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Abstract 
 
Strandås, C. 2008. The Phenolic Complex in Flaxseed. Analysis, structural 
features and bioactivity. Doctoral thesis.  
ISSN 1652-6880, ISBN 978-91-85913-43-5. 
 
Flaxseed is the richest plant source of the lignan secoisolariciresinol diglucoside 
(SDG). In flaxseed, SDG exists in an oligomeric structure with 3-hydroxy-3-
methyl glutaric acid (HMGA) forming a phenolic complex together with p-
coumaric acid and ferulic acid glucosides and herbacetin diglucoside (HDG). 
Epidemiological and animal studies indicate protective effects of flaxseed and 
SDG towards hormone-dependent cancers and cardiovascular diseases, and 
reducing effect toward cholesterol levels in blood. Knowledge about the structural 
features and properties of the phenolic complex are required to further understand 
bioavailability, bioconversion and bioactivity of flaxseed lignans in humans and 
animals, the biosynthesis in flaxseed, as well as if it may affect technology and 
quality of food products containing flaxseed or the phenolic complex. 
 
A new fast and simple high-performance liquid chromatographic (HPLC) method 
was developed for analysing secoisolariciresinol diglucoside (SDG), p-coumaric 
acid glucoside and ferulic acid glucoside, based on direct hydrolysis of defatted 
flaxseed flour using alkali. Variations in SDG, p-coumaric acid glucoside and 
ferulic acid glucoside content were reported in flaxseed samples and bread 
products containing flaxseed. The composition and properties of flaxseed phenolic 
complex were studied by reversed-phase liquid chromatography and gel filtration 
fractionation. Results indicate that the phenolic glucosides exist in oligomers with 
variable molecular sizes. A complicated linkage pattern and/or possibly 
interactions with other components may contribute to the observed complexity.  
 
SDG and the phenolic complex showed similar hydrogen-donating abilities to 
ferulic acid but higher than α-tocopherol in the DPPH inhibition metod, suggesting 
that SDG was the only active antioxidant in the phenolic complex. Contradicting 
results were obtained on the effect of SDG on levels of Vitamin E and cholesterol 
in two rat studies.   
 
Keywords: Phenolic complex, secoisolariciresinol, p-coumaric acid glucoside, 
ferulic acid glucoside, flaxseed, bread 
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Sammanfattning 

Lin är en traditionell oljeväxt odlad sedan urminnes tider. Linfröet används i mat 
och djurfoder och ur fröet kan olja pressas, s.k. linolja, som används i t.ex. 
linoljefärg. I växtvärlden är linfrö en av de rikaste tillgångarna till fytoöstrogenet 
secoisolariciresinol diglukosid (SDG) och omega-3 fettsyran linolensyra. Andra 
viktiga komponenter i linfrö är lösliga kostfibrer, som sänker kolesterol, och 
proteiner, som har emulsionsstabiliserande egenskaper jämförbara med gelatin. 
Epidemiologiska och djurstudier tyder på att linfrö och SDG har skyddande 
egenskaper mot hormon-relaterade cancerformer och hjärtkärlsjukdomar, och har 
kolesterolsänkande egenskaper. Idag tillsätts linfrö till många produkter med 
avsikt att berika livsmedlet med linolensyra. Dessutom säljs linfröextrakt 
innehållande det fenoliska komplexet av många företag. De höga halterna av 
cyanogena glykosider och kadmium samt en laxerande verkan begränsar dock 
intaget av linfrö och Livsmedelsverket avråder från en konsumtion av linfrö högre 
än 2 matskedar per dag.  
 
I linfrö ingår SDG i raka symmetriska oligomerer tillsammans med 
glutarsyraderivat (HMGA) och i sin tur ingår dessa oligomerer i ett fenoliskt 
komplex tillsammans med andra fenoliska glukosider. I tarmen omvandlas SDG 
av mikroorganismer till enterolakton och enterodiol som tas upp i blodomloppet 
och genomgår enterohepatisk cirkulation för att sedan utsöndras med urinen. För 
att förstå upptag och metabolism av SDG måste vi veta mer om komplexets 
struktur och egenskaper. Strukturen är också viktig för att närmare förstå 
biosyntesen av SDG i växten. 
 
I denna avhandling har en ny, snabb och enkel analysmetod utvecklats baserad på 
en direkt alkalisk hydrolysering av avfettat linfrömjöl. Med denna metod 
analyserades halten av SDG, p-kumarsyreglukosider och ferulasyreglukosider i 
olika linfröprover från två olika platser i Sverige. Halten av dessa fenoliska 
glukosider har också analyserats i bröd med linfrön. Det fenoliska komplexets 
sammansättning och egenskaper har studerats med kromatografiska metoder. 
Resultatet tyder på att de fenoliska glukosiderna ingår i en komplicerad struktur 
med bred molekylviktsfördelning. Ett komplicerat bindningsmönster eller 
interaktioner med andra okända strukturer kan bidra till komplexiteten. I en studie 
med radikalen DPPH hade SDG och det fenoliska komplexet liknande 
vätedonerande egenskaper som ferulasyra men högre än α-tokoferol. Detta tyder 
på att SDG är den enda verkande antioxidanten i det fenoliska komplexet. 
Epidemiologiska studier indikerar att det finns ett samband mellan höga 
blodvärden av E vitamin och en minskad risk mot hjärtkärlsjukdomar och cancer. 
Därför har SDG’s och det fenoliska komplexets påverkan på halten av E vitamin 
och kolesterol i plasma och lever studerats i två djurstudier på råtta. Intag av 0,1 % 
SDG sänkte halten E vitamin i råttplasma och lever och höjde kolesterolet i lever. 
I den andra studien med olika doser av SDG (0,1-0,0125 %) hade SDG ingen 
verkan på E vitamin eller kolesterol i råtta.  
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Literature review 

Introduction 
Flaxseed (Linum usitatissimum L.) is an ancient crop with a long history of 
cultivation. It was grown in the earliest agrarian societies in the Tigris and 
Euphrates valleys in Mesopotamia around 6000 B.C. (Oates, 1979). Traditionally, 
the oil from flaxseed (linseed oil) has mainly been used in industrial production of 
paints, paint thinners and linoleum, and the byproducts from oil production, such 
as pressed flaxseed cake, have been used in animal feed. Early references to 
flaxseed use as a food ingredient can be found in ancient Greek and Roman 
literature (Encyclopaedia Britannica). Today, whole or crushed flaxseed is 
included in bread or breakfast cereals as a healthy component but flaxseed is also 
consumed roasted in stews, porridge or drinks, e.g. in Ethiopia (Siegenthaler, 
1994; Muir & Westcott, 2000). World production of flaxseed is currently led by 
Canada, China, India, the USA and the EU, with Canada the dominant producer 
(FAOSTAT, 2006).  
 

Flaxseed is a small flat oval seed ranging in colour from yellow to brown 
(Freeman, 1995). The lignan secoisolariciresinol diglucoside (SDG) is widespread 
within the plant kingdom but the richest known plant source is flaxseed, where its 
level ranges from 0.5 to 1% (Figure 1) (Westcott & Muir, 1996b; Mazur & 
Adlercreutz, 1998; Johnsson et al., 2000). Removal of the seed coat (hull) from 
flaxseed has proven difficult due to a layer of endosperm tissue adhering to the 
hull. The exact location of SDG in flaxseed has never been established 
(Wiesenborn, Tostenson & Kangas, 2003). A negative correlation has been found 
between SDG content and oil content in different fractions of dehulled flaxseed, 
indicating that SDG might be found in the hull (Madhusudhan et al., 2000; 
Wiesenborn, Tostenson & Kangas, 2003). Other important nutrients from flaxseed 
are the flaxseed oil, which is rich in the omega-3 fatty acid α-linolenic acid (39-
44%); the water-soluble mucilage (2%), which contain a neutral and two acidic 
pectin-like polysaccharides (Warrand et al., 2003); and albumin and globulin 
proteins (18-20%) (Oomah, Mazza & Kenaschuk, 1996).  
 

Limiting factors for flaxseed consumption are the high content of cyanogenic 
glycosides (100-300 mg hydrogen cyanide/kg seed) and cadmium (294-1543 
μg/kg) (Rosling, 1993; Oomah et al., 2007). In the absence of toxicological data, 
the provisional tolerable daily intake has been set to 12 μg cyanide/kg body weight 
(WHO, 1996) and 1 μg cadmium/kg of body weight (JECFA, 1993). With regard 
to the levels of cyanogenic glucosides, the intake of flaxseed should be limited to 
10-20 g whole flaxseed per day and the National Food Administration in Sweden 
advises against usage of crushed or milled flaxseed, since the bioavailability of 
cyanides increases with disintegration. A high content of mucilage in flaxseed also 
restricts the daily intake to approximately 45 g due to a laxative effect in humans 
(Clark et al., 2001). Thus, although flaxseed is the richest source of lignans, its 
dietary intake is limited. 
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Figure 1. Structure of the phenolic glucosides in the flaxseed phenolic complex; 
secoisolariciresinol diglucoside 3-hydroxy-3-methyl glutaric acid oligomers (SDG-HMGA 
oligomers) (average n=3), secoisolariciresinol diglucoside (SDG), p-coumaric acid 
glucoside, ferulic acid glucoside, and herbacetin diglucoside (HDG).  
 

The phenolic complex in flaxseed 
The first article reporting a glucosidic phenolic complex being released from the 
flaxseed matrix by organic extraction using dioxane/ethanol was published by 
Klosterman & Smith (1954). Several years later, the phenolic complex obtained 
from flaxseed has been proposed to be composed of a structurally heterogeneous 
mixture of oligomers with SDG and 3-hydroxy-3-methyl glutaric acid (HMGA) 
together with other phenolic constituents (Figure 1) (Kamal-Eldin et al., 2001; 
Ford et al., 2001). Upon hydrolysis of the phenolic complex, phenolic compounds 
such as SDG and the hydroxycinnamic acid glucosides (p-coumaric acid glucoside 
and ferulic acid glucoside) are released (Johnsson et al., 2002). Based on NMR 
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analyses, the phenolic complex has a linear and symmetrical structure with an 
average molecular weight of approx. 4000 Da and is composed of SDG and 
HMGA units covalently linked via ester bonds between the carboxylic carbon of 
HMGA and the C-6 of glucose residues in SDG, where HMGA is only present in 
the symmetrically esterified form (Kamal-Eldin et al., 2001). The glucose residues 
of SDG are both ester-linked at C-6 of the glucose and some have been observed 
in the terminal position in the oligomers. The average ratio of terminal to 
intermediate SDG groups has been calculated as 1:4 and the SDG/HMGA ratio as 
0.56/0.44. Other phenolic compounds found to be present in flaxseed include 
pinoresinol diglucoside (Qiu et al., 1999), isolariciresinol (Meager et al., 1999), 
matairesinol (Meager et al., 1999; Liggins, Grimwood & Bingham, 2000) and 
ferulic, p-hydroxybenzoic, gentisic, vanillic and sinapic acids in free and/or bound 
forms (Kozlowska, Zadernowski & Sosulski, 1983; Dabrowski & Sosulski, 1984; 
Liggins, Grimwood & Bingham, 2000). 
 

Recently, the hydroxycinnamic acid glucosides and the flavonoid herbacetin 
diglucoside (HDG) were discovered as components of the phenolic complex. The 
heterogeneity of the phenolic complex has been confirmed using matrix-assisted 
laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF MS) 
analysis of an aqueous ethanol extract from flaxseed hull (Struijs et al., 2007). The 
authors reported that a complex spectrum was obtained, with clusters of peaks 
ranging from 2SDG+1HMGA to 5SDG+5HMGA. Preparative RP-HPLC 
fractionation of a partially hydrolysed flaxseed extract yielded HDG, 
HDG+HMGA and HDG+HMGA+SDG fragments, which were confirmed by 
MS/MS analysis. Moreover, p-coumaric acid glucoside was found to be ester-
linked via its carboxyl group to the C-6 of glucose residues in SDG and not via 
HMGA as in HDG (Struijs et al., 2008). A structural element of 
HMGA+SDG+ferulic acid glucoside was obtained using MS/MS but NMR 
analysis could not confirm any connection between SDG and ferulic acid 
glucoside. However, ferulic acid was found to be ester-linked to the C-2 position 
of glucose residues in SDG.  
 

In the search for the biosynthetic pathway of SDG in flaxseed, Ford et al. (2001) 
applied radioisotopic incorporation of the SDG precursor L-[U-14C]-phenylalanine 
through different stages of seed development and discovered that SDG was 
accumulating at all stages, to reach its highest value at maturation. A mixture of 
different monomers and dimers of SDG-HMGA was obtained at the stage before 
seed maturation. Incorporation and formation of p-coumaric acid glucoside and 
ferulic acid glucoside occurred at an earlier stage of seed development. SDG is 
optically active with one dominant enantiomer in flaxseed, (+)-SDG of 99% (Ford 
et al., 2001). The presence of two enantiomers of SDG in plants might suggest that 
there are two distinct biochemical pathways for SDG biosynthesis (Davin & 
Lewis, 2003). Biosynthesis of (+)-SDG in planta begins with an enantioselective 
dimerisation of two coniferyl alcohol units to produce (-)-pinoresinol by the 
protein pinoresinol synthase, which consists of a radical-forming oxidase and a 
‘dirigent protein’. (-)-Pinoresinol is then reduced by pinoresinol/lariciresinol 
reductase (PLR), via lariciresinol, to (+)-secoisolariciresinol (Seco) (Davin et al., 
1997; Davin & Lewis, 2003). This biosynthesis pathway of SDG may be true for 
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flaxseed, since PLR has been found in Linum usitatissimum L. (von Heimendahl et 
al., 2005). During seed maturation, HMGA is attached to SDG mediated by 
coenzyme A (CoA)-activated HMGA (Ford et al., 2001). In Linum flavum, the 
enzyme secoisolariciresinol dehydrogenase that converts secoisolariciresinol to 
matairesinol has been discovered (Xia et al., 2000). In flaxseed, this conversion 
might take place to a minor extent since only a small amount of matairesinol has 
been detected (Meager et al., 1999; Liggins, Grimwood & Bingham, 2000).  
 
Principles of analysis of phenolic glucosides in flaxseed and 
bread 
Extraction and hydrolysis 
A critical step before extraction of phenolic compounds in foods is sample 
collection/storage and sample pre-treatment/clean-up (Tura & Robards, 2002). 
Drying and disintegration of samples by milling is important to obtain a 
homogeneous sample that facilitates the extraction of the phenolic compounds. 
 

Flaxseed contains large amounts of non-polar lipids that must be removed 
before analysis of phenolic glucosides, most commonly by extracting milled 
flaxseed with non-polar solvents to obtain defatted flaxseed flour (DFF) (Table 1). 
The phenolic complex in DFF are extracted using more polar solvents such as 
dioxane/ethanol, aqueous ethanol or methanol in combination with heat and 
mixing (Johnsson et al., 2000; Westcott & Muir, 1996a; Muir & Westcott, 2000). 
Recently, the phenolic complex were isolated from whole flaxseed by subcritical 
water extraction at high temperature in combination with high pressure (Cacace & 
Mazza, 2006). Subcritical water extraction decreases the dielectric constant of 
water and provides similar properties to ethanol or methanol. Recovery of SDG, p-
coumaric acid glucoside and ferulic acid glucoside was 80% after subcritical water 
extractions at 140-160°C and 5.2 Pa. In another study, microwave-assisted 
extraction was used to quantify SDG, p-coumaric acid and ferulic acid glucosides 
in flaxseed and was found to shorten the time of extraction and hydrolysis of 
traditionally used methods (Beejmohun et al., 2007). However those authors failed 
to refer to the correct yield of other methods and claimed that their method 
produced higher yield, but their content of SDG in flaxseed was within the range 
published by Johnsson et al. (2000). 

 



Table 1. Summary of methods used for the quantification of lignans in flaxseed samples. Lignan content given as mg/g seed 

Lignan Content Sample Extraction Hydrolysis Chromatography Reference 

SDG 5.8-18.5c DFFa (0.5 g) 
n=10 

MeOH/water (7:3, v/v, 10 L, 
3 h, 60 °C) 

aq.b NaOH (0.1 M, 3 h, 20 °C) RP-HPLC              
UV 280 nm 

Westcott & 
Muir, 1996bc 

 6.1-13 
DFF (0.5 g) 
n=29 

Dioxane/EtOH (1:1, v/v, 10 
mL, 16 h, 60 °C) 

1.aq. NaOH (0.3 M, 48 h, 20 °C) 
2.SPEd C18 

RP-HPLC        
UV 280 nm 

Johnsson et 
al., 2000 

 14 DFF (0.5 g) n=1 Dioxane/EtOH (1:1, v/v) NaOHe (0.1 M, 2 h, 40 °C) HPTLC  
Coran et al., 
2004 

 10.1 
Whole flaxseed 
(2 g) n=1 

1.Subcritical water extraction 
(160 °C, 5.2 MPa). 
2.EtOH/ THFf (1:1, v/v) 

1.aq. NaOH (1 M, 1 h, 20 °C) 
2.Precipitation with MeOH 

RP-HPLC  
UV 280 nm 

Cacace & 
Mazza, 2006 

 
9.8g 
 

Pressed flaxseed 
cake (0.5 g) n=1 

Microwave-assisted extraction in 20 mL MeOH/water (7:3, v/v)  
and NaOH (0.1 M) (50-150 W; 1-15 min)  

RP-HPLC  
UV 280 nm 

Beejmohun 
et al., 2007 

Anhydro-
seco, Seco 

4.2, 12.6 Milled flaxseed 
(0.5 mg) n=2 

n.a. 1.aq. HCl (5 mL, 1.5 M, 100 °C, 3 h) 

2.EtOAc/ MTBEh (1:1, v/v; 3x2 mL) 

GC-MS Liggins et al., 
2000 

 5.9 DFF (0.6 g) n=1 
MeOH /water (7:3, v/v,  
12 mL, 3 h, 60 °C) 

1.HCle (2 M, 2.5 h, 100°C)    
2.EtOAc (2 x 10 mL) 

RP-HPLC  
UV 204nm  

Charlet et al., 
2002 

Seco 0.8 Milled flaxseed 
(0.1 g) n=1 

Homogenisation in acetate 
buffer 

1.β-Glucuronidase b (37 °C, 1 day) 
2.SPE C18 

RP-HPLC  
UV 280 nm & MS 

Obermeyer et 
al., 1995 

Seco, ED,  

EL 

1.0-3.2 

(µmol/g) 

Milled flaxseed 
(0.5-1.0 g) n=10 

n.a. 1.Human faecal inoculum, 24 h         
2.β-Glucuronidase b (37 °C, overnight) 
3.SPE C18 & DEAE-Sephadex OH- 

GC/MS Thompson et 
al., 1997 

a Defatted flaxseed flour (DFF)  b aq. aqueous solution  c According to the patent by Westcott & Muir, 1996a.  d Solid-Phase Extraction (SPE)  e No 
information on aqueous or methanol solution  f Tetrahydrofuran (THF)  g Calculated value of SDG from an estimated oil content (40%)  h Methyl tertiary-butyl 
ether (MTBE)  
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Alkaline hydrolysis in water or methanol is used to break ester-linkages to 
release SDG, p-coumaric acid glucoside and ferulic acid glucoside or their methyl 
esters from the phenolic complex (Johnsson et al., 2000). Other methods using 
acid hydrolysis in combination with heat break ester and ether linkages to release 
glucose residues and obtain Seco (Figure 2) (Mazur et al., 1996; Charlet et al., 
2002). Depending on the acid concentration, Seco is destabilised by dehydration to 
yield anhydrosecoisolariciresinol (Anhydroseco, also called Shonanin). Maximum 
content of Anhydroseco can be obtained in hot acid (2 M HCl, 100°C, 2.5 h) 
without any trace of Seco, and is relatively stable with minor degradation of 14% 
(Charlet et al., 2002).  
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Figure 2. Transformation of secoisolariciresinol diglucoside (SDG) during acid hydrolysis 
to secoisolariciresinol (Seco), then anhydrosecoisolariciresinol (Anhydroseco). 
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Thompson et al. (1997) used in vitro fermentation of flaxseed with human faecal 
microbiota to mimic the human colonic environment and indirectly determine the 
content of SDG by the production of Seco, ED and EL. β-Glucuronidase is more 
commonly used in deconjugation of lignans in biological samples, but has also 
been used after faecal fermentation or directly on DFF to obtain Seco (Thompson 
et al., 1997). Mazur et al. (1996) observed a low yield of SDG when β-
glucuronidase from Helix pomatia was incubated with DFF, indicating that β-
glucuronidase under these experimental conditions has low ability to hydrolyse 
lignan glucosides in DFF. In another study, β-glucuronidase from H. pomatia and 
β-glucosidase from almonds were able to hydrolyse isolated SDG to Seco by 90% 
and 13%, respectively (Milder et al., 2004).  
 

A summary of methods for quantification of lignans, SDG and Seco in freeze-
dried flaxseed bread products after extraction followed by hydrolysis is presented 
in Table 2. Muir & Westcott (2000) developed a fast and simple method to 
quantify SDG that has been used by other authors to quantify SDG in flaxseed 
bread (Hyvärinen et al., 2006; Pohjanheimo et al., 2006). Thompson et al. (2006) 
and Milder et al. (2004) used complicated sample treatments with many work-up 
steps that might increase the risk of contamination or loss of lignans from the 
samples. 
 
Chromatographic methods 
The most frequently used chromatographic method for quantification of SDG or 
the phenolic complex is reversed-phase high-performance liquid chromatography 
(RP-HPLC) with UV detection (Westcott & Muir, 1996a; Johnsson et al., 2000). 
HPLC coupled to coulometric electrode array detection (HPLC-CEAD) is based 
on oxidation of lignans by applying electric potential on the analyte (Peñalvo & 
Nurmi, 2006). HPLC-CEAD is limited to the analysis of Seco, SDG, ED and EL, 
which have free phenolic hydroxyl groups ready to be oxidised. High performance 
thin layer chromatography (HPTLC) reduces the analysis time compared with 
HPLC by running several samples in a single run (Coran, Giannellini & 
Bambagiotti-Albert, 2004). Gas chromatography-mass spectrometry (GC-MS) is 
used for the analysis of Seco or ED and EL after derivatisation by silylation to 
increase the volatility and selectivity of the compounds (Thompson et al., 1997; 
Peñalvo et al., 2005; Thompson et al., 2006).  
 

In GC-MS, internal standards such as 5α-androstan-3β, 17β-diol and 
stigmasterol have been used (Thompson et al., 1997; Thompson et al., 2006), but 
isotope-labelled lignans have also been synthesised and analysed together with 
food using isotope-dilution selective-ion-monitoring (Peñalvo et al., 2005).  
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Content of phenolic glucosides in flaxseed and bread 
Flaxseed 
A summary of the quantification of SDG and the hydroxycinnamic acid 
derivatives in flaxseed is presented in Table 1. Variation in SDG content in 
different samples of flaxseed has been explored in a few articles (Westcott & 
Muir, 1996b; Johnsson et al., 2000), while the variations in p-coumaric acid 
glucoside and ferulic acid glucoside are not known. In general, lignan content 
from flaxseed after alkaline and acid hydrolysis in the aforementioned studies 
ranged from 5.8-18.5 mg/g seed and 4.2-12.6 mg/g seed, respectively. The lowest 
yield of lignans was obtained by faecal fermentation with human inoculum 
(Thompson et al., 1997). Factors affecting the content of lignans determined by 
different methods might be differences in degree of milling, time of extraction or 
hydrolysis and/or degradation, inefficient extraction and/or losses during work-up 
procedures. Flaxseed samples grown in three different locations in three different 
years were analysed for content of SDG by Westcott & Muir (1996b). The 
variation in the content of SDG was found to be primarily due to production year, 
the second most important factor being flaxseed variety and the third the growing 
site.  
 
Bread  
Knowledge of the stability of SDG in different types of bread containing flaxseed 
or isolated SDG is limited. A short fermentation time (1 h 40 minutes) of whole 
grain wheat buns and sourdough rye bread fortified with SDG followed by baking 
at 225-250°C for 15-25 minutes has been found to have minor effects on the SDG 
content (Hyvärinen et al., 2006). In another study, long fermentation time (24 h) 
with rye sourdough had negligible effects on rye lignans (Liukkonen et al., 2003). 
The recovery of SDG from bread enriched with SDG can be 99.5%, indicating that 
SDG is uneffected by the baking process (Muir & Westcott, 2000). When flaxseed 
was incorporated into bread in another study, the recovery of SDG was 73-82% 
(Muir & Westcott, 2000; Milder et al., 2004). Hall et al. (2005) observed an 
increased recovery of SDG, from 40 to 80%, after treating flaxseed-containing 
pasta with papain before extraction of the phenolic complex from the pasta matrix. 
Those authors suggested that SDG is entrapped by the gluten network in pasta. A 
summary of lignan content in commercial bread containing flaxseed is presented 
in Table 2. After alkaline hydrolysis, the content of SDG in flaxseed bread ranges 
from 4.1-136 mg/100 g fresh weight (Muir & Westcott, 2000). After faecal 
fermentation, the content of Seco, ED and EL varies from 5.3-32.4 µmol/100 g 
fresh weight. The lower yield obtained by Milder et al. (2005) and Nesbitt & 
Thompson (1997) might be due to inefficient extraction and/or losses of lignans 
during the work-up procedures. 

 
In vitro fermentation with faecal inoculum of home-made bread containing 

variable amounts of ground flaxseed of the variety Linott indicated a strong 
correlation between the percentage of flaxseed and the content of Seco, ED & EL 
in the fermented residues (Nesbitt & Thompson, 1997). A weaker correlation was 
found in commercial breads containing flaxseed of different varieties. 



Table 2. Summary of methods for quantification of lignans in freeze-dried flaxseed breads. Lignan contents are given as mg/100 g seed 

Lignans Content 
Flaxseed  
content 

Sample 
weight 

Extraction Hydrolysis  Chromatography Reference 

SDG 4.1-136; 
n=10 

n.s.a 4 g  MeOH/water 
(7:3, v/v, 20 
mL, 3 h, 60 °C) 

aq.b NaOH (0.1 M, 3 h, 20 °C) RP-HPLC   
UV 280 nm  

Muir &  
Westcott, 
2000 

 20; n=1 10% DFFc 2.5 g MeOH/water 
(7:3, v/v, 20 
mL, 3 h, 60 °C) 

aq. NaOH (0.1 M, 3 h, 20 °C) RP-HPLC   
UV 280 nm  

Hyvärinen 
et al., 
2006  

 63.3; n=1 7.1%d  4 g  MeOH/water 
(7:3, v/v, 20 
mL, 3 h, 60 °C) 

aq. NaOH (0.1 M, 3 h, 20 °C) RP-HPLC   
UV 280 nm  

Pohjanhei
mo et al., 
2006 

Seco 11.9; n=1 n.s. 1 g  MeOH/water 
(7:3, v/v; 0.3 M 
NaOH) (24 mL, 
1 h, 60 °C) 

1.H. pomatia β-glucuronidase in 
 acetate buffer (37 °C, overnight)            
2.Diethyl ether extraction 

LC-MS/ MS Milder et 
al., 2005  

 16, 24; n=2 n.s. 0.25-2 g MeOH/water 
(7:3, v/v, 25 
mL, 2 h, 60-70 
°C) 

1.aq. NaOH (0.1 M, 3 h, 20 °C) 
2.SPE C18 

3.β-Glucuronidase (37 °C,overnight) 
4.SPE C18 

GC-MS Thompson 
et al., 
 2006 

Seco, 
ED & 
EL 

5.3-32.4 
µmol/100 g; 

n=12 

0.1-10.1% 0.5-1.0 
g  

n.a. 1.Human faecal inoculum, 24 h 
2.β-Glucuronidase (37 °C, overnight)     
3.SPE C18 & DEAE-Sephadex OH- 

GC/MS Nesbitt & 
Thompson
, 1997  

an.s. not stated  baq. aqueous solution    c whole grain wheat was replaced with 10% defatted flaxseed flour (DFF) in the dough  dwhole & crushed flaxseed 
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Absorption and metabolism  
The structure of phenolic compounds and their molecular weight, glycosylation 
and esterification are important in determining their absorption and metabolic fate 
(Scalbert et al., 2002). Knowledge on the metabolism of the flaxseed phenolic 
complex in the human digestive system is mainly restricted to the metabolism of 
SDG in the large intestine (Figure 3). In the large intestine (colon), SDG is dose-
dependently converted to the mammalian lignans enterodiol (ED) and 
enterolactone (EL) (Figure 4) by facultative anaerobic bacteria (Borriello et al., 
1985; Rickard et al., 1996; Clavel et al., 2005, 2006).  
 
 

Faece Urine

Liver
Oxidation 
products of 
ED and EL

Phenolic 
complex

ED

Seco

SDG

EL

Colon
Tissues

Kidneys

Duodenum

Enterohepatic circulation

- ED, EL & Seco
- 12 Aromatic oxidation 

products of ED & EL

- Phenolic complex
- SDG, Seco, ED, EL
- Conjugated ED and EL

with glucuronic acid  
 
Figure 3. Diagram showing the intestinal conversion of SDG from the phenolic complex in 
flaxseed and absorption and excretion of secoisolariciresinol (Seco), enterodiol (ED) and 
enterolactone (EL). 
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To date, absorption of the hydroxycinnamic acid glucosides of flaxseed are 
unknown. However, it is generally known that bound hydroxycinnamic acid 
glucosides are metabolised to free phenolic acids by pancreatic and microbiotic 
esterases in the intestine (Kroon et al., 1997; Andreasen et al., 2001). In the liver 
and/or the intestinal mucosa, the hydroxycinnamic acids are conjugated with 
glucuronic acid and sulphuric acid to be excreted in the plasma, and in the bile for 
enterohepatic circulation (Mateos, Goya & Bravo, 2006), before being finally 
excreted in urine and faeces (Jacobson et al., 1983). 
 
Absorption and metabolism of SDG in the intestine 
A significant reduction in urinary ED and EL and an increased ED/EL-ratio have 
been observed in humans treated with antibiotics (Setchell et al., 1981), which 
highlights the importance of the microbiota in the colon for the bioavailability of 
the mammalian lignans. The absorption of ED and EL in the large intestine is 
affected by a whole range of different factors such as interindividual variation in 
the microbiota, intestinal transit time, structure of the lignans, composition of the 
diet and food matrix (Axelson et al., 1982; Adlercreutz et al., 1987; Adam et al., 
2002; Saarinen et al., 2002; Smeds et al., 2004). The stereochemical structure of 
SDG and Seco has been shown to determine the chirality and the composition 
pattern of ED and EL and their oxidation products (Saarinen et al., 2002; Smeds et 
al., 2004). Hydrolysis of O-glycosides into aglycones is one of the rate-limiting 
steps in the conversion of plant lignans to mammalian lignans (Saarinen et al., 
2002). Compartmentalisation and composition of the food and/or the flaxseed 
might determine the bioavailability of lignans. Crushing or grinding of whole 
flaxseed has been shown to increase the levels of plasma ED and EL in humans 
compared with whole flaxseed (Kuijsten et al., 2005a). In in vitro fermentation 
models, the formation of ED and EL is increased by high amounts of 
carbohydrates (Cassidy, Hanley & Lamuela-Raventos, 2000), dietary fibre 
(Rowland et al., 1999) and xylanase treated rye bran (Aura et al., 2005). An 
increase in fat content in the diet decreases the urinary excretion of lignans in both 
rats and humans (Hallmans et al., 1999). 

 
After absorption of ED and EL, the lignans are conjugated with glucuronic acid 

and sulphuric acid by hepatic phase II enzymes (e.g. UDP 
glucuronosyltransferases and sulphotransferases) (Morton et al., 1994; 
Adlercreutz et al., 1995). The fate of the minor amount of Seco absorbed from the 
intestine is not known. About 50-60% of endogenous estrogen-conjugates in 
humans enters the enterohepatic circulation by excretion in the duodenum with the 
bile, followed by deconjugation with intestinal bacterial β-glucuronidase and 
sulphatase, and are reabsorbed from the intestine similarly to bile acids (Eriksson 
& Gustafsson, 1971; Adlercreutz & Martin, 1980). Conjugated ED and EL are 
subjected to the same enterohepatic circulation as estrogen (Axelson & Setchell, 
1981; Adlercreutz et al., 1987; Bach Knudsen et al., 2003). Conjugated 
mammalian lignans are transported from the plasma to different tissues (e.g. uterus 
and kidneys) and are excreted in urine (Axelson & Setchell,1981; Rickard & 
Thompson, 1998).  
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Phase I metabolism of SDG in liver  
Oxidation products of the mammalian lignans have been discovered both in vitro 
and in vivo, which suggests that they are substrates for cytochrome P450-mediated 
hydroxylation reactions in the liver (Figure 5). In vitro, up to 12 aliphatic and 
aromatic oxidation products of ED and EL have been found in rat hepatic aroclor-
induced microsomes (Jacobs & Metzler, 1999). Most of the metabolites of ED and 
EL were also found in rat, pig and human uninduced microsomes. In vivo, minor 
amounts of aromatic oxidation products (<5%) were detected in human urine after 
flaxseed intake (Niemeyer & Metzler, 2002). Human pregnane X receptor (PXR), 
which is involved in the metabolism of CYP3A substrates in liver and intestinal 
tissues, was moderately activated in vitro by EL (Jacobs, Nolan & Hood, 2005). 
Furthermore, Seco might also be a substrate for phase I metabolism since 
oxidation products of Seco were discovered in vitro in aroclor-induced rat 
microsomes but these products have not been detected in vivo so far (Niemeyer & 
Metzler, 2002).   
 
Pharmacokinetics of SDG 
Pharmacokinetic studies of ED and EL in humans performed after consumption of 
a single dose of SDG (1.31 µmol/kg b.w.) showed peak plasma concentrations of 
ED after 15 h and EL after 20 h and mean elimination half-life of 4.4 h for ED and 
12.6 h for EL (Kuijsten et al., 2005b). The urinary excretion was 40% of the 
ingested dose of SDG, with the majority excreted as EL (58%). A positive 
correlation was obtained between the plasma ED and EL and the urine ED and EL 
in a two-month intervention study with premenopausal women (n=19) consuming 
20 g flaxseed (Knust et al., 2006).  
 

Supplying single and multiple (10 days) doses of 3H-SDG (1.5 mg/d) to female 
rats for 48 h gave faecal lignan excretion of >50% of dose, urine lignan levels of 
28-32% and plasma lignan excretion of 0.4% (equivalent to 1µmol/L) (Rickard & 
Thompson, 1998). In that study, the plasma concentrations of ED, EL and Seco 
were higher than peak rat estrogen levels (300 pM) obtained by Butcher, Collins 
& Fugo (1974). Active sites of lignan metabolism, such as liver, kidney and 
uterus, had higher radioactivity compared with other non-gastrointestinal tissues, 
and multiple treatment enhanced the radioactivity in the liver by 50-80% 
compared with single treatment. In another study by Rickard & Thompson 
(2000a), giving single and multiple (10 days) doses of 3H-SDG to rats for 48 h 
resulted in 74-80% of urine excretion as EL, ED and Seco, and the urinary 
composition of lignans did not differ between treatment groups. The proportion of 
ED, EL and Seco present in the urine of the rats was 55, 10 and 13%, respectively, 
24 h after ingestion. Seco has also been detected in human urine (Bannwart et al., 
1989). 
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Figure 4. Aromatic and aliphatic oxidation products of enterodiol (ED) and enterolactone 
(EL) in rat, pig and human hepatic microsomes (Jacobs & Metzler, 1999). 
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Health effects of flaxseed lignans 
Hormone-dependent cancer 
Breast cancer 
Epidemiological studies report different results regarding the protective effect of 
flaxseed lignans against hormone-dependent cancer forms (reviewed by Lof & 
Weiderpass, 2006). In an intervention study of newly diagnosed postmenopausal 
breast cancer patients (n=19), a daily intake of flaxseed for a month reduced the 
expression of tumour cell proliferation markers, the protein Ki-67 and the 
epidermal growth factor receptor c-erbB2 and increased apoptosis, indicating 
protective effects of flaxseed lignans (Thompson et al., 2005).  
 

Animal studies with experimental cancer also indicate a protective effect of 
flaxseed and its components against breast cancer. The limitations and advantages 
of experimental animal models for human breast cancer were reviewed recently by 
Saarinen et al. (2007). For example, flaxseed given to carcinogen-treated rats or 
mice reduced tumour occurrence and size at the initiation and promotion stages of 
carcinogenesis (Serraino & Thompson, 1992b), tumour size at the late progress 
stage of carcinogenesis (Thompson et al., 1996b), tumour growth and metastasis 
at the late progress stage of estrogen receptor (ER) negative carcinogenesis 
(Dabrosin et al., 2002), and distant metastasis after surgical excision of established 
estrogen receptor negative human breast cancer tumour in nude mice, but did not 
prevent recurrence of cancer (Chen, Wang & Thompson, 2006).  
 

The beneficial effects of flaxseed on breast cancer have partially been attributed 
to SDG. For example, carcinogenic-treated rats given SDG showed a reduction in 
tumour occurrence and size at the early promotion stage (Thompson et al., 1996a), 
tumour multiplicity at the early promotion stage (Rickard et al., 1999), tumour size 
and multiplicity at the late progress stage of carcinogenesis (Thompson et al., 
1996b), pulmonary metastasis (Li et al., 1999), and distant metastasis after 
surgical excision of established ER negative human breast cancer tumour in nude 
mice, but not recurrence (Chen, Wang & Thompson, 2006). Intake of lignans 
before puberty might reduce the risk of breast cancer. Exposure to flaxseed or 
SDG during suckling of rat female offspring reduced tumour occurrence, size and 
number after ER negative carcinogen-treatment later in life (Chen et al., 2003a). 
In vitro, ED and EL dose-dependently reduced ER negative cancer cell adhesion, 
invasion and migration steps involved in metastasis. 

 
When SDG or flaxseed was combined with tamoxifen, a compound clinically 

used in the treatment of breast cancer, stronger inhibition of tumour growth was 
obtained (Chen & Thompson, 2003b; Chen et al., 2007b). Combined treatment 
with tamoxifen and flaxseed reduced the expression of the progesterone receptor 
and insulin-like growth factor-I (IGF-1) and increased the expression of ERα. 
Furthermore, a synergistic protective effect was observed when SDG and flaxseed 
oil were administered together, indicating that SDG is not the only cancer-
protective component in flaxseed (Chen, Wang & Thompson, 2006). 
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Prostate cancer 
Studies have been carried out regarding the protective effect of flaxseed against 
prostate cancer, with the suggestion of SDG as the protective component. Prostate 
tumour proliferation and the prostate-specific antigen were reduced in patients 
with prostate cancer given flaxseed in a low-fat diet (Demark-Wahnefried et al., 
2001; Demark-Wahnefried et al., 2004), together with suppressed total and free 
testosterone levels (Demark-Wahnefried et al., 2001). In the transgenic 
adenocarcinoma mouse prostate (TRAMP) model, flaxseed in a low-fat diet 
reduced prostate tumour size and proliferation marker Ki-67 and increased 
apoptosis (Lin, Switzer & Demark-Wahnefried, 2002). Flaxseed also inhibited 
prostate cell proliferation in rats with experimental cancer (Tou, Chen & 
Thompson, 1999). In vitro growth of the prostate cancer cell lines LNCaP, PC-3 
and DU-145 was reduced by enterolactone and enterodiol and the androgen-
sensitive cell line LNCaP was most effected, suggesting that these mammalian 
lignans contribute to the protective effect of flaxseed (Lin, Switzer & Demark-
Wahnefried, 2001).  
 
Colorectal cancer 
To date, no human studies have been performed on the effects of flaxseed or the 
phenolic complex on colorectal carcinogenesis and the existing animal studies are 
limited. A reduction in early markers of colon cancer risk (aberrant crypt and 
aberrant crypt foci) was observed in rats with experimental cancer given flaxseed 
or SDG in the short term (Serraino & Thompson, 1992a) and long term (Jenab & 
Thompson, 1996). In contrast, no effect of flaxseed on intestinal carcinogenesis 
was obtained in a multiple intestinal neoplasia (Min) mice model (van Kranen et 
al., 2003; Oikarinen et al., 2005), or when (-)-Seco was ingested by these mice 
(Pajari et al., 2006).  
 
Possible mechanisms 
The mechanism(s) involved in the protective effect of flaxseed and its lignans on 
hormone-dependent cancer forms are still very unclear. The main mechanism have 
been suggested to be related to lignans ability to compete with estrogen for the 
estrogen receptor (ER) but other factors may also play a role (Saarinen et al., 
2007; Adlercreutz 2007). Diet-gene interaction between mammalian lignans and 
hormone-dependent cancer may modify the risk of cancer, e.g. premenopausal 
women expressing at least one allele for the gene cytochrome P450c17α have a 
reduced risk of breast cancer (McCann et al., 2002).  
 

The estrogen receptor α (ERα) is highly expressed in uterus, testis, pituary, 
ovary, epididymis and adrenal, whereas ERβ is expressed particularly in brain, 
kidney, prostate, ovary, lung, bladder, intestine and epididymis (Kuiper et al., 
1996; Enmark & Gustafsson 1999). Estrogenic activity of flaxseed has been 
discovered in rats by a dose-dependent lengthening of the estrous cycle (Orcheson 
et al., 1998). A positive correlation between urinary lignan excretion and changes 
in the ratio of the estrogen bioactive metabolite 2-hydroxyestrone to 16α-
hydroxyestrone was observed in postmenopausal women, indicating that flaxseed 
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lignans have an influence on the metabolism of estrogens (Brooks et al., 2004). 
Mammalian lignans bind weakly to rat uterine cytosol (Adlercreutz et al., 1987), 
and in vitro they show low affinity for ERα and ERβ to act as partial 
agonists/antagonists of estrogens, also called estrogenic and antiestrogenic activity 
(Mueller et al., 2004). EL has been shown to have estrogenic activity both in vivo 
in transgenic mice and at physiological concentrations in vitro by activating ER-
negative mediated transcription with preference for ERα (Penttinen et al., 2007).  
 

The preventive effect on hormone-dependent cancer might differ with the ER 
status of the tumour. A tendency towards a lower risk of ERα-negative breast 
cancer was found with higher EL levels in postmenopausal women (Olsen et al., 
2004). In that prospective study, the levels of EL was not related to ERα-positive 
breast cancers. Both ED and EL interfere with testosterone at the binding sites of 
sex hormone binding globulin in vitro (Schöttner, Spiteller & Gansser, 1998) and 
EL is positively correlated with sex hormone binding globulin in human plasma 
(Zeleniuch-Jacquotte et al., 2004). In vitro, EL moderately inhibits the human 
placental estrogen synthetase (aromatase) (Adlercreutz et al., 1993) and aromatase 
in human preadipocytes (Wang et al., 1994) but it is questionable whether the 
same effect is possible in vivo (Saarinen et al., 2007). Other signalling pathways 
of ER may be effected by ED and EL (Saarinen et al., 2007). For example in rats 
with experimental cancer, administration of flaxseed reduced the plasma IGF-I at 
pre-initiation and early promotion stages of carcinogenesis and a negative 
correlation was found between urinary excretion of ED, EL and Seco and plasma 
IGF-I (Rickard, Yuan & Thompson, 2000b). Flaxseed given to nude mice reduced 
vascular endothelial growth factor (VEGF), a key factor in promotion of tumour 
angiogenesis (Dabrosin et al., 2002). Suppression of tumour growth in human 
colon cancer both in vivo in mice and in vitro by EL is suggested to be the result 
of apoptosis (Danbara et al., 2005). In another in vítro study, EL suppressed 
growth by inducing apoptosis in human prostate cancer cells (Chen et al., 2007a). 
 
Cardiovascular disease  
Cardiovascular disease (CVD), the most common health problem in the world, is 
related to the major risk factors diabetes, hypertension, tobacco smoking, 
overweight, hypercholesterolaemia, physical inactivity and genetic factors (Kannel 
& McGee, 1979; WHO, 2002; Talmud, 2007). In a 12 year-prospective cohort 
study of Finnish men, those men with the highest serum EL levels had lower risk 
to die from coronary heart disease or CVD than those men with the lowest levels 
of EL (Vanharanta et al., 2003). SDG is suggested to protect against CVD by its 
antioxidant activity and lowering effect on cholesterol (Prasad, 1999; Lucas et al., 
2004). In experimental rabbit studies with elevated cholesterol levels, the phenolic 
complex or SDG reduced the incidence of atherosclerotic lesions and plaques in 
the rabbit aorta (Prasad, 1999, 2005). However, no effect on the endothelial 
functions related to CVD risk factor was obtained in a human intervention study 
with normocholesterolaemic postmenopausal women administered the phenolic 
complex for six weeks (Hallund et al., 2006b). Hypocholesterolaemic activity of 
SDG does not play a major role in slowing the progression of atherosclerosis 
(Prasad, 2007). A reduced progression of atherosclerosis by SDG in rabbits on a 
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regular diet following a high cholesterol diet may not have been due to lowering 
of serum lipids but possibly to a reduction in oxidative stress (Prasad, 2007).  
 

The effects of flaxseed or the phenolic complex on plasma cholesterol, low-
density lipoproteins (LDL) and triglycerides in human intervention studies and 
animal studies is presented in Table 3. In humans with hypercholesterolaemia, a 
daily intake of the phenolic complex reduced plasma cholesterol levels and LDL 
by 22 and 22%, respectively (Zhang et al., 2007). However, in healthy 
postmenopausal women given almost the same dose of the phenolic complex from 
flaxseed there were no effects on plasma cholesterol, LDL, high-density 
lipoprotein (HDL) or triglycerides (Hallund et al., 2006a). In long-term studies, 
plasma cholesterol and LDL were not reduced by flaxseed in men and women 
with the autoimmune disease lupus nephritis (Clark et al., 2001) and in another 
study with postmenopausal women, a minor effect on plasma cholesterol was 
shown (Dodin et al., 2008). In all experimental animal studies, flaxseed or SDG 
reduced the levels of plasma cholesterol except in an earlier study by Prasad 
(1997), in which plasma cholesterol levels increased in rabbit after consumption of 
flaxseed. Apo B-1 transgenic male and female mice with lipid profiles resembling 
humans were given ground flaxseed (20%) in a high cholesterol (0.1%) diet for 2 
months with no effect on the expression of the following genes: low-density 
lipoprotein receptor (LDLr), 3-hydroxy-3-methylglutaryl (HMG) CoA reductase, 
phospholipid transfer protein, cholesterol 7α hydroxylase, fatty acid synthase and 
acyl CoA oxidase (Pellizzon et al., 2007).   
 

One hypothesis is that flaxseed may protect against CVD through its estrogenic 
activity. Estrogen has been suggested to be protective towards cardiovascular 
disease through its beneficial effects on plasma lipoproteins, antiproliferation and 
vasodilation on the vasculature (reviewed by Farhat, Lavigne & Ramwell, 1996). 
Loss of estrogens associated with menopause in women has been suggested to 
increase the risk of cardiovascular disease (Mendelsohn, 2002). However, 
treatment with estrogen has not reduced the incidence of cardiovascular disease in 
postmenopausal women (Hulley et al., 1998). 



Table 3. Effects on plasma total cholesterol (TC), low-density lipoproteins (LDL), high-density lipoprotein (HDL) and triglycerides (TG) in animal studies and 
interventional studies with humans given whole, ground, milled and defatted flaxseed or the phenolic complex  
Model  Diet and duration Effects Reference 
Humans    
Men & womena (n=29) Partially defatted flaxseed (50 g/d) in muffins, 3 weeks ▼TC (5%), LDL (8%)  Jenkins et al., 1999 
Women (n=20)b Ground flaxseed (40 g/d), 3 months ▼TC (6%) Lucas et al., 2002 
Women (n=85)b Ground flaxseed (40g/d) in bread for 1 year ▼TC (2%), HDL (1%) Dodin et al., 2008 
Women (n=25)b Ground flaxseed (40g/d) in bread, 3 months n.e.c  Lemay et al., 2002 
Men & womend (n=8) Ground flaxseed (30 g/d) in sachets, 1 month ▼TC (11%), LDL (12%) Clark et al., 1995 
Men & womend (n=9) Ground flaxseed (30 g/d) in sachets, 1 year n.e. Clark et al., 2001 
Women (n=10) Milled flaxseed (25 g/d) in muffins, 1 month n.e. Cunnane et al., 1995 
Women (n=16)b Whole flaxseed (25 g/d) in bars, 1 month n.e. Coulman et al., 2002 
Men & women (n=38)a Phenolic complex (0.6 g SDG/d) in tablets ▼TC (24%), LDL (22%) Zhang et al., 2007 
Women (n=22)b Phenolic complex (0.5 g SDG/d) in muffins, 1.5 months n.e. Hallund et al., 2006a 
Animals    
Rabbits e (n=5) Flaxseed (7.5 g/kg b.w. & d), cholesterol (1%), 2 months ▼TC (31%), LDL (32%) 

▲TG (125%)g 
Prasad et al., 1998 

Rabbits (n=8) Flaxseed (7.5 g/kg b.w. & d), cholesterol (1%), 2 months ▲TC (33%)g , TG (40%)g Prasad, 1997 
Apo B-1 transgenic 
male and female mice  

Ground flaxseed (20%), cholesterol (0.1%), 2 months ▼TC (32-47%)  
▼ hepatic TC (32%)  

Pellizzon et al., 2007 

Hamsters f (n=12) Flaxseed (7.5, 15, 22.5 %), vitamin E acetate (0.34%), 4 months ▼TC (17%, 19%, 23%)  
▲TG (54%, 64%, 45%)   

Lucas et al., 2004 

Rabbits (n=16) Phenolic complex (14.4 mg SDG/kg b.w. & d), cholesterol (0.5%), 2 months ▼TC (20%), LDL (14%)  
▲HDL (30%)  

Prasad, 2005 

Rabbits (n=5) SDG (15 mg/kg b.w. & d), cholesterol (1%), 2 months ▼TC (33%), LDL (35%) 
▲HDL  

Prasad, 1999 

a Hyperlipidaemic   b Postmenopausal women   c n.e. No effect on TC, LDL or HDL.    dPatients with the autoimmune disease lupus nephritis.   eNew Zealand 
white rabbits   f  Ovariectomised Golden Syrian female hamsters   g  Calculated from the article.   
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Other diseases 
Diabetes mellitus, a disorder caused by defects in insulin secretion, insulin 
sensitivity, or both, is characterised by hyperglycaemia and it is followed by 
different complications in the vascular system and in some tissues and organs 
(Bouché et al., 2004). In experimental animal models of diabetes, a preventive or 
delaying effect of SDG on the development of diabetes mellitus has been obtained 
(Prasad, 2000, 2001). A few studies on glucose metabolism have been performed 
with flaxseed or the phenolic complex. Postmenopausal women (n=25) with 
hypercholesterolaemia given flaxseed showed reduced glucose and insulin levels 
(Lemay et al., 2002). In humans with hypercholesterolaemia, the phenolic 
complex had a reducing effect on fasting plasma glucose levels (Zhang et al., 
2007). In another human intervention study using type 2 diabetic 
hypercholesterolaemic postmenopausal women (n=30), the subjects showed 
modest improvements in long-term glycaemic control, measured as reduction in 
glycosylated haemoglobin, after eating lower amounts of the phenolic complex for 
eight weeks, but there was no effect on fasting glucose and insulin sensitivity (Pan 
et al., 2007). Another flaxseed component, the mucilage given to young healthy 
humans, has previously been shown to reduce postprandial glucose levels in blood 
plasma (Cunnane et al., 1993). These studies indicate that SDG and/or other 
component/s in flaxseed might have lowering effects on glucose levels.  
 
Flaxseed and SDG are suggested to protect against renal diseases (reviewed by 
Ranich, Bhathena & Velasquez, 2001). Renal function in animal models or in 
humans has been shown to improve with flaxseed treatment (Hall et al., 1993; 
Clark et al., 2001; Velasquez et al., 2003) or SDG (Clark et al., 2000).  

  

http://apps.isiknowledge.com/WoS/CIW.cgi?SID=N2doNEDH49GalDDJ34a&Func=OneClickSearch&field=AU&val=Velasquez+MT&ut=000173725400003&auloc=3&curr_doc=7/4&Form=FullRecordPage&doc=7/4
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Objectives 

� To develop a new HPLC method for the analysis of the phenolic 
glucosides (SDG, p-coumaric acid glucoside and ferulic acid glucoside) 
in flaxseed. Paper I 

 

� To use the optimised direct alkaline hydrolysis method in the analysis of 
different flaxseed samples in Sweden. Paper I 

 

� To analyse different types of bread containing flaxseed for their content 
of the phenolic glucosides. Paper II 

 

� To investigate the composition and properties of the dioxane/ethanol-
extracted phenolic complex from flaxseed. Paper III 

 

� To measure the hydrogen-donating abilities of the flaxseed phenolic 
complex and SDG using the DPPH inhibition method. Paper III 

 

� To test the effect of isolated SDG and the major SDG-HMGA-oligomers 
from flaxseed on tocopherols and cholesterol levels in a Sprague-Dawley 
rat model. Papers IV, V 

 



Materials and methods  

Samples 
A pressed flaxseed cake (Alternativ Förädling, Glanshammar, Sweden) was milled 
(Retsch type ZM 1, Haan, Germany, 0.5 mm screen), and defatted twice with n-
hexane (1:4, w/v) to obtain defatted flaxseed flour (DFF), which was used in 
Papers I, III and IV. SDG was isolated essentially as described by Johnsson et al. 
(2000) and full descriptions of the isolation are available in Papers III-V. 
Flaxseed samples, obtained from Hushållningssällskapet (harvest 2001, Örebro, 
Sweden) and Svalöf Weibull (harvest 2000, Svalöv, Sweden), were disintegrated 
and defatted in steel tubes using a method by Appelqvist (1967) which is further 
described in Paper I. Different soft and crisp breads containing flaxseed were 
obtained from major food outlets. Representative parts of breads were cut into 
smaller pieces, freeze-dried and milled (0.5 mm sieve, Retsch type ZM 1) as 
described in Paper III. 
 
Direct alkaline hydrolysis of flaxseed 
A new method to analyse the phenolic glucosides (SDG, p-coumaric acid 
glucoside and ferulic acid glucoside) in flaxseed was developed using direct 
alkaline hydrolysis (Figure 5). Optimal conditions for direct alkaline hydrolysis 
were established using full factorial experimental designs; firstly by studying the 
effect of temperature and concentration of alkali, and secondly by studying the 
matrix effects of the internal standard and amount of DFF. Time of hydrolysis was 
optimised and the internal standard o-coumaric acid was used. The repeatability of 
the method was evaluated. More information is available in Paper I. 
 

Milled (0.5 mm) DFF (100 mg)  

+ 1 ml o-Coumaric acid          
+ 4 ml H2O                                  
+ 5 ml 2 M NaOH, 20 °C, 1h

Hydrolysate

Supernatant

+ 60% EtOH
+ Centrifugation

Supernatant

HPLC

+ Acidification to pH 3 
+ Centrifugation

 
 
Figure 5. Diagram of the direct alkaline hydrolysis method used for analysis of phenolic 
glucosides in flaxseed. 
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Phenolic glucosides in bread containing flaxseed 
The content and relative ratios of the phenolic glucosides were analysed in freeze-
dried milled bread samples by mixing with the internal standard o-coumaric acid 
and extraction with dioxane/ethanol for 48 h essentially as described by Johnsson 
et al. (2000). The analysis is fully described in Paper III.  
 
Chromatographic fractionation of oligomeric extract from 
flaxseed  

Dioxane/ethanol extract of DFF was fractionated with C18 solid-phase 
extraction in a Büchner funnel using different concentrations of aqueous methanol 
(50, 60, 70%) to obtain the fractions F50, F60 and F70 in Paper III and IV. F50, 
F60 and F70 were further fractionated on Sepharose CL-6B using isocratic 80% 
EtOH and divided into fractions that were analysed for the content and relative 
ratios of the phenolic glucosides after alkaline hydrolysis by RP-HPLC as 
described below (Figure 6).  

 
F50 was fractionated on Sephadex LH-20 according to hydrophobicity using 

isocratic 20% EtOH followed by 95% EtOH and fractions were collected and 
divided into four fractions (H1, H2, H3, H4) to be further fractionated on 
Sephadex LH-20 according to size by gel filtration using isocratic 80% EtOH 
Paper III. Each H-fraction was divided into 4 subfractions (G1, G2, G3, G4). All 
16 fractions were analysed for the content and relative ratios of the phenolic 
glucosides after alkaline hydrolysis by RP-HPLC. This fractionation is presented 
schematically in Figure 6.  
 
 

Dioxane/ethanol extract of 
defatted flaxseed flour

Fractionation on reversed-phase chromatography

Fractionation of F50, F60 & F70
on Sepharose CL6B in 80% EtOH

Fractionation of H1, H2, H3 & H4
on Sephadex LH20 in 80% EtOH

F50, F60, F70 

Fractionation of F50 on 
Sephadex LH20 in 20-95% EtOH

H1, H2, H3, H4

G1, G2, G3, G4
for each H fraction

 
 
Figure 6. Diagram showing fractionation of a dioxane/ethanol extract from flaxseed. 
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High-performance liquid chromatography 
The contents of the phenolic glucosides and the phenolic complex were 
determined by HPLC on a Dionex PDA-100 (Dionex, Sunnyvale, CD, USA) 
system with a UV-Vis diode array detector and Chromelion software as described 
in Papers I-V. All bread samples, except three, were analysed according to Paper 
I. Due to interfering peaks, the three bread remaining samples were analysed using 
different gradients of mobile phase described in Paper II. The separation of the 
phenolic complex in fractions F50, F60 and F70 was performed using different 
gradients in the mobile phases described in Paper III. Calibration curves were 
created for p-coumaric acid, ferulic acid, SDG and the internal standard o-
coumaric acid to be used in Papers I-V.  
 
Hydrogen donation ability  
The ability of F50, F60, F70, SDG, ferulic acid and α-tocopherol to transfer 
hydrogen atoms to 1,1-diphenyl-2-picrylhydrazyl (DPPH) was studied using a 
modified method of Brand-Williams, Cuvelier & Berset (1995). The ability of the 
antioxidants to transfer phenolic hydrogen atoms to DPPH was expressed as the 
percentage inhibition of DPPH after 30 minutes against the molar amount of SDG 
in the oligomeric fractions and SDG in Paper III. 
 
Animal studies 
Sprague-Dawley rats arrived at 21 days of age (B&K Universal AB, Sollentuna, 
Sweden) and were housed individually in Macrolon IV cages in conditions 
described in Papers IV and V. The experiments were carried out in accordance 
with the guidelines and approval of the Ethical Committee for Animal 
Experiments in the Uppsala region. Animals were divided into groups with similar 
mean body weight and given an accommodation period of 4 days in Paper IV and 
7 days in Paper V. After the accommodation period, the rats were given their 
respective diet for 27 days. The composition of the control diet and mixing of 
isolated SDG into the control diet is fully described in Papers IV and V. Food 
consumption was monitored daily, and body weights were measured weekly and at 
time of putting to death. Procedures during put to death of animals, and collection 
of samples are described in Papers IV and V. In Paper IV, liver samples used in 
the cholesterol and tocopherol analyses were immediately put in isopropanol on 
ice and stored at -70 ºC until further analysis. In Paper V, liver samples used in 
the cholesterol and tocopherol analyses were snap-frozen in liquid nitrogen and 
stored in -70 ºC until further analysis.  
 
Analysis of cholesterol and tocopherols in rat tissues 
Triacylglycerols and cholesterol were quantified in plasma (Seigler & Wu, 1981) 
and tocopherols in plasma were quantified as described by Frank et al. (2003). 
Liver cholesterol and tocopherol samples were quantified according to Frank et al. 
(2003) in Paper IV, and according to a modified method by Podda et al. (1996) in 
Paper V, which is described in Paper V.   
 



Results and comments 

Method development (Paper I) 
An easy to use HPLC method based on direct alkaline hydrolysis was developed 
to analyse the phenolic glucosides (SDG, p-coumaric acid glucoside and ferulic 
acid glucoside) in flaxseed (Figure 5). Extraction of the phenolic complex with 
polar solvents was excluded and the internal standard o-coumaric acid was used. 
Minor effects of temperature and concentration of alkali were observed on the 
yield of the phenolic glucosides. Optimal conditions for direct alkaline hydrolysis 
were established as 1 M of NaOH at 20 °C for one hour of hydrolysis and 
polysaccharides and protein were precipitated using 60% aqueous ethanol. The 
recovery of the internal standard was studied with different levels of DFF. 
Pinoresinol and matairesinol did not agree with any of the chromatographic peaks 
obtained using this method. Degradation of matairesinol under alkaline conditions 
has been observed previously (Milder et al., 2004) and might explain why 
matairesinol was not detected with this method. Direct alkaline hydrolysis resulted 
in a higher yield of (+)-SDG in DFF than obtained with alkaline hydrolysis after 
dioxane–ethanol extraction of DFF. Good repeatability of the method was 
obtained by two analysts.  
 
Content of phenolic glucosides in flaxseed (Paper I)  
Flaxseed samples (n=27) from two locations in Sweden were analysed using direct 
alkaline hydrolysis. A high variation in the content of phenolic glucosides was 
obtained (Figure 7). The content of (+)-SDG obtained in this study ranged from 
1.2-2.6% in flaxseed and was found to be higher than levels reported by other 
authors, as summarised in Table 1. The variety Jupiter contained most phenolic 
glucosides and Niagara S least. Weak correlations were found between SDG and 
hydroxycinnamic acid glucosides.  
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Figure 7. Content of phenolic glucosides (SDG, p-coumaric acid glucoside and ferulic acid 
glucoside) in Swedish flaxseed samples analysed by direct alkaline hydrolysis.  
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Content of phenolic glucosides in bread containing flaxseed 
(Paper II) 
The flaxseed content in seventeen breads ranged from 1.5 to 9 g/100 g fresh bread. 
This flaxseed content is within the advised intake of flaxseed by the National Food 
Administration in Sweden. Alkali mixed directly with bread samples containing 
high amounts of starch resulted in gelatinisation of starch and increased viscosity 
of the samples, which complicated further sample treatment. Therefore, the bread 
samples first had to be extracted with dioxane/ethanol and secondly hydrolysed 
with alkali. An interfering peak with the internal standard o-coumaric acid was 
observed that might derive from other ingredients mixed into these breads. 
However, altering the gradient of the mobile phase separated the peaks. 

 
Variation in the content of the phenolic glucosides in the soft and crisp bread 

was observed (Figure 8). The major phenolic glucoside was SDG, ranging from 
7.6 to 105 mg/100 g dry bread. The content of SDG in flaxseed bread products in 
this study was within the range obtained by other authors, as summarised in Table 
2. Less abundant phenolic glucosides in the breads were p-coumaric acid 
glucoside (3.3-33 mg/100 g dry bread) and ferulic acid glucoside (3.3-18 mg/100 
g dry bread). 
 

Strong positive correlations were obtained between SDG and the 
hydroxycinnamic acid derivatives, as well as between p-coumaric acid glucoside 
and ferulic acid glucoside. These correlations indicate that the bread ingredients 
and the bread-making conditions only have a small impact on the proportion of the 
phenolic glucosides in the breads.  
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Figure 8. Content (mg/100g dry bread) of the phenolic glucosides (SDG ■, p-coumaric acid 
glucoside □ and ferulic acid glucoside ■) in 12 soft breads and 5 crisp breads.  
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Structural Features (Paper III) 
A dioxane/ethanol extract from flaxseed containing the phenolic complex was 
fractionated into three oligomeric fractions (F50, F60 and F70) by reversed-phase 
chromatography and further subfractionated by Sepharose CL-6B (Figure 6). The 
F50 fraction, which had the highest proportion of hydroxycinnamic acid 
glucosides, was further fractionated on Sephadex LH-20 according to 
hydrophobicity (H1-H4) and size (G1-G4).  
 
Fractionation by reversed-phase chromatography 
Flaxseed oligomers were fractionated into fractions with distinctively different 
hydrophobic properties and composition of the main phenolic glucosides. The 
major fraction, F60, had a relative composition of the phenolic glucosides similar 
to that of DFF (Figure 9). The minor fraction, F50, had the highest relative 
composition of hydroxycinnamic acid derivatives. Reversed-phase 
chromatography separated the oligomers according to polarity, which related to 
the composition of the phenolic glucosides. The most polar fraction F50 contained 
proportionally less SDG and the least polar fraction F70 contained proportionally 
more SDG.  
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Figure 9. A. Relative proportions of F50, F60 and F70 in DFF, calculated from the total 
content of the phenolic glucosides (SDG, p-coumaric acid glucoside and ferulic acid 
glucoside). B. Relative composition of SDG ■, p-coumaric acid glucoside □, and ferulic 
acid glucoside ■ in F50, F60 and F70 from flaxseed obtained by reversed-phase 
chromatography, and the relative composition of the phenolic glucosides in defatted 
flaxseed flour (DFF) analysed with direct alkaline hydrolysis (Paper III). 
 
Fractionation by Sepharose CL-6B 
Fractionation of F50, F60 and F70 on Sepharose CL-6B resulted in a wide range 
of molecular sizes for F60 and F70. The relative composition of phenolic 
glucosides in the collected fractions of F50, F60 and F70 was stable and was not 
effected by the gel filtration fractionation. The fractions were partly separated by 
size-exclusion and partly by an unknown chromatography, which was observed by 
a large proportion of UV-absorbing material eluting after the total volume of the 
column. Hydrogen bonding between the stationary phase, unknown compounds of 
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hydrophobic nature in the oligomers and/or other structural features of the 
oligomers might result in this unknown chromatography.  
 
 
Fractionation of F50 on Sephadex LH-20 
F50 with the highest proportion of hydroxycinnamic acid glucosides was 
fractionated on Sephadex LH-20 with the intention of separating on the basis of 
hydrophobicity and of further separating the subfractions on the basis of size using 
different mobile phases of ethanol concentrations, but both mobile phases 
fractionated according to both size and hydrophobicity. The results indicate that 
F50 contains low molecular size oligomers with less hydrophobic properties and 
different proportions of the phenolic glucosides than F60 and F70.  
 

The relative composition of the phenolic glucosides in the 16 fractions is 
compared in Figure 10. In contrast to the results from reversed-phase 
chromatography, the proportion of SDG decreased with increasing 
hydrophobicity. The small size oligomers (G4) had larger variation in the relative 
composition than large size oligomers (G1). In the least hydrophobic oligomers 
(H1), the proportion of SDG increased somewhat with decreasing size of 
oligomer. In the more hydrophobic oligomers (H2-H4), the relative ratio of SDG 
decreased with decreasing size of oligomer.  

 
Fractions H1G1 and H1G2 were of high molecular size with least hydrophobic 

properties. Furthermore, these fractions were the largest fractions of F50, with the 
most similar relative phenolic glucoside compositions to F50 (Figures 10 & 11). 
Among the most hydrophobic oligomers, G4H4 was among the smallest fractions 
of F50 with the smallest oligomers, and the highest relative content of 
hydroxycinnamic acid glucosides compared with SDG.  
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Figure 10. Fractionation of F50 on Sephadex LH-20 according to hydrophobicity (H1, H2, 
H3, H4) and gel filtration (G1, G2, G3, G4). The phenolic compounds in each fraction were 
SDG ■, p-coumaric acid glucoside □, and ferulic acid glucoside ■. 
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Figure 11. Fractionation of F50 on Sephadex LH-20 according to hydrophobicity (H1, H2, 
H3, H4) and gel filtration (G1, G2, G3, G4). The relative proportions (%) of the 16 
fractions obtained from F50. 
 
The inability to separate SDG and the hydroxycinnamic acid glucosides during the 
chromatography of F50, F60 and F70 in Paper III suggests connections or 
overlap between the SDG-HMGA oligomers and the hydroxycinnamic glucosides 
in their oligomeric structures. The hydroxycinnamic acid glucosides and ferulic 
acid residues have been shown to be connected directly to SDG but no linkage 
between HMGA and the hydroxycinnamic acid glucosides was detectable by 
NMR or MS analysis (Struijs et al., 2008). Those authors suggested that the 
hydroxycinnamic acid glucosides are not connected to HMGA and that they are 
terminal units of the SDG complex. However, it is not known whether some 
hydroxycinnamic acid glucosides unconnected to SDG might exist in the phenolic 
complex. Results obtained by Struijs et al. (2008) and in Paper III provide new 
knowledge on the structures and properties of the phenolic complex in flaxseed. 
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Hydrogen-donating ability using DPPH (Paper III) 
The hydrogen-donating abilities of SDG, F50, F60, and F70 were studied using 
DPPH in comparison with ferulic acid and α-tocopherol (Figure 12). The 
reduction of DPPH (%) by SDG, F50, F60 and F70 was similar and consistent 
with their molar levels of SDG, confirming that the hydroxycinnamic acid 
derivatives, in which the phenolic groups are blocked by glucosylation, were not 
active as antioxidants. Oligomeric fractions had slightly lower hydrogen donating 
ability than SDG, which might be caused by steric hindrance in the oligomers. A 
lower ability of phenolic oligomers compared with monomers to donate hydrogens 
to DPPH has been reported previously (Goupy et al., 2003). At lower 
concentrations, F50 had stronger H-donating ability than F60 and F70, which 
might be due to less steric hindrance or to differences in solubility. Ferulic acid 
had comparable and α-tocopherol had lower H-donating ability than SDG. 
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Figure 12. Inhibition of DPPH (%) after 30 minutes of incubation with SDG, F50, F60, and 
F70 in 80% methanol, and α-tocopherol and ferulic acid in 100% methanol. The total 
amount of SDG in F50, F60 and F70 was calculated on a molar basis. (Kind permission of 
Food Chemistry) 
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Bioactivities of SDG and the phenolic complex 
SDG and its oligomers decreased vitamin E levels and increased liver 
cholesterol in rats (Paper IV) 
Comprehensive results from human epidemiological studies and animal tumour 
models suggest that α-tocopherol possess chemopreventive and chemotherapeutic 
effect against prostate cancer (Ni & Yeh, 2007). The effect of SDG and the 
phenolic complex on levels of vitamin E was studied using a Sprague–Dawley rat 
model. Rats (3 groups) were fed a control diet and a diet containing 0.1% SDG or 
the phenolic complex containing 0.1% SDG for 27 days. Groups showed no 
differences in feed intake, animal body weight or liver weight at the end of the 
experiment. SDG and the phenolic complex significantly reduced α- and γ-
tocopherols in rat plasma and liver (Figure 13A&B). The contribution of p-
coumaric glucoside and ferulic acid glucosides to this effect was negligible due to 
the equal effect of SDG and the phenolic complex. SDG and the phenolic complex 
had no significant effect on plasma triacylglycerols and cholesterol but caused a 
slight but significant elevation of liver cholesterol and percentage of cholesterol in 
the liver lipids (Figure 13C&D). 
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Figure 13. Effects of secoisolariciresinol diglucoside (SDG) and the phenolic complex on 
α- and γ-tocopherol levels in rat plasma (A) and liver (B), and on cholesterol levels in rat 
plasma (C) and liver (D). Different letters indicate significant differences between the 
groups  (P<0.05). 
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Similarly to Paper IV, two other animal studies have shown a reduction in 
tocopherol levels in rat liver. Ratnayake et al. (1992) obtained a reduction in α- 
and γ-tocopherol levels in the liver, heart and spleen of rats given flaxseed. When 
hydroxymatairesinol (HMR) is metabolised in the colon of humans and rats, it is 
converted to ED, EL and matairesinol. Given to rats, it was shown to reduce γ-
tocopherol levels in rat liver (Yamashita et al., 2007). Tocopherols are 
metabolised in the liver by cytochrome P450s, similarly to xenobiotics, and 
excreted in the urine as carboxyethyl hydroxychromans (CEHCs) (Sontag & 
Parker, 2002). A non-significant increase in γ-CEHC in the urine of rats 
consuming HMR might indicate increased cytochrome P450 (CYP450) 
metabolism of γ-tocopherol in the liver (Yamashita et al., 2007). Aromatic 
oxidative metabolites of ED and EL obtained in urine suggest an oxidative 
metabolism by CYP450 (Jacobs & Metzler, 1999; Niemeyer & Metzler, 2002). 
Human pregnane X receptor (PXR) involved in the metabolism of CYP3A 
substrates in liver and intestinal tissues is  moderately activated by EL in vitro 
(Jacobs, Nolan & Hood, 2005), which might lead to a reduction in vitamin E 
levels.  
 
SDG had no effect on vitamin E and cholesterol in rats (Paper V) 
Dose-dependent effects of SDG on the levels of vitamin E and cholesterol in 
plasma and liver were studied using a Sprague–Dawley rat model. Rats (5 groups) 
were given a daily control diet containing 0 (control), 0.1, 0.05, 0.025 and 
0.0125% SDG isolated from flaxseed, respectively, for 27 days. Groups showed 
no differences in feed intake, animal body weight or liver weight at the end of the 
experiment. In this study, no effect was observed for dose-dependent intake of 
SDG on tocopherol and cholesterol levels in rat plasma or liver. Similarly to 
Paper V, DFF (11%) given to Wistar rats on a high cholesterol (1%) diet for 4 
weeks had no effect on α- or γ-tocopherol levels in plasma and liver (Yamashita, 
Ikeda & Obayashi, 2003).  
 

Papers IV and V contradict each other and previous studies on the 
hypocholesterolaemic effects of SDG and the phenolic complex shown in humans 
and rats, as summarised in Table 3. Morover, results in Paper V on levels of 
tocopherol in rats contradict the results in Paper IV. The reasons for these 
differences in tocopherol and cholesterol levels in rats are still unexplained and 
further research is needed. 
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Summary and conclusions 

The findings of this thesis can be summarised as follow: 
 

� A new, fast and simple HPLC method was developed based on direct 
hydrolysis of the defatted flaxseed flour (DFF) using alkali. This method 
gave higher yield than previous methods. 

 

� Flaxseed samples grown in two locations in Sweden varied considerably 
in their content of (+)-SDG (11.9–25.9 mg/g), (-)-SDG (2.2–5.0 mg/g), p-
coumaric acid glucoside (1.2–8.5 mg/g), and ferulic acid glucoside (1.6–
5.0 mg/g). Analysis of different flaxseed samples confirmed that flaxseed 
is a rich source of SDG as previously reported. 

 

� Bread products containing flaxseed were analysed for their content of 
(+)-SDG (7.6-105 mg/100 g d.w.), p-coumaric acid glucoside (3.3-33 
mg/100 g d.w.) and ferulic acid glucoside (3.3-18 mg/100 g d.w.). Strong 
positive correlations between the phenolic glucosides were found, 
indicating no major effect of raw material or bread-making process on 
relative content of the phenolic glucosides in flaxseed. 

 

� The structural features of the flaxseed oligomers revealed a considerable 
complexity of the components in the phenolic complex. Chromatographic 
fractionation suggested that oligomers have broad molecular weight 
distribution and variable composition of phenolic glucosides. A 
complicated linkage pattern and/or possible interactions with other 
components also seem to contribute to the observed complexity.  

 

� SDG and oligomeric fractions showed similar hydrogen-donating abilities 
to ferulic acid but higher than α-tocopherol in the DPPH inhibition 
method. SDG was suggested to be the only active antioxidant in the 
oligomeric fractions. 

 

� Contradicting results were obtained in two studies on the effect of SDG 
from flaxseed on levels of Vitamin E and cholesterol in a Sprague-
Dawley rat model. 
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Future research 

It is important to study the structure of the phenolic complex in order to further 
understand the absorption, metabolism and bioactivity of flaxseed lignans in 
humans and animals, and to further understand the biosynthesis of the phenolic 
complex in flaxseed. However, the structure of the phenolic complex and 
connections between different phenolic components are still to a large extent 
unknown. Molecular weight distribution, linkage patterns and interactions with 
other components need to be further evaluated. 
 

Epidemiological and animal studies indicate a protective effect of flaxseed and 
SDG against breast cancer, prostate cancer, cardiovascular disease and possibly 
other diseases. This had led to a rapid growth of new flaxseed containing food 
products with different types of health claims. To support these health claims, 
more studies in humans are needed. Also the effect of SDG on bioavailability of 
vitamin E in humans and possible toxicological effects of SDG must be studied 
before its complete potential as a functional food can be fully evaluated. Many 
questions remain and need to be answered on the effects of SDG on the human 
metabolism.  
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