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A Two Step Model for Linear Prediction,
with Connections to PLS

Abstract

In the thesis, we consider prediction of a univariate response variable,

especially when the explanatory variables are almost collinear. A two
step approach has been proposed. The first step is to summarize the
information in the explanatory variables via a bilinear model with a
Krylov structured design matrix. The second step is the prediction
step where a conditional predictor is applied. The two step approach
gives us a new insight in partial least squares regression (PLS). Explicit
maximum likelihood estimators of the variances and mean for the ex-
planatory variables are derived. It is shown that the mean square error
of the predictor in the two step model is always smaller than the one
in PLS. Moreover, the two step model has been extended to handle
grouped data. A real data set is analyzed to illustrate the performance
of the two step approach and to compare it with other regularized meth-
ods.
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Sammanfattning

Prediktion ar temat for avhandlingen. Givet att man har observerat bak-
grundsvariabler sa vill man med hjilp av dessa forutséiga en respons variabel.
Problemet &r att ofta har man ett stort antal variabler som dven samvarierar
vilket gor det svart att utnyttja informationen i dessa. Detta dr ett vélkéint
problem och under ca 50 ar har man forsokt att forbéttra prediktionsme-
toderna.

I denna avhandling har jag delat in prediktionsproblemet i tva steg. Det
forsta steget sammanfattas informationen i bakgrundsvariablerna via en mul-
tivariat bilinjir modell. Detta sker genom att ett fatal nya variabler skapas
eller att nagra fa vasentliga bakgrundsvariabler selekteras. Pa sa sitt reduc-
eras den ursprungliga dataméngden som kan besta av hundratals variabler till
en méingd bestaende av hogst ett tiotal variabler. I det andra steget, predik-
tionssteget, sker prediktionen genom klassisk betingning med avseende pa den
reducerade dataméiingden for att pa sa vis erhalla en predicerad respons.

Avhandlingen baseras pa tre uppsatser. Tva av dem innehaller teoretiska
resultat och i den tredje gjordes en jimforelse mellan att antal prediktions-
metoder, inklusive en ny tvastegs-ansats, dar relationen mellan responsvari-
ablerna laktat, etanol och 2,3-butandiol och bagrundvariablerna i form av
absorptionsband fran FTIR-analys (FTIR-Fourier transform infraréd spek-
troskopi) studerades.

Avhandlingen har inspirerats av PLS (partial least squares) ansatsen. Ett
nytt argument har upptéckts som motiverar anvindandet av PLS genom att
utnyttja Caley-Hamiltons sats som séger att varje kvadratisk matris “upp-
fyller sin egen karakteristiska ekvation”. PLS &r egentligen en algoritmisk
ansats och det ar vélkdnt att PLS genererar en bas i ett Krylov rum. Vid
en sammanfattning av informationen i bakgrundsvariablerna anvénder utnyt-
tjas Krylovrummet. Avhandlingen utnyttjar dérefter teori fran multivariata
(bi)linjira modeller och ett av huvudresultaten dr att maximum likelihood—
skattningar kan erhéllas vilket &r langt ifran sjélvklart. Prediktionen baseras
pa dessa skattningar. Vidare kan de bilinjiara modellerna inkludera faktorer
som motsvarar faktorer i klassisk variansanalys sasom blockningsfaktorer for
att tex kunna studera gruppeffekter.

I den tillimpade delen av arbetet har tvastegs-ansatsen studerats i forhal-
lande till variabelselektionsmetoder, lasso-och ridge-regression, PLS och vanlig
linjar prediktion. For FTIR-data hade ridge-regressionen den bésta predik-
tionsformagan medan tvastegs-metoden var bast nér det gillde att samman-
fatta informationen i bakgrundsvariablerna.
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1 INTRODUCTION

1 Introduction

Linear regression is the core statistical method used in a variety of scientific
applications. It concentrates on building relations between a set of explana-
tory variables and a response variable. It is used to predict a future response
observation from a given observation of explanatory variables. In this thesis,
we mainly focus on the prediction aspect.

One common choice in prediction is to use the ordinary least squares (OLS)
estimator. The Gauss-Markov theory asserts that the least squares estimator
is BLUE (Best Linear Unbiased Estimator). However, unbiasedness is not
necessarily a wise criterion for estimators, especially when it concerns predic-
tion. The prediction accuracy is related to the mean square error (MSE) of
the estimators. The mean square error is the sum of the variance and the
squared bias. The MSE of OLS estimator is the smallest among all linear un-
biased estimators. However when the variables are collinear or near-collinear,
there exist estimators with small bias but large variance reduction. The over-
all prediction accuracy is then better than that of an OLS estimator. Such
estimators usually are referred to as shrinkage estimators or regularized esti-
mators.

Many real-life application produce collinear data. For example, in chemo-
metrics, the aim is usually to build a predictive relation between the concen-
tration of one compound and a set of absorbance values of wavelengths of a
spectra. The number of wavelengths is large and the absorbance values are
correlated. In this case, the classical OLS often needs to be modified to fulfill
practical requirements.

Several regularization methods have been proposed, such as ridge regres-
sion (RR), lasso regression (Lasso), principal component regression (PCR)
and partial least squares regression (PLS); for a review see Brown (1993) and
Sundberg (1999). Among others, PLS is considered in some detail in the
thesis. Originally the idea of PLS was intuitively introduced by Wold (Wold,
1966) as an algorithm. Nowadays, it plays a dominating role in chemometrics.
With the contributions of several mathematicians and statisticians (Helland,
1988,1990; Stone and Brooks, 1990; Frank and Friedman, 1993; Butler and
Denham, 2000), many pros and cons of PLS can be listed. In particular,
Butler and Denham (2000) have shown that PLS can not be an optimal re-
gression model in any reasonable way. Helland (2001) stated, the only possible
path left towards some kind of optimality, it seems, is by first trying to find a
good motivation for the population model and the possibly finding an optimal
estimator under this model, which coincides with the aim of the present thesis.

In the thesis, we have developed a two step model. In the first step, infor-
mation in the explanatory variable is extracted with the help of a multivariate
linear model where a Krylov design matrix is used, which is inspired by PLS.
In the second step, the prediction step, a conditional approach is applied. The
two step model is closely connected to the PLS population approach.

The linear model is set up in Section 2, and in Section 3, the PLS algorithm
is introduced. In Section 4, a brief review of regularization methods is given, in
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3 THE PLS ALGORITHM

particular a numerical approach is considered. The papers, which this thesis
is based on, are summarized in Section 5. Contributions and future works are
discussed at the end.

2 The linear model

Let (x',y) be a (p+ 1)—dimensional random vector. It follows a multivariate
distribution with E[x] = p, and E[y] = p, where E[] denotes the mean,
D[x] = X, supposed to be positive definite, where D]-] denotes the disper-
sion (variance) and C[x,y] = w, where C[-] denotes the covariance. Under

normality,
X [T Y w
( y ) Moy (( Hy )( W o )) 21

When all the parameters are known, the best linear predictor is conditional
expectation of y given x, i.e.

§=Eylx) = w'E7(x — py) + piy- (2:2)
Let 8/ = w'S~!. Typically a sample (x',y);, i = 1,--- ,n, is used to fit the
model. Thus with the n observations yield a data matrix X: p x n and an

observation vector y: n X 1. Then it is natural to replace the predictor (Z2])
by its empirical version

v, =58 (X -X)+¥, (2.3)
where ,3/ = S;ySm, and
X = XPl/, }_’I = y/Pl/, Pll = 1'1/n

Szy = X(I - Pl’)Y/na Sex = X(I - Pl/)X//TL.

3 The PLS algorithm

The partial least squares algorithm originated from a system analysis approach
(Wold & Joreskog, 1982). As a calibration method in chemometrics , it was
developed by Svante Wold and Harald Martens (Wold et al., 1983). The PLS
algorithm was first presented as a modified NIPALS (Wold, 1966). Since its
important role in chemometrics, many approaches have been suggested to
modify the algorithm, in particular from a numerical point of view. There
are several different versions of the PLS algorithm available: the algorithm by
Martens (Naes and Martens, 1985), SIMPLS by de Jong (1993), Kernel PLS
by Rénnar et al. (1994) and PLSF by Wu & Manne (2000). From a theoretical
point of view, these algorithms should lead to the same results. In this thesis,
we use the PLS version which was formulated by Helland (1988). This is a
population version where parameters are known. Then it goes as follows:

14



3 THE PLS ALGORITHM

1. Define starting values for the x residuals e;,
€ =X— U,.
Do the following steps for i = 1,2,...:
2. Introduce scores t; and weights w;
ti =e,_jwi,
w; = Clei—1,y),
3. Determine x loadings p; by least squares

C[ei—l ) tl]

pi = Dlti]

)

4. Find new residuals
e, =e_1 — pit;.

At each step a, a linear representation
X = p, +P1t) + path + - + Paty + €q

is obtained. The algorithm implies that

wai1 = (I = D]eg_1]w, (W, Dle,—1|wa) W), )wa, (3.1)
Dle,] = D[eq—1] — D[eq—1]wa(w),Dle,—1|w,)~w!, D[e,—1]. (3.2)
If G, is any matrix spanning the column space ((w1 : wa : -+ : w,), we find

the recurrence relations
Dle,) =X - 2G,(G,XG,) G.X, (3.3)
Wat1 = (I - EGG(G;EGG)_G;)wl.

Note that w; = w is the covariance between y and x. It is easy to show that
G, defines an orthogonal basis by using ([B.)), (32]) and results for projection
operators. Alternative proofs of this fact are given in Helland (1988) and
Hoskuldsson (1988).

Furthermore, by induction we have the identity

C(Ga)ZC(wl:wg:---:wa):g‘(w;zw;...;ga—lw).

The space ((w: Xw : ---: Ea_lw) is called Krylov space. The PLS predictor
at step a equals

Ya,pLs = W Ga(G,EG.)” G (x — p,) + py. (3.4)

It is worth noting that when the algorithm stops the Krylov space is 3-
invariant since w,+1 = 0 or D[e,|w, = 0 (Kollo & von Rosen, 2005, p.61).

15



4 BRIEF OVERVIEW OF REGULARIZATION METHODS

There are some nice properties of invariant subspace which are helpful for
understanding PLS and linear models; see, for example, a discussion by von
Rosen (1994). As observed by Manne (1987), if the Gram-Schmidt orthogo-
nalization algorithm is working on the Krylov space, it will produce the same
orthogonal basis as given by the PLS algorithm.

The sample PLS predictor equals

— —

A - /\/ e — —
Y;,PLS = S;yGa( a S22Ga)” Go (X = X) + v (3.5)

with

_ 2 a—1
Ga - (Swya Swwswya Smmswya Ty Smm Swy)'

Several available results as the properties of PLS are based on the sample
version of the PLS predictor.

4 Brief overview of regularization methods

The discussions of regularization methods are mainly going on in two direc-
tions. One side is the comparison, in what situation, which method is ex-
pected to work better than others. A Monto Carlo study given by Frank and
Friedman (1993) compared RR, PCR, PLS with the classical statistical meth-
ods OLS and variable subsect selection (VSS). It was concluded that in high
collinearity situations, the performances of RR, PCR and PLS tend to be fairly
similar and are considerably better than OLS and VSS. The other side is the
linkage among the regularized estimators. Among others, Stone and Brooks
(1990) introduced continuum regression, where OLS, PCR and PLS all nat-
urally appear as special cases, corresponding to different maximum criteria:
correlation, variance, covariance (Sundberg, 1999). Furthermore, the linkage
between continuum regression and ridge regression was shown by Sundberg
(1993). In this section, we will summarize some regularization methods based
on numerical approaches. The aim is to expose a parallel system in order to
understand the regularization methods from a different angle.

4.1 Numerical approaches

The term regularized emanates form the method of regularization in approxi-
mation theory literature (Brown, 1993). Therefore it is worth looking upon all
the methods from using numerical approaches. In my opinion, the motivations
of the methods are quite clear if the aim is to solve a linear system.

The basic solution for a linear system is found by minimizing

ly —X'BlI3, (4.1)

over a proper subset RP. If X is collinear and ill-conditioned, the straightfor-
ward solution for (£1I)) becomes very sensitive. Then one may put constraints
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4 BRIEF OVERVIEW OF REGULARIZATION METHODS

on the solution, which is a type of regularization. Roughly speaking, regular-
ization is a technique for transforming a poorly conditioned problem into a
stable one (Golub and Van Loan, 1996).

Ridge regression is the solution obtained by minimizing

ly = X813 + AlIBI3-

Since X is ill-conditioned, the solution ||3]|2 becomes quite large, which can

be considered as a reason of bad performance. Therefore, ridge regression

includes \||3||2 as a penalty term, which restricts the scale of the solution.
Another possible way to constrain the parameters is to solve

min_ |y — X85 ~ min |y — X'V~ (4.2)
V'B=y Y
where V is a matrix with orthogonal columns. V'@ can be considered as
transforming the solution 8 onto a lower dimensional space.
PCA can be obtained by (£2) using truncated singular value decomposi-
tion (truncated SVD). SVD states that any matrix A,y can be factorized

as
A =UDV/,

where D = (D,,,0), D, = diag(v/A1, VA2, -, V), VA are the singular
values, r = rank(A), U and V are orthogonal. Truncated SVD use the
largest k singular values in Dy to approximate A as

A= UkaVL,

with U = (U, U ), where U} is a px (p—k) matrix such that U is orthogonal
and similarly V = (V, V). So to solve a linear system

min Xy — XX'8]3
needs to be solved, we begin with use truncated SVD so that XX’ = U, D, Uj,.

The Uy, is used as a transformation matrix such as U}, 3 = . Therefore, the
linear system can be reformulated as

min | Xy — UyDy U}, Up|l3

= min|[UXy - DiLiv[3+ Y (u/Xy),
Y

i=k+1
with the solution
u:1Xy//\1
o | WP gy oy Xy,
w, Xy /Ay -
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4 BRIEF OVERVIEW OF REGULARIZATION METHODS

where 8 mathematically equals the PCR, solution.

PLS and Lanczos bidiagonalization (LBD) are mathematically equivalent
(Eldén, 2003). The LBD procedure generates a series of matrices Ry =
(re, - re), Qu = (a1, ,qx) and

a7
Qo Y2
Zk: '.' '.' s
Ak—1  Vk—1
Vi

which satisfy X'Ry = QrZg. Further, Qi and Ry have orthogonal columns
which span Krylov structured spaces.

C(Qk) = C(XX/, (XX/)(XY)ﬂ T (XXI)k_l(Xy))a

((Ry) = ((X'X, (X'X)(X'Xy), -+, (X'X)"H(X'Xy)).

So, if we want to compute the solution for (€I, LBD provides a natural
transformation matrix Ry such that R} 3 = ~. Then the solution v can be
obtained by solving

min|ly — X'Riv|3 = min [ly - QiZiI3 (4.3)
= min|Qky - Zivlls + 1QLyll3, (4.4)

So that R
Y=7Z;'Quy, B=RiZ;'Quy. (4.5)

It can be shown that above ,@3 is mathematically equivalent to the sample
version PLS predictor.

4.2 Shrinkage property

Based on the estimators derived from numerical approaches, it is convenient
to explore the shrinkage property of the regularized estimators. Frank and
Friedman (1993) defined the “shrinkage factor” concept to compare the shrink-
age behavior of different methods. The general proposed form of estimators
is
B=> f\)aju;,
j=1

where &; = %u}Xy, Z;Zl(%uju;) = XX/, r is the rank of X and f(}\;)
are called shrinkage factors. For MLE, f(\;) = 1. If f();) < 1, it will lead to

a reduction on the variance of ﬁ, although it may introduce bias as well. It is
hoped that an increase in bias is small compared to the decrease in variance,
so that the shrinkage is beneficial. Under ridge regression, the shrinkage factor
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5 SUMMARY OF PAPERS

f(A;) = Xj/(Aj + A) is always smaller than 1. For the principal component
regression, f(A;) = 1 if the jth components is included. Otherwise, f(A;) = 0.

The shrinkage property for PLS is peculiar (Butler & Denham, 2000).
f(A;) is not always smaller than 1. The smallest eigencomponent can always
be shrunk. f(A1) > 1, if the number of components in PLS is odd, and
f(A\;) < 1, if the number of components is even. Bjérkstrom (2010) showed
that the peculiar pattern of alternating shrinkage and inflation is not unique
for PLS. For a review of shrinkage property of PLS, we refer to Krimer (2007).

5 Summary of papers

5.1 Paperl

In the article, the population PLS predictor is linked to a linear model includ-
ing a Krylov design matrix and a two step estimation procedure. The model

in Paper I is
X u Y w
~ N o, / , 5.1
(3)=we((0)(5 2)) e

where the parameters are defined in the same way as in model 2]).

A two step procedure is proposed to predict y from x, especially when
the columns of x are collinear. The motivation of the two step approach is
explained below. The problem of collinearity usually occurs when there is a
large number of explanatory variables. Some of them jointly mirror the same
latent effect and then also influence the response variable, i.e. the explanatory
variables x are governed by a latent effect and some random effect. So in the
first step, the information of the x variable is summarized by a linear model
such as

x=Af+e¢, (5.2)

where A is the design matrix, 8 is the unknown vector and € ~ N,(0,X).
The second step is the prediction step, where y is determined by a conditional
estimator § = wf]_l(x — ) + Ly

If we use A = XG,, where G, is as defined in Section 3, as the design
matrix and use x — pu, instead of x in (5.2)), then the two step model gives an
identical predictor as the population PLS in (34). This observation provides
us a natural choice of design matrix for x.

Under a semi-population version of the PLS algorithm, it is assumed that
w and p, are known but ¥ and p,, are unknown. Moreover, suppose that we
have n pairs (y;,x;) of independent observations. As before we are interested
in the prediction of y given data x and this is carried out as

/\ ~—1 R R —
U=w'S (X0~ fy) + ty, By = AB,
where the estimators are obtained from the model

X = ApB31, +E, (5.3)



5 SUMMARY OF PAPERS

with X: pxn, A: pxgq, 8: ¢x1,1]: 1xn (avectorof n1s), E ~ N, ,(0,3,1,),
A =3G,, G, being the Krylov matrix used previously, and ¥: p X p p.d.
Further, 8 and ¥ are unknown. The main result of Paper I is now restated.

Theorem 5.1. Let the model be given by (23) and suppose that w in A is
known, where A = G, = (Zw, X?w, ..., X?w), and S = X(I-1,1/n" 1 X'
Then, if n > p, the mazimum likelihood estimators of % and AB are given by

—

AB=A(A'STTA)TA'SIX1,n7 Y,

-1 1 1
A= (=Sw, 5S%w, -+, —S"W),
n n n

s = l{S—l—(I—A(A'S_lA)_A'S_l)Xln1;171_1X'(I—S_lA(A'S_lA)_lA’)}.
n

5.2 Paper I1

We continue to use the same notations as in the summary of Paper I. At first,
based on the two step approach, we present a new motivation of PLS. In the
first step, we start with x— p,, which should be proportional to the covariance
w. Thus we suppose that the following model holds.

X—p, =wy+e=3N"twy+te, (5.4)

where € ~ N, (0,%). The product X! is used because we would like to
cancel £7! in the conditional predictor, which is causing the bad performance
when estimating 3 with near-collinear data. The next step is crucial. Based
on the Caley-Hamilton theorem, E_l‘ can be presented in polynomial form
ie. 271 = - Y & Z;;lcizl—l, for some constants ¢; and a < p.
Thus
a
X — [, %ZEzwﬁi—i—e: YXG.,8+¢€

i=1
where 3 = (8;) is an unknown parameter vector and §; = ¢;y. Then the two
step estimation approach also leads to the predictor ¥, prs. Hence the PLS
algorithm can partly be viewed as performing approximation of X!,

As the second main result, we extend the two step approach to handle
grouped data. The model in (B1) of Paper I needs to be extended as follows.
Let y be a k—dimensional random vector and X = (x1,Xa, - ,X;) be a
(px k)—dimensional random matrix, jointly normally distributed with E[X] =

Hze = (p’zlv:u’zQa"' Hu’zk)a E[y/] = Hyc = (:uyla,qua"' aﬂyk) and D[X] =
I, ® 3, O[X,y] =I; ®w, ie.

(§>~N<p+1).,k(( Z;)(f ;‘; ),Ik). (5.5)

Correspondingly, the first model in our approach is given by

X = ABC + E, (5.6)
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5 SUMMARY OF PAPERS

where X: pxn, A =3G,: pxq, B: ¢ xk, C: kxn, kis the number of
groups, E ~ N, ,(0,3,1,,), and 3: p x p is p.d.. The matrices B and 3 are
unknown and should be estimated. Then our key result is formulated in the
next theorem.

Theorem 5.2. Let the model be given by (2.6) and suppose that w in A is
known, where A = £G, = (Zw,X%*w,...,2%) and S = X(I — P.)X/,
where P, = C'(CC’)~C. Then, if n > p, the mazimum likelihood estimators
of 3 and AB are given by

AB = A(A’'S"'A)"A’s"xcC/(cC),
A= (lSw, %SQw, e iS“w),
n n na
3= l{s +(I—-A(A'S™TA)"A'S H)XP. X'
n
x(I—S™TA(A’'STTA)"A")}.

Proposition 5.1. Assume w and p,, to be known and the given observations
X follow the model in [5.0). The prediction of y is

~—1 —
¥ =S (X -@,C)+ 4, f,=AB. (5.7)

The third main content in Paper II is the comparison among several meth-
ods including our two step approach. We suppose to have n observations from
a single group all following the same distribution. The sample version of the
least squares predictor y,, the PLS predictor ¥, prs and the two step pre-
dictor y, 75 are

VL =84S (X =X) +¥/, (5.8)

A - /\/ e — /\/ — —
Y;,PLS = S;yGa( a S22Ga)” G (X = X) + ¥ (5.9)
¥ rs =, 5 (X - ABC) 4. (5.10)

One relation among the predictors for least squares, the PLS algorithm pre-
sented in Section 3 and the two step approach is formulated in next theorem.

Theorem 5.3. Let §1,, Yo, prs and ¥o,1s be given by (5.8), (5.3) and (210),
respectively, and the mean square error (MSE) of any predictor in a calibration

set is defined as E(y —¥y)'(). Then,

E(y —¥a,rs)' () > E(y —¥ars) () > E(y —y1)'(). (5.11)

The MSE of the two step approach is always smaller than that of PLS.
For the comparison of the new observation prediction, a simulation study is
included. The simulation results indicate that the two step model is better,
due to its smaller prediction error and the performance of PLS and TS is not
influenced much if we have a collinear structure in X.
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6 DISCUSSION

5.3 Paper III

In Paper III, we compare of the prediction methods on a real data set. The
methods included are the maximum likelihood predictor, stepwise regression,
ridge regression, lasso regression, partial least square regression and the two
step model approach (TS) discussed in Paper II. Although we hoped to investi-
gate the data structure, but at the present stage, we only present comparisons
of statistical methods.

The data consists of two experiments and is divided into two sets. One is
the training set which is used to fit the model. The other is the test set used
to test the performance of the model. The concentrations of lactate, ethanol
and 2,3 butanediol are the response variables. The absorbance values at 153
Pin-numbers which are transformations of wavelengths are the explanatory
variables. The purpose is to find a linear relation between the concentrations
of the compounds and the absorbance values at Pin-numbers.

The data structure is complicated and is still not fully understood. The
predictors are collinear. Their mean values in the two experiment are close,
the variances are different but follow a similar pattern. The mean value of the
response from the two experiments according to several tests and the variance
of the response values are not homogenous.

The above mentioned prediction methods are all applied to the three re-
sponse variables separately. It is concluded that: the shrinkage methods,
ridge regression and lasso regression performed well for the test set; T'S and
maximum likelihood predictor provided the best fit for the training set, but
overfitting often happened when predicting a new observation; PLS was “in-
termediate”, by fitting the training set better than ridge regression and lasso
regression, and predicting the test set better than TS and maximum likeli-
hood estimator; When a small number of explanatory variables dominate the
influence on the response, stepwise regression may be preferable because the
final model is relatively easy to interpret.

6 Discussion

6.1 Contributions

There are mainly two contribution of the thesis. At first, PLS has been for-
mulated as a linear model, which, among others, can be extended to include
group effect (Paper II). Usually, PLS is presented as an algorithm, it is pop-
ular and works well in many applications. However, it does not mean that
PLS is the solution to all complicated situations where classical statistical
methods fail to work. Instead, several authors (Butler & Denham, 2000; El-
dén, 2004) suggest that PLS should be used with care. To put PLS and other
regularization methods into statistical model’s framework is one possible path
to understand and develop prediction methods. In comparison with algorith-
mic methods, additional assumptions are required. This is definitely not a
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6 DISCUSSION

drawback for the approach for applying classical statistical models. Instead
it gives a possibility to perform classical model validation.

The other main contribution is the derivation of explicit maximum likeli-
hood estimators. It is a nice mathematical result. In our first step, a Krylov
structured matrix is used as the design matrix, which itself is a function of
the unknown variance parameter 3. It is not obvious that there is an explicit
solution. Two important inequalities are used to find an upper bound of the
likelihood function which then also yield the estimators.

6.2 Future work

As mentioned earlier, after putting PLS into the field of linear models, there
are many things to explore. An important one is to define new stopping
rules. Nowadays cross-validation is a common way to decide how many fac-
tors should be included. However, it is difficult to study the properties of
parameters selected by cross-validation. In our two step model approach,
a Krylov structured matrix is used as the design matrix in the model for
explanatory variables. If PLS stops, the Krylov space turns out to be an
invariant space, with the dimension less than or equal to the original space.
Can we define a condition for having an appropriate model which is based on
the Krylov space? Can we use some test, for example, a likelihood ratio test,
to compare models with different dimensions? These questions are interesting
both from academic and practical point of view.

The two step model approach is not yet been fully complete. One crucial
assumption in the estimation procedure finding MLE is that the covariance
between x and y is known. Although, using moment estimators one can
always make the method applicable, it is of interest to find a likelihood based
estimator.

In the analysis of spectral data, an interesting phenomenon was noticed.
The concentrations of the compound, the response, in the two experiments
were different in their mean and variance. When comparing the absorbance
values of the Pin-numbers, the explanatory variables, the means of the val-
ues at Pin-numbers of the two experiments, were almost the same in several
regions. In the same regions, the variances between the experiments differed
but they followed the same pattern. So it is natural to ask which of the means
or the variances of the predictors play the most essential role in predicting
the response.
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