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ABSTRACT

Background. Up to 75% of crop species benefit at least to some degree from animal
pollination for fruit or seed set and yield. However, basic information on the level
of pollinator dependence and pollinator contribution to yield is lacking for many
crops. Even less is known about how insect pollination affects crop quality. Given that
habitat loss and agricultural intensification are known to decrease pollinator richness
and abundance, there is a need to assess the consequences for different components
of crop production.

Methods. We used pollination exclusion on flowers or inflorescences on a whole
plant basis to assess the contribution of insect pollination to crop yield and quality
in four flowering crops (spring oilseed rape, field bean, strawberry, and buckwheat)
located in four regions of Europe. For each crop, we recorded abundance and species
richness of flower visiting insects in ten fields located along a gradient from simple to
heterogeneous landscapes.

Results. Insect pollination enhanced average crop yield between 18 and 71% depend-
ing on the crop. Yield quality was also enhanced in most crops. For instance, oilseed
rape had higher oil and lower chlorophyll contents when adequately pollinated, the
proportion of empty seeds decreased in buckwheat, and strawberries’ commercial
grade improved; however, we did not find higher nitrogen content in open pollinated
field beans. Complex landscapes had a higher overall species richness of wild polli-
nators across crops, but visitation rates were only higher in complex landscapes for
some crops. On the contrary, the overall yield was consistently enhanced by higher
visitation rates, but not by higher pollinator richness.

Discussion. For the four crops in this study, there is clear benefit delivered by pol-
linators on yield quantity and/or quality, but it is not maximized under current
agricultural intensification. Honeybees, the most abundant pollinator, might par-
tially compensate the loss of wild pollinators in some areas, but our results suggest the
need of landscape-scale actions to enhance wild pollinator populations.
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INTRODUCTION

There is growing evidence that ecosystem services, such as biological pest control and crop
pollination, benefit food production (Bomimarco, Kleijn ¢ Potts, 2013). Indeed, 75% of the
crop species used for food depend on insect pollination to some degree (Klein et al., 2007).
More than a decade of active pollination research has led to a greatly improved general
understanding on animal pollination benefits to crop yields worldwide (e.g., Klein et al.,
2007; Garibaldi et al., 2011; Garibaldi et al., 2013). However, major knowledge gaps remain.

First, we have surprisingly little information on the actual degree of pollinator
dependence for some major crops. While some crops depend entirely on insect pollinator
visits to set fruit, many others are only partly dependent on animal pollination and can
produce more than 90% of the maximum seed or fruit yield without pollinators (Klein
et al., 2007). The role of pollinators for crop production has mainly been examined in
observational studies, relying primarily on natural variation in visitation rates among
observed sites. Experiments directly manipulating insect flower visitation (e.g., excluded
pollinators vs. open access of pollinators) are less common for most crops (but see Kleir,
Steffan-Dewenter ¢ Tscharntke, 2003; Hohn et al., 2008). Assessing pollination dependence
with proper controls is needed to correctly estimate the contribution that insect pollinators
can provide to crop yields.

Second, most available studies quantify the number of fruits per plant. Fruit number can
be a good proxy for yield (Garibaldi et al., 2013), which is the amount of produce harvested
per unit area. However, the correlation between the number of fruit produced and yield
may be low in some crops. For example, interspecific plant competition can lead to high
variability in plant size and thereby fruit production among plants. This is especially
critical for crops with indeterminate flowering and a high compensation capacity such as
soybean (Glycine max) and oilseed rape (Brassica napus). For these, fruit set measured on
a limited number of isolated plants is unlikely to be representative of the real production
in a crop stand (Stivers ¢ Swearingin, 1980; Angadi et al., 2003). Moreover, plants can
allocate resources for producing fruits of variable size based on the number of fruits
per plant and the level of pollination received (e.g., Gonzalez, Coque ¢ Herrero, 1998 in
kiwifruit Actinidia deliciosa), such that similar levels of fruit set can differ in total crop yield
because of difference in fruit size (Bos et al., 2007). Again, the use of proper control plants
from which pollinators are excluded is a way to better estimate the actual contribution of
pollinators to yield in such crops.

Quality is also important in crop production, especially from an economic standpoint.
Fruit quality can be negatively correlated with quantity when the fruit load on a tree
or a vine is too high (e.g., Ferguson ¢» Watkins, 1992 in apple Malus x domestica), but
it is not so otherwise, especially in crops with indeterminate flowering such as oilseed
rape (Bommarco, Marini & Vaissiere, 2012). Indeed, adequate pollination often leads to
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produce with enhanced quality in entomophilous crops such as orchard fruit production
(e.g., in apple—Garratt et al., 2013), as well as in field crops (oilseed rape—Bomimarco,
Marini & Vaissiere, 2012) and small fruits and vegetables (e.g., strawberry Fragaria x
ananassa—Andersson, Rundlof & Smith, 2012; Chagnon, Gingras ¢ Deoliveira, 1993;
Roselino et al., 2009; tomato Solanum lycopersicumm—Hogendoorn, Bartholomaeus ¢ Keller,
2010; bell peppers Capsicum annuum—Roldan Serrano & Guerra-Sanz, 2006; highbush
blueberry Vaccinium corymbosum—Isaacs ¢ Kirk, 2010).

Given the drastic shifts in community composition of insects that visit flowering crops
(Winfree, Bartomeus & Cariveau, 2011; Bommarco et al., 2011; Bartomeus et al., 2013a),
and declines in numbers of pollinator species observed in some regions (Potts ef al.,
20105 Carvalheiro et al., 2013), it is increasingly important to gather information on the
extent to which different crops depend on insect pollination for yield, and if current
pollinator communities fulfill the demand for pollination services such that both crop
quality and yields are maximized (Breeze et al., 2011). Relationships between land use
intensity, pollinator visitation, and fruit set have been well studied. While pollinator species
richness consistently and drastically decays as agricultural landscapes are deprived of
natural habitat and are more intensively cultivated (Kennedy et al., 2013), this relationship
is much weaker for fruit set (Garibaldi et al., 2011; Chacoff, Aizen ¢ Aschero, 2008; Ricketts
et al., 2008). One explanation for this difference is that the remaining pollinators provide
sufficient visitation even in homogenous, intensively cultivated landscapes, especially if the
crop has a large degree of autonomous self-pollination. Moreover, intensive landscapes are
characterized by harboring just a few generalist pollinator species (Bartomeus ¢ Winfree,
2013), but these might be in sufficient numbers to deliver enough crop pollination services.
In fact, not all pollinator species respond equally to land use change (Williams et al.,
2010; Winfree, Bartomeus ¢ Cariveau, 2011), and some even increase in abundance with
agricultural intensification (Westphal, Steffan-Dewenter & Tscharntke, 2003; Carré et al.,
2009). This diversity of pollinator responses can, in some cropping systems, buffer a loss
of pollination functioning (Cariveau et al., 2013); especially so if the pollinators who are
the main ecosystem service providers are adapted to the ephemeral and patchy resource
distribution that is typical for agricultural landscapes. Moreover, although wild insects
increase fruit set independently of honeybee visits (Garibaldi et al., 2013), honeybees are
less dependent on landscape characteristics because they are mainly managed, particularly
in North America and Europe, and can be moved around in the landscape. Hence,
honeybees can also help mitigate against wild pollinator loss in more intensively used
landscapes where pollination services are degraded. In any case, the composition of the
landscape in which the flowering crop field is embedded emerges as an important driver
for pollinator community composition, and the landscape context needs to be considered
when linking land use to pollination provisioning and benefits in field crops.

Here we used pollinator exclusion on the flowers or inflorescence on a whole plant basis
in a set of crops under standard field conditions, to quantify pollinator dependency for four
economically important annual crops in Europe. We assessed pollinator contribution to
both yield quantity and quality. By replicating this experiment along a landscape gradient
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Table 1 Characteristics of the four study systems. For each crop, the variety used, the distance between fields, field size and mean pollinator richness

is shown.
Variety Distance between  Field sizes Mean species Percentage agriculture Percentage agriculture
sites (rangeinkm) (range in ha) richness of in 500 m buffer in 1000 m buffer
pollinators (range) (range)
Oil seed rape Stratos 3-7 1.0-40.4 11.3 14-50 4-44
Field bean Clipper 3-18 5.0-47.0 3.1 34-99 35-99
Strawberry Honeoye, 3-26 0.3-1.3 12.9 51-99 48-96
Korona,
Darselect,
Symphonie
Buckwheat Kora 4-7 0.3-4.0 114 29-82 41-73

for each crop, we were able to test the hypothesis that pollinator visitation rate decrease
with agricultural intensification and its consequences for crop pollination services and
production.

MATERIAL AND METHODS
Study sites

The fieldwork was conducted in four European countries during May—August 2005
(Table 1). Spring oilseed rape (Brassica napus) was assessed in the region around the city
of Uppsala, Sweden (see Bommarco, Marini & Vaissiere, 2012, for details); field bean (Vicia
faba) in around Reading, UK, strawberry (Fragaria x ananassa) around Gottingen, Ger-
many; and buckwheat (Fagopyrum esculentum) near Krakow, Poland. For each crop, we se-
lected ten fields that were separated by a minimum distance of 3 km, corresponding to the
maximum foraging range of most bees (Greenleaf et al., 2007). Within each field, we estab-
lished a 50 % 25 m study area (5 * 150 m for buckwheat as the fields were long and narrow)
with a homogeneous and continuous crop cover. For fields up to two ha in size, this study
site was located in the middle of the field. For larger fields, it was located between the geo-
metric center of the field and one of its margins (Vaissiere, Freitas ¢~ Gemill-Herren, 2011).

Insect sampling

In each field, we assessed the abundance and species richness of the major groups of
flower-visiting insects, including bees (Hymenoptera: Apoidea: Apiformes), hoverflies
(Diptera: Syrphidae), and butterflies (Lepidoptera). We used standardized transect walks
with an aerial net (Westphal et al., 2008). In each study site, a 150 m transect line was
established in the field near the experimental plots. An observer walked this line for 30 min
identifying visiting insects at species level and catching unidentified species within a
corridor 4 m wide. We performed the transect walks between 0900 and 1700 h only on
days with temperatures at or above 15 °C, with no precipitation, dry vegetation, and low
windspeed (<40 km h=!; Westphal et al., 2008). Specimens were pinned, labeled, and
subsequently identified to species level. We returned four times to each study site during
the main flowering period of each study crop.

Bartomeus et al. (2014), PeerdJ, DOI 10.7717/peerj.328 4/20


https://peerj.com
http://dx.doi.org/10.7717/peerj.328

PeerJ

25m
.
3 : :
o : )
I SR :
O i g sopen
H : : pollinated
H : 5 : plants
S R
: : : 2 netted
: : : plants
H : HE =
: : P9
£ i : ] : £
o : : (=]
wn L
25m

Figure 1 Experimental design. Schema of the experimental design replicated in each of the 10 fields per
crop showing the four blocks with two treatments each block and the 150 m transect surrounding the
blocks.

Experimental design and yield analysis

In each of the ten fields, we established a block experiment with four blocks (Fig. 1). Each
block had two treatments with one plot per treatment and five to ten tagged contiguous
plants monitored per plot. The first treatment (Open) was open pollinated with all the
flowers of each plant accessible to autonomous self-, wind- and insect-pollination. In

the second treatment (Net), all flowers were enclosed in nylon tulle bags with 1 % 1 mm
openings (Diatex F510; http://www.diatex.fr/-Agriculture-.html) of an appropriate

size to cover an inflorescence (buckwheat, field bean & oilseed rape), or an individual
flower (strawberry). Thus, in the Net-treatment all flowers were exposed to wind- and
self-pollination, but not to insect pollination. Because such nets do not hinder the airborne
pollen flow (Sacchi & Price, 1988; Wragg ¢» Johnson, 2011), the difference between these
treatments represents the contribution from insect pollination. Bag manipulations were
done carefully and in most cases before or after anthesis to avoid increased levels of
self-pollination. We put the nets over the flower buds before the onset of flowering.
Leaves and plant parts with no flowers were left as much as possible outside the net

bag to minimize any effects of the bag on the photosynthesis (Howpage, Spooner Hart ¢
Vithanage, 2001). As soon as flowers had wilted, we removed the nets, and the tagged plants
were left to ripen in the field until harvest.
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For buckwheat, field bean, and oilseed rape, we cut all experimental plants from
each plot and stored them individually in a linen bag just before commercial harvest.
For strawberry, we followed the commercial harvest procedure and harvested the ripe
strawberries twice a week. In each plot, we recorded fruit set as the number of fruits per
plant (field bean, oilseed rape, and strawberry) or seed set as the number of seeds per plant
(buckwheat). Yield was measured as the total weight of seeds per plant (buckwheat, field
bean, and oilseed rape) or total fresh weight (strawberries) measured using a precision
scale. As plants grew in field conditions with typical densities, the mean production per
plant is a good proxy of tones per hectare obtained by the farmer. For each crop, we also
measured the specific attributes of quality that affect its marketing value. For oilseed rape,
we analyzed the oil content and chlorophyll contents of the seeds (performed by Svalof
Weibull Lab AB, Svalov, Sweden). High chlorophyll contents decrease the durability and
alter the color of the extracted oil. For field beans, we measured the nitrogen content of
the seed as a proxy of their protein content. The nitrogen content was measured using
oxidative combustion in an automated Dumas type combustion analyzer. For strawberry,
we classified commercial quality as grade 1 (fully developed fruits of good quality), grade 2
(marketable fruits with some changes in colour and shape) and grade 3 (non-marketable
fruits) according to guidelines of the German board of trade. For buckwheat, we measured
the proportion of filled seeds since high proportion of empty seeds leads to a penalty in the
market price. For buckwheat, six fields where destroyed due to a hailstorm, and hence we
do not have yield measures for those.

Landscape context
The ten fields for each crop were located along a gradient of surrounding landscape
complexity. The gradient ranged from intensive agricultural landscapes dominated
by large arable fields with few boundary features, to complex landscapes with smaller
average arable field sizes and more than 40% coverage of semi-natural habitats, such as
pastures and forest patches over 0.5, 1, 2, and 3 km radius around each study field. When
selecting the field sites, the proportion of arable land in the surrounding landscape was
measured around each experimental field and used as a proxy for landscape complexity
(Steffan-Dewenter et al., 2002; Fahrig, 2013). The proportion of arable land in the landscape
surrounding each of the ten experimental fields varied depending on the region, with
some regions presenting more intense landscapes (e.g., range of 48-97% of agricultural
land for oilseed rape fields at 1000 m radius), and other regions presenting more complex
landscapes (range of 4-45% of agricultural land for field bean at 1000 m radius; Table 1).
For oilseed rape, we used the Swedish digitized land cover terrain map database to
characterize the landscape surrounding each field (Lantmateriet 2008). For buckwheat
and strawberry, we used CORINE data from 2006 (European Environment Agency:
http://www.eea.europa.eu/data-and-maps/data/corine-land-cover-2006-raster-2). For
field beans we used the CORINE 2000 Land Cover Map (http://www.ceh.ac.uk/
landcovermap2000.html).
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Data analysis and statistics

Landscape effects on bee richness and visitation

Because different organisms act in and react to the landscape at different spatial scales,
it is necessary to find a suitable scale at which to measure the surrounding landscape
(Steffan-Dewenter et al., 2002; Henry et al., 2012). Before exploring any significances,
we ran models for each variable with each of the different radii (0.5-3 km) at which
the landscapes had been measured. Hence, for each crop we regressed percentage of
agricultural area against pollinator richness and abundance at different radii, and
identified the radius that explained the highest proportion of variance (highest R?). For
species richness, all crops showed the highest R? at a radius of 0.5 km, while abundance
was best explained at a 1 km radius with the exception of field bean bee communities,
which also responded to a larger scale (1500 m). We performed joint models for all crops
at 0.5 and 1 km radius for richness and visitation abundance, respectively. Bee species
richness showed a similar relation to landscape complexity for all crops, and this permitted
us to include ‘crop’ as random factor in the model to investigate the general influence of
landscape on richness. Visitation abundance, however, followed contrasting trajectories
in relation to landscape depending on the crop. We therefore included in the model crop
and its interaction with landscape as fixed effects. Pollinator abundances were centered
and scaled to a mean of zero and a deviation of one within each crop. Visual inspection
of rarefaction curves showed that we did not capture all species richness in most sites,
therefore richness values should be interpreted as relative richness detected with an equal
sampling effort. However, as real richness can be easier to detect in sites with higher
pollinator abundance, we also ran the richness model for rarefied species richness at the
minimum sampling size levels for each crop (Gotelli & Colwell, 2001).

Yield quantity and quality

We first correlated fruit set (or seed set for buckwheat) with yield for each crop. While
we expect both to be correlated (i.e., plants with more fruits or seeds, should also have
higher yield), this correlation can be stronger or weaker depending on the crop studied.
Block was nested within site and included as random factor in all models. Second, we
constructed one mixed effect model with yield as the response variable. In order to analyze
all crops in the same model, yield and pollinator visitation abundance were centered and
scaled to a mean of zero and a deviation of one within each crop. We used pollination
treatment, species richness, total visitation abundance, landscape and the interactions
of treatment with the other three variables as predictors. Landscape was investigated at
0.5 and 1 km radius with similar results and so only models at 1 km are shown. Block,
nested within site, nested within crop was included as a random factor in all models.
We checked that different crops do not present different responses by comparing AICc
of this model to a model incorporating total visitation as a random slope. A significant
interaction with treatment would indicate that the factor had an effect on yield only in the
open treatment. To account for heteroscedasticity, we added a constant variance structure
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Figure 2 Total number of visits recorded per pollinator guild in each crop. All crops received the same
sampling effort (i.e., four 30 min visits to 150 m transects). Note the strong dominance of honeybees in
most crops.

(varldent function in package nlme, R) in which the variance was independently specified
for each crop (Cleasby ¢ Nakagawa, 2011).

We also checked if yield and quality were affected by the pollination treatment for each
crop. Each crop was analyzed independently due to different quality measurement units
and also because there was no homogeneous response among the crops. Block nested
within site was included as a random factor in all models. In this case, we tested only for
the effect of the pollination treatment, without including the interactions with species
richness, visitation abundance, or landscape context due to sample size limitations. For
buckwheat, we used block as a constant variance function to control for the different
heteroscedasticity among blocks. The package nlme in R was used to fit all models (Pinheiro
et al., 2011). Residual plots where used to check for normality and standardized residuals
for heteroscedasticity.

RESULTS

Landscape effects on bee richness and visitation

Pollinator species richness ranged from 2 to 26 species per site (Table 1). The flower
visitors of all crops were highly dominated by one or two species of pollinators, in
most cases managed honeybees. In field beans, the dominant species were bumblebees;
Bombus terrestris/lucorum complex, followed by B. hortorum and B. lapidarius (Fig. 2).
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Figure 3 Landscape effects on pollinators. Relationship of (A) pollinator richness per field and (B) total
number of visits per field with landscape complexity (% agriculture) at the appropriate radii. Each crop
individual trend is plotted in a different color. Total visits are scaled within each crop.

Simple landscapes had consistently lower species richness in all crops (GLMM: Fj 35 =
5.39, P = 0.02; Fig. 3A). All crops responded similarly (slope &+ SE = —8.43 £ 3.63), but
with different intercepts (field bean = —8.39; buckwheat = 1.90; oilseed rape = 3.14;
strawberry = 3.35).

This trend is consistent when using rarefied species richness (GLMM: F; 35 = 3.66,
P = 0.06). However, the pollinator abundance trend depended on the crop (Table 2;
Fig. 3B). Visitation patterns were driven by the visitation of a single species, the managed
honeybee, in all crops except for field beans (Table 2). While in most regions honeybee
visits were also higher in complex landscapes, in buckwheat there were higher honeybee
visits in simple landscapes. For field beans, this positive relationship between number of
visits recorded and landscape was even more pronounced at larger scales when we analyze
the primary pollinators, the bumblebees, alone (F; g = 6.44,P = 0.03 at 1.5 km radius).
Honeybee visits is not strongly correlated with overall non-honeybee visits (field bean
pearson r = 0.19; buckwheat = 0.47; oilseed rape = 0.51; strawberry = 0.32), and we do
not detect an effect of landscape on overall non-honeybee visitation (Table 2).

Yield quantity and quality
Fruit or seed number per plant were in all cases positively correlated with yield (measured
as weight per plant). However, the correlation was stronger in some crops than others
(oilseed rape: R? = 0.95, P < 0.0001; field bean: R? = 0.90, P < 0.0001; strawberry:
R* =0.61, P < 0.0001; buckwheat: R* = 0.67, P < 0.0001).

Open pollination increased yield for all crops (field bean estimate = 16.42 & 3.30
g/plant, df = 67,t =4.97, P = 0.03; buckwheat estimate = 42.44 & 8.27 g/plant, df = 24,
t =5.12, P < 0.001; oilseed rape estimate = 0.87 &= 0.38 g/plant, df = 69, t = 2.22,
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Table 2 Effects of land use complexity on total visitation, honeybee visitation (field beans were
excluded from the honeybee model), and non honeybee visitation. Visitation is scaled within each crop.
Both models include block nested in site as random factors. Agriculture is the proportion of arable land
in the surrounding landscape of each field. The slopes and standard errors (SE) of each crop are shown.

F-value D.f. P-value

Total visitation
Crop 3.13 3 0.04
Agriculture 1 km 0.05 1 0.81
Agriculture*crop 3.08 3 0.04
Residuals 32
Slopes Estimate SE

Field bean 0.52 2.19

Buckwheat 1.78 4.86

Oilseed rape —4.78 4.99

Strawberry —2.83 5.57
Honeybee visitation
Crop 2.05 2 0.15
Agriculture 1 km 2.63 1 0.12
Agriculture*crop 3.87 2 0.03
Residuals 32
Slopes Estimate SE

Buckwheat 1.72 1.41

Oilseed rape —4.59 3.56

Strawberry —3.38 4.21
Non-honeybee visitation
Crop 0.56 3 0.64
Agriculture 1 km 0.92 1 0.35
Agriculture*crop 3.34 3 0.03
Residuals 32
Slopes Estimate SE

Field bean 2.50 0.72

Buckwheat 0.06 1.59

Oilseed rape —0.19 1.64

Strawberry 0.55 1.81

P = 0.03; strawberry estimate = 2.16 £ 0.41 g/plant, df = 67, t = 5.30, P < 0.001;
Fig. 4). When analyzing all crops in combination, we did not detect an interaction
between treatment and species richness, which indicates that higher richness does not
increase yield in any of the treatments. However, total visitation rate increased yield in
both treatments (Fig. 5A) and the response was consistent among crops as indicated by
the fact that allowing the variation in the slope of each crops do not improve the model
(A AICc between competing models = 15). Interestingly, landscape complexity measured
as % of agricultural land (both at 0.5 or at 1 km) also showed a significant interaction
with treatment, indicating that simpler landscapes had lower yields in the open pollinated
plants. However, the trend for net-bagged plants was reversed (Table 3; Fig. 5B).
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Figure 4 Pollinator contribution to yield. Overall yield per plant (A, C, E, G) and quality (B, D, F, H)
with pollinator exclusion (Net) and open pollination (Open) for each crop. Black dots are the mean
values reported in the text, and the boxplots reflects the distribution of the data. Yield is measured in seed
weight per plant (g) for all crops except strawberry, which was measured as fruit weight per plant (g).

Commercial grades of 1 and 2 are marketable, while grade 3 is considered non marketable.
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Figure 5 Visitation and landscape effects on yield. Interaction plots showing the relationships of (A)
yield per plant and total visitation and (B) yield and landscape complexity for pollinator exclusion (open
circles, dotted line) and open pollination (black circles, solid line). Total visitation and yield are scaled to
a mean of zero within each crop.

Table 3 Effects of open pollination vs pollinator exclusion treatments, visitation and landscape con-
text on yield. Data for four entomophilous crops grown over 10 fields in Europe (buckwheat, field bean,
spring oilseed rape and strawberry). Yield and visitation are scaled within each crop. Block, nested in
site, nested in crop are included as a random factor. Agriculture is the proportion of arable land in the
surrounding landscape of each field. The slopes and standard errors (SE) of each treatment level are

shown.
F-value Df P-value
Pollination treatment 51.51 226 <0.001
Pollinator richness 0.37 27 0.547
Total number of visits 6.65 27 0.015
Agriculture 1 km radius 0.01 27 0.946
Treatment*Pollinator richness 0.01 226 0.973
Treatment*Total number of visits 0.15 226 0.701
Treatment*Agriculture 9.67 226 0.002
Estimate SE
Slope visits net 0.33 0.13
Slope visits open 0.28 0.21
Slope agriculture net 0.65 0.54
Slope agriculture open —0.53 0.91

In addition to quantity, the quality of oilseed rape, buckwheat and strawberry increased
in the open pollination treatments (oilseed rape: oil content estimate = 1.28 4= 0.31%,
df =39,t=4.18, P < 0.001; chlorophyll content estimate = —4.15 & 1.76 ppm, df = 39,
t = —2.37, P = 0.02; buckwheat: percentage of filled seeds estimate = 0.08 £ 0.01%,

Bartomeus et al. (2014), PeerJ, DOI 10.7717/peerj.328 12/20


https://peerj.com
http://dx.doi.org/10.7717/peerj.328

PeerJ

df =12,t=6.35, p < 0.001; strawberry: commercial grade estimate = —0.32 £ 0.06,
df =67,t = —5.36,p < 0.001). On the other hand, the nitrogen content of field beans did
not increase on open-pollinated plants (estimate = —0.10 = 0.08%, df = 37, ¢t = —1.16,
p=0.25; Fig. 4).

DISCUSSION

Four economically important entomophilous annual crops in Europe demonstrated
highly different degrees of insect pollination dependence. When open pollinated, mean
yield increases ranged from 18 to 71% depending on the crop. Three of these crops are
listed as having a “modest” positive impact by animal pollination in the comprehensive
review by Klein et al. (2007). However, despite being in the same category, oilseed rape
and strawberry increased around 20%, while field bean reached a 40% increase in yield
from average levels of insect pollination. The fourth crop, buckwheat is listed as having

a large positive impact by animal pollination, in line of our reported 71% increase. The
review by Klein et al. (2007) is currently the best available, most up to date source of animal
pollination dependence on crops, but our data highlight a disparity of results among crops
listed under the same category. Our quantitative data on animal pollination dependence
provides a first step to depart from the uncertainty embedded in a categorical approach.
For example, dependence on animal pollination can change by variety and region. Recent
reports show variability in pollinator dependence between 0 and 30% among varieties

of oilseed rape (Stanley, Gunning ¢ Stout, 2013; Garratt et al., 2013). While we were able
to standardize variety for most studied crops, strawberry fields were planted with four
different varieties and the presented data should be seen as an average across those varieties
(but see Klatt et al., 2014).

As expected, we found that fruit or seed number per plant was positively correlated with
yield measured as weight of the marketable product per plant. However, this correlation
was rather weak (r> ~ 0.60) for both strawberry and buckwheat. This indicates that for
these crops, the total fruit or seed weight was quite variable among plants with similar
fruit or seed numbers. Indeed, for strawberry, the size of the receptacle is directly related
to the number of fertilized achenes, while for buckwheat the proportion of filled seeds
can vary considerably and is a major component of yield besides fruit set. While previous
research has focused mainly on exploring the effects of pollinators on fruit or seed set
(e.g., Garibaldi et al., 2011; Garibaldi et al., 2013), which is a more direct measure of plant
reproduction, yield has the potential to better reflect economic value (Bommarco, Marini ¢
Vaissiere, 2012; Klatt et al., 2014), and hence, farmers’ interest. For example, while less than
20% in mean yield increase may seem as a modest advantage from the plant perspective,
for the farmers it can translate into a substantial difference in revenue.

Similarly, we report that the yield quality component is enhanced to different extents by
open pollination in three out of four crops. For buckwheat, strawberry, and oilseed rape,
quality is directly linked to the pollinating activity of insects. We find this despite the fact
that the measure of quality and underlying mechanisms are specific for each crop, and
largely unrelated among crops. Empty seeds in buckwheat accumulate little or no starch
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(Bjorkman, 1995). The shape of strawberries is directly related to a complete pollination
of all ovules, resulting in a homogeneously pollinated fruit (Zebrowska, 1998). For oilseed
rape, the plant allocate more oil resources to well pollinated seeds. In contrast, for field
beans, the nitrogen content in the seeds was not affected by insect pollination. Other
factors such as soil fertility and availability of the appropriate N-fixing bacteria (Rhizobium
spp.) may play a more important role for field beans (Képke ¢ Nemecek, 2010). However,
note that we detected no trade-off between yield and nitrogen content of the seeds, as
plants with more seeds did not have lower nitrogen content. Hence, the overall protein
yield (i.e., nitrogen content at the plant level) was increased with open pollination.

The treatment with netted flowers gives us estimates for the extreme cases where
pollinators are completely absent, and we show that the current levels of pollination
are insufficient to increase yield in the open pollinated treatment in all landscapes. As
previously reported, we confirm that agricultural intensification has a drastic effect on
bee species richness (Ricketts et al., 2008; Garibaldi et al., 2011). However, total visitation
does not always follow the same pattern as richness. This is the case for buckwheat and
field bean, where fields presenting higher total visits were located in simple landscapes.
For buckwheat, most of the visits in complex landscapes were due to increased honeybee
densities managed for pollination. Unfortunatelly, there is no detailed information on
where hives were placed in the landscape by local beekeepers as the hives were primarily
put out for honey production, rather than pollination services. In field beans we found that
bumblebees responded positively to agricultural simplification, noting, however, that even
the more simple field beans landscapes contain a fair amount of semi-natural habitats.
Overall, we found a general positive relationship between total visitation rates and yield,
but not with species richness. If the remaining species that thrive in intensively cultivated
agricultural areas, including the managed honeybee, are effective pollinators, yield losses
can be partly decoupled from losses of species (Bartomeus ¢ Winfree, 2013). However,
our approach does not allow us to test if current pollinator levels reach the maximum
achievable yield under optimal pollination conditions.

A recent global meta-analysis highlights the role of wild species in crop systems
(Garibaldi et al., 2013). The flower visitors of three out of four crops were clearly
dominated by honeybees (Fig. 2) and hence, are likely to be key pollinators for those crops.
Garibaldi et al. (2013) show that an increase in wild insect visitation enhanced fruit set by
twice as much as an equivalent increase in honeybee visitation. While this is generally the
case in our target crops (three of which were included as part of Garibaldi’s synthesis),
the numerical advantage of honeybees in European agricultural landscapes needs to
be acknowledged when calculating their total contribution to pollinated plants (e.g., as
done in Winfree et al., 2007; Rader et al., 2009). However, increasing or maintaining high
pollinator diversity can enhance yield quantity and stability by improving the pollination
efficiency of honeybees (Greenleaf ¢ Kremen, 2006) and reduce the risk of pollination
failure due to climate change (Rader et al., 2013; Bartomeus et al., 2013b), or environmental
disturbances such as extreme weather events (Brittain, Kremen ¢ Klein, 2012).
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Opverall, we also found a weak negative effect of land use intensity on yield (Garibaldi
et al., 2011, but see Ricketts et al., 2008), but this was not directly mediated by increased
pollinator visitation by itself, because the correlation between pollinator total visits and
the proportion of agricultural land in the landscape was weak. The yield of experimental
plots with net bagged flowers also increased in sites with more pollinators (Fig. 5A). This
suggests that other environmental or biotic factors correlated with insect visitation may
have been operating simultaneously. The release of airborne pollen by foraging bees could
be such a factor (Pierre et al., 2010).

In order to make efficient management decisions and increase our power to predict
the actual benefit from pollinators in a certain farming situation, we need to estimate the
combined contribution of multiple ecosystem services and agricultural inputs (Boreux
et al., 2013), as they may be influenced differently by landscape characteristics or have
non-additive interactions among them (e.g., Lundin et al., 2013; Martin et al., 2013).

Information on the benefit delivered by pollinators to yield quantity and quality in
relation to landscape context provides an important baseline for this work.
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