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Introduction

European forests are a source of ecological services,
goods, and socio-cultural benef its (Stenger et al.
2009). The estimated labour force in the forest sector
was calculated in 2003 to be about 3.9 million people
(Blombäck et al., 2003). Current data showed that 2.6
million people are working in the whole sector in EU-
27 (Forest Europe, UNECE & FAO, 2011). Despite this
reduction, the forest sector continues to be an impor-
tant driver for employment in rural areas, because fo-
rests provide wood raw material for construction, paper
and fuel wood, supplementary food (berries, mush-
rooms, honey, etc…) and non-timber forest products
(cork, resin, medicine plants etc.). Moreover, they
contribute to capturing carbon emissions, to bio-
diversity enhancement and to the provision of recrea-
tional and aesthetic values in rural and peri-urban
landscapes.

Mixed forests are an important source of ecosystem
services. The “insurance hypothesis” suggests that
their response to disturbance will be less intense and
their recovery will be quicker than monocultures
(Loreau et al., 2001; Jactel et al., 2009). Admixtures
of species are more productive as long as species have
differences in height pattern, phenology, crown and

root structure (Kelty, 1992; Morin et al., 2011; Vilà
et al., 2013), provide more diverse goods and services
and account for more structural and species diversity
(Knoke et al., 2008). This complexity in forest struc-
ture may foster self-regulation and provides higher
adaptability to cope with increasing uncertainty due
to climate change (Wagner et al., 2014). Moreover, the
gradual decrease in the area of single-species forests
in Europe and a steady evolution towards mixtures of
species (Forest Europe, UNECE & FAO, 2011).

The need for monitoring this portfolio of forest
ecosystem services is acknowledged within the Pan-
European region with the adoption of a framework of
criteria and indicators of sustainable forest management
(MCFPE, 2003). One of these indicators is tree species
composition whose increase indicates the enhancement
of biological diversity in forest ecosystems.

In 2010, EU-28 forests and other wooded land com-
prised 180.2 million ha (European Commission &
EuroStat, 2013), which means 42.4% of its territory,
and represents 4.5% of the world’s forests. For the
whole of Europe the global share of forested land is
24.9% if the Russian Federation is included (FAO,
2011), and of this, 23% of land is covered by mixed
forests in the pan-European region (Forest Europe,
UNECE & FAO, 2011). It is worth noting that the figu-
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Abstract

Aim of study: We aim at (i) developing a reference definition of mixed forests in order to harmonize comparative
research in mixed forests and (ii) briefly review the research perspectives in mixed forests.

Area of study: The definition is developed in Europe but can be tested worldwide.
Material and methods: Review of existent definitions of mixed forests based and literature review encompassing

dynamics, management and economic valuation of mixed forests.
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The research perspectives identified are (i) species interactions and responses to hazards, (ii) the concept of maximum
density in mixed forests, (iii) conversion of monocultures to mixed-species forest and (iv) economic valuation of
ecosystem services provided by mixed forests.

Research highlights: The definition is considered a high-level one which encompasses previous attempts to define
mixed forests. Current fields of research indicate that gradient studies, experimental design approaches, and model
simulations are key topics providing new research opportunities.
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res above for Europe quantify only the proportion of
mixed broadleaved and coniferous woodland sensu
TBFRA-2000 (FAO, 2000), i.e. forest land on which
neither coniferous, nor broadleaved species account
for more than 75% of the tree crown area. This type of
mixed forest corresponds to the class G4 described by
the EUNIS habitat type classification, characteristic
of the transition zone between taiga and temperate
lowland deciduous forests, and of the montane level
of the major mountain ranges to the south (Davies et
al., 2004). However, such a definition of mixed forest
is too narrow for Europe, where mixed forests of broad-
leaved species do naturally occur in the broadleaved
deciduous forest zone (between the latitudes 40° N and
60° N) and mixtures of coniferous species are frequent
in the subalpine region (e.g. Larix spp.-Pinus cembra
forest, Picea-Abies forest).

This inconsistency clearly reveals a lack of consen-
sus about mixed forest definition which may hinder
the implementation of common policy measures regar-
ding mixed forests aimed to enhance biodiversity,
conservation, ecosystem services production, identifi-
cation of job opportunities and comparison of research
results.

In an attempt to standardize definitions applied in
National Forest Inventories in Europe, Lanz et al.
(2010) adopted the FAO’s definition of ‘forest’ as an
area covering more than 0.5 ha, with trees higher than
5 m that have a crown cover of more than 10%, or with
trees able to reach these thresholds in situ. This defi-
nition excludes linear formations and agricultural and
urban uses. However, the application of this forest de-
f inition is still challenging (Tomppo & Schadauer,
2012) and there is no similar definition or reference to
mixed forests or a mixture of species.

In a global change context a common or harmonized
definition is needed in order to properly compare pre-
sent and future system behaviors. Harmonization is a
two step procedure in which a reference definition is
constructed and subsequently adjusted according to
national definitions (Tomppo & Schadauer, 2012).

Available forest classif ications do not allow for a
straightforward identif ication of classes of mixed
forests in Europe. As a matter of fact, all the 14 cate-
gories of the European Forest Types (EFTs) classifi-
cation system (EEA, 2006; Barbati et al., 2007) may
include forest stands composed by several tree species.
Barbati et al. (2014), processing National Forest Inven-
tory (NFI) data from a sample of 10 EU countries,
found that the share of single-species stands out of total

area covered by a given EFT at country level has a wide
range of variability (15-100%) in categories which are
species-poor (e.g. high latitude and altitudes Boreal or
Alpine coniferous forests) and does not exceed 30% in
species rich EFTs (e.g. Mesophytic and Thermophilous
deciduous forests). This reflects a variety of patterns
of multi-species stands across Europe. Multi-species
stands are found in the early development phases of
forest succession in the boreal forest zone (e.g.
admixtures of spruce or pine with birch species), as
well as in the late stages (e.g. admixtures of beech, fir
and spruce in the mountainous vegetation belt, mixtures
of broadleaved deciduous species), but might also be
the result of the deliberate conversion of single-species
monocultures (e.g. coniferous plantations established
in the broadleaved deciduous forest vegetation zone).
Accordingly, there is a need to develop a comprehensive
definition able to take into account the wide range of
patterns of occurrence of mixed forests in Europe.

In the EU context, forestry is an integral part of rural
development and maintenance and improvement of
forest stability is supported (Council of the European
Union, 1999). The new EU forest strategy (European
Commission, 2013) recommends that Member States
make use of investments to improve the resilience,
environmental value and mitigation potential of forest
ecosystems to achieve nature and biodiversity objective
as well as adapting to climate change (Kolström et al.,
2011). The timely identif ication of the role mixed
forests can play in all these issues may have a strong
economic impact for both public and private owners.
The focus of the scientific community, stakeholders
and final users is now more than ever concentrated in
mixed forests.

Such an interest in mixed forests stimulated re-
searchers from 30 European countries and 10 institu-
tions from other 7 countries (Fig. 1) to combine in a
network supported by a COST Action framework struc-
tured in three working groups (Table 1). The overall
aims of this action are to:

— provide a sound overview of the role that mixed
forests can play in the provision of environmental
services in each of the following European bioregions:
Boreal, Atlantic temperate, Continental temperate,
Mountainous and Mediterranean. The overview would
include a comparison with other regions worldwide;

— address how mixed forests can assist rural, peri-
urban and urban communities to deal with environ-
mental challenges, analyzing barriers to adaptive chan-
ge, threats and opportunities;
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Table 1. EuMIXFOR Working group structure and expected outputs

Working group Objectives Main expected output

WGI. Mixed forest
funtionaing and
dynamics

Analysis of impacts of the
different components of global
change on mixed forest (stability,
biodiversity and ecosystem
services)

Identification of experimental and observational
plataforms for analysis mixed forest funtioning

Identification of mechanisms driving interspecies
interactions

Identification of Gaps and
research opportunities

Collaborative research work on mixed forest
functioning

WG2. Adaptaive forest
management in mixed
forest

Analysis of forest management
practices in mixed forest

Identification of sustainable forest management
practices.

Identify models and DSS to
promote and maintain mixed forest

Compilation of management tools applied to
mixed forests

Identification of “good practices” Guidelines for sustainable forest management of
mixed forests

WG3. Policy and social
impact of mixed forests

Identify social impact of mixed
forests

Analysis of user's preferences on ecosystem goods
and services provided by mixed forests

Identify policy measures to
enhance job opportunities

Valuation of ecosystems goods and services
provided by mixed forests

Economic valuation of mixed
forests

Strengthening liaisons between science, forest
managers and policy-markers

Figure 1. Participant countries in EuMIXFOR network. Light grey are COST Countries. Dark grey are international partners. A
complete list of COST countries can be found at www.cost.eu.



— identify silvicultural practices and decision tools
(e.g. decision support systems) for the creation and
sustainable management of heterogeneous forests,

— establish different measures, such as standard
protocols, common methodological approaches and
experimental designs to create a research network in
the public domain, to exchange results of research
conducted in mixed forests, and the dissemination of
their main results, accessible to policy makers,
managers/owners and users.

Despite this background, however, the aspirations of
this network can be hampered by the lack of a consistent
definition as to the meaning mixed forests. In forest
management planning, conservation measures or silvi-
cultural prescriptions that are designed to fulfill an objec-
tive require the identification of target species, characteri-
zation of site features, and analysis of stocking degree and
forest structure. Once a successful management approach
is identified, it is usually applied in the same or analogous
forest situations. An analogous forest means one that has
the same or similar species, objectives and site conditions.
However, in the case of mixed forests, adoption of
successful management rules may not be straightforward
as similarity among mixtures is difficult to achieve (i.e.
similar species composition sharing, spatial pattern,
functional relationship etc…). Therefore, adaptation of
silvicultural practices to local conditions and designing
new ones for complex forests, like admixtures of species,
instead of adoption of current practices is gaining attention
(Puettmann et al., 2009). This task would be easier to
achieve with a common definition of what practitioners
and users understand by ‘mixed forest’

The main objective of this paper is to provide a refe-
rence definition of mixed forests. For that purpose, we
summarize different approaches used to define mixed
forests and discuss the current research topics that are
being undertaken by the research community in these
ecosystems.This definition may help to harmonize the
calculation of mixed forest area and to consistently
compare results of the main topics currently studied
in mixed forests.

Definition approaches

Compositional approach

The starting point for defining a mixed forest is the
trivial fact that a given forest or stand must be composed

of at least two tree species. However, it follows that the
proportion of species on the basis of composition can
differ depending on the species involved. Toumey and
Korstian (1947) defined pure stands as those where 80
percent or more of the overstorey is of a single species.
However, even if less than 10 percent in the overstorey is
of a commercially or silviculturally valuable species the
stand is classified as mixed. Depending on the
contributing species, the ratio between species in mixed
stands may differ greatly. Moreover, for a given mixed
stand the description of its composition might vary
depending on the species proportion definition used and,
consequently, deriving different forest classifications.

In the most recent attempt to define mixed forests
in western Europe, Bartelink & Olsthoorn (1999)
extended the compositional definition by including a
reference to spatial scale and species interaction:
‘stands composed of different tree species, mixed on a
small scale, leading to competition between trees of
different species as a main factor influencing growth
and management‘. However, the definition does not
provide information about what “small scale” actually
means. Moreover, other interactions between species
occur in mixed forests, like facilitation (Forrester,
2014) or neutralism (Larocque et al., 2013) and they
seem to be excluded from this definition.

When describing the structure of a mixed stand it is
not enough to give the species proportion, because the
horizontal and vertical spatial patterns of the mixture
can differ greatly between two stands with similar
species proportions. When using variables expressing
space occupancy for estimating species proportion it
is important to consider that each species has different
growing space requirements and different area poten-
tially available. This is the idea behind the species pro-
portion by area (Río & Sterba, 2009) calculated as a
function of maximum or potential basal area for the
species found in the mixture (Sterba, 1987). This me-
thod provides the maximum basal area for a given
dominant height and it is compatible with Reineke’s
self-thinning line.

Structural approach

Leikola (1999) presented a classification of mixed
forest based on Langhammer (1971) that implicitly
gives a definition of mixed forests based on form, type
and grade of mixtures. The form is related to horizontal
pattern of trees in a stand which can be by individual
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stems, by row or by group; the type refers to the vertical
distribution of trees in single- or multi-storied stands
indicating that ‘in the strict sense’ only trees belonging
to the same storey build up a mixed forest. The kinds
of structures described as stratified mixtures by Smith
et al. 1997 should be admissible under this definition,
provided the strata are organized within the same
storey. Finally the grade refers to the number and
amount of tree species in a stand (compositional
approach). However, while this classification system
may help in identifying analogous mixtures it is not a
definition by itself.

Developmental approach

Forest dynamics is a result of factors like disturban-
ce regime, environmental gradients or species compo-
sition (Spies, 1997). In existing models of stand dyna-
mics there are two repeated concepts where admixtures
of species can be found: transition and stratification.

The idea of transition appears in late developmental
phases (transition phase according to Spies (1997) and
understorey reinitiation stage according to Oliver &
Larson, 1990) where changes in species composition
and structure occur. However, for both compositional
and structural definitions of mixed forests this transi-
tion or temporal aspect of mixture is not taken into
account.

For management purposes, canopy stratif ication is
a core concept of mixed forest silviculture that ope-
rates at the stem-exclusion and understorey reini-
tiation developmental phase (Oliver & Larson, 1990).
Smith et al (1997) classif ied mixed forests into (i)
single-cohort stratif ied mixtures, (ii) mixed, multi-
cohort stands and (iii) mixed single-canopied stands.
The former case develops from natural regeneration
after a major disturbance or from a planned plan-
tation. The second type of mixed forest proposed is
found in undisturbed old-growth stands and although
the stands may follow an irregular uneven-aged dis-
tribution they never approach a theoretical balanced
J-shaped curve which, for these authors, was a result
of silvicultural actions rather than a natural random
processes (Smith et al. 1997). Finally, mixed single-
canopied stands are def ined as consisting of two
species growing in height at the same rate. This kind
of mixed stand is not common in forests and when it
occurs it is a temporary situation that lasts until one
species overtops the other.

Functional approach

All the previous approaches share common attribu-
tes: developmental definitions contain structural and
compositional elements while structural definitions
include compositional features. Consequently, irres-
pective of compositional, structural or developmental
stages, the term ‘mixed’ is always used when at least
two species co-occur in the same defined area. This
confers tree species richness a pre-eminent role in the
definition. However, there is a certain functionality
limit in the definition of mixed forests as species co-
occurrence or tree species richness. The reason is that
more species might not necessary mean more func-
tional differentiation. Oliver & Larson (1990) indicate
that species with similar growth patterns (e.g. Pinus
taeda and Pinus palustris in US) can interact as a
single species. Such behavior is known in ecology as
functional redundancy (de Bello et al., 2007) which
might be one possible mechanism explaining the lack
of a strong biodiversity effect on productivity in some
studies (Paquette & Messier, 2011). It is difficult to
include this ecosystem functioning point of view in a
def inition because the mechanisms that affect tree
species richness or biodiversity-ecosystem functioning
relationships (B-EF) differ from site to site and as a
stand develops or climatic conditions change. For
example, complementarity resulting from interactions
that influence soil resources often increase as the
availability of those soil resources decreases (Forrester,
2014). In contrast, complementarity resulting from
interactions that improve light absorption may increase
as growing conditions improve (Forrester, 2014; For-
rester & Albrecht, 2014).

A functional assessment of a mixed forest needs to
take into account tree functional groups based on diffe-
rent criteria (Körner, 2005). Some examples are suc-
cessional stage, the shade tolerance, crown archi-
tecture, litter quality or maximum rooting depth.
However, these criteria are variable (even for the same
species), they are often hard to measure, and functional
traits’ richness instead of species richness should be
preferred to def ine ecosystem processes (Scherer-
Lorenzen et al., 2005).

National Forest Inventory definitions

The increasing interest in the assessment of forest
resources has improved the harmonization of NFIs
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across Europe (Tomppo et al. 2010) especially concer-
ning tree-related variables (Corona et al., 2011).
However, there is not a harmonized def inition for
mixed forests. There are three kinds of approaches in
NFIs to deal with mixed forests.

— No def inition: A simple list giving species’
names and their measurements is recorded.

— Percentage canopy cover definition.
— Definitions based on forest characteristics other

than canopy cover.
When no definition is provided (Poland, Italy) a species

group classification is used instead (e.g. in Italy a mixed
forest stand with 25% Pinus halepensis, 25% P. pinea, 25%
P. pinaster, 25% Quercus ilex is assigned to the category
of forest dominated by Mediterranean pines, as the pine
coverage is 75% ). Although definitions based on the
percentage of canopy cover and other characteristics seem
to be easy to compare across countries the reality is
complex. In the case of percentage canopy cover, a
percentage threshold is required as well as the size of the
plot. It is evident that the larger the plot the more species
will occur per plot. Austria’s standard is 300 m2 and 80-
20% of cover sharing, Ireland uses the same minimum
cover but the plot area is larger (500 m2). France expands
the minimum area to approximate 2,000 m2 and 75-25%
sharing and Spain uses the same plot surface as France but
the minimum cover for a species is 30%. There are NFIs
that do not specify the minimum plot surface and only give
minimum occupancy of canopy cover for one of the
existing species (United Kingdom: 20%; Lithuania: 15%;
Portugal: 25%; Norway: 30% in young stands). In the
Dutch NFI, there is even a variable plot scale, to include
at least 20 trees, of plots ranging from 78.5-156 m2.

In the definition based on forest characteristics other
than canopy cover, the difficulty of comparison is even
greater as there are different measures or estimates
used such as volume (Bulgaria, Finland, Norway in
older stands, Turkey, Serbia), basal area (Belgium, Slo-
vakia, Switzerland, Sweden) or number of stems per
hectare (Sweden if trees are smaller than 7 m height)
and their subsequent thresholds for each variable. This
difficulty can be exacerbated because volume is not
defined in the same way (total volume, stem volume
or commercial volume) and basal area is even measu-
red at different stem heights (1.3 or 1.5 m). The mini-
mum diameter or circumference inventoried is another
variable to take into account. It is clear that the number
of species or grade (Langhammer, 1971) is the pre-
ferred discrimination rule of mixed forests in national
inventory definitions.

Do spatial and temporal scales
matter?

All the above definitions and approaches neglect
the fact that the key concept of stand in forest ma-
nagement can prove inadequate when used to describe
mixed forests. Forest management is commonly
applied in small units, typically called a stand. Puett-
mann et al. (2009) list different influences on the
development of stands as managing units and note that
ecology only plays a tangential role in that process. A
stand has been defined as ‘a well-demarcated portion
of woodland having a uniform structure and suff i-
ciently limited in extent to permit a certain thinning
treatment to be independently applied’ (Assmann,
1970) or as ‘a group of trees relatively homogeneous
in age, structure, composition and site conditions’
(Smith et al., 1997). These definitions produce dif-
ferent outcomes in terms of mixed forest area. For
example, in a two species mixture where the pattern
of mixing is on a stem by stem basis and both species
are present in equal proportions (consorting) both
def initions can classify the same area (or group of
trees) as mixed. However, if one of the species is
present in a lesser proportion and overtopped by
another (concomitant), the def inition provided by
Assmann would classify the stand as mixed as long as
the area was sufficiently limited to apply a thinning
treatment, whereas the definition provided by Smith
might classify it as mixed depending on the degree of
‘homogeneity of composition’ in the group of trees.
On the contrary, if the pattern of mixture is by group,
Assmann’s definition would classify such a stand as
mixed if groups are located within the extension,
whereas Smith’s definition would classify it as mixed
if the group of trees comprises all groups presented.
A definition based on area rather than on groups of
trees will produce more mixed forests. But, how large
is ‘suff iciently limited in extent’? If this cannot be
def ined, is the basic concept of the stand valid in
mixed species forests? The spatial variability of
species mixtures changes with spatial scale and it
would be necessary to determine the scale first.

This last consideration poses the distinction between
mixed species stands and mixed species forests. We
illustrate this with an example of a stand within a forest
which is located on a larger landscape unit that serves
as a matrix for such a forest. In this case if the mixture
pattern is by groups it would be interesting to evaluate
the mixing effect in the contact zones between species.
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In Fig. 2a and 2b each square represents a forest in
which two species co-exist in an 80:20 proportion. Plot
2a has a larger contact zone between the species than
2b, so mixing effects are more likely to be significant
in 2a. Fig. 2c has the same contact zone as in Fig. 2a
but the proportion is approximately 60:40. The same
analysis cannot be performed at the stand level as a
stand within this forest could be defined as pure if the
sample points lie inside a group of only one species.
The conclusion is that both the spatial scale and the
pattern of mixture need to be defined.

The same issue applies to the temporal definition of
mixed forest. For example, would a mixture, measured
as the proportion of the component species, be the
same at some point in the future? How does a mixed
forest evolve? Will the composition of the mixture and
the species proportion be maintained with time? How
might forest dynamics or management intervention
affect the degree of mixture? Some of these questions
have been partially answered in terms of development
phases as mixed forests often occur in the late develop-
mental phases of stands that originated as single-
species (Larson, 1992) and that variation of species
proportion over time can affect the dynamics of mixed
forests (Puettmann et al., 1992; Weiskittel et al., 2009).
The reverse statement in which dynamics affect species
proportions is also possible. However, none of the
def initions considered above dealt with spatial or
temporal issues.

A consistent definition of mixed
forest

It is therefore difficult to reconcile all points of view
and to describe mixed forests in a single definition. Com-
positional and structural aspects are the easiest features

to use to describe a mixture of tree species in a forest,
although it would be desirable to add spatial limits.
Developmental definitions are problematic because in
large forested areas it is plausible to have several stages
occurring in close proximity. In addition, a detailed
knowledge of the natural disturbance regime or
management practices that have lead to the current si-
tuation is required. The inclusion of functional aspects in
a definition should not be based only on biodiversity-
productivity relationships even if identification of
competition or facilitative effects could alter management
prescriptions, because other regulating aspects like
nutrient dynamics are affected by species composition

Thus, a managerial definition should include all as-
pects discussed above plus the economic and social di-
mensions of forests, thus a reference and broad defi-
nition is preferred over a final or closed definition. We
propose the following reference definition:

A mixed forest is a forest unit, excluding linear for-
mations, where at least two tree species coexist at any
developmental stage, sharing common resources (light,
water, and/or soil nutrients). The presence of each of
the component species is normally quantified as a pro-
portion of the number of stems or of basal area,
although volume, biomass or canopy cover as well as
proportions by occupied stand area may be used for
specific objectives. A variety of structures and patterns
of mixtures can occur, and the interactions between the
component species and their relative proportions may
change over time.

This can be considered a high-level definition which
encompasses all previous attempts to def ine mixed
forests. We stress the need to explicitly modify or
adjust this definition in any working situation in order
to compare research or management results when
classifying a mixed forest. Thus, it is necessary then
to indicate the following criteria:
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— the dimension of the forest unit assessed (stand,
forest, landscape)

— the developmental stage (initiation phase, stem-
exclusion, understorey reinitiation, old-growth)

— the occurrence and form of mixture (by indivi-
duals or by group)

— the temporal dimension of the study (static,
dynamic) and

— the main driver of species richness-ecosystem
functioning relationship to be assessed (facilitation,
niche differentiation, competition).

Without explicitly defining these criteria the defi-
nition is worthless. This reference definition should
be tested against existing forest classification systems
(e.g. European Forest Types) or long term experimental
networks in order to assess its capability to identify
changes in key indicators of sustainability or the im-
plications of changing management scenarios. We aim
to examine these features in EuMIXFOR network.

Recent research perspectives where
the definition might be tested

The study of mixed forests has led to a large body
of literature in recent years indicating the range of
benefits or ecosystem services obtained from mixed
forests in Europe. They show the perspectives under
which new research pathways can be developed. The
following sections discusses some of the growth
dynamics of mixtures, silvicultural considerations for
converting pure stands to mixtures, and some economic
considerations, while noting where some important
knowledge gaps remain and where the definition might
be tested.

Species interaction and species 
richness – ecosystem functioning

The interaction between two individuals, either of
the same or different species, is usually assessed as an
effect that can be positive, negative or neutral. Trees
can interact in many ways but the negative (compe-
titive) interactions have probably been the most widely
studied in forests (Larocque et al. 2013). Due to their
simplicity, the intraspecif ic interactions in mono-
cultures are relatively easy to examine. However, in
mixtures there is also inter-specific competition, which
may (or may not) be weaker than the intra-specif ic

competition leading to a reduction in competition in
the mixture (Vandermeer, 1989), due to niche parti-
tioning. This is also sometimes referred to as the com-
petitive production principle (Vandermeer, 1989).
Niche partitioning can result when different species
acquire resources in different ways (e.g. root stratifi-
cation resulting in different water sources), which ena-
bles them use a greater proportion of available resour-
ces. Another important interaction that can occur in
mixtures is facilitation. This occurs when one species
has a positive effect on other species (Vandermeer,
1989). In practice it is difficult to differentiate between
competitive reduction (niche differentiation, competi-
tive production) and facilitation effects (Larocque
et al., 2013) and all of these are often collectively des-
cribed as complementarity (Loreau & Hector, 2001).
Disentangling the mechanisms that drive species in-
teractions in mixed forests is a major challenge in both
ecology and forestry.

Two approaches are typically used to analyze the
interactions in mixed forests: analyzing the pattern of
the interaction itself or analyzing the mechanisms
driving the interaction. The study of inter- and intra-
species interactions in mixed forest is often based on
net effects (Forrester, 2014) because of the difficulty
in separating the effects of the different mechanisms
that influence the interspecific interactions (Callaway
and Walker 1997).

Any of these complementary interactions can lead
to overyielding where higher production in mixtures
is expected compared to that of monocultures of the
same size, or transgressive overyielding where a mix-
ture produces more than the component species in pure
stands (Pretzsch & Schütze, 2009). However, over-
yielding is not straightforward because it is usually
constrained by the sampling effect hypothesis (Begon
et al. 1996), which postulates that the more species
that occur in a stand, the more likely it is that there will
be a species that could be especially productive. Recent
studies have shown complementary effects for a variety
of mixtures with European beech (Dieler and Pretzsch,
2013; Metz et al., 2013). Interactions can also show
positive outcomes like mutualism (both species gain)
and commensalism (one species gains and the other is
unaffected). Gains and losses can be evaluated in terms
of growth, survivorship, reproduction (Begon et al.,
2006) or fitness.

In reviewing species interactions in mixed forests
Forrester (2014) argued that the interactions between
a given pair of tree species can change along spatial or
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temporal gradients in resource availability of climatic
conditions. He also showed that complementarity in-
creased as soil water (or nutrient) availability decrea-
sed when interactions reduced competition for water
(or mixtures contained nitrogen fixing species). This
is consistent with the stress-gradient hypothesis that
suggests that facilitation increases and competition
decreases with increasing abiotic/biotic stress (Bert-
ness & Callaway, 1994).

Several spatial changes in species interactions sug-
gested that the species interactions improved nutrient
availability. For example, in mixtures of beech and oak
overyielding was found on low fertility sites whereas
no effect or a slight reduction in productivity appeared
on fertile sites (Pretzsch et al. 2013). A similar effect
was found by Rio & Sterba (2009) for mixtures of
Scots pine and Pyrenean oak. Temporal changes in spe-
cies interactions have also been reported. For example,
Pretzsch et al. (2013) found that drought stress could
be reduced during harsh years in oak-beech stands and
Río et al. (2014) measured the difference of basal area
growth indices in mixed and pure stands. The results
indicated strong competitive interaction in good gro-
wing seasons in oak-beech and spruce-beech mixtures
whereas in years of poor growing conditions comple-
mentary effects were more important.

In contrast to these studies that show increasing
complementarity with decreasing soil resource availa-
bility, complementary can also increase as growing
conditions improve (Pretzsch et al., 2010; Forrester
et al., 2013). This may result when the species interac-
tions improve light absorption because as growing
conditions improve, competition for light will probably
increase and any interactions that improve light ab-
sorption or light-use eff iciency will become more
important (Forrester, 2014). Consistent with this
pattern, complementarity increased with growing con-
ditions in Silver fir and Norway spruce mixtures and
this affect was associated with changes in canopy
structure and crown architecture that improved light
absorption on sites with more favourable conditions,
but not on poorer sites (Forrester and Albrecht, 2014).
There are relatively few studies that have examined the
spatial or temporal dynamics of species interactions
in mixtures. However, such knowledge is required for
development of resource efficient and resilient pro-
duction systems, future research should shift to why
and where mixed species forests may out-yield neigh-
bouring monocultures. Gradient studies are useful in
such research tasks (Pretzsch et al. 2014), and studies

that also examine the processes driving the patterns
will be particularly useful to understand these growth
dynamics (Forrester, 2014).

Biomass partitioning between aboveground and
belowground can vary with size, and temporal or spatial
changes in resource availability (Poorter et al., 2012;
Schall et al., 2012), and species interactions may alter
all of these (Forrester, 2014). However, few studies have
examined belowground productivity in mixtures and
even fewer have compared above- and belowground
productivity (Forrester et al., 2006; Epron et al., 2013).
Belowground overyielding has not been demonstrated
to occur in mature temperate forests (Meinen et al,
2009a, 2009b; Jacob et al., 2013) although root
differentiation led to higher fine root productivity in
young stands (Lei et al. 2012) whereas in boreal forests
fine root overyielding was observed in mature stands
originated after fire (Brassard et al., 2011). Interspecific
competition can also have a strong impact on crown
structure (Bayer et al., 2013) and crown allometry
(Dieler & Pretzsch, 2013). In this regard the study of
crown plasticity by terrestrial laser scanning is a
promising tool (Seidel et al., 2011; Metz et al., 2013).

Stand density can also influence complementarity
(Forrester, 2014), but effects are variable. As density
increases, some studies f ind that complementarity
increases (Boyden et al., 2005; Amoroso & Turnblom,
2006; Condés et al., 2013; Forrester et al., 2013), while
in others find that complementarity decreases (Boyden
et al., 2005; Río & Sterba, 2009; Condés et al., 2013).
Whether complementarity increases or decreases will
probably depend on the main types of species interac-
tions (light, water or nutrients, and competition or
complementarity) and how the change in density
influences these resources (Forrester, 2014). Changing
stand density is a major silvicultural tool used for
managing forests and these studies indicate that modi-
fications of density could be a valuable tool for mana-
ging complementarity in mixtures. However, very few
studies have quantif ied the processes behind these
patterns and this information would be very useful for
developing silvicultural regimes for mixtures.

Conversion of monocultures and stand
density in mixed-species stands

Mixed forests also feature prominently in the de-
bates over future trends in forestry. The continuous
cover forestry approach recognizes the role of mixed
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forests in enhancing structural diversity by diversi-
fication of monospecific plantations (Pommerening &
Murphy, 2004

Conversion of pure forest stands into mixed-species
structures is becoming a common practice in Europe
with the objective of both increasing the resistance and
resilience of plantations or to convert gradually conifer
plantations into broadleaved stands. The conversion of
potentially unstable pure stands to more adapted
mixed-species forests should be considered a priority
in forest management (Spiecker, 2003; Ammer et al.,
2006; Knoke et al., 2008). The success of converting
a pure stand into a mixed-species one depends on both
the species involved and the method of conversion. For
example, De Schrijver et al. (2009) showed that the
harvest method has an impact on the Ca and Mg nu-
trient cycling, when converting Scots pine plantations
into a birch-pine stands on sandy soils. For the conver-
sion of pure Norway spruce stands into mixed stands
with European beech direct seeding or planting in
advance have been proven to be successful measures
(Ammer & Mosandl, 2007) followed by the strip
cutting method to promote underplanted Douglas-fir
and beech (Petritan et al., 2011). In any case, long
lasting and successful conversion of pure into mixed-
species forests needs a better understanding of inte-
ractions between species and the influence of site
factors (Mason & Connolly, 2014).

The process of conversion also influences other
forest communities, like soil fauna that are enriched
after conversion from pure to mixed stands (Ammer
et al., 2006; Chauvat et al., 2011) and soil properties
like available phosphorus content are favored in mixed
forests after conversion (Slazak et al., 2010). Soil treat-
ment influences survival rates in Mediterranean condi-
tions although sapling growth is not affected (Fonseca
et al., 2011)

Size-density relationship has been long studied in
pure and mixed-species forests as it has a notable im-
pact on forest yield. In forestry practice, Reineke’s
stand density index (SDI, Reineke, 1933), an analogous
relationship to Yoda’s 3/2 self-thinning boundary, has
been used to manage density in even-aged single-
species forests. The current SDI is compared to a
species-specific maximum value (SDImax) for deter-
mining the stand’s relative density (RD) which is used
to determine important stand development phases in
even-aged forests.

A comparable index is lacking for mixed stands,
although some attempts have been made. For example,

Sterba and Monserud (1993) modeled maximum den-
sity in uneven-aged mixed stands at discrete points of
time as a function of dominant height. Refinement of
this model leads to the estimation of maximum density
for different admixtures (habitat type) and skewness
of the diameter at breast height distribution. Dean and
Baldwin (1996) introduced the idea that that maximum
SDI is negatively correlated with specific gravity for
conifers in single-species forests, so mechanistically
a site can be occupied by a maximum density of a spe-
cies based on the wood properties of the species. Woo-
dall et al. (2005) extended the idea to mixed forests by
using an average wood density for the mixture. More
recently, Ducey & Knapp (2010) modif ied the ap-
proach to correspond more closely with the additive
SDI for single-species uneven-aged stands developed
by Long & Daniel (1990). However, Ducey and Knapp
(2010) also presented arguments that accounting for
mixed species density should have a nonlinear com-
ponent. Other approaches include a generalization of
Reineke’s rule based on resource sharing and experi-
mental calibration for mixed stands have been per-
formed for beech, pedunculate oak and Norway spruce
(Rivoire & Moguedec, 2012) whereas site factors and
species composition have been identified as drivers of
maximum density size-density relationship (Reyes-
Hernández et al., 2013).

Mixed forest stand density and structure can be
assessed using airbone and terrestrial laser scanning
as a management and research tool. The application of
LiDAR technology to forest inventory has been proved
effective in analyzing forest structure (stem and crown
dimensions) in mixed forests (Ducey et al., 2013).
Another interesting technique is photogrammetry
based on stereo images that can accurately predict vo-
lume and basal area at plot level (Straub et al, 2013).

Valuation of ecosystem services

Most of the above topics relates to the provision
service timber production. Timber production gives a
financial return, and Knoke et al. (2008) argues that
admixtures of species can reduce financial risk. Schou
(2012) finds that a mix of two species is sufficient for
such a gain and that more species only adds a marginal
gain. However, one has to be aware of the unit of com-
parison for such studies. If two species are mixed (in
equal shares) on a stand of two hectares, the portfolio
is identical to one hectare of one species and one hec-
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tare of the other species. Therefore, if the decision unit
is higher than a single stand (which it typically will
be), a potential gain from reduction of financial risk
relies on increased silvicultural flexibility. If this is
not present there is no f inancial risk reduction.
Jacobsen & Thorsen (2003) shows that an option value
may be present in mixed forests facing a risk of
climate change; the reason being that if a forest
manager can postpone the decision of the f inal tree
species until he knows better how climate and thereby
tree growth develops, then he may gain by postponing
the decision. Again such an option value relies on the
silvicultural feasibility of managing and potentially
changing proportion of mixing species throughout a
rotation. But commercial benefits could not explain
alone the forest managers’ decisions. Other values
associated to mixed forests, such as environmental
self-consumption of private landowners (incorporated
into their decisions as, for example, the expected value
of the land), environmental services to society in
public forestry domains (with value, but without
market price), the opportunities for tourism develop-
ment, biodiversity conservation, etc. could affect the
forest management.

Several studies have analyzed the preferences for
mixed forests and the willingness to pay (WTP) for
higher levels of tree diversity. For example, Nielsen
et al. (2007) showed that users’ WTP is higher in
complex forest ecosystems with higher species
composition and more diverse structure than in pure
stands. Also Hanley et al. (1998) and Varela et al.
(2013), among others, f ind a positive willingness to
pay for a higher tree diversity. There are, however,
also studies which report the opposite, for example
Tyrväinen et al. (2003) found that pure stands were
preferred over mixed stands. Some authors claim that
preferences for forest type are highly dependent on
cultural, regional and contextual factors (Edwards et
al., 2012).

The satiation of user’s preferences regarding mono-
cultures could lead to a higher preference of higher
levels of tree species composition (Riera et al., 2012).
Biodiversity per se has a high welfare economic value
and people have shown a high WTP for this (e.g. Camp-
bell et al., 2014; Jacobsen et al., 2008), much higher
than valuing diversity from common species (Bakhtiari
et al., 2014 compared to Campbell et al., 2014). While
mixed forests may have a higher Shanon index for
example, it may be questioned whether it is better
suited for conserving endangered species. In a meta-

study Paillet et al. (2010) find evidence of higher bio-
diversity in unmanaged forest than managed, but were
not able to f ind differences between management.
Eventhough Halme et al. (2010) question their f in-
dings, there is no doubt that the question of whether
mixed forests have superiority over single species
forests with regard to conserving endangered species,
will have to be studied further. And for this purpose it
may be useful with the definition and specif ication
points suggested in this paper.

Conclusions

The increasing importance of mixed forests is a re-
flection of an increasing complexity of societal de-
mands upon forest ecosystems, where mixed forests
may be expected to have higher levels of resilience and
resistance to environmental hazards, and a more diver-
se portfolio of environmental services. Forest mana-
gers and researchers should face this challenge with
an appropriate understanding of the underlying mecha-
nisms that control the interactions between species in
order to more adequately predict the outcomes of forest
operations’. EuMIXFOR is a timely research network
supported by the COST framework in which the state
of the art, gaps and future research directions regarding
mixed forests will be addressed. The first critical step
is the agreement on a consistent and reference defi-
nition of mixed forest that must be tested in order to
make research and management results truly compa-
rable. This work is the outcome of such agreement
within EuMIXFOR networkFuture perspectives of
research on mixed forest have identif ied that case
studies and retrospective analysis will continue to be
an important source of experimental evidence of pat-
terns and processes. Gradient studies, experimental
design approaches, and model simulations regarding
species interactions and responses to hazards, size-
density relationships and its implication in silviculture,
conversion of monocultures to mixed-species forest
and economic valuation of ecosystem services pro-
vided by mixed forests are important topics in current
research and they will foster future research.
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