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Clinical Perspectives on Equine Back Kinematics.                        
A biomechanical analysis of the equine back at walk and trot. 

Abstract 

Back pain and dysfunction are important reasons for impaired performance in sport 
horses. Earlier studies have developed a clinical tool, the infrared-based automated 
gait analysis system, to objectively evaluate the function of the equine back. The aim 
of this thesis was to test its ability to differentiate horses with back pain from 
clinically sound horses. Additional aims were to evaluate the effect of local 
anaesthesia and weighted boots, respectively, on the movement of the back in 
asymptomatic horses. In all studies, the kinematics of the back were recorded at 240 
Hz at walk and trot on a treadmill. Range of movement and symmetry of 
movement were derived from angular movement pattern data in Backkin®. 

In Study I, the back kinematics of twelve horses with clinical back pain and 
dysfunction were measured and compared to the same parameters in 33 clinically 
sound horses in regular training and competition. 

In Study II, a crossing-over study, ten clinically sound horses were measured 
before and after injections with mepivacaine and injections with sodium chloride 
around the interspinous spaces between T16 and L2.  

In Study III, a lactic acid solution was injected into the left m. longissimus dorsi of 
eight clinically sound horses. The movement of the back was measured before the 
injections and on five occasions during the week subsequent to the injections.  

In Study IV, a crossing-over study, eight clinically sound horses in regular 
training and competition were measured with and without weighted boots on the 
forelimbs and hind limbs, respectively. 

In conclusion, the results show that the infrared-based automated gait analysis 
technique can differentiate horses with back dysfunction from horses with normal 
back movements, and that this technique can be used to evaluate a specific, localized 
change in movement in a patient with clinical back pain. It has also been shown that 
local anaesthesia affects the back movement in asymptomatic horses, and that 
weighted boots on the limbs affect the movement of the back in clinically sound 
horses. Suggestions for future items to be studied are bilateral back pain and long-
term follow-ups of back patients after treatment. 

Keywords: equine, horse, back movement, back pain, kinematic evaluation, 
biomechanics, local anaesthesia, induced back pain, lactic acid, weighted boots  
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Abbreviations 

AMP Angular movement pattern 
cm Centimetre 
D Dressage 
Dri. Driving 
E Three-day-eventing 
ER Exertional rhabdomyolysis 
G General purpose 
Hz Hertz 
i.m. Intramuscular 
Int. I Intermediare I 
J Show jumping 
kg Kilogram 
L Lumbar 
LF Left front 
LH Left hind 
m Metre  
m. Muscle 
M. Muscle 
mg Milligram 
RF Right front 
RH Right hind 
ROM Range of movement 
S Sacral 
s.d. Standard deviance 
SI Sacroiliac 
Stb. Standardbred trotter 
T Thoracic 
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T/L-
junction 

Thoracic/Lumbar-junction 

Wbl.  Warmblood 
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Introduction  

Diagnosing back problems in horses 

 
More than a hundred years ago, Lupton stated that back pain is one of the 
most common, yet least understood problems in sport horses (Jeffcott, 
1999). Today, back problems are still a common reason for impaired 
performance in riding horses (Jeffcott, 1980a; Jeffcott, 1999), and diagnosing 
a patient with dysfunction of the back is usually time-consuming. The 
findings may also be difficult to interpret (Jeffcott, 1979; Martin and Klide, 
1999; Erichsen et al., 2003a), especially since decreased performance is often 
the only symptom. 

Different injuries may affect back movement patterns in various ways, and 
movement tests are valuable and may give crucial information. Back pain 
and dysfunction may appear as symptoms such as tail swishing, resentment 
at mounting, poor jumping, or failure to bend or yield to aids, but 
commonly it is beyond the perceptive ability of the human eye to detect a 
change in back movement. While the eye can detect changes in movement 
only above a certain amplitude, automated gait analysis systems have proven 
to be a valuable and adequate tool to document even minor movements and 
changes therein in both humans and animals (Faber et al. 2001c; Licka et al., 
2001; van Weeren, 2005; van Heel et al., 2006a; Gradner et al., 2007; 
Meyer et al., 2007; van Dillen et al., 2007). Present-day technology will 
thus help uncover changes in movement due to pain or dysfunction earlier 
than would be possible by a traditional clinical observation alone. 
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Background  

History 

 
Back problems over the centuries 
 
Primary and secondary back problems have most likely caused pain and 
abnormal movements in working horses for as long as they have been used 
by man, but only recently has the equine back become more closely 
investigated. Compared to colic or laminitis for example, the symptoms 
generally develop more gradually in horses with back problems. This, 
together with the initially less affected work capacity and insufficient 
diagnostic techniques, may explain why it took so long before we started 
evaluate the equine back more closely. 

The literature suggests that the type of work performed by the horse has 
influenced the prevalence of different kinds of back problems. Riders on 
the steppes in Asia (about 600 B.C. – 200 A.D.) rode long distances at 
gallop (Furugren, 1990). Over time, this made the horses incredibly 
enduring. The training process of the young horses started very early and 
their backs became robust and rigid. This did not affect the riders 
particularly, since they rode at walk and gallop only. 

The horse has gradually become bigger over the centuries. It is assumed 
that the average height at the withers was approximately 135 cm during the 
Bronze Age, while a regular horse was about 150 cm during the Roman 
Era (Furugren, 1990). The habit to ride the horse had then become much 
more common and the horse was used frequently at war. Heavy suits of 
armour used to protect the horses could sometimes weigh more than 50 kg. 
This additional weight required strong and enduring backs. As a 
consequence, the biggest horses became very valuable. In the Nordic 
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countries and on the British islands, horses fulfilling these criteria were 
scarce for a long time, and both Gustav Wasa and Henry VIII forbade the 
export of high horses. 

A common problem in heavy draft horses was the so-called “strain of the 
back” or “sway’d back” (Jeffcott, 1999). Typically this meant strained back 
muscles, but could also include an injured spinal cord and discolouring of 
the skeleton. In more serious cases the horses had both an aching back and a 
lame limb. Such horses were called “chinked”. It has also been reported that 
ankylosis of the back vertebrae were common among older and hard 
working horses. They were then called ”broken-backed” or ”chinked in 
the chine”, which is believed to have been osteoarthritis. 

In older literature you can find descriptions of how horses with strained 
ligaments showed pain and reluctance on mounting and then kicked and 
reared (Jeffcott, 1999). Presumably this was what we nowadays call “cold 
back”. These symptoms were also thought to arise as a consequence of a 
certain temper. 

Injuries caused by saddles and harnesses have a long-known history 
(Biengräber, 1916). This type of tack has been used for a long time and the 
pressure injuries are easy to relate to the anamnesis. A special form called 
“saddle galls” was more common among horses ridden by ladies (Jeffcott, 
1999), probably because of the side-saddles. 

Spinal fractures were in the beginning of the 20th century thought to 
make up for 4-5 % of the equine fractures (Vennerholm, 1914). The 
anamnesis and prognosis differed depending on whether the fracture was 
located to the dorsal spinal processes or to the vertebral bodies. Horses 
working in the forests were sometimes hit by falling trees, which in 
unfortunate cases resulted in fractured dorsal spinal processes, transverse 
processes or pelvic wings. 

Field surgery is nowadays generally performed on horses standing, but for 
a long time the casting harness was a commonly used aid, for example at 
castration and this procedure resulted frequently in  fractures of the spinal 
column (Vennerholm, 1914). Attempts to escape or heavy movements in 
the recovery during the excitation phase, often result in great strain on the 
spinal vertebrae. When the horse flexes its back to the maximum, and at the 
same time contracts the m. longissimus dorsi and the psoas muscles, the 
vertebral bodies in the thoracic and lumbar back are compressed. The forces 
may be considerable and enough to result in a comminute fracture. 
Fractures in the vertebral column were seen mainly at the thoracolumbar 
junction (Vennerholm, 1914), one of the regions that modern research has 
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shown to be exposed to both injuries and movement alterations (Denoix, 
1999; Jeffcott, 1999; Denoix, 2004; Wennerstrand et al., 2004). 

The conformation of the horse has been a debated topic since long. Peter 
Hernquist wrote that the thoracic back is more enduring if it is short and 
not too wide (Hernquist, 1793). A long back was considered to give a more 
comfortable gait and a beautiful appearance of the neck, but at the same 
time a weaker back. The same was believed for the lumbar back; “a short 
lumbar back gives strength, but also a less comfortable gait. A horse with a 
long lumbar region is easier to ride, but a disadvantage is lost muscular and 
ligament strength.” The English Youatt had a similar opinion and he said 
that a short back indicates strength and endurance, while a long back 
favours a high speed (Jeffcott, 1999).     

Occasionally horses develop abnormally. When we nowadays notice that 
a young horse grows in an abnormal way, we try to stop or prevent this by 
altering the feeding, trimming of the hooves and the exercise, and we 
consider the facts very carefully before recommending more radical 
methods. Few decades ago, extreme methods were used more regularly 
(Vennerholm, 1914). When, for instance, a horse showed signs of kyfosis, 
the owner was advised to place the manger high, break the horse early, and 
use the reins to raise its head. 

In relation to their anatomical and physiological capability, the 
performance horses of today are trained and competed at high levels, and 
minor differences in movement pattern, strength and speed may make the 
difference between winning and loosing.  

 

Anatomy of the back 

 
The vertebral column 

 
The equine vertebral column consists of 7 cervical (C), 18 thoracic (T), 6 
(occasionally 5) lumbar (L), 5 sacral (S), and approximately 20 caudal 
vertebrae. Different types of movement arise between two adjacent 
vertebrae. The type and degree of movement depend on the appearance of 
the vertebrae, which varies along the vertebral column. Each vertebra 
consists of a body, from which several processes arise. There are one dorsal, 
two transverse and four articular processes. 
 The vertebral column has several functions. Its rigidity constitutes an 
excellent protection to the spinal cord and associated nerve roots, and it also 
supports the horse’s whole body. The division of the vertebral column into 
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several small segments, gives the neck and back flexibility, and allows for 
greater movements than would else have been possible.  

The vertebrae are linked to each other by long and short ligaments, which 
together with muscles and tendons stabilize the vertebral column. The size, 
shape and angles of the muscles and vertebral processes vary along the spine, 
since each vertebra is uniquely designed to best serve the functional 
purposes.  

The dorsal spinous processes are long and caudally inclined in the cranial 
thoracic region. Under the saddle they become more vertical and are 
reduced in length. The last thoracic vertebrae and those in the lumbar back, 
have even shorter spinous processes, pointing slightly cranially.  

The transverse processes are wide and large in the cervical region, and 
provide good attachments for muscles and ligaments. In the thoracic region, 
costotransverse articulations are formed by the ribs and articular surfaces on 
the short transverse processes of the thoracic vertebrae. The transverse 
processes in the lumbar back are long, wide and flat, and the important 
sublumbar muscles are attached to the ventral side of these processes. The 
transverse processes of L4 and L5 are sometimes united by intertransverse 
synovial joints, equally to the synovial articulations between the transverse 
processes of L5 and L6, and L6 and S1 (Stecher, 1962; Townsend and 
Leach, 1984). Finally, the sacrum, has fused transverse processes, forming 
the cranial wings and the lateral crests.  

Four articular processes arise from the vertebral arch, two pointing 
cranially and two caudally. The caudal articular processes form, together 
with the two cranial processes on the following vertebra, bilateral synovial 
joints. These additional articulations interlock adjacent vertebrae, forming 
one long vertebral chain, the vertebral column. The joint capsule is 
reinforced dorsally by the m. multifidi, and ventrally by the ligamentum 
flavum. 

The joints between adjacent vertebral bodies are fibrocartilaginous 
articulations with an intervertebral disc inserted between the bodies. The 
disc has an outer annulus fibrosus with concentrical layers of fibers, and an 
inner, gelatinous nucleus pulposus, which in horses is rudimentary in the 
thoracic region compared to in the cervical and lumbar regions. Thicker 
discs provide more mobility. Consequently, the disc in the lumbosacral 
joint is thicker than the average thoracic or lumbar disc to meet the 
functional requirements at the lumbosacral junction. The overall relative 
thickness of the discs is less in horses than in humans or dogs (Dyce et al., 
1987). 
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The vertebral column is articulated to the pelvis by the sacroiliac (SI) 
joints. The cranial wings on the sacrum are positioned against the medial 
side of the wings on the ilium. Strong ligaments are needed to support the 
sacroiliac joint and the caudal vertebral column. There are three bilateral 
sets of ligaments, connecting the ilium to the sacrum; the dorsal sacroiliac 
ligaments, the interosseous sacroiliac ligaments and the ventral sacroiliac 
ligaments. To further enhance the stability, there are also ligaments running 
between the sciatic bone and the sacrum, the sacrosciatic ligaments.  
 
Spinal ligaments 
 
Three longitudinal ligaments run along the vertebral column providing 
stability. The nuchal ligament starts at the external occipital protuberance of 
the cranium. As it runs over the first and second cervical vertebrae, and 
when it passes over the top of the third thoracic vertebra, the ligament is 
protected by three bursae. At the withers, the nuchal ligament is continued 
by the less elastic supraspinous ligament, which ends on the sacrum. This 
ligament joins the summits of the thoracic and lumbar spinous processes. 
The dorsal longitudinal ligament runs dorsally on the vertebral bodies, at 
the bottom of the vertebral canal, and the ventral longitudinal ligament runs 
ventrally on the vertebral bodies. These ligaments give stability to the back, 
and reinforce the discs (Haussler, 1999). 
 Between adjacent vertebrae, short ligaments provide stability to each back 
segment. The interspinous ligaments connect adjacent dorsal spinous 
processes, while intertransverse ligaments connect adjoining lumbar 
vertebrae. The spaces between contiguous vertebral lamina of the respective 
vertebra are bridged by ligamenta flava.  
 
Muscles affecting the movement of the back 
 
Spinal muscles are grouped as epaxial and hypaxial muscles (Budras and 
Sack, 1994; Haussler, 1999). The muscles dorsal to the transverse processes, 
the epaxial muscles, extend the back, while the hypaxial muscles ventral to 
the transverse processes flex the spine. Unilateral activity of the spinal 
muscles bends the back laterally.  
 Generally, the deep muscles are shorter than the superficial. The m. 
multifidi is a series of short units close to the spine, each spanning only two 
to four vertebrae. These short muscles have a high percentage of type 1 
muscle fibers and therefore a static function (Haussler, 1999). If they are 
injured, it will affect stabilization, proprioception and posture negatively.  
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The spinalis, longissimus and iliocostalis muscles fill the space between the 
spinous and transverse processes. M. spinalis is located closest to the spinous 
processes (Budras and Sack, 1994). It is more prominent at the withers, 
where it can be injured by a narrow saddle, and decreases in diameter 
further caudally in the thoracic region.  

M. longissimus is the greatest and longest of the spinal muscles. It has its 
origin on the spinous processes of the sacrum, lumbar and thoracic 
vertebrae, on the transverse processes of the thoracic and cervical vertebrae 
and on the wings of the ilium bones, and it inserts on the transverse 
processes, the tubercles of the ribs, on the atlas and on the temporal bone 
(Budras and Sack, 1994). It is a muscle of great functional importance as it 
stabilizes and extends the vertebral column, and also elevates and bends the 
head and neck laterally. 

M. iliocostalis runs along the lateral border of the transverse processes of 
the lumbar vertebrae to the ribs. It also bridges the transverse processes of 
the caudal cervical region. As the other epaxial muscles, it extends the back 
or bend it laterally (Budras and Sack, 1994). It also stabilizes the lumbar 
region and the ribs. The larger epaxial back muscles have a high percentage 
of type II muscle fibers, and they are all important for dynamic functions; 
movement, posture and flexibility (Haussler, 1999). 

The shoulder and pelvis girdle muscles have attachments on both the axial 
skeleton and the proximal limb segments. Their general function depends 
on whether the vertebral column or the limbs are held stationary in relation 
to the other (Haussler, 1999). When the limb is loaded, muscle activity 
results in movement of the back, and inversely; when the back is held 
stabilized, these muscles induce movements of the proximal limbs. M. 
brachiocephalicus, m. trapezius, m. rhomboideus and m. latissimus dorsi suspend 
the forelimbs from the neck and trunk, while the pectoral muscles and m. 
serratus ventralis suspend the neck and trunk from the forelimbs. 

The muscles in the pelvic girdle affect the pro- and retraction of the hind 
limbs, and the flexion and extension of the hip joint. M. sartorius, m. 
iliopsoas, m. tensor fascia lata and m. rectus femoris are located cranially to the 
hip joint (Budras and Sack, 1994). They protract the hind limb, and flex the 
hip joint. Their antagonists, m. biceps femoris, m. semitendinosus and m. 
semimembranosus, retract the hind limb and extend the hip joint. The great 
m. gluteus medius assists in transmitting the force forward from the hind limb 
to the spine, and is connected to the longissimus muscle by an aponeurosis. 
This muscle assists in extending the hip joint, and also abducts the limb, 
while adduction of the limb is induced by m. gracilis, m. adductor and m. 
pectineus. 
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The sublumbar psoas muscles and the iliacus muscle are antagonists to the 
epaxial muscles. M. psoas minor has its origin on the ventral side of the 
bodies of the last few thoracic and first few lumbar vertebrae, and m. psoas 
major starts in the same region of the back, ventrally on the transverse 
processes (Budras and Sack, 1994). M. psoas minor inserts on the psoas minor 
tubercle of ilium, and flexes pelvis on the loins, while m. psoas major fuses 
with m. iliacus as it passes ilium, and inserts on the lesser trochanter of 
femur. The iliopsoas muscle protracts the hind limb and flexes the hip joint. 
When the limb is loaded, this muscle stabilizes the back. 

The abdominal muscles also influence the movement of the back, and m. 
rectus abdominis in particular is of great importance in gaits with a suspension 
phase, where it helps prevent overextension of the lumbar back (Denoix 
and Audigié, 2001). M. rectus abdominis runs from the lateral surface of the 
cartilages of the last true ribs to the prepubic tendon and head of femur 
(Budras and Sack, 1994). The rectus abdominis muscle limits the extension 
of the thoracolumbar back and flexes the lumbar region and the lumbosacral 
joint when active. 

 

The movement of the back 

 
To understand how the equine back moves, and how the movements 
change when the back is influenced by external factors, we study the 
biomechanics, which gives information on the equilibrium and movements 
of different body segments. While the clinical examination is always 
fundamental and the initial step when diagnosing back problems, the 
biomechanics give additional, objective information about the movements, 
and alterations of the movements, that are too small for the human eye to 
detect. 
 
Biomechanical research 
 
Biomechanical work has been performed for centuries. Galileo (1564-1642) 
studied solids and William Harvey (1578-1657) fluids, and later the Italian 
mathematician, physicist, astronomer and physiologist Giovanni Borelli 
made several studies on the subject (Vogel, 2007). Borelli wrote the 
physiological work De Motu Animalium, in which he explains the 
movements of living beings (Borelli, 1680). 
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 In the 19th century the Irish scientist Samuel Haughton wrote the 
extensive book On Some Elementary Principles in Animal Mechanics, which 
have been appreciated still during the 20th century (Hildebrand, 1962). 
 The Dutch scientist E.J. Slijper, described in 1946 a biomechanical model 
on the relationship between the vertebral column and the ventral part of the 
trunk (Slijper, 1946). This “bow and string” theory is generally accepted 
even today, and the concept illustrates an interaction between the 
thoracolumbar spine, the pelvis, the limbs, the sternum and the abdominal 
muscles. The spinal column is held under tension like a bow by the 
abdominal wall (the string). Activity in the epaxial muscles stretch the back 
and relax the bow, while contraction of the hypaxial sublumbar muscles and 
the abdominal muscles flex the back and tense the bow. The weight of the 
viscera also promotes stretching of the back (relaxing of the bow), as do 
protraction of the forelimbs and retraction of the hind limbs. 

Since an animal has to move in slow motion for the human eye to 
observe its true movement pattern, the advent of photography was a great 
breakthrough in biomechanical research. In the late 1800s, Eadweard 
Muybridge, “The Father of Motion Picture” was challenged to set a bet 
between Leland Stanford, railroad baron and future founder of the Stanford 
University, and a friend of his over whether or not all four feet of a 
galloping horse are ever simultaneously suspended off the ground. To solve 
this challenge, Muybridge invented a method to take continous 
photographs in a series. In 1887 he published an extensive series of studies 
on human and animal locomotion (Muybridge, 1887). 

When photography was combined with computer techniques during the 
second half of the 20th century, it increased the possibilities to obtain much 
more detailed information on the movements of humans and animals. 
Biomechanical researchers started use high-speed cinematography to record 
the movements of horses (Fredricsson et al., 1980), which improved quality 
and efficiency. When the horses later were put on a treadmill, with cameras 
placed around the treadmill (Jeffcott et al., 1982; Fredricson et al., 1983), it 
gave the possibility to study the equine movements with less interference 
from external factors.  

Several in vitro studies have been made to better understand the 
movements of the equine back. Jeffcott and Dalin (1980b) studied post 
mortem specimens from Thoroughbreds to evaluate the natural rigidity of 
the thoracolumbar spine. Denoix investigated the amount of vertebral 
thoracolumbar flexion and extension movements (Denoix, 1999), and 
Townsend et al. (1983) studied the different types of movement of the 
equine spine; flexion-extension, lateral bending and axial rotation. 
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Data is today often captured at a sampling rate of 240 Hz, which should 
be compared to Muybridge’s 4 pictures per second. Studies evaluating the 
equine movements have, during the last decade, given us a lot of new 
information on the movements of the back in normal, asymptomatic horses 
(Faber et al., 2000; Denoix and Audigié, 2001; Faber et al., 2001c; Licka et 
al. 2001; Johnston et al., 2004). The influence of conformation and 
equipment has also been studied (Johnston et al., 2002; de Cocq et al., 2004; 
Licka et al., 2004b), as has the interaction between movements of the limbs 
and the back (Faber et al., 2001b; Álvarez et al., 2007a), and recently, a few 
studies have evaluated the influence of back pain on the movements of the 
back (Faber et al., 2003; Wennerstrand et al., 2004; Gómez Álvarez et al., 
2008b). 
 
The movements of the equine back 
 
Several types of movement contribute to the versatile overall movement of 
the equine back. Dorsoventral flexion and extension, lateral bending 
(sometimes referred to as lateroflexion) and axial rotation are the three 
major movements (Figure 1). The vertebrae are also displaced vertically and 
horizontally when the horse moves. 
 
� Flexion and extension movements occur around a transverse axis. 

Flexion of the vertebral column bends the back ventrally, making it 
dorsally convex, while extension creates a concave dorsal aspect. 
Flexion is biomechanically defined as a change in movement that creates 
a more positive angular movement pattern (AMP), while extension 
makes the AMP more negative. 

� Movement of the vertebral column around a vertical axis is called 
lateral bending. Lateral bending to the left results in a more positive 
AMP, and bending to the right in a more negative one. 

� When the vertebrae rotate around the longitudinal axis, it is referred to 
as axial rotation. If the dorsal spinous process rotates to the left, that is, 
counter-clockwise, seen from behind, it will generate a more negative 
AMP, while clockwise rotation of the spine makes the AMP more 
positive. 
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Figure 1. The three main movement types of the spine; flexion-extension, 
lateral bending, and axial rotation. Shown is also the lateral displacement 
movement, the lateral excursion. 
 
� Dorsoventral translation displaces a vertebra vertically, up- or 

downwards, compared to its original position. This occurs when the 
particular region of the back is flexed or extended. 

� Lateral excursion is associated with the lateral bending and axial 
rotation movements and is defined as the displacement to the left or 
right of the median plane. 

 
The horse is designed to move a great deal, and in its natural habitat, as well 
as in most equestrian disciplines, rapid movements and changes in 
movement are included. The equine back has to provide flexibility and 
stability, both of great importance. The range of movement (ROM) 
between adjacent back vertebrae is generally small, but the whole vertebral 
column also acts as a complex functional unit with great cumulative 
flexibility .  

The back is the connection between the force generating hindquarters 
and the neck and forelimbs, and stability of the back is required to 
adequately transmit the propulsive forces forward. The sacroiliac and 
intertransverse joints contribute in this process, and the latter joints also 
provide resistance to lateral bending and axial rotation movements 
(Haussler, 1999). 
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The movement of the back at trot 
 
The suspension phase at trot requires an increased muscle activity to 
maintain the stability of the back, compared to at walk (Robert et al., 1998).  

The trunk starts its downward rotation at ground contact of the left (or 
right) hind limb (Denoix and Audigié, 2001). The vertebral column extends 
during stance as a consequence of visceral mass inertia, and the mm. recti 
abdominis are active at landing to limit this passive extension of the back     
(Audigié et al., 1999). The hip joint starts to extend at the middle part of 
stance, followed by extension of the stifle and hock joints. At the end of the 
stance phase of the left hind limb, the vertebral column is convex to the 
left.  

The lateral bending of the trunk is limited by the m. longissimus lumborum 
during symmetrical gaits (Denoix and Audigié, 2001).  During the later part 
of stance, the trunk starts its upward rotation, which continues until the end 
of the swing phase. The m. longissimus dorsi is active at the end of each 
diagonal  stance phase and early swing phase (Denoix and Audigié, 2001; 
Licka et al., 2004a). First it induces an extension of the lumbosacral spine 
and facilitates the propulsion, followed by a stabilization of the thoracic and 
lumbar spine undergoing flexion (Denoix, 1999). Another muscle 
contributing before and after lift off is the M. multifidous lumborum (Denoix 
and Audigié, 2001).  

At the propulsion, the stifle and hock joints are extended, as is also the 
lumbosacral spine. The moment after propulsion, the stifle and hock start to 
flex, which moves the limb slightly further caudally. The hip joint is 
extended to its maximum and the limb is maximally retracted. The back, 
which at the end of the stance phase is ventrally translated, starts to rise 
when the horse has just left the ground.  

During the first suspension phase, the stance phase of the right hind limb 
and the second suspension phase, the left hind limb is protracted and the hip 
joint becomes more and more flexed. The vertebral column flexes during 
the suspension phases as a result of hind limb protraction. 
 
A comparison of the movement of the back at walk and trot 
 
The inter-limb coordination and footfall sequence differ between gaits, and 
consequently the movement of the back and the activity of its muscles 
differs too (Denoix and Audigié, 2001, Licka et al., 2004a; Licka et al., 
2008). While the walk is a four beat, symmetric, right or left bipedal gait 
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with no period of suspension, the trot is a two beat, symmetric, diagonal 
gait with two periods of suspension per stride cycle (Figures 2a and b).  
 
 
 

   

   

                                  

           

0 %                    50 %                                100 % 

Figure 2a Walk 
 
 

 

                                 

0 %                    50 %                                100 % 

Figure 2b Trot 
Figures 2a and b show the stance phase for each limb at walk and trot. 
LH=left hind; LF=left front; RH=right hind; RF=right front 
 
� Since there is no suspension phase at walk, the antagonistic help of the 

abdominal muscles is not required, and m. rectus abdominis shows no 
electromyographic activity at this gait (Robert et al., 1998).  

� At walk, the back is extended at ground contact when the stride cycle 
starts, while it is very flexed at this moment at trot.  

� At walk, the flexion and extension movements start in the caudal 
back. The movement then proceeds in cranial direction with a time 
shift, that is, flexion (and extension) of the caudal lumbar back 
proceeds flexion (and extension) of the thoracolumbar junction, 
which in turn proceeds flexion (and extension) of the thoracic back 
(Figure 3a). At trot, there is not a corresponding time shift, but 
instead a more simultaneous flexion/extension of the back. When the 
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RH 
RF 

LH 
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RH 
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gravitation force acts on the visceral mass at ground contact of the 
respective hind limb, it causes a passive extension of the back. The 
vertebrae at the withers are then rotated in the opposite direction 
compared to the vertebrae in the caudal lumbar back, which is 
illustrated in the graphs below (Figure 3b). 
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Figure 3b  

 
Figures 3a and b show the flexion and extension movement of six back 
vertebrae during a stride cycle at walk and trot. 
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The amplitudes of the equine back movements generally become higher at 
walk than at trot (Figures 4a-c). The muscle activity is normally great at 
trot, while the movements, especially the lateral bending, are more passive 
at walk (Robert et al., 1998). 
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Figure 4a 

 
Figure 4a shows the mean ROMs ±s.d. for the flexion-extension 
movement of six back vertebrae in clinically sound horses at walk and trot. 
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Walk and Trot Lateral Bending
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Figure 4b 

 
Figure 4b shows the mean ROMs ± s.d. for the lateral bending movement 
of six back vertebrae in clinically sound horses at walk and trot 
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Walk and Trot Axial Rotation
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Figure 4c 

 
Figure 4c shows the mean ROM ± s.d. for the axial rotation movement of 
the pelvis in clinically sound horses at walk and trot. 
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Back problems 

 
When diagnosing a horse with a suspected back problem, the first challenge 
is to decide whether there is a back problem or not. If the clinical 
examination indicates a painful back, the next step is to evaluate which part 
of the back is injured, and finally, if possible, to find the underlying cause of 
the pain. 

A horse with an apparent or suspected back problem can have poorly 
fitting tack, temperamental issues or simply lack the ability its rider desires, 
or it can have an actual back problem. A horse may react on palpation 
simply because of sensitive, thin skin, or it can be guarding because of 
earlier injure or for temperamental reasons.  

Back disorders can be primary or secondary. Secondary back pain can 
arise e.g. as a consequence of lameness. Various factors like breed, gender, 
age, size or discipline for which the horse is used, affect the likelihood of 
developing a certain disorder. For instance, horses with short backs are 
more prone to vertebral lesions, while horses with long backs are more 
inclined to demonstrate muscular and ligamentous injuries (Jeffcott, 1999). 

The clinical examination should include palpation of the neck, back and 
limbs. Palpation of the neck and back is preferably repeated a few times to 
see changes in reaction. However, it is important to remember that the 
palpation gives information on the pain on palpation, but it does not give 
information on the function, which is best evaluated by movement tests. 
 
Kissing spines and injuries of the supraspinal ligament 
 
Kissing spines, or overriding dorsal spinous processes, is commonly seen 
both in horses with back problems, and in fully functioning asymptomatic 
riding horses (Jeffcott, 1979; Townsend et al., 1986; Erichsen et al., 2004). 
The condition is most commonly seen in the caudal thoracic back (T10-
T18), but can also occur in the lumbar back (Townsend et al., 1986; 
Denoix, 1998; Jeffcott, 1999; Wennerstrand et al., 2004). The prevalence 
has been reported to be higher in show-jumping performance horses, but 
also in high level dressage horses, compared to other horses (Jeffcott, 
1980a). This is likely due to the great flexion-extension movements and 
demanding spinal maneuvers. 
 Overriding dorsal spinous processes can be graded into four categories 
(Jeffcott, 1980a). Grade 1 includes narrow interspinal spaces with mild 
sclerosis of the cortical margins. In grade 2, there is no interspinal space left. 
The sclerosis of the cortical borders is classified as moderate in patients with 
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grade 2, and severe in grade 3 or 4 cases. In grade 3 there is also a transverse 
thickening and/or radiolucent areas. In the most severe type of kissing 
spines, the spinous processes have a changed shape and osteolytic areas may 
occur. 
 The functional perspective is important since a horse may have kissing 
spines without accompanying pain. Infiltration of a local anaesthetic 
between and around affected spinous processes may indicate if the 
overriding processes causes pain in a back patient or not (Stashak, 1987). 
Kissing spines is most consistently accompanied by pain if there is a 
simultaneous and relatively recent insertion desmopathy in the supraspinal 
ligament at the affected site (Denoix, 2004). When injured, the supraspinal 
ligament becomes thicker and painful. The initial symptoms are pain, heat 
and swelling, while an increased, palpable thickening is suggestive of a 
chronic injury. Commonly, the lesions arise over a spinous process, which 
results in a changed surface of the top of the process. The increased 
thickness of the supraspinal ligament induces a local deformation of the 
dorsal profile of the thoracolumbar region. The deformation, bump, is 
typically seen over the caudal part of the involved spinous processes.  
 
Degenerative changes related to the articular processes 
 
An abnormal appearance of one or more articular processes is not 
uncommon (Haussler et al., 1997; Haussler et al., 1999). If the change in 
morphology is accompanied by clinical symptoms depends on the degree 
and location of the change, and also the type of work requested from the 
horse. It is clear though, that in humans as well as in horses, the articular, 
i.e. zygapophyseal, joint complex has been reported as a common site for 
the origin of back pain (Bogduk, 1995; Denoix, 1998). In humans, painful 
cervical articular joints accounts for more than 50% of chronic neck pain 
after whiplash, and zygapophyseal joint pain is one of the three most 
common causes of chronic low back pain (Bogduk, 1995). Pathological 
changes at the zygapophyseal articulations at the thoracolumbar junction 
and in the lumbar spine, have also been reported to be one of the most 
common spinal disorders associated with back pain in horses (Denoix, 
1998). If the pathological changes cause pain, the lateral bending movement 
pattern may appear different from the normal condition, and bending 
towards the affected side generates discomfort or even pain (Marks, 1999).  
 Several types of abnormal findings associated with osteoarthritis have been 
observed at the articular joint complexes (Haussler et al., 1997). Asymmetry 
was found in at least one site in 83% of the horses in this study. Another 
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study on the same horses showed degenerative changes in the 
thoracolumbar articular processes in 97 % of the individuals (Haussler, 
1999). The pathological findings in this study were observed mainly at the 
thoracolumbar junction and in the lumbar region.  

Abnormalities in the articular joint complexes have been found not only 
in young racehorses (Haussler et al., 1997; Haussler et al., 1999), but also in 
adult riding horses (Denoix, 2004). Abnormal findings in the articular joint 
complexes include both radiolucent areas in the subchondral bone and 
subchondral sclerosis, and periarticular proliferations can be seen dorsally 
and/or ventrally. Other pathological findings associated with the articular 
processes are ankylosis and fractures.  
 
Congenital and degenerative changes associated with the vertebral bodies and 
transverse processes 
 
Developmental differences are common in the equine spine. In a study on 
the functional anatomy in 120 horses, sacralisation of the last lumbar 
vertebra (L6) was found in every third horse (Stubbs et al., 2006). 
Lumbosacral variations were generally common in ridden horses, but absent 
in Standardbreds. Another study on spinal specimens from a group of 
racehorses, reported that almost 40 % of the individuals did not have the 
expected 6 lumbar and 5 sacral vertebrae (Haussler et al., 1997). It seems 
however, that if the number of vertebrae in one region is decreased or 
increased, it is frequently compensated for by an additional or excluded 
vertebra in an adjacent region. Occasionally, a transitional vertebra may 
occur. This may be of clinical importance, but thoracolumbar and 
lumbosacral vertebrae are known to occur sporadically as a random finding.  
 Spondylosis is a degenerative and initially subclinical condition of the 
vertebral joints, with remodelling and osteophyte formation on the 
vertebral bodies (Haussler, 1999). If an osteophyte grows near an 
intervertebral foramen, it may compress a nerve root with subsequent pain, 
and sometimes the osteophytes become large enough to span the 
intervertebral disc. Abnormal articular loading induces bony proliferations 
that bridge the intervertebral space laterally. Prolonged osteophyte 
formation and inflammation can eventually lead to complete ankylosis. 
Ankylosis can be painless, but the ankylosed vertebral bodies are susceptible 
to fracture due to the reduced load absorbing capacity of the joint. 
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Sacroiliac dysfunction 
 
Stability, not movement, is the essence of the sacroiliac (SI) joint. The joint 
capsule is close-fitting and the narrow joint space is often bridged by fibrous 
bands. Dorsal and ventral sets of sacroiliac ligaments further reinforce the 
joint. Stresses that result in movement, may induce subluxation (Stashak, 
1987). Displacement and instability may cause chronic pain, and until 
sufficient scar tissue has formed and the injury is healed, the horse may have 
reflex muscle spasms. 
 Recent research has indicated two clinical forms of SI dysfunction (Dyson 
and Murray, 2003). The typical patient is either a performance horse that is 
still in work, but with pain and impaired performance, or a horse with 
rather poor performance and obvious gait changes. The latter has also been 
reported to have muscle asymmetries and chronic pathological joint 
changes. 

Affected horses can be reluctant to jump because of the pain it causes, and 
they are commonly stiff and painful in the hindquarters (Stashak, 1987). 
The joint instability and muscle spasm induce inflammation, which can lead 
to lameness. Gait changes include prolonged stance duration and delayed 
subprotraction of the hind limb. As a result, the front hoofs impact the 
ground before the hind hoofs, and the stride is shortened. The tuber sacrale 
on the affected side has been reported to often become higher than the 
unaffected one, and since jumping hunter horses are among those suffering 
from this problem, the visible tuber sacrale is referred to as a hunter’s bump 
(Marks, 1999). However, in a recent study on 74 horses with clinical signs 
suggestive of SI joint pain, the tubera sacrale appeared grossly symmetrical 
in 95% of the horses (Dyson and Murray, 2003).  
 Instability of the SI joints may lead to remodelling of the ventromedial 
joint surfaces (Jeffcott et al., 1985). Pathological changes may be subclinical, 
but are reported to be a common finding in performance horses (Haussler, 
1999). Proliferative changes as osteophytes and lipping of the articular 
surfaces are frequent findings in these cases. Reportedly, the findings tend to 
be bilateral and symmetrical in horses without a history of back pain 
(Haussler, 1999), while asymmetrical findings have been considered a 
criterion of abnormality (Tucker et al., 1998; Erichsen et al., 2003b; Goff et 
al., 2007).  
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Fractured spinal processes or vertebral bodies 
 
When the spinous processes fracture, it usually happens at the withers (T2-
T9) (Haussler, 1999). For instance, the horse falls over backwards when 
rearing or takes a nasty fall during steeplechase. If the fractures are not too 
complicated, they usually heel conservatively with a fibrous union in a few 
months (Marks, 1999). 
 Physical trauma, like a severe fall, may result in fractured bodies of 
thoracic or lumbar vertebrae. More unusual etiologies as lightning strike or 
electric shock have also been reported to cause vertebral body compression 
fractures (Haussler, 1999). Fractures or subluxation of the back vertebrae 
can result in acute, strong pain with rapid atrophy of the epaxial muscles. 
Decreased performance capacity is common, and there may be neurological 
abnormalities. 

In a study on horses that died at racetracks because of injuries unrelated to 
the back, a large proportion (61%) showed evidence of stress fractures in the 
caudal thoracic back, lumbosacral spinal region and pelvis (Haussler and 
Stover, 1998). Fifty percent of these horses had vertebral lamina stress 
fractures that were positively associated with the severity of kissing spines 
and degenerative changes of the articular processes. The articular processes 
are tightly interlocking at the thoracolumbar junction and in the lumbar 
region, and great axial rotation is thought to increase the risk of fracture 
(Townsend et al., 1986). The design of the articular processes may also 
contribute to vertebral lamina stress fractures. 
 
Pelvic fractures 
 
Pelvic fractures are not uncommon (Stashak, 1987). Normally they result 
from a fall. Ridden horses may fracture their iliac wings as a consequence of 
a jumping accident at high speed, and young horses sometimes slip and split 
when they play. Slippery and icy ground in the winter increases the risk and 
may lead to a fractured acetabulum or pubic bone. 
 The symptoms are dependent on the location of the fracture, but hind 
limb lameness is common. Muscle atrophy may exist if the fracture is old. If 
the iliac bone is fractured with overriding fragments, the horse is in severe 
pain and often refuses to place the hoof on the ground. If the acetabulum is 
afflicted, the cranial phase of the stride is short and loading of the limb is 
painful. If the pubic symphysis is involved, the horse may appear bilaterally 
lame.  
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 Pelvic fractures also occur as stress fractures. This type of fracture is 
known to arise spontaneously during performance. A group of 
Thoroughbred race horses were diagnosed with iliac wing fractures 
(Pilsworth et al., 1994). None of these patients had a history of inciting 
trauma. 
 
Spinal muscle pathology 
 
Although a decreased performance capacity is often the only initial clinical 
symptom of a back problem, painful back muscles are common in horses 
with back dysfunction. The horse may not be painful on palpation in the 
early stages, but may only show the effects of the discomfort or pain, like tail 
swishing, resentment at mounting, poor jumping or failure to bend or yield 
to aids. A change in muscle compliance may precede actual pain on 
palpation of the back.  
 Insufficient training, exercise exceeding the capacity of the horse, pre-
existing lameness and inadequate warm-up are factors that may predispose a 
horse to muscle strains, and local muscle strain is a common injury in 
performance horses. Depending on the discipline, different muscles are 
more or less prone to be affected. Riding horses as dressage horses or show-
jumpers more frequently injure their back muscles, while the hamstring 
muscles are more exposed in Quarter horses. 
 Back muscle myositis can be caused by a number of factors. One of the 
most common may be pain due to another source of pain. Spinal osseous or 
ligamentous pain commonly lead to injured back muscles. Nerve root 
compression, abscesses and articular process joint disease may also induce 
secondary muscle pain.  
 Many horses with back problems have coexisting lameness. In a study on 
805 horses with orthopaedic problems, the prevalence of coexisting back 
problems and lameness was evaluated (Landman et al., 2004). The horses, 
(70% dressage horses, 20% show jumpers and the remaining trotters), were 
examined for back problems and lameness irrespective of their initial 
problem. It was found that the prevalence of back problems was 32% 
among the lame horses, while the prevalence of lameness in the group with 
back problems was 74 %. As mentioned earlier, muscle spasm may arise as a 
consequence of SI dysfunction (Stashak, 1987). Spasms in the longissimus 
muscle may then result in altered hind limb gait. 
 Fatigue of the abdominal and iliopsoas muscles results in an extension of 
the back. If the horse is kept in work, the epaxial muscles may become sore 
(Marks, 1999). If the horse is exercised at high speed on a slippery surface, 



 35 

like wet mud or dry wood chips, the slipping at propulsion may result in 
painful back muscles. Strained longissimus dorsi muscles can also be caused 
by splinted abdominal muscles due to iliopsoas myositis. 
 Traumatic back muscle injuries are rather common in the horse. Mild 
injuries occur frequently, while severe traumatic injuries are less common. 
Mild skin lesions as well as deep muscle damage may be caused by the rider 
or the saddle, while severe acute soreness in the back muscles often is 
associated with falling.  

Exertional rhabdomyolysis (ER) with muscle pain and cramping 
associated with exercise, is a well-known syndrome (Quiroz-Rothe, et al., 
2002; McCue et al., 2006; Singer et al., 2008). The acute form of ER 
usually occurs shortly after the onset of exercise, and the symptoms include 
sweating, pain, increased heart and respiratory rate, lameness and 
myoglobinuria due to liberation of myoglobin from damaged muscle tissue. 
Palpation of the lumbar and gluteal muscles often reveals firm, painful and 
sometimes warm muscles, and traumatic myopathy is one differential 
diagnoses to acute ER. 
 If the horse has not previously shown signs of ER, and suddenly gets sore, 
cramping and stiff muscles associated with exercise, and the blood values for 
CK and ASAT increase, the condition is called sporadic tying-up. Some 
horses, predominantly fillies, get recurrent rhabdomyolysis when exercising 
(Valberg, 2003). Muscle biopsies have helped identify two types of chronic 
rhabdomyolysis (Quiroz-Rothe, et al., 2002), polysaccharide storage 
myopathy (PSSM) in Warmbloods, Quarter horse-related breeds and heavy 
draft horses, and recurrent exertional rhabdomyolysis in Thoroughbreds and 
possibly also Standardbreds and Arabians.  
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Aims of the investigations 

The general aim of the present series of investigations was to evaluate a 
present-day gait analysis system as an objective and quantitative diagnostic 
tool in evaluating the back movement of horses. The main hypothesis of 
the studies was that the movement of the back in horses with clinical back 
pain differs from that of asymptomatic horses, and that a modern gait 
analysis system can differentiate horses with back dysfunction from 
asymptomatic, fully functioning horses. 
 
The specific aims were: 
 
  
� to establish a kinematic database on sport horses with clinical back pain 

and dysfunction 
 
� to compare the back kinematics of horses with established back 

problems to the same parameters in asymptomatic, fully functioning 
horses at walk and trot 

 
� to evaluate the effect of local anaesthesia on the back movements in 

horses without clinical signs of back pain 
 
� to evaluate if induction of back pain in a well-defined site may cause 

consistent changes in back movement 
 
� to evaluate the usefulness of a modern gait analysis system as a clinical 

tool to help diagnose equine back dysfunction 
 
� to evaluate the effect of weighted boots on the back movement 
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Material and Methods 

Horses (Studies I, II, III and IV) 

 
A summary of the data of the horses used in each study is shown in Table 1. 
Studies II-IV were randomised crossing-over studies, and all horses in these 
studies participated in both the control group and the test group. Study I 
included two different groups, one with asymptomatic, fully functioning 
horses, and one with horses with back problems.  

The horses in Studies I (control group), III and IV were in regular 
training for dressage, show jumping or eventing, and by their owners/riders 
considered sound and fully functioning. Two of the horses in Study III 
were also sometimes used for driving. 

The horses with back problems in Study I had been in regular training 
prior to the onset of their back problems, while the horses in Study III were 
used for teaching purposes at the University Clinic in Uppsala and were 
neither regularly ridden nor driven. 

Thirty-four horses were included in the control group in Study I, but one 
of them had to be excluded before the measurements due to being unsafe 
on the treadmill. Due to technical reasons, four additional horses had to be 
excluded from the measurements at walk. Finally, the control group in 
Study I included 29 horses at walk and 33 horses at trot.  
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Wbl. = Warmblood; Stb. = Standardbred trotter; Int. I = Intermediare I; D 
= dressage; J = show jumping; E = three-day-eventing; G = General 
Purpose; Dri. = Driving 
Table 1 shows an overview of the horses included in the respective studies.  
 
All horses in Study IV were also participants of the control group in Study 
I. The owners of the control horses in Study I were either contacted 
personally or responded to an invitation in a Swedish equestrian journal. 
The back patients in Study I either came to the University Clinic in 
Uppsala directly, or were referred to the clinic by private practitioners or 
other clinics. The horses in Study II, all Standardbred trotters except for 
one, were owned by the University Clinic in Uppsala, and the horses in 
Study III belonged to the Utrecht University. 
 

Study I II III IV 

Group Control 
Back 
problem 

Control 
/ Test 

Control 
/ Test 

Control / 
Test 

Total 
Number of 
Horses 

Walk: 29 
Trot: 33 

12 10 8 8 

Number of 
Stallions 

3 - - - 1 

Number of 
Mares 

15 4 7 8 3 

Number of 
Geldings 

15 8 3 - 4 

Age (years) 5-15 5-13 3-14 7-12 6-14 
Weight 
(kg) 

495-685 503-665 426-541 528-604 530-640 

Height-at-
the-
Withers 
(cm) 

158-174 157-174 - 156-167 158-176 

Breed Wbl. Wbl. 
Stb. / 
Wbl. 

Dutch 
Wbl. 

Wbl. 

Disciplin 
and Level 

D (n = 14) 
/J (n = 16) 
/E (n = 3) 

D (n = 5) 
/J (n = 4) 
/E (n = 1) 
/G (n = 2) 

Trotting 
/ All-
round 
Riding 

D / J / 
Dri. 

D (n = 4) 
/J (n = 3) 
/G (n = 1) 
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Clinical examination (Studies I, II, III and IV) 

 
Prior to the measurements, all horses underwent a clinical examination in 
order to assure that they fulfilled the physical inclusion criteria. All horses 
were examined at a squared stance and in hand at walk and trot on a hard 
surface. They were also lunged at walk and trot on both reins. No 
abnormalities of clinical importance were found in the conformation or on 
palpation of the extremities. If lameness was detected in a horse in any of 
the above mentioned examinations, the horse was excluded.  

 In all studies, the back was thoroughly examined, including visual 
inspection of the muscle symmetry of the back, and palpation of the dorsal 
spinal processes of thoracic and lumbar vertebrae and the sacrum, as well as 
the back muscles. In Studies II, III and IV, and in the control group in 
Study I, a horse was excluded if an abnormality of clinical importance was 
found in the conformation or on palpation of the back, while the horses in 
the back patient group in Study I had to demonstrate clinical back pain on 
palpation and impaired performance to be allowed to participate (Ranner et 
al., 2002).  
 

Experimental set-up and data collection (Studies I, II, III and IV) 

 
Training 
 
Before the first recording, all horses were trained 4 times on the treadmill at 
walk and trot (Fredricson et al., 1983; Buchner et al., 1994). A coir mat 
treadmill was used in studies I and IV, while the horses were recorded on a 
SÄTO1 treadmill in Study II, and on a Mustang 2200©2 treadmill in Study 
III. When a horse was trained in a new study for the first time, it was 
sedated with a low dose (0.03 mg/kg) of Plegicil®3 vet. 
(acepromazinmaleate) i.m.  
 
Measurements 
 
Spherical, reflective markers, 19 mm in diameter, were glued onto the skin 
over the dorsal spinous processes of thoracic, lumbar and sacral vertebrae: 
T6, T10, T13, T17, L1, L3, L5 and S3. Markers were also placed on both 
left and right tubera coxae and proximally on the lateral part of the hoof 
wall of one hind hoof. The landmarks were identified by palpation in the 
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square standing horse. The positions of the markers (spatial resolution less 
than 1.5 mm) were captured by six infrared cameras (ProReflex®)4, which 
were positioned around the treadmill in a way that each marker was always 
covered by at least two cameras. 

 Measurements were made relative to a right-handed orthogonal 
laboratory coordinate system with the positive y-axis oriented in the line of 
progression, the positive z-axis oriented upward and the x-axis oriented 
perpendicular to the direction of the y- and z-axes. Calibration was done 
dynamically, using a calibration frame which defined the orientation of the 
laboratory coordinate system and a wand with an exactly defined length. 
Data was captured at a sampling rate of 240 Hz for 5 seconds at a squared 
stance, and for 10 seconds when the horses were walking and trotting at a 
steady state. 
 
Calculation of back kinematics 

The reconstruction of the 3-dimensional position of each marker is based 
on a direct linear algorithm (QTrack™)5. The raw x-, y- and z-coordinates 
were exported into MatLab®6 and Backkin®7 programme packages for 
further data processing. The beginning of each stride cycle was defined as 
the moment of first ground contact of the left hind hoof. 

The x-, y-, and z-coordinates were used in accordance to Faber et al. 
(1999) to calculate the flexion-extension and lateral bending movements of 
the back, and the axial rotation of the pelvis. The instantaneous orientation 
of a vertebra, say V2, was calculated from the position of the vertebrae 
located cranial (V1) and caudal (V3) to it. The orientation of V2 was then 
assumed to be represented by the orientation of the line connecting V1 and 
V3. 

Coordinates were extracted for the walk and trot from approximately 8 
and 10 representative strides, respectively. Angular motion patterns (AMPs) 
were calculated for each vertebral angle and the pelvis. In order to allow 
averaging of the AMPs over strides, each stride was normalised to 101 data 
points. 

Stride length and duration were calculated from the marker on the left 
hind hoof. The total ROM and the mean movement were derived from 
the AMPs. 
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Back patients versus asymptomatic controls 
 
The back movements at walk and trot were compared between two groups 
of horses in Study I. Prior to the measurements, the clinical cases of back 
pain and the horses in the control group underwent a clinical examination 
to establish they matched the inclusion criteria. The control horses should 
be clinically sound and not treated for a back related problem for at least 
one year prior to the examination The horses in the clinical case group, on 
the other hand, had to show clear signs of clinical back pain and impaired 
performance to be included in the study. They should demonstrate pain on 
palpation and the reaction should not decrease at repeated palpation. The 
horses with back pain commonly reacted to palpation by adverse reactions 
like tail swishing, unruliness or rapid caudal movement of the ears. 

A riding test was included in the clinical examination for all horses in 
both groups. The test was performed by the horses’ regular riders and 
designed individually for each horse to match its normal level of 
performance. The control horses were found to perform satisfactorily 
during the riding test, while the horses with back problem expressed various 
degrees of resentment, like refuse to bend or yield to aids, protest when 
jumping, or even not let their rider mount at all. 

All back patients had chronic back pain. Their respective history of back 
pain went back 6 months or more for all horses except 2, which had had 
their problems for about 2 months. According to the inclusion criteria, the 
horses should not have been treated for their back problem, or any other 
back related problem, for at least three months prior to the examination.  

Diagnostic aids such as radiological and scintigraphic examination, 
ultrasound and regional anesthesia were used to diagnose the horses. In cases 
when recovery was not considered possible for a horse and it had to be 
euthanatized, an autopsy was carried out to verify the diagnosis.  
 
Local anaesthesia 
 
The horses in Study II were measured twice on two occasions at walk and 
trot on the treadmill. After the first measurement, the back of each horse 
was injected with either a local anaesthetic solution or sodium chloride. 
The dorsal spinous processes of T16, T17, T18, L1 and L2 were identified 
by palpation. Ten ml of mepivacaine hydrochloride (Carbocain 20 mg/ml)8 
or physiologic sodium chloride were injected on each side of the 
interspinous space between T16-17, T17-18, T18-L1 and L1-2, 
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approximately 20 mm lateral to the midline, with the needle pointing 
towards the midline. For further details see paper II. 

A second measurement was done 25 minutes after injections. Seven days 
later, the movement of the back was measured a third time. The horses 
which had earlier been injected with local anaesthetics were now injected 
with sodium chloride and vice versa. A last measurement was carried out 25 
minutes after the second injection.  
 
Induced reversible back pain 
 
In the horses in Study III, the back was clipped and aseptically prepared. 
The dorsal spinous processes of T13, T14, T15, T16, T17, T18 and L1 
were identified by palpation. To induce back pain, two ml of 85 % lactic 
acid solution was injected into the left m. longissimus dorsi at the height of 
the caudal edges of T13, T14, T15, T16, T17 and T18, approximately 10 
cm left of the midline using a 40 mm long, 21 gauge needle. Total volume 
injected was thus 12 ml. 

Back kinematics were measured at walk and trot on the treadmill prior to 
and at 1 hour, 1 day, 2 days, 3 days and 7 days after the pain induction. The 
back was examined after each session on the treadmill except for the first. 
The tips of the spinal processes and the muscles were palpated and any 
swellings were noted. Back pain was considered present if the horse showed 
signs of pain/discomfort on palpation of the back. 
 
Weighted limbs  
 
In the weighted limbs study, the horses were accustomed to walk and trot 
with weighted boots on the fore- and hind limbs, respectively. The boots 
were made of terylene and artificial leather and had vertical pockets 
intended for weights and in the study each boot weighed 700 g. They were 
fastened around the metacarpal or metatarsal regions and did not seem to 
distract the horses once they had acclimated to them. 

 The horses were measured three times at both walk and trot; once 
without boots, once with the weighted boots on the forelimbs and once 
with the boots on the hind limbs. The measurement sequence of the three 
conditions was chosen randomly for every horse and separately within each 
gait. 
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Statistical analysis 

 
The results are presented as means ± s.d. Students’ t-test and one-way 
ANOVA were used to analyse possible kinematic differences in Study I. In 
Studies II and IV, Wilcoxon matched pairs test was used to analyse possible 
differences. The data in Study III were tested for normality of distribution. 
The variations in the back vertebral angles throughout the stride were 
normally distributed and further analysed with Students’ t-test, in which 
each individual percentage of the stride post injection was compared to the 
corresponding percentage prior to the injections. Wilcoxon matched pairs 
test was used to analyse possible ROM and AMP differences. The 
minimum level of statistical significance was set to p<0.05. The statistical 
analyses were performed with an acknowledged statistical software package 
(Statistica©)9. 
 

Ethical Review 

 
Studies I, II and IV were approved by the local ethical committee for the 
Swedish National Board for Laboratory Animals and Study III was 
approved by the Animal Experimentation Committee of the Utrecht 
University, in compliance with the Dutch Act on Animal Experimentation. 
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Results 

Back patients versus asymptomatic controls 

 
The overall flexion-extension movement was significantly smaller in the 
patients at both walk and trot compared to the asymptomatic horses (Figure 
5a). The differences were seen in the caudal thoracic back at walk, and at 
the T/L-junction at trot.  

The lateral movements were different in the horses with back 
dysfunction only at walk (Figure 5b). The lateral bending ROM was 
significantly increased at T13, and numerically at T10 and T17, in the 
painful horses compared to the fully functioning horses. 

The rotation of the pelvis around the longitudinal axis of the spine 
showed a decrease in the horses with back pain at walk compared to the 
asymptomatic horses (Paper I).  

In addition to the changes in the ROMs, the horses with back pain had 
less symmetric movements of the back than the asymptomatic horses (Paper 
I). A significantly decreased symmetry was observed for the flexion-
extension at the T/L-junction, and for the lateral bending in the caudal 
lumbar back at walk. No symmetrical difference was observed in the 
symmetry of the back between the two groups at trot. 

 A shorter stride length was observed for the back patients compared to 
the control group at walk. The stride length was 1.74 ± 0.13 m for the 
horses with back dysfunction and 1.86 ± 0.09 m for the sound horses. At 
trot, there was no significant difference between the stride length for the 
patients (2.72 ± 0.24 m) and the controls (2.83 ± 0.13 m).  
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Figure 5a 

 
Figure 5a shows the total ROM for the flexion-extension movement of the 
back at walk and trot for the back patients as compared to the sound horses. 
* = Movement in back patient significantly different to movement in sound 
horse. 
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Figure 5b 

 
Figure 5b shows the total ROM for the lateral bending movement of the 
back at walk for the back patients as compared to the sound horses.  
* = Movement in back patient significantly different to movement in sound 
horse. 
 

Local anaesthesia 

 
Injections with local anaesthetics resulted in a greater movement of the back 
at walk, while the movement at trot was only affected by the injections to a 
minor degree. At walk, the flexion-extension as well as the lateral 
movements, bending and excursion, increased within half an hour after 
mepivacaine had been injected. The total ROM for flexion and extension 
became greater at all measured segments except T10 (Figure 6a). The lateral 
bending increased at the withers and in the lumbar back (Figure 6b), and 
the side-to-side movement of the back, the lateral excursion, showed a 
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statistically significant increase at all measured segments except one, where 
the increase was numerical only (Figure 6c). 

The ROM for flexion and extension decreased in one segment at trot 
after the local anaesthetic had been injected (Paper II). No other kinematic 
changes were observed at this gait subsequent to the injections of the 
anaesthetics, but there was an increased ROM for the lateral bending in the 
lumbar back after the horses had been injected with the sodium chloride 
(Paper II). The sodium chloride also led to an increased flexion-extension 
of the back at walk (Paper II). The changes were small, but similar to those 
seen after the administration of local anaesthetics. 

In addition to the above mentioned analyses, the movement of the back 
before the injections of mepivacaine was compared to the movement before 
the injections of sodium chloride. No differences were seen at the walk or 
trot, except for a smaller lateral bending at L5 and a corresponding lateral 
excursion at L3 and L5 at walk before the infiltration of mepivacaine. 
Changes in the stride parameters (stride length, stride velocity and 
protraction and retraction of the right hind limb) were not seen in either 
walk or trot. 
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Figure 6a shows the total ROM for the flexion-extension movement of the 
back at walk before and after local anaesthetic injections. * = Movement 
significantly different after injection with mepivacaine as compared to 
before. 
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Figure 6b 

 
Figure 6b shows the total ROM for the lateral bending movement of the 
back at walk before and after local anaesthetic injections. * = Movement 
significantly different after injection with mepivacaine as compared to 
before. 
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Figure 6c  

 
Figure 6c shows the total ROM for the lateral excursion movement of the 
back at walk before and after local anaesthetic injections. * = Movement 
significantly different after injection with mepivacaine as compared to 
before. 
 

Induced reversible back pain 

 
Back examinations 
 
The clinical findings during the week subsequent to the lactic acid 
injections are summarized in table 2. 
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1 hour post injection 
  Palpation 

M.longissimus dorsi Horse Spinal 
processes Left Right 

1 No 
remarks 

T15-L2 moderate pain  
L2-L6 mild pain 

No remarks 

2 No 
remarks 

T13-T16 mild pain  
T16-L4 moderate pain 

No remarks 

3 No 
remarks 

T15-T18 moderate pain No remarks 

4 No 
remarks 

Mild tension Mild tension 

5 No 
remarks 

Mild tension Mild tension 

6 No 
remarks 

T15-L3 moderate pain No remarks 

7 No 
remarks 

Moderate tension, but no pain Moderate tension, but no pain 

8 No 
remarks 

Mild tension No remarks 

1 day post injection 
  Palpation 

M.longissimus dorsi Horse Spinal 
processes Left Right 

1 No 
remarks 

T12-L5 tension  
T13-T15 mild pain 

T13-L3 mild tension 

2 No 
remarks 

T10-L4 tension  
T14-T18 mild pain 

T15-L5 mild tension 

3       

4       

5 No 
remarks 

T11-L4 tension  
T13-T18 mild pain 

T11-T17 mild tension 

6 No 
remarks 

T10-L3 tension  
T13-T18 mild pain 

T12-L3 tension 

7       

8       
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2 days post injection 
  Palpation 

M.longissimus dorsi Horse Spinal 
processes Left Right 

1 No 
remarks 

T10-L3 tension  
T13-T18 moderate pain 

T14-L4 mild tension 

2 T15-T16 + 
L/S-junct. 
mild pain 

T6-L4 tension  
T13-T18 mild-moderate pain 

T13-L4 mild-moderate tension 

3 No 
remarks 

T10-L1 mild pain No remarks 

4 No 
remarks 

T13-T18 mild pain No remarks 

5 No 
remarks 

T12-L3 tension  
T13-T17 mild pain 

No remarks 

6 T16-T18 
mild pain 

T10-L4 tension  
T13-T18 mild pain 

T14-L1 mild-moderate tension 

7 No 
remarks 

T10-L3 mild pain Withers mildly tensed,  
T13-L3 mod. tension 

8 No 
remarks 

T11-L4 mild pain No remarks 

3 days post injection 
  Palpation 

M.longissimus dorsi Horse Spinal 
processes Left Right 

1 No 
remarks 

T13-L5 tension  
T16-L2 moderate pain 

T10-L3 mild-moderate tension 

2 No 
remarks 

T13-L3 mild tension No remarks 

3 No 
remarks 

T13-T18 mild tension No remarks 

4 No 
remarks 

T13-T18 mild pain  
T18-L1 moderate pain  

No remarks 

5 No 
remarks 

T10-L3 mild-moderate 
tension 

No remarks 

6 No 
remarks 

T10-L5 tension  
T13-T15 mild pain            
L/S-joint mild pain  

T16-L1 mild tension,  
L/S-joint mild pain 

7 No 
remarks 

T10-L/S-joint tension  
T13-L2 mild pain 

T13-T18 mild-moderate 
tension 

8 No 
remarks 

T13-L1 mild tension  
L3 mild pain 

No remarks 
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7 days post injection 
  Palpation 

M.longissimus dorsi Horse Spinal 
processes Left Right 

1 No 
remarks 

T12-T14 moderate pain  
T12-L1 mild tension 

T12-T17 mild tension 

2 No 
remarks 

T14-L2 mild tension No remarks 

3 No 
remarks 

T15-L2 mildly stiff dermis No remarks 

4 No 
remarks 

T13-L3 mildly stiff dermis No remarks 

5 No 
remarks 

T14-T18 mild tension T14-T18 mild tension 

6 No 
remarks 

No remarks No remarks 

7 No 
remarks 

T13-L1 moderately stiff 
dermis 

T15-T18 mild tension 

8 No 
remarks 

No remarks No remarks 

 
Table 2 shows the results of the back examinations during the week 
subsequent to the injections. 
 
Back kinematics - Range of movement (ROM) 

 
As expected, the back kinematics altered after the lactic acid injections. The 
first changes were observed merely an hour subsequent to the injections, 
while others developed during the following days. Most changes gradually 
faded towards the end of the week, and at the last measurement, 7 days after 
the lactic acid was injected, only a few remained. 

The total ROM for the flexion-extension movement did not change 
significantly at walk, except for one segment on one occasion. At the trot 
on the other hand, the flexion-extension increased both in the thoracic and 
lumbar back during the week of the Study (Paper III). Several 
measurements demonstrated a statistically significant increase, mainly in the 
caudal thoracic back. 

A few changes were seen for the ROM of the LB movement during the 
week subsequent to the injections (Paper III). 

Similar changes in lateral excursion ROM were observed in the caudal 
thoracic back and in the lumbar back at both walk and trot (Figures 7a and 
b). The changes were most evident at walk, but at both gaits the general 
difference was a decreased ROM after the injections. During the following 
week, the ROMs gradually approached their pre-injection levels again. 
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Figure 7a  

 
Figure 7a shows the total ROM for the lateral excursion movement of the 
back at walk before and during the week subsequent to the lactic acid 
injections. * = Movement significantly different after injection with lactic 
acid as compared to before. 
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Figure 7b 

 
Figure 7b shows the total ROM for the lateral excursion movement of the 
back at trot before and during the week subsequent to the lactic acid 
injections. * = Movement significantly different after injection with lactic 
acid as compared to before. 

 
Back kinematics – The instantaneous vertebral angles throughout the stride cycle 
 
The movement pattern of the back changed for the flexion-extension and 
lateral bending movement of the back, and for the axial rotation movement 
of the pelvis, when the horses had been injected with lactic acid. 
Differences were observed at both walk and trot (Figures 8-10), and the 
mean angles of the back movement were also influenced. 
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Figure 8a  

 

Walk Flexion-Extension T13

-2
-1
0
1
2
3
4
5
6

1 10 19 28 37 46 55 64 73 82 91 100

Time in stride cycle (%)

A
ng

le
 (d

eg
re

es
) Pre

Post-0
Post-1
Post-2
Post-3
Post-7

 
Figure 8b  

 



 59 

Walk Flexion-Extension T17

-2

0

2

4

6

8

1 10 19 28 37 46 55 64 73 82 91 100

Time in stride cycle (%)

A
ng

le
 (d

eg
re

es
) Pre

Post-0
Post-1
Post-2
Post-3
Post-7

 
Figure 8c  
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Figure 8d  
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Figure 8e  
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Figure 8f  

 
Figures 8a-f show the flexion-extension movement of T10, T13 and T17 
during a stride cycle at walk and trot before the lactic acid injections and on 
five occasions during the week subsequent to the injections.  
Pre=before the injections; Post-0= 1 hour after the injections;  
Post-1= 1 day after the injections; Post-2= 2 days after the injections;  
Post-3= 3 days after the injections; Post-7= 7 days after the injections. 
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Figure 9a  
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Figure 9c  
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Figure 9d  
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Figure 9e  
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Figure 9f 
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Figure 9g  

 
Figures 9a-g show the lateral bending movement of T10, T13 and T17 and 
L5 during a stride cycle at walk and T10, T17 and L5 during a stride cycle 
at trot before the lactic acid injections and on two occasions during the 
week subsequent to the injections.  
Pre=before the injections; Post-2= 2 days after the injections;  
Post-7= 7 days after the injections. 
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Figure 10  

 
Figure 10 shows the axial rotation of the pelvis at trot before and one hour 
after the lactic acid injections. Pre=before the injections; Post-0= 1 hour 
after the injections. 
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Stride parameters 
 
The linear and temporal gait parameters did not change subsequent to the 
lactic acid injections. The stride length was 2.6±0.1 m at all measurements 
at trot, and 1.7±0.1 m at all measurements at walk, except for on the 
seventh day after the pain induction, when the stride length was 1.7±0.0 m. 
The stride duration was 0.7±0.0 s during the whole study at trot, and 
1.1±0.1 s at every measurement at walk, except for the seventh day after 
pain induction, when it was 1.1±0.0 s. 
 

Weighted limbs 

 
Essentially, when weighted boots were put on the forelimbs, they affected 
the movement of the thoracic back. When put on the hind limbs, they 
changed the movement of the lumbar back. The weighted hind limb boots 
increased the flexion-extension movement of the lumbar back at walk 
(Figure 11a), compared to when the horses did not wear boots. Further, the 
lateral bending ROM was decreased at the thoracolumbar junction at trot. 
Weighting the hind limbs did not affect the lateral bending ROM at walk, 
nor the ROM for flexion-extension at trot.  

Weighted boots on the forelimbs did not influence the ROM of the back 
at walk, while the lateral bending movement decreased significantly at the 
withers at trot (Figure 11b). The movement altered at the withers at trot 
when the horses wore the boots on the forelimbs. There was also an 
increase in the lateral movement at L3.  

The boots did not change the ROM for the axial rotation of the pelvis at 
walk or trot. At trot, the weighted hind limb boots decreased the 
protraction and retraction of the hind limb. The means and s.d. for the 
stride duration and stride velocity were calculated for the three conditions at 
the walk and trot. No significant difference was found for any of these 
parameters.  
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Figure 11a  

 
Figure 11a shows the total ROM for the flexion-extension movement at 
walk with and without weighted hind limb boots. * = Movement 
significantly different with hind limb boots as compared to without. 
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Figure 11b  

 
Figure 11b shows the total ROM for the lateral bending movement at trot 
with and without weighted forelimb boots. * = Movement significantly 
different with forelimb boots as compared to without. 
 

Additional results 

 
A clinical case 
 
A patient was presented to the biomechanical research group in Uppsala. 
Four months earlier, the horse, a 5-year-old Swedish Warmblood mare, had 
started light work after a longer period on pasture with her foal. The owner 
noted stiff movements when the horse was lunged and long-reined, and 
after 20 minutes with a rider, a small swelling was noted in the thoracic 
back. A clinical examination at that point showed asymmetrical back 
muscles, an underdeveloped right trapezius muscle and difficulties to bend 
the neck laterally. An ultrasound after riding revealed that the swelling 
under the saddle was a subcutaneous edema. During the following months, 
the horse was lunged, long-reined and ridden without a saddle. Improved 
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movements were observed, but a stiffness on lateral movements remained, 
as did a certain degree of muscle asymmetry in the cranial thoracic region. 
 When the horse came to the University Clinic in Uppsala she had no 
remarks on palpation of the limbs, movement in hand or on flexion tests. 
No appreciable muscle asymmetries were noted, but the mare showed mild 
pain on palpation of the dorsal spinous processes at the withers, mainly at 
T12-T14. She was not sore on palpation of the back muscles, but slightly 
tensed in the saddle region. No significant scintigraphic or radiological 
abnormalities of the cervical or thoracic spine were detected. 
 The horse was trained and measured on the treadmill according to the 
principles followed in studies I-IV. The kinematic analysis showed that she 
had a smaller ROM for flexion-extension at the withers (T10) at trot, 
compared to the control group in Study I (Figure 12). She had also a 
decreased symmetry of movement for the lateral bending (T10) and lateral 
excursion (T10 and T13) movements at trot. The abnormal movements 
were thus observed in the region where the horse had had muscle 
asymmetry and a repeated reaction to saddle pressure, while none of the 
other analyzed back segments showed any remark at all. 
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Figure 12 shows the ROM for the flexion-extension movement at T10. 
Mean ± s.d. are shown for the control group and the numerical value is 
shown for the patient. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 70 

 



 71 

General discussion 

The movement of the back in horses with back pain and 

dysfunction 

 
The results of Studies I and III confirm the two general hypotheses of this 
thesis; that the movement of the back in horses with clinical back pain 
differs from that of asymptomatic horses, and that present-day gait analysis 
systems can differentiate horses with back dysfunction from asymptomatic, 
fully functioning horses.  

The back patients in Study I were a heterogeneous group of clinical cases 
presented to the University Clinic. The group demonstrated decreased 
flexion-extension ROM in the caudal thoracic spine and at the 
thoracolumbar junction at walk and trot. There was also a decreased axial 
rotation of the pelvis at walk. The greater amplitude of the lateral and 
twisting movements in asymptomatic horses at walk may be the cause of the 
decreased axial rotation ROM at this gait, while the decreased flexion-
extension ROMs may result from an attempt to alleviate the pain by 
reduced reflection of the back. An altered neuromuscular control to ease the 
pain may have induced excessive muscle activity leading to spasms. It is also 
possible that acquired pathological limitations may be the initial cause of the 
problem, and as a consequence, the decreased ROMs. 

The shorter stride length observed in the horses with back pain at the 
walk, and the coinciding decrease in flexion-extension ROM is in 
agreement with the positive relationship between the pro- and retraction of 
the hind limbs and the flexion-extension movement of the back at walk 
(Faber et al., 2000) and trot (Faber et al., 2001c).  

The increased extension of the caudal back at both walk and trot in Study 
III may have been induced by a shortened and hypertonic m. longissimus 
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dorsi not able to adequately control the vertebral column. However, while 
the horses in Study I showed a decreased ROM for flexion-extension at the 
caudal thoracic back and T/L-junction, the opposite findings were observed 
in Study III. This may be due to the differences in the anatomical origin of 
the pain between naturally occurring back pain in the patients in Study I 
and the artificially induced back pain in Study III. In addition, the back pain 
was unilaterally induced in Study III, and the compensatory mechanisms 
can be assumed to differ between unilateral and bilateral back pain. Bilateral 
back pain is likely to cause a more general restriction of the back 
movement. 

Due to the unilaterally induced back pain, the back demonstrated a 
transient accentuated lateral bending subsequent to the lactic acid injections. 
The increased lateral bending was most likely a consequence of an impaired 
muscle function at the painful side. Loss of normal activity in the left epaxial 
musculature may have affected the naturally existing left/right balance and 
lead to a scoliosis of the back with, in this case, right convexity as a result. 
In a study by Faber et al. (2003), the back movements of a horse were 
evaluated before and after manipulative treatment. The horse in that study 
showed decreased performance, was often rearing and reacted on palpation 
of the back. Clinically, a right-convex bending from T10 to L2 was 
diagnosed, and the kinematic analysis demonstrated a smaller lateral bending 
ROM than normal for the T10 segment of the back. After treatment, the 
lateral bending ROM increased, which is in accordance with the results in 
Study III.  

In Study III, the horses showed a reversed pattern at the withers and in 
the caudal lumbar back 7 days after the injections at walk, that is, bending 
to the unaffected side. This may have been caused by a decreased 
contraction capacity in the injected muscle. This biphasic response was also 
observed in the earlier study in trotters with induced back pain (Jeffcott, 
2007, personal communication). 

The lactic acid injections resulted in an immediate onset of back pain 
while most changes in movement appeared 48-72 hours after the injections. 
As the lactic acid produced naturally in situations with intensive, rapidly 
increased, or changed exercise, the injected lactic acid induced acute muscle 
soreness, followed by changes in movement after a couple of days. The 
second, more severe peak of soreness induced by natural lactic acid 
production, is called delayed onset muscle soreness (DOMS) in human 
medicine (Marlin and Nankervis, 2002). It appears that a similar 
phenomenon occurred in study III, where the changes in movement may 
represent the second peak of muscle pain. 
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With only small differences, back movement changed in a similar way at 
walk and trot in Study III. An increased extension of the back was observed 
at both gaits, but remained manifest for a longer period of time at trot. This, 
and the more obvious lateral bending asymmetry at trot, may be explained 
by the greater back muscle activity at this gait.  

Similar AMP results were observed in a study on ten Warmblood horses 
demonstrating bilateral thoracolumbar pain on palpation (Gómez Álvarez et 
al., 2008b). Chiropractic treatment increased the flexion of the caudal 
thoracic back in those horses at both walk and trot, which is in accordance 
with the findings in Study III. 

A lactic acid solution, equal to the one used in Study III, was used to 
induce back pain in a group of horses (Jeffcott et al., 1982). This resulted in 
a reversible pain reaction on palpation of m. longissimus dorsi, which was 
confirmed in Study III. No changes were observed in the linear or temporal 
stride parameters in either study, but a decreased work capacity was noted 
in the study done by Jeffcott et al. (1982), and consistent changes in the 
vertebral kinematics were observed during the week following the 
injections in Study III. 

 

Local anesthesia as a diagnostic aid 

 
Local anaesthesia is commonly used to substantiate the location of pain in 
the back (Walmsley et al., 2002; Dyson and Murray, 2003). To our 
knowledge, no other study has been published on the effect of local 
anesthesia on the movement of the back. Local anaesthetics seem to affect 
the stability of the back. In Study II, this was probably due to the fact that 
the injections were made in the multifidus muscle, which affect 
stabilization, proprioception and posture. The differences in muscle activity 
between walk and trot are probably the reason why changes in back 
movement were observed mainly at the walk, in which the movement of 
the back is largely passive. The results in Study III indicate that evaluation 
of the back movement after local anesthesia is probably best done at trot, 
since the local anaesthetics affect back movement only to a minor extent at 
this gait. 
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The effect of weighted boots on the movement of the back 

 
Several studies have evaluated limb kinematics (Clayton et al., 2002; Back et 
al., 2003; Bobbert et al., 2005; Dutto et al., 2006; van Heel et al., 2006b), 
but only a few have studied the influence of limb kinematics on the 
movement of the back (Faber, 2001a; Faber et al., 2001c; Wennerstrand et 
al., 2006; Gómez Álvarez et al., 2007; Gómez Álvarez et al., 2008a). Since it 
has been shown that different parts of the body are synchronized, and that 
one body segment may induce or inhibit the movement of another (Faber 
et al., 2000; Denoix and Audigié, 2001; Faber et al., 2001c; Rhodin et al., 
2005), it is important to know how external influences may affect these 
relationships.  

The use of weighted boots has been suggested as a method to rehabilitate 
horses with back pain (Persson, 1999, personal communication). The aim of 
Study IV in this thesis was therefore to evaluate the effect of weighted boots 
on the movement of the back. Earlier studies have shown that non-
weighted boots as well as loading of the distal hind limbs affect the three-
dimensional movement pattern of the limbs (Kicker et al., 2004; Wickler et 
al., 2004), and our hypothesis was that weighting the distal limbs would also 
influence the back movements. This turned out to be true; weighted boots 
on the hind limbs increased the flexion-extension of the lumbar spine at 
walk, and weighted boots on the forelimbs decreased the lateral bending of 
the thoracic spine at trot. 

It seems that the movement of the back is less susceptible to external 
influences at trot compared to at walk. Hind limb boots did not induce 
changes in protraction and retraction of the hind limbs at walk, even when 
the flexion-extension ROM at the lumbar back was increased. At trot, on 
the other hand, there was a decreased protraction and retraction of the hind 
limb, but no significant change in the ROM for the flexion-extension of 
the lumbar back. These differences could possible be due to the difference 
in muscle activity between the two gaits. While there are suspension phases 
and only a diagonal support during the support phases at trot, the four-beat 
walk has no suspension phase, and a greater activity of the back and 
abdominal muscles is required to maintain the stability of the back and the 
horse in balance at trot (Robert et al., 1998).  

Similar to the flexion-extension, the lateral bending of the back is 
correlated to the protraction and retraction of the hind limbs (Faber et al., 
2001c), and the decreased lateral bending at the thoracolumbar junction at 
trot may have been a consequence of the significantly decreased protraction 
and retraction induced by the hind limb boots. Correspondingly, the 
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forelimb boots may have influenced the lateral bending of the thoracic back 
at trot. Additional loading increases the muscular output in humans (Martin 
and Cavanagh, 1990), and the added forelimb weights may likewise have 
increased the muscle activity in the horses, possibly resulting in more stable 
and balanced movements. 

Exercises to increase the flexion-extension flexibility of the lumbar back 
in a controlled way can sometimes be desirable in training and rehabilitation 
of sport horses. Weighted boots may be one possibility to achieve this. 
Weighting the hind limbs probably induces strengthening of the hypaxial 
lumbar muscles, which favours a controlled, increased mobility of the 
lumbar back. The risk for overstraining or accidental injuries is likely to be 
low at walk.  
 

The infrared-based automated gait analysis technique 

 
The infrared-based automated gait analysis technique has been used in many 
studies on back movements in humans, dogs and horses during the last 
decade (Licka et al., 2001; Johnston et al., 2004; Wennerstrand et al., 2006; 
Gradner et al., 2007; van Dillen et al., 2007). Biomechanical research on 
humans, have used this technique to study a wide range of topics as the 
effect of hyperpronation on the lower extremities (Khamis and Yizhar, 
2007), the position of the lumbar spine during steady state movement on 
flat and angled surfaces (Levine et al., 2007), the timing of hip and 
lumbopelvic rotation in people with low back pain (van Dillen et al., 2007) 
and shoulder alignment in bowlers (Roca et al., 2006). 
 The wide-ranging spectrum and large number of studies, including the 
present thesis, have established present-day technology as a valuable and 
adequate tool to document movements and alterations of the movements. A 
high degree of repeatability was seen between the two measurements before 
the respective injections of either mepivacaine or sodium chloride in Study 
II, which further supports the use of modern technology for kinematic 
analyses. This is also in accordance with the conclusion of Faber et al. 
(2002), that analysis of back kinematics in the horse can provide highly 
repeatable data, which makes it suitable for clinical use.  
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Kinematic analysis as a tool to evaluate back dysfunction 

 
All patients in Study I showed muscle soreness on palpation of the back, 
and more than half of them had pathological skeletal changes, which makes 
it reasonable to assume that the back pain was the main reason for the 
changes in back movement. In Study III, back pain was clearly evident in all 
horses subsequent to the lactic acid injections. Whereas no abnormal back 
movements could be detected by clinical observation, the kinematic analysis 
technique revealed several changes in movement. The kinematic changes 
remained manifest and detectable for a longer period of time than the 
clinically palpable back pain, which can be compared to the early stages of a 
typical back problem. While the function of the back and the performance 
capacity of the horse are decreased, the horse is commonly not initially 
painful on palpation. The infrared-based automated gait analysis technique 
may detect and measure dysfunctions, which makes it possible to early on 
discover the problems and later on do follow-up-measurements during 
rehabilitation. When the patient in the case study in the “additional results” 
above was evaluated at the University Clinic, the clinical symptoms had 
improved and no appreciable muscle asymmetries were noted. However, 
the owner considered the horse to have a decreased performance, and the 
kinematic analysis revealed kinematic changes in ROM and symmetry of 
movement, where the patient had earlier showed symptoms. This reflects 
the difference between a traditional clinical examination on the stationary 
horse and movement analysis. While palpation gives information on the 
pain on palpation, movement analysis gives information on the function. 

In conclusion the results show that the infrared-based automated gait 
analysis technique can differentiate horses with back dysfunction from 
horses with normal back movements, and that this technique can be used to 
evaluate a specific, localized change in movement in a patient with clinical 
back pain. It has also been shown that local anaesthesia affect the back 
movement in clinically sound horses, and that weighted boots on the limbs 
affect the movement of the back in asymptomatic horses in regular training 
and competition. 
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Conclusions 

� Horses with naturally occurring back pain and dysfunction 
- Data from a group of riding horses with naturally occurring spinal 

and back muscle pain and dysfunction have been gathered. 
- These data show that the movement of the back in a horse with 

back pain and dysfunction differs from that of the asymptomatic 
horse. 

 
� Regional anaesthesia 

- Diagnostic infiltration of local anaesthetic solution affects the 
movement of the back in clinically sound horses. 

- When interpreting the use of this clinical aid in assessing clinical 
cases of back dysfunction, its effects on asymptomatic horses have to 
be considered. 

  
� Induced back pain 

- Horses with identical back injuries appear to show similar changes 
in their back kinematics, as compared to the asymptomatic 
condition.  

- Unilateral back pain seems to result in an increased extension of the 
back, as well as compensatory lateral movements.  

 
� Weighted boots 

- Weighted boots on the hind limbs affect the movement of the 
lumbar back. 

- Weighted boots on the forelimbs affect the movement of the mid-
thoracic back.  

- Knowledge of the effect of weighted boots on the back movement 
is useful in training and rehabilitation of sport horses.  
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- Weighted boots on the hind limbs at the walk may induce 
strengthening of the flexors of the lumbar back and increase the 
flexion–extension of the lumbar back under controlled conditions. 

 
� Automated gait analysis systems 

- Present-day gait analysis systems can identify changes in the back 
movement, and will help to clinically describe and, most important, 
classify, horses with back pain and dysfunction. 

- Knowledge of the relationship between changes in the back 
movement and the site of injury will be of help in better localizing 
and diagnosing disorders of the equine back. 

- Kinematics can objectively evaluate the effect of local anaesthesia of 
the back. 

- Kinematics can objectively evaluate improvements of the back 
movement. 

 

Future studies 

 
Automated gait analysis systems have proven to be able to differentiate 
horses with back dysfunction from horses with normal back movements, 
and it has been shown that this technique can be used to evaluate a specific, 
localized change in movement in a patient with clinical back pain. 
 Suggestions for future items to be studied are bilateral back pain and long-
term follow-ups of back patients after treatment. Kinematic analysis could 
also be used to further evaluate the non-scientific therapies that are 
sometimes used to treat back problems. 
 Further studies are required before the full effects of weighted boots can 
be evaluated, and studies over a longer period of time, perhaps with the use 
of electromyography, are suggested. 
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Manufacturers’ addresses 

1SÄTO, SÄTO AB, Knivsta, Sweden   
2Mustang 2200©, Kagra corporation, Fahrwangen, Switzerland 
3 Plegicil® vet., Pharmaxim, Helsingborg, Sweden 
4ProReflex®, Qualysis Medical AB, Gothenburg, Sweden 
5QTrack™, Qualysis Medical AB, Gothenburg, Sweden 
6MatLab®, The Math Works Inc., Natick, USA  
7Backkin®, Qualysis Medical AB, Gothenburg, Sweden 
8Carbocain®, AstraZeneca, Södertälje, Sweden 
9Statistica©, StatSoft Inc., Tulsa, USA 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 80 

 



 81 

References 

Audigié, F., Pourcelot, P., Degueurce, C., Denoix, J.-M. and Geiger, D.  
(1999) Kinematic of the equine back: flexion-extension movements in 
sound trotting horses. Equine Vet. J. Suppl. 30, 210-213. 

Back, W., Remmen, J.L., Knaap, J. and de Koning, J.J. (2003) Effect of  
lateral heel wedges on sagittal and transverse plane kinematics of trotting 
Shetland ponies and the influence of feeding and training regimes. Equine 
Vet. J. 35, 606-612. 

Biengräber, M. (1916) Hästens yttre åkommor. Stockholm, Wilhelmssons 
boktryckeri A-B. 

Bobbert, M.F., Santamaría, S., van Weeren, P.R., Back, W. and Barneveld, 
A. (2005) Can jumping capacity of adult show jumping horses be 
predicted on the basis of submaximal free jumps at foal age? A 
longitudinal study. Vet. J. 170, 212-221. 

Bogduk, N. (1995) The anatomical basis for spinal pain syndromes. J.  
 Manipulative Physiol. Ther. 18, 603-605. 
Borelli, G. A. (1685) De motu animalium. Second edition. Leiden: Petrum  
 Vander Aa.  
Buchner, H.H.F., Savelberg, H.H.C.M., Schamhardt, H.C., Merkens,  

H.W. and Barneveld, A. (1994) Habituation of horses to treadmill 
locomotion. Equine vet. J., Suppl. 17, 13-15. 

Budras, K.-D. and Sack, W.O. (1994) Selected body systems in tabular  
form; muscles. In: Anatomy of the horse, an illustrated text. Eds: K.-D. 
Budras and W.O. Sack, Schlütersche verlagsanstalt und druckerei GmbH 
& Co., Hannover. pp. 81-93. 

Clayton, H.M., Hoyt, D.F., Wickler, S.J., Cogger, E.A. and Lanovaz, J.L.  
(2002) Hindlimb net joint energies during swing phase as a function of 
trotting velocity. Equine Vet. J., Suppl. 34, 363-367. 

De Cocq, P., van Weeren, P.R. and Back, W. (2004) Effects of girth,  
 saddle and weight on movements of the horse. Equine Vet. J. 3, 758-763. 



 82 

Denoix, J.-M. (1998) Diagnosis of the cause of back pain in horses. In:  
Proceedings of the Conference on Equine Sports Medicine and Science, 
Cordoba, 1998, pp. 97-110. 

Denoix, J.-M. (1999) Spinal biomechanics and functional anatomy. In:  
Vet. Clin. N. Am.: Equine Pract. 15(1), Eds: A.S. Turner and K.K. 
Haussler, W.B. Saunders Co., Philadelphia. pp. 27-60. 

Denoix, J.-M. and Audigié, F. (2001) The neck and back. In: Equine  
Locomotion. Eds: W. Back and H. Clayton, W.B. Saunders Co, London. 
pp. 167-191. 

Denoix, J.-M. (2004) Diagnostic imaging of thoracolumbar lesions in  
 horses, The thoracolumbar spine: lesions, and Ultrasonographic  
 evaluation of back lesions. In: The equine back, pelvis and neck. Le  
 Cirale, Dozulé, France, July, 2004, pp. 58-95. 
Dutto, D.J., Hoyt, D.F., Clayton, H.M., Cogger, E.A. and Wickler, S.J.  

(2006) Joint work and power for both the forelimb and hindlimb during 
trotting in the horse. J. Exp. Biol. 209, 3990-3999. 

Dyce, K.M., Sack, W.O. and Wensing, C.J.G. (1996) The locomotor  
apparatus. In: Textbook of veterinary anatomy. Eds: K.M. Dyce, W.O. 
Sack and C.J.G. Wensing, W.B. Saunders Co., Philadelphia. pp. 31-98. 

Dyson, S. and Murray, R. (2003) Pain associated with the sacroiliac joint  
 region: a clinical study of 74 horses. Equine Vet. J. 35, 240-245. 
Erichsen, C., Eksell, P., Roethlisberger-Holm, K., Lord, P. and Johnston,  

C. (2003a) Scintigraphic evaluation of the thoracic spine in the 
asymptomatic riding horse. Vet. Radiol. Ultrasound 3, 330-338. 

Erichsen, C., Eksell, P., Widström, C., Berger, M., Holm, K.R. and  
Johnston, C. (2003b) Scintigraphy of the sacroiliac joint region in 
asymptomatic riding horses: scintigraphic appearance and evaluation of 
method. Vet. Radiol. Ultrasound 44, 699-706. 

Erichsen, C., Eksell, P., Roethlisberger-Holm, K., Lord, P. and Johnston,  
C. (2004) Relationship between scintigraphic and radiographic 
evaluations of spinous processes in the thoracolumbar spine in riding 
horses without clinical signs of back problems. Equine Vet. J. 36, 458-465. 

Faber, M., Schamhardt, H. and van Weeren, R. (1999) Determination of 
3D spinal kinematics without defining a local vertebral co-ordinate 
system. J. Biomech. 32, 1355-1358. 

Faber, M., Schamhardt, H., van Weeren, R., Johnston, C., Roepstorff, L. 
and Barneveld, A. (2000) Basic three-dimensional kinematics of the  
vertebral column of horses walking on a treadmill. Am. J. Vet. Res. 61,  
399-406. 

Faber, M. (2001a). Kinematics of the equine back during locomotion. In:  



 83 

Kinematics of the equine back during locomotion, PhD thesis by Marjan 
Faber, Utrecht University, The Netherlands, pp. 91–110. 

Faber, M., Schamhardt, H., van Weeren, R. and Barneveld, A. (2001b)  
Methodology and validity of assessing kinematics of the thoracolumbar 
vertebral column in horses based on skin-fixated markers. In: Kinematics 
of the equine back during locomotion, PhD thesis by Marjan Faber, 
Utrecht University, The Netherlands, pp. 65-75. 

Faber, M., Schamhardt, H., van Weeren, R., Johnston, C., Roepstorff, L. 
and Barneveld, A. (2001c) Basic three-dimensional kinematics of the  
vertebral column of horses trotting on a treadmill. Am. J. Vet. Res. 62,  
757-764. 

Faber, M., Johnston, C., van Weeren, P.R. and Barneveld, A. (2002)  
Repeatability of back kinematics in horses during treadmill locomotion. 
Equine vet. J. 34, 235-241.  

Faber, M., van Weeren, R., Schepers, M. and Barneveld, A. (2003) Long- 
term follow-up of manipulative treatment in a horse with back problems. 
J. Vet. Med. A. 50, 241-245. 

Fredricson I, Drevemo S, Dalin G, Hjertën G, Björne K. (1980) The  
application of high-speed cinematography for the quantitative analysis of 
equine locomotion. Equine Vet. J. 12, 54-59. 

Fredricson, I., Drevemo, S., Dalin, G., Hjertén, G., Björne, K., Rynde, R.,  
Franzén G. (1983) Treadmill for equine locomotion analysis. Equine Vet. 
J. 15, 111-115. 

Furugren, B. (1990) Från vildhäst till sporthäst – om hästens historia från 
istid till nutid. Hästens historia. Hippologiska högskoleutbildningen, 
Sveriges Lantbruksuniversitet. 

Goff, L.M., Jeffcott, L.B., Jasiewiczc, J. and McGowan, C.M. (2007) 
 Structural and biomechanical aspects of equine sacroiliac joint function 

and their relationship to clinical disease. Vet. J.(Accepted.) 
Gómez Álvarez, C.B., Wennerstrand, J., Bobbert, M.F., Lamers, L.,  

Johnston, C., Back, W. and van Weeren, P.R. (2007) The effect of 
induced forelimb lameness on thoracolumbar kinematics during treadmill 
locomotion. Equine Vet. J. 39, 197-201. 

Gómez Álvarez, C.B., Bobbert, M.F., Lamers, L., Johnston, C., Back, W.  
and van Weeren, P.R. (2008a) The effect of induced hindlimb lameness 
on thoracolumbar kinematics during treadmill locomotion. Equine Vet. J. 
40, 147-152. 

Gómez Álvarez, C.B., L'ami, J.J., Moffat, D., Back, W. and van Weeren,  
P.R. (2008b) Effect of chiropractic manipulations on the kinematics of 
back and limbs in horses with clinically diagnosed back problems. Equine 
Vet. J. 40, 153-159. 



 84 

Gradner, G., Bockstahler, B., Peham, C., Henninger, W. and Podbregar,  I.  
(2007) Kinematic study of back movement in clinically sound malinois 
dogs with consideration of the effect of radiographic changes in the 
lumbosacral junction. Vet. Surg. 36, 472-481. 

Haussler, K.K., Stover, S.M. and Willits N.H. (1997) Developmental  
 variation in lumbosacropelvic anatomy of thoroughbred racehorses. Am.  
 J. Vet. Res., 58, 1083-1091. 
Haussler, K.K. and Stover, S.M. (1998) Stress fractures of the vertebral  

lamina and pelvis in Thoroughbred racehorses. Equine Vet. J., 30, 374-
381. 

Haussler, K.K. (1999) Anatomy of the thoracolumbar vertebral region, pp.  
 13-26, and Osseous spinal pathology, pp. 103-112. In: Vet.Clin. N. Am.:  

Equine Pract. 15(1), Eds: A.S. Turner and K.K. Haussler, W.B. Saunders 
Co., Philadelphia. 

Haussler, K.K., Stover, S.M. and Willits N.H. (1999) Pathologic changes  
 in the lumbosacral vertebrae and pelvis in Thoroughbred racehorses. Am.  
 J. Vet. Res., 60, 143-153. 
Hernquist, P. (1793) Yttre kjänneteken på en väl eller illa skapad hästkropp 

samt bästa sättet at sko en häst. Skara. 
Hildebrand, M. (1962) Walking, running and jumping. Am. Zoologist, 2, 

151-155. 
Jeffcott, L.B. (1979) Radiographic features of the normal equine 

thoracolumbar spine. Vet. Radiol. 20, 140-147. 
Jeffcott, L.B. (1980a) Disorders of the thoracolumbar spine of the horse – a 

survey of 443 cases. Equine Vet. J. 12, 197-210. 
Jeffcott, L.B. and Dalin, G. (1980b) Natural rigidity of the horse’s  

backbone. Equine Vet. J. 12, 101-108. 
Jeffcott, L.B., Dalin, G., Drevemo, S., Fredriccson, I., Björne, K. and  

Bergquist, A. (1982) Effect of induced back pain on gait and performance 
of trotting horses. Equine Vet. J. 14, 129-133. 

Jeffcott, L.B., Dalin, G., Ekman, S. and Olsson, S.E. (1985) Sacroiliac  
lesions as a cause of chronic poor performance in competitive horses. 
Equine Vet. J. 17, 111-118. 

Jeffcott, L.B. (1999) Historical perspective and clinical indications. In: Vet.  
Clin. N. Am.: Equine Pract. 15(1), Eds: A.S. Turner and K.K. Haussler, 
W.B. Saunders Co., Philadelphia. pp 1-12. 

Johnston, C., Holm, K., Faber, M., Erichsen, C., Eksell, P. and Drevemo,  
S. (2002) Effect of conformational aspects on the movement of the equine 
back. Equine Vet. J., Suppl., 34, 314-318. 

Johnston, C., Holm, K., Erichsen, C., Eksell, P. and Drevemo, S. (2004)  
Kinematic evaluation of the back in the asymptomatic riding horse.  



 85 

Equine Vet. J. 6, pp. 495-498. 
Khamis, S. and Yizhar, Z. (2007) Effect of feet hyperpronation on pelvic  
 alignment in a standing position. Gait Posture 25, 127-134. 
Kicker, C.J., Peham, C., Girtler, D., Licka, T. (2004) Influence of support  

Boots on fetlock joint angle of the forelimb of the horse at walk and trot. 
Equine Vet. J. 36, 769-771. 

Landman, M.A., de Blaauw, J.A., van Weeren, P.R. and Hafland, L.J.  
(2004) Field study of the prevalence of lameness in horses with back 
problems. Vet. Rec. 155, 165-168. 

Levine, D., Colston, M.A., Whittle, M.W., Pharo, E.C. and Marcellin- 
Little, D.J. (2007) Sagittal lumbar spine position during standing, walking, 
and running at various gradients. J. Athl. Train. 42, 29-34. 

Licka, T., Peham, C. and Zohmann, E. (2001) Range of back movement at 
trot in horses without back pain. Equine Vet. J., Suppl. 33, 150-153. 

Licka TF, Peham C, Frey A. (2004a) Electromyographic activity of the  
longissimus dorsi muscles in horses during trotting on a treadmill. Am. J. 
Vet. Res. 65, 155-158. 

Licka, T., Kicker, C., Peham, C. and Girtler, D. (2004b). Evaluation and  
comparison of the effect of support boots on the fetlock joint angle 
during the stance phase at walk and trot. Equine and Comparative Exercise 
Physiology 2, A17. 

Licka T, Frey A, Peham C. (2008) Electromyographic activity of the  
longissimus dorsi muscles in horses when walking on a treadmill. Vet 
J.(Accepted.) 

Marlin, D. and Nankervis, K. (2002) Part II, Exercise and training  
responses: Muscular responses. In: Equine exercise physiology. Eds: D. 
Marlin and K. Nankervis, Blackwell Science Ltd, Malden. pp. 75-85. 

Marks, D. (1999) Medical management of back pain. In: Vet. Clin. N. Am.:  
Equine Pract. 15(1), Eds: A.S. Turner and K.K. Haussler, W.B. Saunders 
Co., Philadelphia. pp. 179-194. 

Martin, B.B. and Klide, A.M. (1999) Physical examination of horses with  
 back pain. In: Vet. Clin. N. Am.: Equine Pract. 15(1), Eds: A.S. Turner  
 and K.K. Haussler, W.B. Saunders Co., Philadelphia. pp 61-70. 
Martin, P.E. and Cavanagh, P.R. (1990). Segment interactions within the  
 swing leg during unloaded and loaded running. J. Biomech. 23, 529–536. 
McCue, M.E., Ribeiro, W.P. and Valberg, S.J. (2006) Prevalence of  

polysaccharide storage myopathy in horses with neuromuscular disorders. 
Equine Vet. J. 36, 340-344. 

Meyer, S.W., Weishaupt, M. and Nuss, K.A. (2007) Gait pattern of heifers  
before and after claw trimming: a high-speed cinematographic study on a 
treadmill. J. Dairy Sci. 90, 670-676. 



 86 

Muybridge, E. (1887) Animal locomotion. Philadelphia. 
Pilsworth, R.C., Shepherd, M.C., Herinckx, B.M. and Holmes, M.A.  

(1994) Fracture of the wing of the ilium, adjacent to the sacroiliac joint, 
in thoroughbred racehorses. Equine Vet. J. 26, 94-99. 

Quiroz-Rothe, E., Novales, M., Aquilera-Tejero, E. and Rivero, J.L.  
(2002) Polysaccharide storage myopathy in the M. longissimus lumborum of 
showjumpers and dressage horses with back pain. Equine Vet. J. 34, 171-
176. 

Ranner, W., Gerhards, H. and Klee, W. (2002) Diagnostic validity of  
palpation in horses with back problems. Berl. Munch. Tierarztl. Wochenschr. 
115, 420-424. 

Robert, C., Valette, J.P. and Denoix, J.M. (1998) Surface  
electromyographic analysis of the normal horse locomotion: a preliminary 
report. In: Proceedings of the Conference of Equine Sports Medicine and Science, 
Cordoba, Spain, pp. 80-85. 

Roca, M., Elliott, B., Alderson, J. and Foster, D. (2006) The relationship  
between shoulder alignment and elbow joint angle in cricket fast-medium 
bowlers. J. Sports Sci. 24, 1127-1135. 

Rhodin, M., Johnston, M., Roethlisberger-Holm, K., Wennerstrand, J. and  
Drevemo, S. (2005). The influence of head and neck position on the 
kinematics of the back in riding horses at the walk and trot. Equine Vet. J. 
37, 7-11. 

Singer, E.R., Barnes, J., Saxby, F. and Murray, J.K. (2008) Injuries in the  
 event horse: training versus competition. Vet. J. 175, 76-81. 
Slijper, E.J. (1946) Comparative biologic-anatomical investigations on the  

vertebral column and spinal musculature of mammals. K. Ned. Acad. 
Wetensch. 42, 1-128. 

Stashak, T.S. (1987) The pelvis. The thoracolumbar spine. Muscle  
problems. In: Adams’ lameness in horses, 4th ed. Ed: T.S. Stashak, Lea & 
Febiger, Lippincott, Williams & Wilkins, Philadelphia. pp.  752-762. 

Stecher, R.M. (1962) Lateral facets and lateral joints in the lumbar spine of  
the horse - a descriptive and statistical study. Am. J. Vet. Res. 23, 939-
947. 

Stubbs, N.C., Hodges, P.W., Jeffcott, L.B., Cowin, G., Hodgson, D.R.  
and McGowan, C.M. (2006) Functional anatomy of the caudal 
thoracolumbar and lumbosacral spine in the horse. Equine Vet. J., Suppl. 
36, 393-399. 

Townsend, H.G., Leach, D.H. and Fretz P.B. (1983) Kinematics of the  
 equine thoracolumbar spine. Equine Vet J. 15, 117-122. 
Townsend, H.G. and Leach, D.H. (1984) Relationship between 



 87 

intervertebral joint morphology and mobility in the equine 
thoracolumbar spine. Equine Vet. J. 16, 461-465. 

Townsend, H.G., Leach, D.H., Doige, C.E. and Kirkaldy-Willis, W.H.  
(1986) Relationship between spinal biomechanics and pathological 
changes in the equine thoracolumbar spine. Equine Vet. J., 18, 107-112. 

Tucker, R.L., Schneider, R.K., Sondhof, A.H., Ragle, C.A. and Tyler,
 J.W. (1998) Bone scintigraphy in the diagnosis of sacroiliac injury in  
 twelve horses. Equine Vet. J. 30, 390-395. 
Valberg, S. (2003) Recurrent exertional rhabdomyolysis. In: Den  

prestationsnedsatta hästen. Frösundavik, Stockholm, oktober, 2003. pp. 
66-70. 

van Dillen, L.R., Gombatto, S.P., Collins, D.R., Engsberg, J.R. and 
Sahrmann, S.A. (2007) Symmetry of timing of hip and lumbopelvic 
rotation motion in 2 different subgroups of people with low back pain. 
Arch. Phys. Med. Rehabil. 88, 351-360. 

van Heel, M.C., van Weeren, P.R. and Back, W. (2006a) Shoeing sound  
warmblood horses with a rolled toe optimises hoof-unrollment and 
lowers peak loading during breakover. Equine Vet. J. 38, 258-262. 

van Heel, M.C., van Weeren, P.R. and Back, W. (2006b) Compensation  
for changes in hoof conformation between shoeing sessions through the 
adaptation of angular kinematics of the distal segments of the limbs of 
horses. Am. J. Vet. Res. 67, 1199-1203. 

van Weeren, P.R. (2005) Editorial; Equine ergonomics: a new era? Equine  
 Vet. J. 37, 4-6. 
Vennerholm, J. (1914) Grunddragen av hästens icke-operativa speciella  
 kirurgi. Stockholm, Albert Bonniers förlag. 
Vogel, S. (2007) The emergence of comparative biomechanics. Integrative  

and Comparative Biology 47, 13-15. 
Walmsley, J.P., Pettersson, H., Winberg, F., McEvoy, F. (2002) 

Impingement of the dorsal spinous processes in two hundred and fifteen 
horses: case selection, surgical technique and results. Equine Vet. J. 34, 23-
28. 

Wennerstrand, J., Rhodin, M., Johnston, C., Roethlisberger-Holm, K. and  
Drevemo, S. (2006) The effect of weighted boots on the movement of 
the back in the asymptomatic riding horse. Equine and Comparative Exercise 
Physiology. 3, 13-18. 

Wennerstrand, J., Johnston, C., Roethlisberger-Holm, K., Erichsen, C., 
Eksell, P. and Drevemo, S. (2004) Kinematic evaluation of the back in 
the sport horse with back pain. Equine Vet. J., Suppl. 36, 707-711. 

Wickler, S.J., Hoyt, D.F., Clayton, H.M., Mullineaux, D.R., Cogger,  



 88 

E.A., Sandoval, E., McGuire, R. and Lopez, C. (2004). The energetic 
and kinematic consequences of weighting the distal limb. Equine Vet. J. 8, 
772–777. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 89 

Acknowledgement 

The present studies were carried out at the Department for Anatomy, 
Physiology and Biochemistry and the Department of Clinical Sciences at 
the University of Agricultural Sciences (SLU), and at the Department of 
Equine Sciences, Utrecht University, The Netherlands. 
 
This thesis and the studies on which it is based would not have been 
accomplished without the help and support from many people. To all of 
you: Thank you! In particular I wish to express my sincere gratitude to: 
 
Chris Johnston, my supervisor, for offering me this PhD education. Thank 
you for introducing me to biomechanical research and for interesting ideas 
and thoughts about present and future studies. 
 
Stig Drevemo, my co-supervisor, for all constructive criticism when reading 
my articles and this thesis. Thank you for always taking time the moment I 
asked for it. 
 
Karin Roethlisberger-Holm, my co-supervisor, for all the constructive 
criticism when reading my articles. Thank you for your support during our 
studies at the horse clinic, and for sharing thoughts and knowledge about 
many clinical aspects.  
 
René van Weeren, for inviting me to Utrecht and for your help with the 
manuscript in Study III. Thank you for all your valuable comments and 
suggestions. 
 
Sören Johansson and Bo Eriksson for excellent technical support during all 
our studies. Thank you for being helpful and positive in all situations! 



 90 

Kjartan Halvorsen for teaching me the Backkin programme and for 
pedagogically and patiently answering all my questions about Backkin and 
MatLab. 
 
My friends and colleagues at the Department of Anatomy, Physiology and 
Biochemistry and the section for Equine Studies; thank you for your help, 
support, laughs and hugs during the work of this thesis! Thank you all! 
 
Min familj och mina vänner! Tack för att ni finns! …och för alla gånger ni 
ställt upp för mig! …och för att ni gör mig glad! Kram! 







EQUINE VETERINARY JOURNAL
Equine vet. J. (2004) 36 (8) 707-711

707

Summary

Reasons for performing study: Earlier studies have developed a
clinical tool to evaluate objectively the function of the equine
back. The ability to differentiate horses with back pain from
asymptomatic, fully functioning horses using kinematic
measures from this tool has not been evaluated.

Objectives: To compare the kinematics of the back at walk and
trot in riding horses with back dysfunction to the same
parameters in asymptomatic sport horses.

Methods: The kinematics of the back in 12 horses with
impaired performance and back pain were studied at walk
and trot on a treadmill. Data were captured for 10 secs at 
240 Hz. Range of movement (ROM) and intravertebral
pattern symmetry of movement for flexion and extension
(FE), lateral bending (LB) and axial rotation (AR) were
derived from angular motion pattern data and the results
c o m p a red to an earlier established database on
asymptomatic riding horses.

R e s u l t s: At walk, horses with back dysfunction had a ROM
s m a l l e r f o r dorsoventral FE in the caudal thoracic region 
(T13 = 7.50º, T17 = 7.71º; P<0.05), gre a t e r f o r LB at T13 (8.13º;
P<0.001) and smaller f o r AR of the pelvis (10.97º; P<0.05)
c o m p a red to asymptomatic horses (FE-T13 = 8.28º, 
FE-T17 = 8.49º, LB-T13 = 6.34º, AR-pelvis = 12.77º). At tro t ,
dysfunctional horses had a smaller (P<0.05) ROM for FE at the
thoracic lumbar junction (T17 = 2.46º, L1 = 2.60º) compared to
asymptomatic horses (FE-T17 = 3.07º, FE-L1 = 3.12º).

Conclusions: The objective measurement technique can detect
differences between back kinematics in riding horses with
signs of back dysfunction and asymptomatic horses. The
clinical manifestation of back pain results in diminished
flexion/extension movement at or near the thoracic lumbar
junction. However, before applying the method more
extensively in practice it is necessary to evaluate it further,
including measurements of patients whose diagnoses can 
be confirmed and long-term follow-ups of back patients 
after treatment.

Potential relevance: Since the objective measure m e n t
technique can detect small movement differences in back
kinematics, it should help to clinically describe and,
i m p o rt a n t l y, objectively detect horses with back pain 
and dysfunction.

Introduction

Back problems are important contributors to poor performance in
riding horses (Jeffcott 1980). The case history and clinical
examination are fundamental, but there is often a need for
supplementary diagnostic aids to properly diagnose a horse with
back dysfunction. Frequently used aids are local anaesthesia,
r a d i o g r a p h y, scintigraphy and ultrasound. Sometimes these aids are
i n s u fficient to detect the origin of the problem. They can also, when
not specific for the location of pain, be confusing or give
information of questionable value as they may result in false positive
and false negative findings (Jeffcott 1979; Erichsen et al. 2 0 0 3 ) .

An objective tool with good accuracy and precision would be
an asset when evaluating the function of the back. The movement
of the back has been studied in vivo at different gaits (Audigié et
al. 1999; Denoix 1999; Faber et al. 2000, 2001; Haussler et al.
2001; Licka et al. 2001a,b). The reliable and repeatable protocol
developed by Faber et al. (2000) was used recently by Johnston et
al. (2004) to establish a database on the movement of the back in
asymptomatic riding horses in regular training and competition.
Under standardised conditions, the kinematics of the back were
measured on a treadmill at constant speeds at the walk and trot.

The aim of the present study was to establish a corresponding
database on sport horses with signs of a back problem, and
compare the kinematics of the back at walk and trot of those
horses to the same parameters in asymptomatic horses. The
hypothesis was that the movement of the back in symptomatic
horses differs in angular amplitude and symmetry from that of
asymptomatic horses.

Materials and methods

Horse recruitment

Riding horses with impaired performance and clinical back pain
were used in the study. The horses either came to the University
clinic directly or were referred to the clinic by private practitioners
or other clinics. The inclusion criteria were that subjects were
Warmblood riding horses, age 5–15 years, that had not been treated
for back pain in the last 3 months, with the exception of rest and/or
convalescence training.

At the clinic, the horses underwent a clinical examination
including a visual and palpatory examination, observation of the
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horse moving in hand on a hard surface, flexion tests of all 
4 limbs, lungeing on both reins and a riding test performed by
their respective regular rider at the walk, trot and canter. If
lameness was detected during any of the mentioned examinations,
or a response of >1 (forelimbs) or >2 (hindlimbs) degree(s) of
lameness (on a scale of 0–5) was obtained on flexion test, the
horse was excluded. Back pain was considered to be present if 
the horse showed clear signs of pain/discomfort on palpation of
the back and the reaction did not decrease at repeated palpation.
Commonly, horses demonstrating back pain reacted to palpation
by adverse reactions, e.g. bolting or rearing, tail swishing,
unruliness, rapid caudal movement of the ears or stiff, jerky
movements. The appreciated locations and types of injury are
given in Table 1. The selected horses (4 mares and 8 geldings) had
been in regular training for dressage (n = 5), jumping (n = 4),
eventing (n = 1) or general purpose (n = 2) prior to the onset of
their respective back problem.

Horses in the control group were Warmblood riding horses,
age 5–15 years, considered sound and fully functioning by their
riders, in regular training for at least 3 months and in competitive
condition (Johnston et al. 2004). The controls were clinically
sound at the walk and trot in hand and on lungeing on both reins,
and performed satisfactorily during a riding test performed by
their regular rider. They demonstrated no pain reaction on
palpation of the back, showed not >1° of lameness in any of the
limbs on a flexion test of the limb and had not been treated for a
back-related problem for at least 12 months prior to the
examination. Due to technical problems, the data at the walk had
to be excluded for 4 of the control horses. The control group
therefore included 29 horses at walk and 33 at trot.

Experimental set-up and data collection

All horses were trained 4 times, for 10–15 mins each, on a coir
mat treadmill at walk and trot prior to the recordings (Fredricson
et al. 1983; Buchner et al. 1994). Spherical reflective markers, 
19 mm diameter, were glued onto the skin over the dorsal spinous
processes of 8 back vertebrae (T6, T10, T13, L1, L3, L5 and S3).
Markers were also placed on both left and right tubera coxae and
proximally on the lateral part of the left hind hoof wall. The
landmarks were all identified by palpation. The positions of the
markers (inaccuracy <1.5 mm) were collected by 6 infrared
cameras (ProReflex)1, positioned around the treadmill so that each
marker was always seen by at least 2 cameras.

The measurement volume made up a laboratory coordinate
system with the positive y-axis oriented in the line of progression,
the positive z-axis oriented upward and the x-axis oriented
perpendicular to the direction of the y- and z-axes. The calibration
was performed dynamically, using a calibration frame which
defined the orientation of the right-handed orthogonal laboratory
coordinate system and a wand with an exactly defined length.
Data were captured at a sampling rate of 240 Hz for 1 sec at a
square stance and for 10 secs with the horses walking (1.6 m/sec)
and trotting (3.8 m/sec).

Calculation of back kinematics in 2D

The reconstruction of the 3D position of each marker was based
on a direct linear transformation algorithm (QTr a c k )1.
Subsequently, the raw x-, y- and z-coordinates were exported into
MatLab2 and Backkin1 programme packages for further data

TA B L E 1: The appreciated location and type of injury together with competing level prior to back pain and dysfunction in 12 horses with back dysfunction

Palpation soreness Performance level 
Horse Degree Localisation Tissue involved Diagnosis Basis prior to back pain

1 M Lumbar, left and right Muscle Muscle soreness Palpation Intermediate 3-day-event
2 M Caudal thoracic Muscle and Kissing spines T16–18 RS Intermediate dressage

and TL junction spinous processes with moderate sclerosis
3 M Caudal thoracic Muscle and Kissing spines T13–17 with mild RS Intermediate dressage

and TL junction spinous processes sclerosis. Scoliosis lumbar spine
4 M T12–18 Muscle and Kissing spines ventral parts RS Intermediate dressage,

spinous processes of dorsal spinous processes showjumping and 3-day-event
T13–17 and spondylosis T12–17

5 MM Thoracolumbar Spinous processes Kissing spines T15–18, RS Basic dressage
junction region focal uptake T13

6 MM T14–L3 Muscle and Kissing spines with mild sclerosis RS Intermediate dressage
spinous processes Chronic periostitis on lumbar

transverse processes
7 MM T17–L3 Muscle Kissing spines T17–L3 RS Intermediate dressage

with sclerosis and lysis
8 MM T14–15 Spinous processes Kissing spines T13–14 Scintigraphy and autopsy Intermediate dressage

Severe T17–L4 Muscle Deformed tuber ischii Autopsy
9 MM T15–18 Spinous processes Kissing spines caudal thoracic back RS Basic showjumping

T14–18 Muscle with mild sclerosis. Kissing spines
L4–6. Deformed dorsal spinous Autopsy

processes and asymmetrical
intervertebral joints in lumbar back

10 Mild T15–L2 Muscle and Kissing spines T14–L1 RS Basic showjumping 
spinous processes and dressage

11 Mild Lumbar back Muscle and Kissing spines T15–16 with sclerosis RS Basic showjumping
spinous processes Active transverse processes L3

12 Mild T15–L3 Muscle Muscle soreness Palpation Basic showjumping 
and dressage

M = moderate; MM = mild to moderate; RS = radiography and scintigraphy.
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processing. The individual stride cycles were determined and the
beginning of each stride cycle was defined as the moment of first
ground contact of the left hind hoof, determined from the velocity
profile of the marker on the left hind hoof (Peham et al. 1999;
Mickelborough et al. 2000). The x-, y- and z-coordinates were
used to calculate the back rotations in accordance with Faber et al.
(1999). An explanation of the principles of the instantaneous
orientation of a vertebra was presented by Johnston et al. (2002).

Coordinate and angular motion pattern (AMP) data were
extracted at the walk and trot from approximately 8 and 
12 representative strides, respectively. Each stride was normalised
to 101 data points, in order to allow averaging of the AMPs over
strides. Stride length and velocity were calculated from the hoof
marker. The range of movement (ROM) and intravertebral pattern
symmetry of movement (SYM) were derived from the AMPs.

Statistical analysis

The results were presented as total ranges of movement and means
± s.d. Student’s t test and one-way ANOVA were used to analyse
possible differences in kinematics between horses with back
dysfunction and asymptomatic horses (Johnston et al. 2004). The
minimum level of statistical significance was set to P<0.05.
Statistical analyses were performed with the statistical software
package Statistica3.

Ethical review

The local ethical committee for the Swedish National Board for
Laboratory Animals approved this study.

Results

The affected horses had a significantly decreased ROM for the
dorsoventral flexion and extension (FE) movement at T13 
(7.50 ± 1.37º) and T17 (7.71 ± 1.31º) (Fig 1) at the walk, and a
smaller ROM for the FE movement at T17 (2.46 ± 0.71º) and L1
(2.60 ± 0.84º) (Fig 1b) at the trot compared to the asymptomatic
horses (Walk: FE-T13 = 8.28 ± 0.88º, FE-T17 = 8.49 ± 0.98º; 
Trot: FE-T17 = 3.07 ± 0.83º, FE-L1 = 3.12 ± 0.71º).

The ROM for the lateral bending (LB) movement at the walk
was significantly greater at T13 (8.13 ± 1.34º) (Fig 2a) in the
affected than in the control horses (6.34 ± 1.47º). At the trot, no
significant difference was observed between the ROMs for the LB
movements of the 2 groups (Fig 2b).

The lateral excursion movement of the back did not differ
significantly between the patients and the respective control group
at either gait. The axial rotation (AR) movement (Fig 3) of the
pelvis was less in the group with back dysfunction (10.97 ± 2.08º)
than among the asymptomatic horses (12.77 ± 2.10º) at the walk,
while no significant difference was observed for this parameter at
the trot.

At the lumbar back, 2 significant differences in the SYM were
observed between the patients and the asymptomatic horses at the
walk (Table 2). The patients were less symmetrical at L1 for the
FE movement and at L5 for the LB movement. At the trot, there
was no difference in the SYM of the back.

At the walk, the stride length was significantly shorter for the
horses with back pain (1.74 ± 0.13 m) than for the asymptomatic
horses (1.86 ± 0.09 m). The stride velocity was 1.6 m/sec for both
groups. At the trot, there was no significant difference between the
stride length for the patients (2.72 ± 0.24 m) and the controls 
(2.83 ± 0.13 m). The stride velocity was slightly higher for the
asymptomatic horses (3.9 ± 0.15 m/sec) than for those with back
pain (3.8 ± 0.22 m/sec).

Fig 1: Mean ± s.d. range of movement for the flexion/extension movements
of 6 back vertebrae at walk and trot. � = asymptomatic horses at the walk;
� = horses with back dysfunction at the walk; � = asymptomatic horses
at trot; � = horses with back dysfunction at the trot. *Values for horses
with back dysfunction statistically significant (P<0.05) compared with
asymptomatic horses. 

Fig 2: Mean ± s.d. range of movement for the lateral bending movements
of 6 back vertebrae a) at walk and b) trot. � = asymptomatic horses at
walk; � = horses with back dysfunction at walk; � = asymptomatic horses
at trot; � = horses with back dysfunction at trot. *Values for horses with
back dysfunction statistically significant (P<0.001) compared with
asymptomatic horses.
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TABLE 2: The symmetry of movements of 6 back vertebrae and the
pelvis at walk and trot for horses with back dysfunction (patients) and
asymptomatic horses (controls)

Walk (1.6 m/sec) Trot (3.8 m/sec)
Controls Patients Controls Patients

Mean s.d. Mean s.d. Mean s.d. Mean s.d.

FE
T10 0.96 0.05 0.96 0.05 0.97 0.04 0.93 0.09
T13 0.98 0.02 0.98 0.01 0.91 0.09 0.83 0.23
T17 0.98 0.02 0.98 0.01 0.86 0.16 0.76 0.31
L1 0.98 0.02 0.97* 0.03 0.91 0.11 0.86 0.14
L3 0.98 0.03 0.96 0.03 0.93 0.08 0.93 0.09
L5 0.97 0.04 0.94 0.06 0.91 0.13 0.94 0.05

LB
T10 0.99 0.01 0.99 0.01 0.98 0.02 0.96 0.03
T13 0.98 0.02 0.99 0.01 0.97 0.02 0.92 0.15
T17 0.96 0.05 0.97 0.04 0.96 0.04 0.95 0.03
L1 0.93 0.07 0.91 0.09 0.91 0.12 0.91 0.09
L3 0.94 0.09 0.84 0.29 0.93 0.07 0.93 0.11
L5 0.98 0.02 0.93* 0.12 0.98 0.02 0.99 0.01

LE
T10 0.99 0.01 0.99 0.01 0.96 0.08 0.96 0.04
T13 0.99 0.01 1.00 0.00 0.97 0.03 0.97 0.03
T17 0.99 0.01 1.00 0.00 0.98 0.02 0.97 0.04
L1 0.99 0.00 1.00 0.00 0.97 0.02 0.97 0.02
L3 0.99 0.01 1.00 0.00 0.97 0.03 0.98 0.02
L5 0.99 0.01 1.00 0.00 0.96 0.04 0.97 0.04

AR
Pelvis 0.99 0.01 0.98 0.02 0.96 0.05 0.98 0.02

FE = flexion/extension; LB = lateral bending; LE = lateral excursion; 
AR = axial rotation. *Values for horses with back dysfunction statistically
significant (P<0.05) compared with asymptomatic horses.
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Discussion

The purpose of this study was to evaluate the movement of 
the back in sport horses with clinical signs of pain/discomfort 
in the back and reduced performance. A standardised protocol
(with clinical examination and radiological, scintigraphic and
kinematic evaluations) used previously for the control group 
of asymptomatic, fully functioning horses (Johnston et al. 2004)
was used for horses with back dysfunction.

Horses with back pain show an aberrant pattern for the
movement of the back, which, by the aid of the objective
measurement technique, makes it possible to detect a horse with
back dysfunction. It is reasonable to believe that a horse with a
sore back tries to move in a way that, if possible, may alleviate
the pain. Apparently this is best accomplished by a stiffening or
reduction of dorsoventral movement in the caudal thoracic back
and at the thoracolumbar junction, at both the walk and trot. T h e
abnormal lateral movement seen at the withers and decreased
AR of the pelvis result in a side-to-side swaying walk as seen
from behind. Presumably, the symptomatic horse has altered
normal neuromuscular control of the walk and trot to adjust to
back pain. Acquired pathological limitations could also be an
initial source of the problem and therefore crucial factors to
decreased ROMs.

Apparently, flexion of the back is reduced to limit the relative
displacement of the individual segments of the thoracolumbar
back, perhaps due to excessive muscular activity as aggravated by
nocioception (Perl 1976). The normal movement of the back is
controlled by muscle activity more at the trot than at the walk,
where the movement is more passive with a greater amplitude for
the lateral and twisting movements. This may be the reason why
the ROM for the AR of the pelvis is decreased in a horse with back
pain at the walk, but not at the trot.

The reduction in ROM for the FE and AR movements has
been observed in an earlier case study of one horse with increased
responsiveness to palpation of the lumbar and sacral back (Faber
et al. 2003). The shorter stride length observed in horses with
back pain at the walk, coinciding with the decreased FE
movement of the back, is in accordance with the findings of
J e ffcott (1980) and Faber et al. (2003). It is also in agreement
with the positive relationship between the pro- and retraction of
the hindlimbs and the FE movement of the back that has been
established in clinically sound horses at the walk (Faber et al.
2000) and trot (Faber et al. 2001). In the present study, the
expected reduction in stride length in the horses with back
dysfunction was not seen at the trot. The explanation for this is
not obvious, but it is possible that the muscle activity in 
the hindlimbs was altered and may have influenced the stride
length. The slight difference in stride velocity at the trot does 
not seem likely to have caused the decrease in ROM (Robert 
et al. 2 0 0 1 ) .

The present study shows significant differences between
horses with back pain and asymptomatic controls at both walk and
trot. The differences are most striking at the thoracolumbar
junction, where the patients, in addition to the changes in the
ROM, were also less symmetrical for the FE movement at 
the walk. These findings indicate that the thoracolumbar junction
is one part of the back especially predisposed to impairment
(Denoix 1998; Holm et al. 2002). Since all horses showed muscle
soreness on palpation of the back, and more than half of them 
had pathological skeletal reactions, it is reasonable to believe that
this was the main reason for the decreased dorsoventral FE
movement at both gaits and the changed lateral movement at 
the walk.

This study supports the use of objective measurements of back
kinematics as a valuable tool to help identify horses with back
dysfunction. Before using it more extensively it is necessary to
evaluate the method further including measurements of patients
whose diagnoses can be confirmed and long-term follow-ups of
back patients after treatment.

Fig 3: Mean ± s.d. range of movement for the axial rotation movement of
the pelvis at walk and trot. � = asymptomatic horses at walk; � = horses
with back dysfunction at the walk; � = asymptomatic horses at the trot; 
� = horses with back dysfunction at the trot. *Values for horses with back
dysfunction statistically significant (P<0.05) compared with
asymptomatic horses.
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Summary

Reasons for performing study: Diagnostic infiltration of local
anaesthetic solution is commonly used in cases of equine
back pain. Evaluation is subjective and it is not known how
local analgesia of the back affects horses without clinical
signs of back pain.

O b j e c t i v e s: To evaluate the effect of infiltration of local
anaesthetics on the movement of the back in horses without
clinical signs of back pain, and to evaluate the usefulness of
kinematic studies as an objective and quantitative tool in
evaluating local analgesia in clinical practice.

M e t h o d s: The kinematics of the back in 10 clinically sound
horses were measured on 2 occasions at walk and tro t
b e f o re and after injections with mepivacaine and sodium
chloride around the interspinous spaces between T16 and
L2. The kinematics were compared between the 2 occasions
b e f o re injections and before and after each injection.

Results: The range of motion (ROM) for dorsoventral flexion-
extension (FE) of the back was increased significantly in all
measured segments other than T10 at walk, as was lateral
bending (LB) at T10, L3 and L5 after injection of
mepivacaine. For lateral excursion (LE), total movement
increased at all measured segments. At trot the only affected
segment was L3, where the injection with mepivacaine
d e c reased the ROM for FE. A f t e r injection of sodium
chloride the ROM for FE increased at T13 and T17 at walk.
Lateral bending and LE were not affected at walk. At trot,
LB increased at L3 and L5. 

Conclusions and potential relevance: Diagnostic infiltration of
local anaesthetic solution affects the function of the back in
clinically sound horses, which must be considered when
interpreting the use of this clinical aid in assessing clinical
cases of back dysfunction. Kinematics can qualitatively and
quantitatively evaluate the effect of local analgesia of the back.

Introduction

Back pain and dysfunction are common issues in equine practice
and are often considered to be a cause of poor performance,
stiffness in the back and/or abnormality of the hindlimb gait in
sport horses (Jeffcott 1980). History and clinical signs are often
nonspecific and a definite diagnosis is a challenge. The complex

anatomy of the equine back contributes to the uncertainty of the
localisation and nature of the injury. While clinical history and
physical examination are fundamental in the diagnosis of back
pain, many ancillary aids, such as different imaging techniques
and diagnostic infiltration of local anaesthetic solution, are often
used to confirm the clinical problem. 

One commonly diagnosed disorder of the equine back is
impingement of the dorsal spinous processes (DSPs) (Jeff c o t t
1979a, 1980; Townsend et al. 1986; Marks 1999). The diagnosis is
made on the basis of radiography and/or scintigraphy or
u l t r a s o n o g r a p h y. Several studies (Jeffcott 1979a; Erichsen et al.
2003) have, however, shown that different degrees of impingement
of the DSPs commonly occur in horses without clinical signs of
back pain and it is therefore important to correlate imaging findings
with pain and impaired performance in the clinical case. In some
horses, impingement of the DSPs might be a subclinical problem,
caused by the wear and tear of age (Johnston et al. 2 0 0 4 ) .

Jeffcott (1980) found that local anaesthesia of the interspinous
spaces in horses with overriding DSPs could eliminate the back
pain and result in marked improvement of performance. This
technique is often used as a method of evaluating back pain.
Walmsley et al. (2002) considered diagnostic analgesia to be the
most important test to confirm that clinical signs of back
dysfunction are associated with impingement of the DSP.

Local analgesia is extensively used in evaluating problems of
the locomotor system, as in lameness or back pain, with the
assumption that the technique itself does not change the
movement pattern of the horse (Drevemo et al. 1999). That this is
not necessarily the case was, however, shown by Drevemo et al.
(1999) in evaluating distal limb anaesthesia in sound horses. In
this study it was shown that a high palmar digital nerve block
altered the locomotion pattern in sound horses, possibly by
affecting proprioception. 

The effect of local analgesia of the back is traditionally
evaluated through repetition of the same exercise or riding test
before and 20–30 mins after infiltration of local anaesthetic
solution (Jeffcott 1975; Marks 1999; Walmsley et al. 2002; Denoix
and Dyson 2003). In a positive test, a marked improvement in
performance is expected to be observed from the ground, as well as
felt by the rider. Although Walmsley et al. (2002) considered false
positive tests unlikely, assessing the result of the analgesia from the
r i d e r’s judgment demands both skill and objectivity of the rider. A s
pointed out by Denoix and Dyson (2003), examination of a horse
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with a potential back problem while it is ridden also allows the
clinician to assess the rider. However, scientific evidence of the
e ffect that local analgesia has on a clinically sound back is needed
to use this aid in clinical cases.

Meaningful criteria for the assessment of back pain and an
objective system of quantifying it would solve many of the
difficulties in clinical diagnosis (Jeffcott 1979b). Such a system
would also be an asset in evaluating local analgesia of the equine
back, to complement the veterinarian’s eye and the rider’s
perception. In several studies (Audigié et al. 1999; Faber et al.
2000, 2001a,b; Haussler et al. 2001; Robert et al. 2001) the
kinematics of the equine back have been studied with a motion
analysis system during treadmill work. Faber et al. ( 2 0 0 0 )
developed a protocol that was validated and shown to be reliable
and repeatable within individual animals and between days (Faber
et al. 2001c, 2002). This protocol has since been used to establish
databases on the movement of the back in fully functioning
(Johnston et al. 2004) as well as dysfunctional (Wennerstrand et
al. 2004) riding horses, and could be used to quantify objectively
the effect of local analgesia of the back. 

The aim of the present study was to evaluate, using kinematic
studies, the effect of local analgesia on the movement of the back
in horses without clinical signs of back pain, thereby also
evaluating the usefulness of kinematics as a clinical tool in the
diagnosis of equine back dysfunction. The hypothesis was that
local analgesia affects the movement of the back in a clinically
sound horse. 

Materials and methods

The study was a randomised cross-over design. All horses were
measured twice on 2 occasions at walk and trot on a treadmill. A f t e r
the first measurement, the back of each horse was injected with
either a local anaesthetic solution or sodium chloride (see below for
details). A second measurement was taken 25 mins after injections.
Seven days later, the movement of the back was measured a third
time. The horses first injected with local anaesthetics were then
injected with sodium chloride and vice versa. A last measurement
was carried out 25 mins after the second injection.

Horses

Ten horses were used for this study; one Warmblood riding
horse, the rest Standardbred trotters, 7 mares and 3 geldings,
age 3–14 years (mean age 7.5 years), bodyweight 426–541 kg
(mean 501 kg). All horses were used for teaching purposes at
the University clinics and were neither regularly ridden nor
driven. Before the horses were included in the study, a full
physical examination including inspection and palpation of all 
4 limbs and the back, plus observation of the horse moving in-
hand on a hard surface at walk and trot and flexion tests of the
entire 4 limbs, was performed. If a horse was initially lame,
showed a response of more than one degree (scale 0–5) on a
flexion test or demonstrated a painful reaction on palpation of
the back, it was excluded.

Radiographic examination

Radiographs of the DSPs in the thoracolumbar spine were
obtained in 9 of the horses. Radiolucency and sclerosis in each
DSP of T15–L2 was evaluated (Erichsen et al. 2003). The width

of the interspinous spaces was measured with a digital calliper,
and was considered narrow when <4 mm. Presence or absence of
anatomically coinciding radiolucency, sclerosis and narrow
interspinous space in the DSPs were used as criteria in this study.

One of the horses examined (the Warmblood riding horse)
demonstrated mild narrowing of the interspinous processes in 
T16–L2 and accompanying mild sclerosis. The other 8 horses
radiographed did not show any radiographic signs of abnormality.

Injection technique

The DSPs of T16, T17, T18, L1 and L2 were identified by
palpation. Ten ml mepivacaine hydrochloride (Carbocain 20
mg/ml)1 or physiological sodium chloride were injected on either
side of the interspinous space between T16–17, T17–18, T18–L1
and L1–2, approximately 20 mm lateral to the midline, with the
needle pointing towards the midline. In clinical cases, the
selection of which interspinous spaces to inject is based on
palpation and radiological findings. In this study, the above-
mentioned locations were chosen on the basis of findings in an
earlier study (Wennerstrand et al. 2004) of sport horses with back
pain, where the caudal thoracic back and the T/L junction were the
most frequent locations of back pain. 

The position of the needle during injection is shown in Figure 1.
The total amount of mepivacaine or sodium chloride injected in each
horse at each occasion was 80 ml. Forty mm long, 21 gauge needles
were used. The length of needles was chosen so that mainly the
upper half of the DSP would be affected by the analgesia and to
minimise the risk of affecting deeper structures, such as the
intervertebral articulations, which would confound the interpretation
of the analgesia. The reasons for not injecting in the midline were
that in clinical cases it is often not possible due to impinging spinous
processes, and also it allowed markers used for the measurements
before injections to be left in place for those made after injections.

Experimental set-up and data collection

Before the first recording, all horses were trained 4 times on the
treadmill at walk and trot (Fredricson et al. 1983; Buchner et al.
1994). The DSPs of T6, T10, T13, T17, L1, L3, L5 and S3 and
both left and right tubera coxae were identified by palpation.
Spherical reflective markers (diameter 19 mm) were placed over
the identified landmarks using quick-drying glue. An additional
marker was placed on the lateral hoof wall of the right hindlimb.

Fig 1: Ultrasonographic image in the transverse plane showing the
position of the needle in the multifidus muscle at injection of the caudal
thoracic back.
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For collecting the position data of the markers, a modern
commercially available motion analysis system (Proreflex)2

consisting of 6 cameras was used. The system is based on passive
markers and infrared cameras. The cameras were placed around the
treadmill so that each marker was always seen by at least 2 cameras.
The inaccuracy in identifying the marker location was <1.5 mm. 

The measurement volume made up a laboratory coordinate
system with the positive y-axis oriented in the line of progression,
positive z-axis oriented upward and x-axis oriented perpendicular to
the direction of the y- and z-axes. The calibration was performed
dynamically using a calibration frame which defined the orientation
of the right-handed orthogonal laboratory coordinate system and a
wand with an exactly defined length. Data were captured at a
sampling rate of 240 Hz for 1 sec at a square stance and for 10 secs
with the horses walking (1.4 m/sec) and trotting (3.5 m/sec).

Calculations of back kinematics in 2D

The reconstruction of the 3D position of each marker was based on
a direct linear transformation algorithm (Qtrack)2. Subsequently,
the raw x-, y- and z-coordinates were exported into Matlab3 a n d
B a c K i n2 programme packages for further data processing. T h e
individual stride cycles were determined and the beginning of each
stride cycle was defined as the moment of first ground contact of
the right hind hoof, determined from the velocity profile of the
marker on the right hind hoof (Peham et al. 1999; Mickelborough
et al. 2000). The x-, y- and z-coordinates were used to calculate the
back movements in accordance with Faber et al. (1999). A n
explanation of the principles of the instantaneous orientation of a
vertebra was presented by Johnston et al. ( 2 0 0 2 ) .

Coordinate and angular motion pattern (AMP) data were
extracted at walk and trot from approximately 8 and 
12 representative strides, respectively. Each stride was normalised
to 101 data points, in order to allow averaging of the AMPs over
strides. Stride length and velocity were calculated from the hoof
marker. The range of motion (ROM) was derived from the AMPs.

Statistical analysis

The results are presented as means of the total ROM. Wilcoxon
matched pairs test was used to analyse possible differences in
spatiotemporal parameters as well as in the kinematics between
horses’ back movements before and after injection of mepivacaine
and sodium chloride, respectively, and before the diff e r e n t
injections. The minimum level of statistical significance was set to
P<0.05. Statistical analyses were performed with a statistical
software package (Statistica)4.

Ethical review

Before the study’s initiation, the local ethical committee for the
Swedish National Board for Laboratory Animals reviewed the
study and considered it to be acceptable.

Results

Kinematics

No spatiotemporal variables (stride length, stride velocity and
protraction and retraction of the right hindlimb) changed due to
the injection of local anaesthetic solution or sodium chloride.

After injection of local anaesthetic solution, there was a
significant increase in the ROM for dorsoventral flexion and
extension (FE) at all measured segments other than T10 at walk
(Table 1). For lateral bending (LB) at walk, ROM increased in
T10, L3 and L5, and for lateral excursion (LE) (Faber et al. 2003)
total movement increased in all measured segments. Axial rotation
(AR) of the pelvis was not affected.

At trot, there was a significant decrease in the ROM for FE at
L3 after injection of local anaesthetic solution. No other
movement was significantly affected at trot.

TABLE 1: Mean ± s.d. range of motion (ROM) for flexion-extension (FE),
lateral bending (LB), axial rotation (AR) and lateral excursion (LE) of 6
back vertebrae (T10–L5) and the pelvis on 2 occasions at walk and trot
before and after injections of sodium chloride and mepivacaine

Sodium chloride Mepivacaine
Before After Before After

Walk 1.4 m/sec
FE (°)

T10 5.6 ± 1.09 6.0 ± 0.87 5.5 ± 1.27 5.9 ± 1.47
T13 7.2 ± 1.37 7.8* ± 1.47 7.1 ± 1.69 7.9* ± 1.58
T17 6.9 ± 1.37 7.5* ± 1.53 7.1 ± 1.63 8.1* ± 1.37
L1 6.4 ± 1.39 6.8 ± 1.81 6.3 ± 1.48 7.6* ± 1.28
L3 6.2 ± 1.57 6.7 ± 1.82 6.0 ± 1.45 7.4* ± 1.30
L5 5.7 ± 1.38 6.0 ± 1.47 5.6 ± 1.22 6.8* ± 1.02

LB (°)
T10 9.4 ± 1.12 9.7 ± 1.15 9.2 ± 1.44 10.0* ± 1.41
T13 7.0 ± 1.87 6.8 ± 1.52 7.1 ± 1.80 7.3 ± 1.72
T17 4.5 ± 1.81 4.5 ± 1.57 4.8 ± 1.84 4.8 ± 1.44
L1 3.3 ± 1.01 3.6 ± 1.15 3.1 ± 0.90 3.2 ± 1.17
L3 4.4 ± 1.50 4.8 ± 1.41 3.9 ± 1.36 4.6* ± 1.31
L5 5.2 ± 1.51 5.7 ± 1.45 4.7 ± 1.70 5.8* ± 1.37

LE (mm)
T10 23.4 ± 4.65 25.3 ± 4.82 20.1 ± 4.42 24.4* ± 3.90
T13 37.2 ± 5.58 39.8 ± 5.11 35.3 ± 4.17 39.3* ± 3.77
T17 49.0 ± 5.44 50.8 ± 7.53 46.7 ± 5.51 51.1 ± 5.75
L1 47.5 ± 5.51 49.0 ± 6.95 45.0 ± 6.27 49.8* ± 5.74
L3 39.7 ± 4.69 41.3 ± 6.13 37.1 ± 6.38 41.4* ± 5.67
L5 29.8 ± 4.15 31.0 ± 5.51 27.8 ± 5.29 31.1* ± 5.09

AR (°)
Pelvis 11.2 ± 2.32 12.0 ± 2.95 10.9 ± 2.50 11.5 ± 3.15

Trot 3.5 m/sec
FE (°)

T10 3.7 ± 1.34 3.5 ± 1.03 3.4 ± 1.03 3.3 ± 1.01
T13 3.2 ± 1.85 3.0 ± 0.56 2.9 ± 0.72 3.0 ± 0.73
T17 3.0 ± 1.74 2.4 ± 0.54 2.3 ± 0.48 2.6 ± 0.57
L1 3.4 ± 1.24 3.2 ± 0.86 3.3 ± 0.84 2.9 ± 0.55
L3 4.1 ± 0.83 4.0 ± 0.81 4.3 ± 1.06 3.8* ± 0.94
L5 3.3 ± 1.38 2.8 ± 0.63 3.2 ± 0.95 2.8 ± 0.73

LB (°)
T10 7.3 ± 1.54 7.7 ± 1.55 7.3 ± 1.75 7.0 ± 1.54
T13 5.1 ± 1.20 4.9 ± 1.28 5.1 ± 0.99 4.8 ± 1.29
T17 3.2 ± 0.62 3.4 ± 0.98 3.7 ± 0.66 3.4 ± 1.10
L1 2.8 ± 0.82 3.2 ± 0.87 3.0 ± 1.02 3.1 ± 0.94
L3 3.3 ± 0.97 3.8* ± 0.92 3.7 ± 1.13 3.7 ± 1.15
L5 3.5 ± 0.87 4.0* ± 1.02 4.0 ± 0.91 4.2 ± 1.40

LE (mm)
T10 21.0 ± 4.56 23.1 ± 4.04 19.8 ± 4.19 20.3 ± 3.33
T13 27.3 ± 7.56 29.7 ± 5.04 28.4 ± 6.43 28.0 ± 5.32
T17 30.3 ± 8.02 31.4 ± 5.22 30.7 ± 7.35 30.4 ± 5.95
L1 28.7 ± 7.36 30.2 ± 5.02 29.9 ± 6.80 29.8 ± 6.40
L3 24.9 ± 6.16 26.6 ± 4.55 26.6 ± 6.88 26.3 ± 7.02
L5 18.6 ± 4.81 20.4 ± 4.20 20.4 ± 5.79 20.4 ± 6.44

AR (°)
Pelvis 5.4 ± 1.61 5.3 ± 1.34 5.4 ± 1.38 5.0 ± 1.60

*ROM after injection of sodium chloride or mepivacaine significantly different
(P<0.05) from that before injection.
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After injection of sodium chloride, there was a significant
increase in the ROM for FE at T13 and T17 at walk (Table 1).
Lateral bending, LE and AR of the pelvis were not affected. At
trot, the only variables that changed significantly were LB at L3
and L5 after injection of sodium chloride.

The movement of the back before injection of mepivacaine
compared with that before sodium chloride did not diff e r
significantly in walk or trot other than a decrease in LB at L5 and
LE at L3 and L5 at walk. 

Discussion

Diagnostic infiltration of local anaesthetics is often used in
examination of cases of impingement of the DSPs in the horse
(Marks 1999; Walmsley et al. 2002). The method has some
limitations in being unspecific if care is not taken with the injection
technique, where the goal is to limit the analgesia to the upper part
of the DSP. Interpretation of the result can otherwise be
confounded (Denoix and Dyson 2003). Another limitation is the
subjective evaluation of the analgesia, traditionally by observation
of the horse while being ridden, as well as the rider’s experience.
Evaluation of the analgesia could be greatly improved with an
objective and quantitative method of evaluating the movement of
the back. Kinematic studies of the equine back during treadmill
locomotion have proven to be a reliable and repeatable tool (Faber
et al. 2001c, 2002). Smaller changes in back movement than the
eye can detect can be registered and the method can also be used in
horses that are dangerous to ride. Motion analyses register only
d i fferences in movements, whereas the riding test allows an
evaluation of differences in the horse’s attitude and willingness to
perform after local analgesia. In some cases, diagnostic injection of
local anaesthetics might remove pain but not affect the mechanics
of movement in the back, which could give a true improvement of
performance in the ridden situation but not during kinematic
studies. On the other hand, kinematics can register changes in back
movement in a horse that, due to habit or mental reasons, remains
unwilling or difficult to ride after analgesia. As to whether
kinematics can complement clinical evaluation of local analgesia
in horses with back problems, further studies will be required.

In this study, all but one in the group of clinically sound horses
were Standardbred trotters. It has been shown that different breeds
of horses have different movement patterns in the back (Faber et
al. 2002). When using horses without clinical signs of back pain
as reference to clinical cases, horses in the 2 groups should ideally
be of the same breed. The within-horse differences seen in the
study should, however, be valid for different breeds. 

One horse demonstrated low-grade abnormal radiographic
findings in the DSP of T16-L2. The clinical examination, together
with the radiographic examination, indicated that the horses used
in this study were clinically sound with regard to the back.

Changes in movement of the back were seen mainly at walk,
which is probably due to the fact that the normal movement of the
back at walk is more passive (Denoix 1999) and at trot more
controlled by muscle activity. The injections (Fig 1) were made in
the multifidus muscle, which plays a major role in stabilisation of
the vertebrae and proprioceptive adjustment of the spine (Denoix
and Dyson 2003). The injection of local anaesthetic solution
appeared to affect the natural rigidity of the back, causing an
increased flexibility in the areas affected by injections. The
neuromuscular activity of the back was apparently modified,
resulting in altered natural back rigidity. These effects can also be

seen, to a smaller extent, after injection of sodium chloride. The
question arises as to whether there is also a local, mechanical-
neuromuscular effect on the rigidity of the back of injections in the
multifidus muscle.

Before injections of either mepivacaine or sodium chloride, a
high degree of repeatability was seen between the 2 measurements.
This is in accordance with the conclusion of Faber et al. (2002) that
analysis of back kinematics in the horse can provide highly
repeatable data, making it suitable for clinical use.

In conclusion, if diagnostic infiltration of local anaesthetic
solution is used as a tool in evaluating horses with back problems,
the effect that the analgesia has on the back of clinically sound
horses should be taken into account, to avoid false interpretation.
Combining the riding test with kinematic studies should improve
interpretation of the analgesia, adding an objective evaluation of
movement to the more subjective test of improved performance
that the riding test provides.
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Summary 
 
Reasons for performing the study: Back problems are important contributors to poor 
performance in sport horses. It has been shown that objective evaluation of the function 
of the back through kinematic analysis can differentiate horses with back problems 
from asymptomatic horses. The underlying mechanism can, however, only be identified 
in a uniform, experimental setting.  
Objectives: The aim was to evaluate if induction of back pain in a well-defined site would 
result in a consistent change in back movement.  
Methods: Back kinematics was recorded in eight horses at the walk and trot on a 
treadmill. After the first measurement, unilateral back pain was induced by injecting 
lactic acid into the longissimus dorsi muscle. Additional measurements were done 
during the week following the injections. Data were captured during steady state 
locomotion for 10 seconds at 240 Hz using an infrared-based automated gait analysis 
system. Vertebral range of motion and mean angles were derived from angular motion 
pattern data. 
Results: After the injections, the caudal thoracic back was more extended at both gaits. 
At trot, the back was also more bent to the left, while at the walk it first bent to the left, 
followed by bending to the right. Additionally, the pelvis rotated more to the left after 
the injections. 
Conclusions: Horses with identical back injuries appear to show similar changes in their 
back kinematics, as compared to the asymptomatic condition. Unilateral back pain 
seems to result in an increased extension of the back, as well as compensatory lateral 
movements.  
Possible clinical relevance: Back movements are complex and subtle, and changes are 
difficult to detect with the human eye. Present-day gait analysis systems can identify 
changes in the back movement, and knowledge of the relationship between such changes 
and the site of injury will be of help in better localizing and diagnosing disorders of the 
equine back. 
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Introduction 
 
Equine back pain and dysfunction are common and important problems in veterinary 
medicine (Jeffcott, 1980). An exact diagnosis is however often hard to arrive at. Essential 
information can be obtained from the anamnesis and the clinical examination, but additional 
information is usually needed to correctly diagnose the patient. Frequently used techniques, 
such as regional analgesia, radiography, scintigraphy and ultrasound, are valuable diagnostic 
aids when evaluating a horse with back dysfunction, but sometimes they are insufficient to 
detect the origin of the problem. Earlier studies have shown that it is possible to measure 
objectively the movement of the back in detail (Audigié et al., 1999; Denoix, 1999; Faber et 
al., 2000; Faber et al., 2001; Haussler et al., 2001; Licka et al., 2001a; Licka et al., 2001b). It 
has further been shown that sport horses with decreased performance, abnormal movements 
during work and clinical back pain on palpation show, at both walk and trot, a significantly 
decreased movement of the back compared to asymptomatic, competing riding horses 
(Wennerstrand et al., 2004).  
      It has been shown that back pain can be induced by the intramuscular injection of a 
concentrated (85%) lactic acid solution into the longissimus dorsi muscles (Jeffcott et al., 
1982), which creates a marked but reversible pain reaction with some heat and swelling, and 
an increased stiffness of the back. 
      To interpret the changes in the back movement properly, it is necessary to know how the 
changes correspond to the type and location of an injury. This can be accomplished by 
measuring the movement of the back in asymptomatic horses before and after inducing back 
pain in a specific tissue and location. 
      The aim of this study was to determine vertebral kinematics in horses walking and trotting 
on a treadmill before and after pain induction of back pain induction. Our hypothesis was that 
induction of back pain in a well defined site results in consistent changes in the movement of 
the back. 
 
Materials and methods 
 
Horses 
Eight Warmblood horses, all mares, between 7 and 12 years old, were used in this study. 
Their body weights were 567 ± 22.1 kg and their heights at the withers 163 ± 3.6 cm. All 
horses were in regular training for dressage or show jumping, and two were also sometimes 
used for driving. The horses underwent a clinical examination including a visual and 
palpatory examination, observation of the horse moving in hand on a hard surface and lunging 
at both reins. If lameness was detected in any of the mentioned exams, or if a horse 
demonstrated pain on palpation of the back, it was excluded. 
 
Experimental set-up and data collection 
Prior to the first recording, the horses were trained at several occasions on a treadmill at walk 
and trot to ensure a consistent gait pattern (Fredricson et al., 1983; Buchner et al., 1994). 
Back and limb kinematics was measured at the walk and trot on the treadmill before and at 1 
hour, 1 day, 2 days, 3 days and 7 days after the pain induction. 
      Spherical, reflective markers, 19 mm in diameter, were glued onto the skin over the dorsal 
spinous processes of thoracic (T), lumbar (L) and sacral (S) vertebrae: T6, T10, T13, T17, L1, 
L3, L5 and S3. Markers were also placed on both left and right tubera coxae and proximally 
on the lateral part of the hoof wall of each hoof. Additional markers were placed on the neck 
and limbs for a parallel study. The landmarks were identified by palpation in the square 
standing horse. The positions of the markers (spatial resolution less than 1.5 mm) were 
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captured by six infrared cameras (ProReflex®)1, which were positioned around the treadmill 
in a way that each marker was always seen by at least two cameras. 
      Measurements were made relative to a right-handed orthogonal laboratory coordinate 
system with the positive y-axis oriented in the line of progression, the positive z-axis oriented 
upward and the x-axis oriented perpendicular to the direction of the y- and z-axes. Data was 
captured at a sampling rate of 240 Hz for 5 seconds at a square stance and for 10 seconds with 
the horses walking (1.6 ms-1) and trotting (4.0 ms-1) on the treadmill. 
      After each session on the treadmill except for the first, the back was examined. The tips of 
the spinal processes and the muscles were palpated and any swellings were noted. Back pain 
was considered present if the horse showed signs of pain/discomfort on palpation of the back. 
 
Injection technique 
Each horse stood unsedated in a quiet room. The back was clipped and aseptically prepared. 
The dorsal spinous processes of T13, T14, T15, T16, T17, T18 and L1 were identified by 
palpation. Two ml of 85 % lactic acid solution was injected into the left M. longissimus dorsi 
at the height of the caudal edges of T13, T14, T15, T16, T17 and T18, approximately 10 cm 
left of the midline using a 40 mm long, 21 gauge needle. Total volume injected was thus 12 
ml. 
 
Calculation of back kinematics 
The reconstruction of the 3-dimensional position of each marker is based on a direct linear 
algorithm (QTrack™)2. The raw x-, y- and z-coordinates were exported into MatLab®3 and 
Backkin®4 programme packages for further data processing. The beginning of each stride 
cycle was defined as the moment of first ground contact of the left hind hoof. 
      The x-, y-, and z-coordinates were used in accordance to Faber et al. (1999) to calculate 
the flexion-extension and lateral bending movements of the back, and the axial rotation of the 
pelvis. An explanation of the principles of the instantaneous orientation of a vertebra has been 
presented by Johnston et al. (2002).  
      Coordinates were extracted for the walk and trot from approximately 8 and 10 
representative strides, respectively. Angular motion patterns (AMPs) were calculated for each 
vertebral angle and the pelvis. In order to allow averaging of the AMPs over strides, each 
stride was normalised to 101 data points. 
      Stride length and duration were calculated from the marker on the left hind hoof. The total 
range of motion (ROM) and the mean movement were derived from the AMPs. 
 
Statistical analysis 
The results are presented as means ± s.d. Data were tested for normality of distribution. The 
variations in the back vertebral angles throughout the stride were normally distributed and 
further analysed with Students’ t-test, in which each individual percentage of the stride post 
injection was compared to its ditto prior to the injections. Wilcoxon matched pairs test was 
used to analyse possible ROM and AMP differences. The minimum level of statistical 
significance was set to p<0.05.  
 
Ethical Review 
The study was approved by the Animal Experimentation Committee of the Utrecht 
University, in compliance with the Dutch Act on Animal Experimentation. 
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Results 
 
Clinical signs 
Subsequent to the lactic acid injections, the horses demonstrated mild to moderate pain on 
palpation of their backs during a few days. One hour after the injections, mild swelling had 
appeared in some of the horses. The injected areas were also mildly to moderately painful. 
Twenty-four hours after the injections, the injection sites were swollen in all horses, with a 
maximum diameter of 5 cm. On palpation, 4 of the horses demonstrated mild pain in the left 
half of the caudal thoracic back. Due to technical circumstances, the other four horses were 
not palpated 24 hours post injection. 
      The swelling peaked at 48 hours after the injections, with diameters up to 10 cm around 
the injection sites. At that time, 6 of the horses were mildly and 2 moderately painful left to 
the mid-line in the region from the withers to the mid-lumbar back. Three days after the lactic 
acid injections, most swellings had started decrease. The left M. longissimus dorsi was still 
mildly to moderately painful from T13 to the T/L-junction in all 8 horses. Two of them also 
demonstrated pain on palpation of the cranial lumbar back. 
After one week, most swellings had reduced to barely visible or only palpable. Clearly visible 
swellings were noted at only four injection sites, the largest with a diameter of 2 cm. On 
palpation of the back, no abnormality was noted in 2 of the horses, while 6 had mildly tensed 
back muscles or a stiff skin. Of these 6, 5 were not painful at all, and the last one was painful 
only from T12 to T14. 
 
Back kinematics 
Range of motion (ROM) 
Flexion-extension 
Changes in the back kinematics were observed throughout the entire week following the 
injections. One hour after the injections, the ROM for dorsoventral flexion and extension was 
increased by 0.5° at the withers (T10) at the trot (Fig 1b). Two days after the injections, the 
ROM for the flexion and extension was increased 0.6° at T10 at the walk (Fig 1a). It was also 
increased at the caudal thoracic back at the trot (T13=0.4º, T17=0.4º) (Fig 1b), while it was 
decreased 0.3° at L5 at the same gait. Three days following the injections, the flexion and 
extension ROM at T13 was still increased (0.3°) at the trot. 
      One week after the horses had been injected, most of them were no longer painful on 
palpation, but the back movement was still changed. At the trot, the increased flexion and 
extension movement remained at the caudal thoracic back (T13=0.4º, T17=0.2º) and an 
increase was also observed at the lumbar back (L3=0.3º) (Fig 1b). 
 
Lateral bending 
One hour after the lactic acid injections, the ROM for lateral bending was significantly 
reduced (0.8°) at L5 at the walk (Fig 2a). This change remained for 24 hours. The day after 
the injections, the ROM for lateral bending was also decreased at the withers at the trot 
(T10=0.7º) (Fig 2b), a decrease that also remained for 24 hours. Two days after the injections, 
the lateral bending ROM had increased 0.3° at the T/L-junction (L1) at the walk (Fig 2a) 
while it was 0.3° smaller at the T/L-junction (L1) at the trot. The increased lateral bending 
movement at L1 at the walk, could be observed again at the end of the week, together with a 
0.5° decrease in lateral bending movement at T13. 
Axial rotation 
No significant change was observed at the walk or trot for the axial rotation ROM of the 
pelvis after the injections. 
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Figure 1a 
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Figure 1b 
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Figure 1a and 1b. The mean ROM with s.d. for the flexion and extension (FE) movement of 
six back segments at the walk (1a) and trot (1b). Stippled = pre injections; light grey = 1 hour 
post injections; dark grey = 1 day post injections; white = 2 days post injections; striped = 3 
days post injections; black = 7 days post injections. *Movement statistically significant 
different (p<0.05) compared to before the induction of back pain. 
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Figure 2a 
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Figure 2b 
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Figure 2a and 2b. The mean ROM with s.d. for the lateral bending (LB) movement of six 
back segments at the walk (2a) and trot (2b). Stippled = pre injections; light grey = 1 hour 
post injections; dark grey = 1 day post injections; white = 2 days post injections; striped = 3 
days post injections; black = 7 days post injections. *Movement statistically significant 
different (p<0.05) compared to before the induction of back pain. 
 
Vertebral angles throughout the stride cycle 
During the week following the lactic acid injections, some of the mean angles of back motion 
changed significantly at both gaits compared to before the injections. This was true at walk 
for the flexion-extension of T10 and T13, and for the lateral bending of T10, T13 and L5. At 
trot, significant changes were seen for the flexion-extension of T10, T13 and T17, the lateral 
bending of T17 and L5, and for the axial rotation of the pelvis. Some changes could be 
observed during the whole stride cycle, while others were seen during one or more periods of 
the same, for example during the first 50 percent or at ground contact of the respective hind 
limb (Table 1, Fig 3a, 3b and 3c). 
Stride parameters 
There was no change in the linear or temporal gait parameters. The stride length was 2.6±0.1 
m at all days at the trot, and 1.7±0.1 m at all days at the walk, except for the seventh day after 
the pain induction, when the stride length was 1.7±0.0 m. The stride duration was 0.7±0.0 s at 
all days at the trot, and 1.1±0.1 s at all days at the walk, except for the seventh day after pain 
induction, when it was 1.1±0.0 s. 
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Table 1 
 
  Vertebral angles throughout the stride cycle  
  Walk 1.6 m-s  
  
Flexion/ 
Extension 

Type of change Part of stride when 
change was observed 

% of stride 
during which 
change was 
observed 

Time when 
changes 
was 
observed 

Change in  
the total 
mean 
angle 

T10 Increased Extension Whole 100                 
100 

1 hour post  
3 days post 

1.4 °       
1.2 ° 

T13 Increased Extension Just before ground contact 
of LH and during the 
stance phase of LH 

72                   
53                   
46 

2 days post  
3 days post  
7 days post 

0.6 °       

T17 Increased Extension Just before ground contact 
of LH and during the 
stance phase of LH  

64                   
47 

3 days post  
7 days post 

           

Lateral 
Bending 

     

T10 Increased Bending 
to the Right 

Whole 100 7 days post 1.4 ° 

T13 Increased Bending 
to the Left 

Whole 76 2 days post  0.7 ° 

T17 Increased Bending 
to the Left 

Whole 60 2 days post   

L5 Increased Bending 
to the Right 

Whole 100 7 days post 1.2 ° 

 Trot 4.0 m-s  
  
Flexion/ 
Extension 

Type of change Part of stride when 
change was observed 

% of stride 
during which 
change was 
observed 

Time when 
changes 
was 
observed 

Change in  
the total 
mean 
angle 

T10 Increased Extension Whole 90                   
97                   
94 

2 days post  
3 days post  
7 days post 

           
1.1°       

T13 Increased Extension Whole 25                   
36                   
64                   
79 

1 day post   
2 days post  
3 days post  
7 days post 

           
           

0.8°       
0.7°  

T17 Increased Extension Whole 86                   
55                   
88                   
100 

1 day post   
2 days post  
3 days post  
7 days post 

0.6°       
0.4°       
0.7°       
0.8°  

Lateral 
Bending 

     

T10 Increased Bending 
to the Left 

Whole 42                   
41 

2 days post  
7 days post 

           

T17 Increased Bending 
to the Left 

Whole 84 7 days post 1.0° 
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L5 Increased Bending 
to the Left 

Whole 100                 
100 

2 days post  
7 days post 

1.0°       
1.4° 

Axial 
Rotation 

     

Pelvis Increased Rotation 
to the Left 

Whole 57 1 hour post 0.6° 

 
Table 1. The flexion-extension and lateral bending angles of six back segments and the axial 
rotation angles of the pelvis during the stride cycle at the walk and trot during the week 
subsequent to the lactic acid injections. All changes are statistically significant (p<0.05) to 
before the injections.  
 
Figure 3a 
 

 
 
Figure 3b 
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Figure 3c 
 

 
Figure 3a, 3b and 3c. The flexion-extension and lateral bending angles of T13 (walk) and the 
flexion-extension angles of T17 (trot) during the stride cycle during the week subsequent to 
the lactic acid injections. Solid line = pre injections; dotted line = post injections. Positive 
represents dorsoventral flexion and lateral bending to the left. Negative represents 
dorsoventral extension and lateral bending to the right. 
 
Discussion 
 
The results of the present study confirm the hypothesis that back pain in a well-defined site 
results in significant and consistent changes in the vertebral kinematics. 
      Lactic acid injected into the M. longissimus dorsi has been used earlier as a model for 
reversible back pain and was shown to cause a mild pain at walk and trot, and a pain reaction 
on palpation (Jeffcott et al., 1982). In that study, no changes were observed in the linear and 
temporal stride parameters, but the level of performance decreased. 
      Two studies on patients have shown that horses with natural back pain have an aberrant 
movement pattern of the back (Faber et al., 2003; Wennerstrand et al., 2004), which is in 
accordance with our present findings. In one of the previous studies (Wennerstrand et al., 
2004), the horses, among other signs, showed a decreased ROM for flexion-extension at the 
caudal thoracic back and T/L-junction. That observation is opposite to the findings of the 
present study, but may be related to the differences in the anatomical origin of the pain 
between naturally occurring back pain in patients and the artificially induced back pain in the 
present study.  
      Back pain was clearly evident in all horses subsequent to the injections in the present 
study. Whereas no abnormal back movements could be detected by clinical observation, the 
kinematic analysis technique revealed several. The increased extension of the caudal back at 
both walk and trot may have been induced by a shortened and stiffer M. longissimus dorsi not 
able to adequately control the vertebral column. However, the stiffness was not reflected by a 
decreased flexion-extension movement, but instead shown as an increased ROM for this 
parameter. This may be due to the fact that the back pain was unilaterally induced and the 
compensatory mechanisms can be assumed to differ between uni- and bilateral back pain. 
Bilateral back pain is likely to cause a more general restriction of the back movement. 
      As expected, the back showed a transient accentuated lateral bending due to the 
unilaterally induced back pain. The increased lateral bending was most likely a consequence 
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of an impaired muscle function at the painful side. Loss of normal activity in the left epaxial 
musculature may have affected the naturally existing left/right balance and leading to a 
scoliosis of the back with, in this case, right convexity as a result.  
      At the walk, the horses showed a reversed pattern, i.e. bending to the unaffected side, 7 
days after the injections. This may have been caused by a decreased contraction capacity in 
the injected muscle. This biphasic response was also observed in the earlier study in trotters 
with induced back pain (Jeffcott, 2007, personal communication). 
      The clinical examinations showed that the lactic acid injections resulted in an immediate 
onset of back pain, while most changes in movement appeared 48-72 hours post injections. 
This can be explained by the mechanisms of pain physiology. Muscle soreness occurs during 
or immediately after high intensity exercise. The soreness is caused by the naturally produced 
lactic acid that accumulates in the tissue in situations with intensive, rapidly increased, or 
changed exercise. One to two days after exercise there is another, sometimes more severe 
peak of soreness accompanied by stiffness. This is in human medicine called delayed onset 
muscle soreness (DOMS) (Marlin and Nankervis, 2002). It seems that a similar phenomenon 
occurred after the injection of lactic acid in the horses in the present study. In accordance with 
the nature of lactic acid, there was first a direct effect, reflected by the acute pain reaction and 
a few early changes in movement. The changes in movement after a couple of days may 
represent the natural second peak of muscle pain.  
      In naturally occurring muscle pain, the acute soreness is caused by the lactic acid itself, an 
effect of the produced hydrogen ions and the oedema due to fluid uptake into the interstitial 
spaces (Marlin and Nankervis, 2002). In the artificially induced back pain in this study, there 
was a difference compared to the natural situation. Whereas the total volume of fluid may 
perhaps have been comparable to the naturally occurring oedema, the fluid was in this case 
administered as a single bolus and there was no gradual build-up. It has been shown that 
injection of a certain volume of saline per se also influences back movement, presumably by 
its effect on proprioception (Roethlisberger-Holm et al., 2006).  
      In general, back movement seems to change in a similar way at the walk and trot. There 
were only some minor differences. At both gaits, the back was generally more extended and 
also bent towards the painful left side. This asymmetry was most evident at the trot. Since 
back muscle activity is normally greater at the trot than at walk, where the lateral movement 
of the back is largely passive (Robert et al., 1998), it is reasonable to believe that muscle 
soreness will affect back movement more, and remain manifest for a longer period of time, at 
this gait. 
      The caudal thoracic back and T/L-junction were chosen as sites of injection partly based 
on the previous study by Jeffcott et al. (1982), partly because abnormal findings in horses 
with back problems are most commonly seen in this region (Jeffcott, 1980; Denoix, 1999; 
Marks, 1999; Walmsley et al., 2002), and partly due to earlier observations of the back 
movement at the walk and trot in horses with back pain (Wennerstrand et al., 2004). 
      Back movements of the horse are subtle and complex, and different injuries may affect 
back movement patterns in various ways. Present-day technology has proven to be a valuable 
and adequate tool to document back movements and changes therein, changes that are often 
undetectable to the human eye, which also becomes clearly evident in the present study. The 
present-day technology will thus help discover changes due to pain or other influences earlier 
than would be possible by clinical observation only. 
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Abstract
Back dysfunction is an important reason for impaired performance in sport horses. Limb movements influence the
movements of the back and factors affecting the limbs may therefore affect the movement of the back. The aim of
the study was to investigate the influence of weighted boots on the fore- and hind limbs on the movement of the
back. The back kinematics of eight horses was studied at the walk and trot on a treadmill. The ranges of move-
ment (ROM) of the back were compared intra-individually, using Wilcoxon matched pairs test, when the horses
moved with and without weighted boots on the fore- and hind limbs, respectively. Differences were considered
significant at P , 0.05. Weighted boots on the hind limbs increased the ROM for dorsoventral flexion and exten-
sion in the lumbar back at the walk and decreased the ROM for lateral bending at the thoracolumbar junction at
the trot. Weighted boots on the forelimbs decreased the ROM for lateral bending at the withers at the trot.
Knowledge of the effect of weighted boots on the back movement is useful in training and rehabilitation of
sport horses. Weighted boots on the hind limbs at the walk may induce strengthening of the flexors of the
lumbar back and increase the flexion–extension of the lumbar back under controlled conditions.

Keywords: equine; horse; back; kinematics; locomotion; limb movements; weighted boots

Introduction

Poor performance is not uncommonly related to back

dysfunction1. In order to mitigate a back-related prob-

lem and to reduce the risk of re-injury, it is important

to understand how a normal, asymptomatic horse
moves and how its movements can be affected.

At all gaits and in all movements, different parts of

the body are synchronized2–4, and one body segment

may induce or inhibit the movement of another. The

position of the neck and limbs influences the move-

ment of the back5 and the protraction and retraction

of the hind limb correlate directly with the flexion

and extension of the lumbosacral joint6,7.

Weights attached to the hooves affect the movement

characteristics of the limbs. Willemen et al.8 found that

the stride duration and the stride length were increased

and the relative stance duration decreased after a horse

was shod. Greater inertia of the distal limb improved
the quality of the gait. Lanovaz et al.9 reported that

changes in the segment mass of the forelimb segments

affected the peak net joint moments and powers across

the joints of the limb. A changed three-dimensional

movement pattern of the limb may possibly result in

altered movements of the back.

Recently, a Dutch group showed that a weighted

saddle changed the movement of the lumbar spine10,
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but at present there are no studies published that

describe to what extent it is possible to change the

movements of the vertebral column by adding weights

to the limbs. The aim of the present study was to

explore what effect weighting of the limbs might

have on the movement of the back. To achieve this

goal, back kinematics was evaluated before and after

weighted boots were attached to the limbs.
The amplitude of the back movement is greater at

the walk than at the trot2,4,11. At the trot, the stabiliz-

ing muscle activity of the back is high, while the move-

ment at the walk is more passive12, and therefore

probably more responsive to external influences.

Based on these facts, our hypotheses were that the

ranges of motion (ROM) of the back would increase

at the walk and decrease at the trot when weighted
boots were put on either the fore or the hind limbs.

Materials and methods

Horses
Warmblood riding horses that had previously been used

in another study11 participated in the present one. They

were in regular training for dressage up to Intermediaire

I or show jumping at levels up to 1.30m, and were con-
sidered sound and fully functioning by their owners.

The horses underwent an examination in accordance

with standardized routines at the University clinic. Body

weights varied from530 to 640 kg and height at thewith-

ers varied between 158 and 176 cm. No abnormalities of

clinical importance were found in the extremities or the

back in the conformation or on palpation. The horses

were examined in hand at thewalk and trot on ahard sur-
face. They were also lunged at the walk and trot on both

reins and a flexion test of the entire leg was performed

on all four limbs. If lameness was detected in any of

the above examinations or a response of more than 1

degree of lameness (on a scale of 0–5) on a flexion test

was found, the horse was excluded. The back was

thoroughly examined, including visual inspection of

the muscle symmetry of the back, and palpation of the
tips of the dorsal spinal processes of thoracic and

lumbar vertebrae and the sacrum, as well as of the

back muscles. Finally, a test of the back reflexes and

the passive lateral flexibility was carried out. If a horse

showed a significant reaction13 during palpation, it

was excluded. Eight horses between 6 and 14 years of

age (one stallion, three mares and four geldings)

passed the clinical examination and were included in
the study.

Experimental set-up and data collection
Thehorseswere accustomed to and trained on a coirmat

treadmill at thewalk and trot on several occasions before

they were measured14,15. The horses were also accus-

tomed to walking and trotting on the treadmill with

the weighted boots on the fore- and hind limbs, respect-

ively. The boots, that were fastened around the metacar-

pal or metatarsal regions, were made of terylene and

artificial leather and had vertical pockets side by side

intended for weights (Fig. 1). Each boot weighed

700 g. The horses showed no signs of distraction related

to the boots after becoming accustomed to them.

Spherical, reflective markers, 19mm in diameter,
were glued to the skin16 over the dorsal spinous pro-

cesses of eight back vertebrae (T6, T10, T13, T17, L1,

L3, L5 and S3). Markers were also placed on both left

and right tubera coxae, on the lateral styloid process

of the left radius, on the lateral malleolus of the left

tibia and proximally on the lateral part of the left fore

and hind hoof walls. The landmarks were all identified

by palpation. The positions of the markers (inaccuracy
less than 1.5mm)were collected by six infrared cameras

(ProReflexw, Qualysis Medical AB, Gothenburg,

Sweden). They were placed around the treadmill and

positioned so that each marker was always seen by at

least two cameras.

The measurement volume made up a laboratory

coordinate system with the positive y-axis oriented in

the line of progression, parallel to the direction of the
treadmill, the positive z-axis oriented upward and the

x-axis oriented perpendicular to the y- and

z-axes. The calibration was done dynamically by use

of a calibration frame, which defined the orientation

of the right-handed orthogonal laboratory coordinate

system and a wand with an exactly defined length.

Data were captured for 10 s at a sampling rate of

240Hz when the horses were walking (1.5m s21)
and trotting (3.5m s21) at a steady state.

Each horse was measured three times at each gait:

once with the weighted boots on the forelimbs, once

with the boots on the hind limbs and once without

boots. The measurement sequence of the different con-

ditions was chosen randomly within each gait and for

every horse. The repeatability for measurements like

FIG. 1 Weighted boots with separate weights in pockets
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these has earlier been validated in a Dutch–Swedish

cooperation project17.

Calculation of the back kinematics in two
dimensions
The reconstruction of the three-dimensional position

of each marker is based on a direct linear transform-

ation algorithm (QTracke, Qualysis Medical AB). Sub-
sequently, the raw x-, y- and z-coordinates were

exported into MatLabw (The Math Works Inc.,

Natick, MA, USA) and Backkinw (Qualysis Medical

AB) for further data processing. The individual stride

cycles were determined and the beginning of each

stride cycle was defined as the moment for first

ground contact of the left hind hoof. The moment of

ground contact was determined from the velocity pro-
file of the marker on the left hind hoof.

The x-, y-, and z-coordinates were used to calculate

the back rotations in accordance with Faber et al.18.

An explanation of the principles of the instantaneous

orientation of a vertebra was presented by Johnston

et al.19. The amount of protraction and retraction of

the left hind limb was determined from the marker

on S3 and the marker on the left hind hoof.
Coordinate and angular motion pattern (AMP) data

were extracted at the walk and trot from c. 7 and 12

representative strides, respectively. Each stride was

normalized to 101 data points to make averaging of

the AMPs possible over strides.

Statistical analysis
All results are presented as means ^ SD. The ROM of

the vertebral column when wearing weighted boots
on the forelimbs or on the hind limbs was compared

intra-individually to the ROM without weights and to

each other. Comparisons of stride data were

performed in a similar way. The results are not nor-

mally distributed. For the statistical calculations,

Wilcoxon matched pairs test was used. Differences

were considered significant at P , 0.05.

Ethical review
The local ethical committee for the Swedish National

Board for Laboratory Animals approved the study.

Results

At the walk, the ROM for the dorsoventral flexion

and extension was greater at L3 and L5 with

weighted boots on the hind limbs compared to
that without boots (Table 1). Hind limb boots also

resulted in a greater flexion–extension at L5 com-

pared to the forelimb boots. The ROM for the lateral

bending was greater at L5 with the weighted boots

on the hind limbs compared to that on the forelimbs

at the walk.

At the trot, weighting of the hind limbs resulted in a

significantly smaller ROM for the flexion–extension at

L5 than weighting of the forelimbs, and a significantly

smaller lateral bending at the thoracolumbar junction

(L1) compared to the movement without boots

(Table 1). Boots on the forelimbs led to a smaller ROM

for the lateral bending at the withers (T10 and T13)

and a greater ROM for the same parameter at L3
(Table 1) compared to that without boots. At T10,

weighted forelimbs also gave a smaller ROM for the lat-

eral bending compared to that for weighted hind

limbs. The lateral bending of the back at the trot was

greater at L3 with forelimb boots than with hind limb

boots.

The weighted boots did not change the ROM for the

axial rotation of the pelvis at either the walk or the trot

Table 1 The mean ROM in degrees with SD for the flexion–
extension and lateral bending movements of the back at the walk
and trot

Flexion–
extension

Lateral
bending

Back segment Mean SD Mean SD

Walk Normal T10 6.1 1.6 11.2 1.5
T13 8.3 1.4 7.4 1.5
T17 8.8 1.2 5.5 1.6
L1 8.3 0.9 4.3 0.9
L3 8.0 1.1 5.0 1.7
L5 7.1 1.3 6.4 1.6

Hind limb T10 6.0 1.4 11.4 1.7
T13 8.5 1.3 7.1 1.2
T17 9.0 1.1 5.0 0.9
L1 8.8 1.0 4.1 1.1
L3 8.6a 1.1 5.0 1.4
L5 7.8a,b 1.5 6.5b 1.4

Forelimb T10 6.2 1.4 11.1 1.9
T13 8.8 1.5 7.3 1.5
T17 9.2 1.4 5.5 1.1
L1 8.5 1.3 4.5 0.8
L3 8.2 1.3 4.9 1.2
L5 7.1 1.4 5.9 1.2

Trot Normal T10 5.1 0.8 8.3 1.8
T13 3.7 0.6 6.6 1.2
T17 3.0 0.7 5.5 1.7
L1 3.5 0.9 4.1 1.0
L3 4.7 1.3 4.9 1.4
L5 4.0 1.1 5.9 1.2

Hind limb T10 5.0 0.8 8.1b 1.6
T13 3.9 0.7 6.2 1.2
T17 3.2 0.9 5.3 1.6
L1 3.4 0.9 3.7a 0.7
L3 4.5 1.3 4.7b 1.5
L5 3.8b 1.1 5.9 1.3

Forelimb T10 5.2 0.8 7.8c 1.4
T13 3.6 0.5 6.2c 1.2
T17 2.9 0.7 5.3 1.8
L1 3.6 1.1 4.1 1.4
L3 4.8 1.4 5.5c 2.1
L5 4.2 1.1 6.0 1.2

Normal, no boots on the limbs; hind limb, weighted boots on the hind

limbs; forelimb, weighted boots on the forelimbs.
aHind limb statistically significant (P , 0.05) compared to normal.
bHind limb statistically significant (P , 0.05) compared to forelimb.
cForelimb statistically significant (P , 0.05) compared to normal.
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(Table 2). The protraction and retraction of the hind

limb decreased significantly at the trot when the

weighted boots were on the hind limbs compared to

that without boots or when the boots were on the

forelimbs (Table 2).

The means and SD for the stride duration and stride
velocity were calculated for the three conditions at the

walk and trot (Table 3). No significant difference was

found for any of these parameters.

Discussion

This study describes how weighted boots on the fore-

or hind limbs affect the movement of individual

segments of the thoracolumbar region. A validated,

repeatable, standardized protocol and asymptomatic,

fully functioning riding horses were used in order to
minimize biases. The flexion–extension of the lumbar

spine increased with boots on the hind limbs at the

walk and the lateral bending of the thoracic spine

decreased with boots on the forelimbs at the trot.

This was in accordance with the hypotheses and it

also supports previous work12.

Earlier studies have shown that the movement of the

back is greater at the walk than at the trot2,4,11. This
was also the case in the present study. For all three

types of back movement, the overall total ROM was

greater at the walk than at the trot, most likely

caused by the greater muscle activity at the trot as ear-

lier shown by Robert12.

Several studies indicate that important roles of the

muscles associated with the vertebral column is to

stabilize the back and to moderate movements that

may arise6,7,20–22. Back muscle activity does contribute
to the movement of the back3 but this influence seems

to be secondary rather than primary2,4, which indi-

cates an external influence on the movement of the

back. There are indications that the dorsoventral flex-

ion–extension of the back is generated by the hind

limbs2,4. At the walk, both flexion and extension move-

ments start in the caudal part and are then transmitted

cranially with a time-shift2. This has also been
observed in humans23.

The flexion–extension of the back, especially in the

caudal part, has been found to be directly correlated to

the protraction and retraction of the hind limb2. In the

present study, weighted boots on the hind limbs

increased the ROM for the flexion–extension at the

lumbar back at the walk. However, there was no

change in the protraction and retraction of the hind
limbs at the walk. At the trot, the protraction and

retraction of the hind limbs decreased significantly

when the boots were fastened around the hind

limbs, while the flexion–extension did not change sig-

nificantly at any back segment.

It seems that the movement of the back is less suscep-

tible to external influences at the trot compared to that at

the walk. A possible contributing factor could be the
difference in muscle activity between the two gaits. A

horse at the trot has only a diagonal support during the

support phase. To maintain the horse in balance, a

muscle activity reasonably greater compared to at the

walk is required12. The muscle activity stabilizes the

back more at the trot than at the walk.

A recent study has shown that loading of the distal

hind limbs results in a changed movement pattern of
the limbs24. Distal hind limb loading increased the

total ROM of the stifle, hock and hind fetlock, and

decreased the ROM of the distal inter-phalangeal joint.

The weighting did not affect the movement of the hip

joint. In another study, itwas observed that the increased

Table 2 The mean ROM in degrees with
SD for the axial rotation movement of the
pelvis and pro- and retraction of the hind limb
at the walk and trot

Axial rotation
Pro- and
retraction

Walk
Normal 12.6 ^ 2.0 43.4 ^ 2.1
Hind limb 12.8 ^ 2.7 43.9 ^ 2.1
Forelimb 12.9 ^ 2.1 43.8 ^ 1.6
Trot
Normal 5.7 ^ 1.1 39.5 ^ 2.6
Hind limb 5.3 ^ 0.9 38.9 ^ 2.5a,b

Forelimb 6.0 ^ 1.1 39.4 ^ 2.4

Normal, no boots on the limbs; hind limb, weighted

boots on the hind limbs; forelimb, weighted boots

on the forelimbs.
aHind limb statistically significant (P , 0.05) com-

pared to normal.
bHind limb statistically significant (P , 0.05) com-

pared to forelimb.

Table 3 Stride data for the left hind limb expressed as mean ^ SD

Normal Hind limb Forelimb

Walk
Stride duration (s) 1.14 ^ 0.053 1.15 ^ 0.038 1.14 ^ 0.055
Stride velocity (ms21) 1.5 ^ 0.06 1.5 ^ 0.10 1.5 ^ 0.08
Trot
Stride duration (s) 0.75 ^ 0.033 0.75 ^ 0.020 0.76 ^ 0.022
Stride velocity (ms21) 3.5 ^ 0.13 3.5 ^ 0.24 3.5 ^ 0.22

Normal, no boots on the limbs; hind limb, weighted boots on the hind limbs; forelimb,

weighted boots on the forelimbs.
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flexion of the joints, seen at increased trotting speed,

was accompanied by higher excentric muscle activity

during the stance phase, and during the swing phase

shortened limbs because of higher concentric activity

of the muscles25. It seems reasonable to believe that

distal weighting results in similar muscular activity and

that this may be the reason for the increased flexion–

extension of the lumbar back at the walk with the
boots on the hind limbs. M. longissimus dorsi acts

during the intermediate stance phase of the hind limbs

to facilitate propulsion3. Weights on the hind limbs

may increase the activity of this muscle. It is possible

that non-weighted boots could also affect the three-

dimensional movement pattern of the limbs26, and per-

haps in turn result in altered movements of the back.

If the flexion–extension of the back is affected by
the hind limbs to a greater extent than by the fore-

limbs, it could explain why this parameter was not sig-

nificantly affected when the weighted boots were

applied to the forelimbs.

Just as for the flexion–extension, the lateral bending

of the back is linked to the protraction and retraction

of the hind limbs4. Since the lateral bending shows a

mono-sinusoidal movement pattern during the stride
cycle, the inter relationship becomes somewhat

different, however. With the boots on the hind limbs

at the trot, the lateral bending decreased significantly

at the thoracolumbar junction (L1). This change may

correspond to the significantly decreased protraction

and retraction of the hind limbs caused by the hind

limb boots.

It has been stated that the lateral bending of the
thoracic back is influenced by the movement of the

forelimbs. Boots on the forelimbs at the trot resulted

in a smaller lateral bending at the cranial part of the

back (T10 and T13). In humans, it has been shown

that additional loading results in a greater muscular

output27. In the horse, it is possible that added extra

weight on the forelimbs results in increased muscle

activity, which may lead to more stable and balanced
movements. In addition to the decreased lateral bend-

ing of the thoracic back with boots on the forelimbs,

there was also a significant increase of the lateral bend-

ing at L3. This change was unexpected, especially as

the protraction and retraction of the hind limbs did

not change, and we do currently not have an expla-

nation for this specific change.

Since the limb movements can change due to train-
ing28,29, fatigue, pain or other factors, knowledge of

their inter relationship with the movement of the

back improves our understanding for which move-

ments and situations may be beneficial or potential

risk factors to the health of the back.

In the training and rehabilitation of sport horses, exer-

cises to increase the flexion and extension flexibility of

the lumbar back in a controlled way can sometimes be

desirable. The weighted boots used in the present

study may be a good alternative for this purpose,

especially when considering that the risk of overstrain-

ing and of injuries is supposedly low at the walk. Earlier

studies have shown that confidence intervals are large

between individuals, although very small within individ-

uals2. This study is an intra-individual study and the inter-

vals only slightly overlap, if they do at all. Thus, we are
confident that this study is significant17. The clinical rel-

evance might be of great importance. Anecdotal obser-

vations indicate that the weights are sometimes

successfully used to rehabilitate horses with caudal

back problems in Sweden. Weights on the hind limbs

are likely to, at the walk, induce strengthening of the

flexor muscles of the caudal lumbar back and increase

the mobility of the lumbar back in a controlled way.
The boots we used were not very heavy. Increased

weighting will probably affect the movements further,

but excessively heavy boots may also increase the risk

of overstraining. Walking over ground is likely to bring

about the same results as in the study, although there

might be minor differences in the movement pattern

compared to on the treadmill. Before the full effects of

the weighted boots can be evaluated, further studies,
over a longer period of time and perhaps with the use

of electromyography, are required.
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3 Denoix JM and Audigié F (2001). The neck and back. In: W
Back and H Clayton (eds), Equine Locomotion. London:
WB Saunders, 167–191.

4 Faber M, Schamhardt H, van Weeren R, Johnston C,
Roepstroff L and Barneveld A (2001a). Basic three-dimen-
sional kinematics of the vertebral column of horses trotting
on a treadmill. American Journal of Veterinary Research
62: 757–764.

5 Rhodin M, Johnston M, Roethlisberger-Holm K,
Wennerstrand J and Drevemo S (2005). The influence of
head and neck position on the kinematics of the back in
riding horses at the walk and trot. Equine Veterinary Jour-
nal 1: 7–11.

6 Denoix JM (1999). Spinal biomechanics and functional anat-
omy. In: AS Turner and KK Haussler (eds), Veterinary

Effect of weighted boots on riding horse 17



Clinics of North America Equine Practice. Philadelphia:
WB Saunders, 15(1), pp. 27–60.

7 Faber M (2001b). Kinematics of the equine back during
locomotion. PhD Thesis. University of Utrecht, The
Netherlands, pp. 91–110.

8 Willemen MA, Savelberg HHCM and Barnveld A (1997). The
improvement of the gait quality of sound trotting warm-
blood horses by normal shoeing and its effect on the load
on the lower forelimb. Horseshoeing, a biomechanical anal-
ysis. PhD Thesis. University of Utrecht, The Netherlands,
pp. 19–32.

9 Lanovaz JL and Clayton HM (2001). Sensitivity of forelimb
swing phase inverse dynamics to inertial parameter
errors. Equine Veterinary Journal Supplement 33: 27–31.

10 de Cocq P, van Weeren PR and Back W (2004). Effects of
girth, saddle and weight on movements of the horse.
Equine Veterinary Journal 3: 758–763.

11 Johnston C, Holm K, Erichsen C, Eksell P and Drevemo S
(2004). Kinematic evaluation of the back in the asympto-
matic riding horse. Equine Veterinary Journal 6: 495–498.

12 Robert C, Valette JP and Denoix JM (1998). Surface
electromyographic analysis of the normal horse loco-
motion: a preliminary report. Proceedings of the Confer-
ence of Equine Sports Medicine and Science, pp. 80–85,
Cordoba, Spain.

13 Wennerstrand J, Johnston C, Roethlisberger-Holm K,
Erichsen C, Eksell P and Drevemo S (2005). Kinematic
evaluation of the back in the sport horse with back pain.
Equine Veterinary Journal Supplement 36: 707–711.

14 Fredricson I, Drevemo S, Dalin G, Hjertén G, Björne K,
Rynde R and Franzén G (1983). Treadmill for equine
locomotion analysis. Equine Veterinary Journal 15:
111–115.

15 Buchner HHF, Savelberg HHCM, Schamhardt HC,
Merkens HW and Barneveld A (1994). Habituation of
horses to treadmill locomotion. Equine Veterinary Journal
Supplement 17: 13–15.

16 Faber M, Schamhardt H, van Weeren R and Barneveld A
(2001c). Methodology and validity of assessing kinematics
of the thoracolumbar vertebral column in horses based
on skin-fixated markers. Kinematics of the equine back
during locomotion. PhD Thesis. University of Utrecht,
The Netherlands, pp. 65–75.

17 Faber M, Johnston C, van Weeren R and Barneveld A
(2002). Repeatability of back kinematics in horses during

treadmill locomotion. Kinematics of the equine back
during locomotion. PhD Thesis. University of Utrecht,
The Netherlands, pp. 77–89.

18 Faber M, Schamhardt H and van Weeren R (1999). Determi-
nation of 3D spinal kinematics without defining a local ver-
tebral co-ordinate system. Journal of Biomechanics 32:
1355–1358.

19 Johnston C, Holm K, Faber M, Erichsen C, Eksell P and
Drevemo S (2002). Effect of conformational aspects on
the movement of the equine back. Equine Veterinary Jour-
nal Supplement 34: 314–318.

20 Rooney JR (1969). The vertebral column. In: JR Rooney
(ed), Biomechanics of Lameness in Horses 1st edn. Balti-
more, OH: Williams and Wilkins, pp. 90–95.

21 Carlson H, Halbertsma J and Zomlefer M (1979). Control of
the trunk during walking in the cat. Acta Physiologica
Scandinavica 105: 251–253.
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