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Abstract 

 

Landscape pattern is of primary interest to landscape ecologists and landscape 

metrics are used to quantify landscape pattern. Metrics are commonly defined and 

calculated on raster-based land cover maps. One metric is the contagion, existing 

in several versions, e.g., unconditional and conditional, used as a measure of 

fragmentation. However, mapped data is sometimes in vector-based format or 

there may be no mapped data but only a point sample. In this study a definition of 

contagion for such cases is investigated. The metric is an extension of the usual 

contagion, based on pairs of points at varying distances and gives a function of the 

distance. In this study the extended contagion is calculated for vector-based 

delineated real landscapes and for simulated ones. Both unconditional and 

conditional contagions are studied using two classification systems. The 

unconditional contagion function was decreasing and convex, with upper and 

lower limits highly correlated to the Shannon diversity index, thus carrying only 

area proportion information. The spatial information lies in the speed by which 

the function converges to the lower limit; using a proxy function this can be 

expressed by a single parameter b, with high values for fragmented landscapes. 

No proxy function was found for the conditional contagion, for which only 

qualitative information was found. The extended contagion is applicable both in 

patch mosaic models of landscapes and in gradient-based models, where 

landscape characteristics change continuously without distinct borders between 

patches. The extended contagion can be useful in sample based surveys where 

there no map of the entire landscape is available.  

Key words: Landscape pattern analysis; Landscape metrics; contagion; vector-

based; point sampling 

1. Introduction  

Landscape pattern is of primary interest to landscape ecologists, because it is 

assumed that landscape pattern can significantly affect ecological processes 

(Turner, 1989) such as biodiversity and population dynamics (Forman, 1995; 

Schumaker, 1996; Wiens et al., 1997). Thus, landscape metrics, as predictor 

variables, can help us better understand pattern-process relationships (Bebber et 

al., 2005; Hernandez-Stefanoni, 2005). The metrics can also be used to detect 

differences between various landscapes and changes in a given landscape over 

time. The metrics typically are defined in terms of landscape elements such as the 

number, area, and edge length of patches (O’Neill et al., 1988; Turner, 1990; 

Hunsaker et al., 1994).  

       A variety of landscape metrics have been developed to capture both 

composition and configuration aspects of landscape structure (McGarigal and 

Marks, 1995; Gustafson, 1998). Composition refers to the number of land cover 

types and their proportions within landscapes whereas configuration refers to the 

spatial distribution of land cover types. An example of a configuration metric is 

the contagion, which was first proposed by O’Neill et al. (1988) to measure the 

degree of clumping of patches. This metric was proposed by United States 

Environmental Protection Agency (1994) as an effective indicator in landscape 

pattern analysis. Indirectly, the contagion can provide information on landscape 

fragmentation (Hargis et al., 1998), and fragmentation is important for many 

ecological processes (Fahrig, 2003). Furthermore, the contagion is highly 
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correlated with metrics of diversity, dominance, and patch richness (Riitters et al., 

1995; Cain et al., 1997; Frohn, 1998). 

      Landscape metrics in general, and the contagion metric in particular, are 

defined and commonly calculated on raster-based land cover/use maps and a 

frequently used computer software is FRAGSTATS (McGarigal and Marks, 

1995). However, in some environmental monitoring programs, such as the 

Norwegian 3Q (NIJOS, 2001) and the National Inventory of Landscapes in 

Sweden (NILS)(Ståhl et al., 2010) the maps are vector-based (i.e., from aerial 

photographs). In addition, metrics like contagion are sensitive to pixel size, so that 

with increasing pixel size contagion value decreases since the number of within-

patch edges decreases faster than between-patch edges (Wickham and Riitters, 

1995; Ricotta et al., 2003). Some errors can be introduced by converting vector 

data to raster data, for instance, small patches may disappeared (Lunetta et al., 

1991; Wade et al., 2003; Jenness, 2004).  

      In this study, vector-based data set was used where vector-based means that 

landscapes can be delineated into polygons (homogenous area), each with a 

uniquely defined cover type (class). Photo-interpreted polygons are assumed to 

provide an accurate description of existing land cover classes. However to use 

survey data for estimating the contagion metric defined here, there is no need to 

really perform a delineation.     

     Since vector format data sets are important sources for many environmental 

monitoring programs it would be useful to develop new metrics or to redefine 

currently used metrics to meet this data format. Whereas a few studies have been 

conducted on vector-based data sets to calculate metrics such as Shannon’s 

diversity and edge density (Corona et al., 2004; Ramezani and Holm, 2009; 

Ramezani et al., 2010) and contagion (Wickham et al., 1996), more attention is 

needed in this area. 

      The purpose of this paper was to develop a new definition of contagion for 

vector-based data and derive properties of it for a variety of landscapes. In general 

the definition was guided by two goals 1) the aim to avoid the resolution problem 

in raster-based data, and 2) to find a definition that should admit estimation of the 

contagion metric from a point sample in a non-delineated landscape, for which 

only raw, non-delineated remotely sensed data is available.  

 

2. Material and methods 

2.1. The raster-based contagion metric (C) 

Contagion (C) is as a measure of clumping of classes within a landscape. There 

are several alternative raster-based definitions (Riitters  et al., 1996), of which two 

are considered here, one called conditional contagion, uC  and the other 

unconditional, cC  (Li and Reynolds, 1993).  The definition of uC is    
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where
ijp is the proportion of all pairs of adjacent pixels that belongs to the land 

cover type i and j. The definition of cC is    
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where
ijp /
is the proportion of pixels of class j adjacent to pixels that belong to the 

class i and s is the number of land cover types considered. Usually two pixels are 

defined as adjacent if they are neighbours in any of the four principal directions 

but other definitions are possible (Turner et al., 2001). Both definitions are 

normalized to give values between 0 and 1, with low values indicating fragmented 

landscapes with adjacency types in roughly equal proportion (conditionally or 

unconditionally). Calculation of the two metrics from raster data is simple from an 

adjacency matrix that shows the frequency of all adjacency types on the raster-

based land cover map (Haralick et al., 1973).  

 

2.2. A vector-based contagion metric 

A contagion metric for vector data was proposed by Wickham et al. (1996), 

essentially using Eq. (1) but with a different normalization. The definition was 

based on the proportions of edge length between all possible adjacent classes to 

total edge length within the landscape, implying that the main diagonal of the 

adjacency matrix (within-class edge) has been ignored. It is, at least theoretically, 

possible to estimate edge lengths from a point sample (Ramezani et al., 2010). 

However, in this study we propose another metric which is better adapted for 

point sampling and which is also an extension of the raster-based definition (Li 

and Reynolds, 1993). 

    For any given distance d we define )(dpij
 as the probability that two randomly 

chosen points at distance d belongs to the classes i and j (in that order). Thus 

)(dpij
 is a function of the distance d and we also have )()( dpdp jiij  . The 

unconditional contagion function )(dCu  is, for each given distance d, defined 

exactly as uC  according to Eq. (1) thus )(dCu can be written as  
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The conditional probability that the “second point” in a pair of a randomly chosen  

points at distance d  belongs to class j, given that the “first” point belongs to class 

i equals )(/)()(/ dpdpdp iijij  , where 



s

j

iji dpdp
1

)()( . The conditional 

probability function )(/ dp ij
 gives a conditional contagion function )(dCc

according to Eq. (2), defined as  
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The functions are independent of any mapping resolution, except for restrictions 

caused by the minimum mapping unit. The interpretation is similar to that of the 

raster-based contagion but is extended to “fragmentation at distance d”. From the 

definitions of the functions it is also clear that they can be estimated by point 

sampling. However, this issue is not pursued further in this paper.  
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2.3. The study 

In this study both an analytical and an empirical investigation of the properties of 

the two contagion functions (Eq. 3 and 4) were performed. This was accomplished 

by calculating the values of the functions (for a number of distances) and 

interpreting the metrics values in terms of landscape pattern properties. This study 

was conducted for real and already manually photo-interpreted delineated 

landscapes and also for simulated ones. The simulated landscapes were used in 

order to assess the behaviour of the metrics in extreme cases or cases not covered 

by the real ones. An underlying idea of the study was that describing landscape 

pattern properties by continuous functions would reveal more about them than 

describing them by simple numbers as in the raster-based case. A comparison 

between raster-based (by FRAGSTATS) (McGarigal and Marks, 1995) and 

vector-based contagion was also performed.    

  

2.4. Material  

The study was conducted on data from the National Inventory of Landscapes in 

Sweden (NILS)(Ståhl et al., 2010), which is a major environmental monitoring 

program run by the Swedish Environmental Protection Agency. A 25 km
2 

quadrate is used in order to capture the broad landscape context. Within a 1 km
2
 

centrally located quadrate, a detailed delineation of polygons (homogenous areas) 

is manually made. To obtain a genuine sample of landscapes for our study, we 

used data from 50 randomly selected quadrates across entire Sweden. 

      The aerial photographs in which interpretations were made were colour 

infrared and had a ground resolution of 0.4 m. Polygon delineation was made 

using the interpretation program Summit Evolution from DAT/EM and ArcGIS 

from ESRI. For the purpose of the present study, the NILS variables were used 

together with two different classification systems (7 and 20 classes, see Table 1 

for more details) in order to produce land cover maps. The survey was conducted 

on systems of classification with seven and twenty classes. The classes of the two 

systems are given in Table 1.   
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Table1. Classes according to the two different classification systems (7 and 20 

classes) 

Seven classes Twenty classes 

1- Forest  1-1- Coniferous-Dense  

 1-2- Coniferous-Sparse 

 1-3- Deciduous-Dense 

 1-4- Deciduous-Sparse 

 1-5- Mixed-Forest- Dense 

 1-6- Mixed-Forest- Sparse 

2- Urban  2-1- Housing-Areas 

 2-2- Urban-Green-Areas 

 2-3- Urban-Forest 

3- Cultivated fields  3-1- Crop fields 

 3-2- Grassland 

4- Wetlands 4-1- Bog 

 4-2- Fen 

 4-3- Mixed-Wetland 

5- Water  5-1- Open-Water 

 5-2- Water-Vegetation 

6- Pasture 6-1- Open- Pasture  

 6-2- Pasture-Sparse-Trees  

 6-3- Wooded-Pasture  

7- Other land 7- 1- Other land 

 

        Simulated landscapes with four classes were also created through a raster-

based approach of maximum size 512 by 512 squares, with the possibility to build 

pixels of different sizes (1, 2, 4, …; e.g., pixel size 16 results in 10243232 
pixels). Several methods were used to simulate landscapes, 1) by creating more or 

less regular patterns (like chess-boards or strips) with classes randomly or not 

assigned to pixels, 2) by assigning classes randomly in different proportions to 

pixels, with constant or non-constant intensity over the landscape, and 3) by 

assigning classes with probabilities depending on the classes of neighboring 

squares. The third method was applied in two ways, either directly by assigning 

classes in succession after a randomly chosen class in a corner of the landscape or 

by a version of Gibbs sampler. The Gibbs sampler method is as follows: A. Start 

with any landscape (e.g., with random classes for all pixels). B. Choose one pixel 

at random. C. A new (could be the same as before) class of the pixel chosen is 

assigned with a probability depending on the classes of the four neighbors in the 

main directions. D. Repeat B and C a very large number of times. By choosing the 

probability matrix in different ways landscapes where classes are repelling or 
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attracting can be created. The simulated landscapes were seen as landscapes 

delineated into polygons consisting of adjacent pixels of the same class. 

 

2.5. Calculations 

To calculate the exact contagion value, even for a single distance d, for a given 

delineated landscape, is too complicated to be done in practice (in principle it 

would require calculation of a large number of quadruple integrals with pairs of 

polygons as domains of integration). Instead we have to rely on Monte Carlo 

simulations and/or numerical methods. The simplest method is just to apply the 

definition and take a very large number of pairs of points at distance d randomly 

in the mapped landscape, considering the boundary problem that occurs when the 

second point falls outside the map. If this happens either a new “first” point 

should be taken or the pair should be weighted by its inclusion intensity; and the 

first alternative is the simplest. This “new first point” alternative was applied for 

the simulated landscapes since the cover class of each point was easily determined 

by its pixel. For each distance and replicate (see below) 3000-5000 pairs were 

simulated.                                                                                                                                      

For the mapped real landscape the total computer time to determine the polygon 

belongings of all points was relatively long. A polygon of the real landscapes 

could have up to about 800 sides. The average number of polygons was 26 and the 

average numbers of sides per polygon was 79 for the seven class system and for 

the twenty class system the figures were 58 and 61, with large variation between 

landscapes. For this reason an alternative method was applied, allowing the 

“second” point intensity (“probability”) to be calculated exactly. For each map 

and each polygon (of say class i) a sample of “first” points was laid out 

systematically, with random start, and with a number of points depending on the 

polygon area (lower and upper bounds were 5 and 290 points per polygon). With 

the given point as a centre and the distance d as radius a circle is defined on which 

the second point must fall. The lengths of the circumference of the circle within 

all polygons were determined. The mean of all such lengths over the systematic 

sample estimates the “local”
ijp s for the given polygon and the final “global” 

ijp  

is determined by area weighting over all polygons of class i.  

       For both methods of calculation the sample simulations were replicated 

independently 20 times and the mean value of the contagion was used as a final 

value, estimated with high precision as judged by the standard error (estimated 

from the replicates). The relation 
jiij pp   was used for the estimation.  

       For the real landscapes the contagion functions were estimated for the nine 

distances 2, 5, 10, 20, 30, 60, 100, 150 and 250 meters. The samples were taken 

independently for different distances. For the unconditional contagion the highest 

and average standard errors observed from the 450 estimates were 0.0019 and 

0.0001. In 81 % of the cases the standard error was less than 0.0011. For the 

conditional contagion the highest and average standard errors observed were 

0.0011 and 0.0003. Hence, we conclude that the precision is high, well within the 

second decimal of the estimated value.  

      For the simulated landscapes up to 14 distances, from 0.1 up to 200 length 

units were used (the sides were 512 length units long) and the values calculated 

had standard errors of the same size as those for the real landscapes.  
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3. Results 

In this study, the properties of the contagion function for different point distances 

were investigated. There are both theoretical and empirical results. Some 

mathematical results are followed by a comparison with empirical values. Finally, 

the behaviour of the contagion functions are presented and compared to the raster-

based analogue.  

Mathematically derived properties 

(i)  If we use the relation )()()( / dpdpdp iijij   we get  
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while )(dCc can be written 
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The third term in )(dCu  corresponds to the second in )(dCc , but for )(dCu  
the 

classes with small areas, implying low values of )(dpi , have smaller impact on 

the value than they have on )(dCc  where all classes have the same weight. The 

second term in )(dCu is independent of j and is related to the Shannon diversity 

index 
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where ia  is the area proportion of class i. Since )(dpi  is the probability that the 

“first” point in a pair of randomly chosen points belong to class i it seems to 

follow that ii adp )( . However, due to boundary effects this is only 

approximately true, but at least for small distances d it is a good approximation. 

(ii)  When the distance d tends to 0, the two points in a pair tend to fall into the 

same polygon and the probability that the polygon belongs to class i converges to 

its area proportion ia . Thus when d tends to 0 then )(dpij  
tends to ia  for ij   and 

to 0 for ij  . Since the function )ln(tt   is continuous and tends to 0 when t does 

so, we can deduce that 

          2/1
)ln(2
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1)( 1 H
s
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                when 0d     

where H is the Shannon diversity index.   

In the conditional case )(/ dp ij  tends to 0 when d tends to 0 if ij   and 

otherwise to 1, so   1)( dCc  when 0d  

(iii) for each of the two function and small distances d we have the approximation  
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   )ln(/))0()(( ddCdC  with different values for the constants   and   

for the two contagion types (for a proof, see Appendix 1). This implies that the 

(right hand) derivatives of the contagion functions at 0d are (negatively) 

infinite, i.e. the vertical axis is tangent to both functions. 

(iv) for landscapes that are “stationary” (no trends) it is likely that )(dpij
 for large 

distances d  is close to the product )()( dpdp ji   (due to long distance 

independence). When this approximation holds we get, by inserting into the 

definitions and some algebra, the result that  

)ln(
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The second term is, as mentioned above, related to and likely close to the Shannon 

diversity index H. In the conditional case the approximation depends on the 

number of classes actually present in the landscape, denoted r. We obtain, for 

large d, 
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Comparison between theoretical and empirical values 

The items (ii) and (iv) have been compared to the estimated values of the 

contagion functions for the real landscapes, considering 2 meters as close to 0 and 

250 meters as close to infinity (for the 1 by 1 km landscape). The results are given 

in Table 2.  
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Table 2. Comparison between empirical and theoretical values for conditional and 

unconditional contagion for small and large distances d for the two classification 

systems. Figures show mean values of absolute values of the differences for the 

50 maps. Numbers in parentheses show the number of positive differences of the 

expression given within the absolute sign. H is the Shannon diversity index, s the 

number of classes (7 or 20) and r the number of classes actually present. 

Extrapolation means that the empirical values for 2 and 5 meters were used for a 

linear extrapolation to 0d .    

    7 classes 20 classes 

    | )(2/1 dCH u | 

  d 0.05 0.0006 (50) 

 

0.0007 

(50) 

Short distance 

( )0d  
d 2 0.0170 (50) 

0.0201 

(50) 

  Extrapolation 0.0048 (47) 
0.0048 

(50) 

    
 

| )(1 dCc | 

  d 0.05 0.0016 (50) 

 

0.0010 

(50) 

Short distance 

( )0d  
d 2 0.0486 (50) 

0.0319 

(50) 

  Extrapolation 0.0160 (49) 
0.0093 

(50) 

    
 

| )1()( HdCu  | 

Long distance 
)( d  d 250 0.0137 (47)  

0.0152 

(47) 

    
 

|)/1()(| sHrdCc   

Long distance 
)( d  d 250 0.0227 (34)  

0.0230 

(40) 

 

     In general the values indicate that the 2 and 250 meter distances are small and 

large enough to catch the values of the contagion functions for small and large 

distances. One exception is perhaps the short distance for the conditional 

contagion, for which the decrease is relatively large close to 0d . However, the 

good agreement for the extrapolation shows that the infinite derivative at 0d  

(item (iii) above) should not be a serious problem for approximations or 

interpolations of the functions even for short distances.  

 

A proxy function for the unconditional contagion function  

For all the 50 landscapes studied the unconditional contagion function was a 

convex and decreasing function of distance (within the range studied). It was 

found that the contagion function could be described by )()( dfdCu  , where 

                     
dbeacdf )(                      (5) 

The parameters cba  and , were estimated by nonlinear regression (SAS
®
 NLIN, 

version 9.2) for each of the 50 landscapes and both classification systems, without 



 

11 

any restrictions on a and c. The fit was good; the average estimated standard 

deviation around the function was 0.0051 and 0.0063 for the seven and twenty 

classes systems. By letting d tend to 0 and to infinity in )(df we would expect 

(from items (ii) and (iv) and from Table 2) that ac   should be close to 2/1 H  

and c close to H1 and thus a close to 2/H . The estimated value of c exceeded 

H1 on an average by 0.017 (4 %) and the value of a fell short of 2/H  by 0.028 

(12 %) for the seven class system and by similar but slightly larger figures for the 

twenty classes system. These over- and underestimations are well in line with the 

corresponding values of the contagion functions (see Table 2). In Figure 1 two 

examples are used to illustrate the outcome for the seven classes system, one for a 

landscape with average standard deviation around the function and the other the 

landscape with the highest standard deviation.  

 

 
Figure 1. Two examples of unconditional contagion functions with average (left) 

and largest (right) standard deviation around the function among the 50 real 

landscapes using the 7 classes system.    

 

Results for the conditional contagion function 

For the conditional contagion no simple and unique form of the function was 

detected and hence no proxy function could be derived. However, the conditional 

contagion carried qualitative information about the landscape pattern (see the 

discussion section). In appendix 2 some landscapes with their unconditional and 

conditional contagion is provided.  

  

Comparison between raster-based and vector-based contagion 

The raster-based contagion was, for the seven classes system, compared to the 

vector-based for a couple of distances. The pixel size for the raster-based case was 

chosen equal to the distance d and the calculations made by FRAGSTATS 

(McGarigal and Marks, 1995). The two values were very close to each other. In 

Figure 2 the two measures are plotted against each other. The same normalization 

was used, i.e., the calculation was based on the number of classes present within 

the landscape.  
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Figure 2. Plots of raster-based versus vector-based contagion values using the 

seven classes system. The pixel sizes (side of the squares) were the same as the 

distance between points for the vector-based contagion. 

 

However, the average distance between two randomly chosen points in adjacent 

pixels exceeds the pixel size by about 9 %, so distance and raster size are not 

completely equivalent and for this reason the comparison is not perfect. 

  

4. Discussion 

In this study, a vector-based definition of the contagion (C) metric is developed. It 

is an extension of the raster-based definition and gives a contagion metric that 

depends on distance, i.e., a contagion function. The properties of the contagion 

function for different point distances and both under unconditional and 

conditional definitions are investigated.  

    In a raster environment, contagion is sensitive to pixel size and its value can be 

increased when decreasing pixel size (Ricotta et al., 2003; Li et al., 2005). PPU  

(patch-per-unit area) (Frohn, 1998) and UNMIX (independent-resolution) (Ricotta 

et al., 2003) are two alternative metrics which are insensitive to pixel size but they 

may fail to capture the configuration aspect of landscapes. Indeed, PPU is 

equivalent to patch density, a composition metric, (Wu et al., 2002) and UNMIX 

does not utilizes all information (Ricotta et al., 2003).  

      The empirical study of the unconditional contagion function revealed that the 

function could be approximated as  )exp( dbac   where d is the distance 

between points. According to the theoretical and empirical findings both c and a 

are strongly related to the Shannon index and thus to the area proportions of the 

classes. Hence, we can make two conclusions: 1) the unconditional contagion 

cannot be interpreted without considering the area proportions (the Shannon 

index), and 2) the parameter b carries most, if not all, information about the 

spatial distribution or fragmentation. The larger the parameter b the faster the 

contagion function tends to its lower bound showing fragmentation for short 

distances. To illustrate the two conclusions above, the 50 real landscapes were 

classified into nine categories based on three categories of Shannon diversity (H) 

and three of the value of the parameter b. (The estimated values for the parameter 

b ranged from 0.0072 to 0.0656 for seven classes system and from 0.0014 to 

0.0850 for twenty classes system). Maps of the four categories with low and high 

values of H and b are given in Figure 3.  
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 (iii)  H=0.5574, b=0.0162                       (iv) H=0.4777, b=0.0460 

  
Figure 3. Four landscapes illustrating the necessity to consider the Shannon 

diversity index when interpreting the unconditional contagion function as a 

measure of fragmentation (seven classes system). Category (i) has low Shannon 

and low b, (ii) has low Shannon and high b, (iii) has high Shannon and low b, and 

(iv) has high Shannon and high b.   

 

 

    In Figure 3, the landscapes to the right (high values of b) comprise smaller and 

more scattered polygons within a class than the landscapes to the left. However, 

landscape (iii) might visually be considered as more fragmented than landscape 

(ii) but that is an effect of the area proportions. In landscape (iii) the polygons of 

the non-dominant classes are in general larger and more compact than in 

landscape (ii).  

      By visual inspection of the 50 landscapes it was found that high values of b 

were found in landscapes where many patches of small classes were embedded in 

the dominant classes (as in figure (ii) above). Low values were consequently 

found when dominating classes contained few patches of smaller classes. By its 

definition, the unconditional contagion characterizes especially the pattern of the 

large classes.  

          Simulated landscapes were used in order to assess the contagion function in 

extreme cases. Four of these simulated landscapes and some of their properties are 

shown in Figure 4 and Table 3. There are four classes within all the simulated 

landscapes. In simulated landscape SL1 the pattern is completely random; SL2 is 

simulated by Gibbs sampler with the classes 3 and 4 highly repellent to class 1; 
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SL3 has classes simulated conditionally on the classes of the west and north 

neighbours, creating a trend, and with classes 3 and 4 repellent to class 1; and SL4 

has two dominating classes dividing the landscape in two halves, with some 

random fragments of two other classes. The area proportions of the classes are 

equal or almost so for SL1 and SL3. In general the fit of the proxy function for the 

unconditional contagion is fairly good even for these extreme simulated 

landscapes. 

 

 

Table 3. Unconditional contagion and proxy function parameters for four 

simulated landscapes. For a comparison with the real landscapes with side length 

1 km the values of b should be multiplied by 0.512. 

Simulated landscape (SL) c a b H SE 

1 0.0025 0.4955 0.2054 1 0.0062 

2 0.1423 0.3956 0.0948 0.9000 0.0088 

3 0.0034 0.4507 0.0424 0.9940 0.0166 

4 0.2024 0.3601 0.0220 0.8471 0.0165 

  c, a, and b are contagion function parameters, H is Shannon diversity, SE is 

standard deviation around the function.     
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SL(1) 

 
SL(2) 

 
SL(3) 

 
SL(4) 

 
 

Figure 4. Illustration of four simulated landscapes and their unconditional 

contagion values and proxy functions. Side length of landscapes is 512 length 

units. 
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      For the conditional contagion no simple proxy function was found, but the 

contagion function itself carries some qualitative information. The functions were 

classified into three categories. While one category, the most common, had a 

behavior similar to the unconditional contagion, two others showed different 

behavior. In Fig.5 the conditional contagion for a typical example of each of the 

two other categories is shown. For landscape (I) the function has a minimum 

value at a distance of about 30 m while for landscape (II) it decreases 

monotonically. For landscape I there is one dominating class, say class j, and three 

very small and fragmented ones. For a small class, say class i, we have 

1)(/ dp ii  at very short distances; for moderate distances both )(/ dp ii  and 

)(/ dp ij
are between 0 and 1, while )(/ dp ij

tends to 1 at longer distances. This 

implies that the contribution from the small class i to the numerator in the 

definition of the conditional contagion equals 0 at 0d , is negative for moderate 

distances and approaches 0 again for long distances. Due to this, and that the 

contributions from all classes are weighted equally, the conditional contagion will 

look like that of landscape (I) if the landscape contains several small (or oblong) 

and fragmented classes. The smaller the polygons of the small classes the shorter 

the distance to the minimum value. In landscape (II) there is no dominating class 

and the polygons in general have a compact form. For about one third of the 

remaining 48 landscapes the conditional contagion looks like either that of 

landscape (I) or (II). The rest of them are intermediate, some with a minimum 

value at longer distances than 30 m.              

          Functions of type (I) tend to have lower value of the Shannon index than 

those of type (II). This is also clear from property (iv) in the result section. Due to 

this there is a certain connection between the conditional and unconditional 

contagion for long distances. It was also found that the parameter b of the proxy 

function of the unconditional contagion is somewhat smaller for landscapes of 

type II than for the other. Otherwise the two kinds of contagion seem to carry 

different information.  
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II 

 

Figure 5. Comparison of contagion behavior at given landscape under 

unconditional and conditional definitions with 7 classification system 

 

     It is clear that a projection like contagion of a landscape onto a function (or a 

number) never can describe everything about the landscape. Nevertheless the two 

contagion functions tell us something.    

The unconditional contagion emphasis the properties of the patches of the large 

classes; to what extent they contain nested patches of smaller classes or not. The 

conditional contagion tells us more about the fragmentation or clumping of the 

small classes and sometimes their polygons sizes.  

    The proposed contagion definition appears also to be a basis for sampling-

based estimation of the contagion. If a non-delineated map is available it is 

possible to estimate the probabilities )(dpij
and )(/ dp ij

 from a sample of point 

pairs at distance d in the landscape, where the )(dpij
is estimated by the relative 

frequency of points in classes i and j. The estimators )(ˆ dpij
and )(ˆ

/ dp ij
 are then 

inserted into the defining expressions (3) and (4) to obtain estimators of )(ˆ dCu
 

and )(ˆ dCc
 of the contagion functions.  

     The comparison between the raster-based and vector-based values (see fig.5) 

indicates that almost the same continuous contagion functions could be obtained 

by rasterizing at “all” sizes as well. This requires mapped data and it is difficult to 

see how to estimate true rasterized maps from point sample data. However, the 

vector-based definition allows a sample-based estimation (at least in theory) and 

this can indirectly be applied with some approximation to a thought rasterized 

case.        

     Sample-based assessment of landscape metrics is recognized as an alternative 

to traditional wall-to-wall mapping in terms of cost-efficiency, and metrics can be 

derived without land cover/use map of the entire landscape (Corona et al., 2004; 

Ramezani et al., 2010). It would therefore be of interest to consider statistical 

properties of a contagion estimator for different designs such as systematic and 

random sampling for different patterns. Further, point sampling appears to be 
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applicable in a gradient-based landscape model  (McGarigal and Cushman, 2005), 

where landscape characteristics changes continuously and no distinct border is 

assumed between patches.     

Acknowledgments:  we are grateful to Prof. Göran Ståhl for constructive comments at SLU in 

Umeå, Sweden.  
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Appendix 1. The behavior of the contagion functions for distances close to 0. 

For very short distances d the second point of a random pair tends to fall into the 

same polygon as the first point. For the second point to fall in a different polygon 

the first point must fall within a distance d from an edge. If so, consider the circle 

with the first point as center and radius d. The probability that the second point 

belongs to an adjacent polygon equals the proportion of the circumference of the 

circle that is outside the polygon of the first point. The expected value of that 

proportion equals /1  (derived as the integral of

)2by  divided 1,  to0 from  with )/arccos(2 tdt . Thus if the first point belongs to 

a class i polygon, the probability that the second point belongs to a class j polygon 

approximately equals  

)/()(/  iijij aeddp           (A1) 

 

where 
ije  is the edge length between the classes and )(dpa ii   is the area of the 

class i. The numerator equals the area close to the edge. Effects of boundaries and 

polygon corners are neglected.  

 

By summing Eq. (A1) over j we get   

 

)/(1)(/  iiii aeddp    (A2) 

 

where ie  is the total edge length of class i polygons. 

Inserting this in the definition of the conditional contagion function, using the 

approximation xx  )1ln(  for small x and neglecting terms of second order of d 

we obtain (after some simplification) 
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where 
iijij aee /'   and 0iie  

 

Hence, for the conditional function, we obtain the difference ratio 

                       )ln(/)0()( ddCdC cc     (A4) 

where 
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1


 and   are constants. 

From (A4) it follows that )(dCc  has no finite (right hand) derivative at 0d  
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since )ln(d  tends to negative infinity when d tends to 0. 

 

For the unconditional contagion function the same argument gives the same kind 

of expression for the difference ratio, but with 
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different value for the constant   
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Appendix 2. Example of 18 landscapes and their unconditional and conditional 

contagion 

      Landscape                               Unconditional                         Conditional     
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