background. Addition of 50% background to 
fragment mass spectra leads to moderate increase of the critical number of 
fragment masses when fragment mass error are in the region 0.1< Δmf <0.5 Da. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 24. The critical number of fragment masses as a function of the fragment mass error 
adjusted in the search, for three different levels of background. 
 

The efficiency of identification of singly phosphorylated peptides under 
different search conditions displayed minor differences from identification results 
for unmodified peptides (Fig. 25). Hence, phosphopeptides can be identified under 
similar search constraints as unmodified peptides. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 25. The critical number of fragment masses as a function of the fragment mass 
error, for singly phosphorylated peptides and unmodified peptides. 
 

The results of the computer simulations suggest that the number of fragment 
ions in tandem mass spectra and fragment mass errors < ±0.5 Da are critical 
features for successful peptide identification. Therefore, experimental designs 
yielding many fragments (e.g., by employing different fragmentation techniques) 
are desirable. 
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Conclusions  

A new mass spectrometry based method for differential detection and 
identification of components in mixtures of proteins has been developed. The 
method utilizes semi-quantitative information in MALDI-TOF spectra acquired 
from proteolytically digested protein mixtures. The mass spectra are analyzed by 
multivariate methods followed by protein identification using the Probity 
algorithm. The method detects and identifies a component present in two protein 
mixture in different concentrations and has the potential to be used for differential 
detection of unresolved up- or down-regulated proteins separated by 2-DE. 

The impact of different sequence collection search constraints on the statistical 
significance of peptide mass fingerprint (PMF) based protein identification results 
was demonstrated. Using the Probity algorithm for the first time on a large 
experimental data set revealed that optimizing the number of missed cleavage sites 
for each respective peptide mass fingerprint has a strong influence on the number 
of significant results.  

The influence of different search constraints on successful peptide 
identification results was studied using a large data set from the mouse proteome 
and the X! Tandem algorithm for sequence collection searching. A mass 
correction procedure based on least-squares-fits to linear functions was employed 
in order to improve the successful outcome of identification result. It was found 
that the precursor ion mass tolerance has a minor influence on the number of 
identified peptides while the fragment ion mass tolerance has a strong influence, 
since large fragment mass errors yield a lot of random matching and reduces the 
ability of the search engine to identify peptides.  

A simulation-based study of the peptide fragment mass information required 
for successful identification of peptides and their PTMs was performed. This study 
demonstrates that the number of fragments generated by MS/MS and the mass 
accuracy of the fragment mass ions are the keys for successful identification of 
peptides and their PTMs. 
 
 

Outlook 

The goal of proteomics to comprehensively analyze the proteins present in an 
organism and to understand the function of any protein, is far from reached. 
Despite the enormous steps which have been taken in proteome research during 
the last 15 years the number of problems that needs to be solved are still vast. 

Challenges for the future include developing new sensitive methods for MS 
and MS/MS based proteomics for resolving and analyzing complex protein 
mixtures, establishing experimental protocols for higher sequence coverage of 
proteins, elaborating gel- and label-free methods for quantitative proteomics for 
detection of even minor changes in gene expression levels, inventing methods for 
quantitation of post-translational modifications, and developing robust 
bioinformatics tools [86] for handling of the enormous volumes of proteomics 
data. 
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