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Abstract Two field experiments with drained plots on clay soils (60 and 25 % clay) 

demonstrated a significant reduction in leaching of total phosphorus after application of 

structure lime. Aggregate stability, was significantly improved. Phosphorus leaching in 

particulate form was significantly reduced following structure liming at the site with a very 

high clay content. Sites representing low (50 mg kg-1) and high (140 mg kg-1) levels of 

phosphorus extractable with acid ammonium lactate in topsoil displayed differing effects on 

leaching of dissolved reactive phosphorus. This form of phosphorus was only significantly 

reduced compared with the control at one site with high topsoil P status and relatively high 

(17-18%) degree of phosphorus saturation in the subsoil. Laboratory experiments with 

simulated rain events applied to topsoil lysimeters from the same site also demonstrated a 

significant reduction in leaching of dissolved reactive phosphorus. These findings indicate 

that structure liming is an appropriate leaching mitigation measure on soils with both a high 

clay content and high soil phosphorus status.  
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 3 

Introduction 4 

Phosphorus (P) and nitrogen (N) are both nutrients which have the potential to seriously 5 

increase eutrophication of surface waters if available in high concentrations in the water and 6 

with proportionally high contribution of P (low N:P ratio) (Smith & Schindler, 2009). In 7 

Swedish clay soil areas, P leaching either in particulate (PP) or dissolved reactive (DRP) form 8 

is a major environmental problem for water quality (Ulén et al., 2007). Structure liming is 9 

officially recommended as a measure to improve clay soil structure, in order to reduce P 10 

leaching (SBA, 2013). This amendment is applied either in the form of quicklime (calcium 11 

oxide, CaO), or hydrated (slaked) lime (Ca(OH)2), the latter being more common. When these 12 

forms of lime are mixed with a clay soil, several reactions take place at soil aggregate level 13 

and an immediate improvement in soil stability, porosity and aggregate strength has been 14 

reported (Choquette et al., 1987). The reactions include cation exchange, flocculation and 15 

agglomeration, together with slower cementing and the virtually irreversible pozzolanic 16 

reaction (Kavak & Baykal, 2012). In addition, complex binding of amorphous P occurs (Zhu 17 

& Alva, 1994), as well as precipitation to ß-tricalcium phosphate at higher pH (Gray & 18 

Schwab, 1993). Liming may stabilise clay soils by moderating swelling and shrinking 19 



processes. These are known to form cracks, which apart from enhancing fast macropore flow 20 

redistribute larger macroaggregates to smaller sizes (Grant & Dexter, 1990). Limited swelling 21 

is partly due to the suppressive effect of Ca2+ ions in the diffuse double layer of clay particles 22 

and the limited shrinkage is partly due to more uniform spatial arrangement of particles or 23 

structural entities in limed soil (Ledin, 1981). The neutral salt gypsum (CaSO4) has a 24 

corresponding stabilising effect and aggregation may follow from the compressed diffuse 25 

double layer and increased rate of P adsorption (e.g. Uusitalo et al., 2012). This compression 26 

is a result of increased electrolytic concentrations, while the corresponding process after 27 

adding lime mainly is a result of dehydration and increased pH. Carefully mixing Ca(OH)2 28 

into soils with a high clay content can result in an effective pozzolanic (cementing) reaction, 29 

forming aluminium-silicate hydroxides, silicate hydroxides and/or aluminate hydroxides 30 

(Almukhtar et al., 2012). These reactions take place since clay soils have a high sum of silicon 31 

and aluminium oxides (He et al., 1995). The cementing effect has the potential to increase the 32 

resistance to dissolution of soil aggregates in water and thus reduce P leaching. The resistance 33 

is commonly analysed by the aggregate stability test and a gentle method demonstrating 34 

disruptive forces close to the field phenomenon is most appropriate (Oades & Waters, 1991). 35 

For soils with a high concentration of available P any reduced P leaching may also be the 36 

result of decreased P concentration in water caused by the above-mentioned P complex 37 

formation and increased adsorption of orthophosphates and phosphate ions. These P forms are 38 

included in the analytical method dissolved reactive P (DRP) (e.g. Haygarth & Sharpley, 39 

2000).  40 

Only two field experiments on the effect of structure liming on P leaching from Swedish 41 

clay soils have been carried out to date. The effects of drain backfilling with burnt shell-ash 42 

from Estonia when draining clay soils is currently being studied in Lithuania (Šaulys & 43 

Bastienė, 2007) and is to our knowledge the only ongoing long-term experiment monitoring 44 

drainage water quality. The aim of the present paper was to investigate any mitigating effect 45 

of structure liming on phosphorus losses from two agricultural clay soils with similar 46 

mineralogy but different clay and soil P status. Any effect on nitrogen leaching was 47 

simultaneously monitored. The following hypotheses were tested: After structure liming, (i) 48 

leaching losses of particulate phosphorus (PP) are significantly reduced; (ii) leaching losses of 49 

dissolved reactive P (DRP) are significantly reduced; and (iii) dissolution of soil aggregates 50 

by water disruption is significantly reduced. 51 

 52 



Materials and methods 53 

Field experiments with drained plots  54 

The two field experiments with drained plots (Figure 1) were carried out in eastern Sweden, 55 

20-30 km southwest of Stockholm city. Both sites have clay soil (Table 2) dominated by the 56 

2:1 mineral illite. The Bornsjön experimental field, with a soil with high clay content (57-61% 57 

clay), is situated 20 km from the coast of the Baltic Sea, while the Wiad site is situated near 58 

the coast of the Baltic Sea and with a topsoil clay content which is significantly lower (22-59 

29%). The experimental setup comprised 28 drained plots at Bornsjön and eight drained plots 60 

at Wiad. Number of replicates was four for each treatment, including structure liming, at both 61 

sites. The acid ammonium lactate-extractable P (P-AL) content in topsoil, determined 62 

according to Egnér et al. (1960), is 30-43 mg P-AL kg soil-1 at Bornsjön and more than three-63 

fold higher (110-170 mg P-AL kg soil-1) at Wiad. Due to this and to a high content of 64 

aluminium (Al) in Bornsjön soil, the degree of P saturation (DPS-AL), determined according 65 

to Ulén (2006), is very low at Bornsjön but quite high at Wiad (Table 2). In both field 66 

experiments, the soil was amended with structure lime, at Bornsjön in the form of burnt lime 67 

(CaO) and at Wiad in the form of a commercially available product with active lime in slaked 68 

form (Ca(OH)2) (Table 1). Total amount applied, recalculated to active CaO, was 5 t ha-1 at 69 

Bornsjön and 2 t ha-1 at Wiad. At both sites, application took place under dry conditions in 70 

September (2007 at Bornsjön and 2011 at Wiad) and the structure lime was immediately and 71 

carefully cultivated into the topsoil in several directions with a good cultivator machine. The 72 

crop sequence after structure liming was spring barley, spring barley, oats, pea and spring 73 

barley at Bornsjön and spring barley and oats 2011/2013 after liming at Wiad. In the 74 

monitoring period 2006-2009 before liming at Wiad 2006-2007, grass ley was grown and 75 

ploughed under, followed by winter wheat. 76 

At Bornsjön, water was sampled flow-proportionally in six agrohydrological years (1 77 

July-30 June). A composite sample from each plot was stored for at most one week in an 78 

underground chamber (10-15oC) before being sent to the laboratory for analysis. At Wiad, 79 

water flow was measured with tilting vessels and water samples were manually collected 80 

weekly when drainage occurred in two agrohydrological years. The samples were sent 81 

immediately to the Water Laboratory at the Department of Soil and Environment, Swedish 82 

University of Agricultural Sciences.  83 

Experiments on leaching from topsoil (0-20 cm)  84 



Twelve topsoil lysimeters, 20 cm in diameter and 20 cm high (plastic tubes with sharp iron 85 

rims) were extracted from Bornsjön unfertilised fallow, between the experimental plots 86 

(Figure 1), using a tractor-powered hydraulic double-action piston in October 2010. The 87 

monoliths were extracted under moist soil conditions, in order for the samples to be as 88 

undisturbed as possible. The soil monoliths were then trimmed by hand and stored under cold 89 

conditions (+4°C) until the start of the rain simulation experiments, which was within 3 90 

months of sampling. The base of the monoliths was prepared and a special base cap fitted to 91 

each lysimeter. In the laboratory, eight lysimeters were amended with the same amount of 92 

structure lime as in the field experiment, with a theoretical dose of 5 t ha-1 as CaO, but using 93 

both pure burnt lime (4 lysimeters) and pure slaked lime (4 lysimeters) (Table 3). The lime 94 

was mixed into the soil, which was then reconsolidated for six months after the disturbance 95 

through repeated gentle wetting of the soil, followed by drying. Artificial rain events were 96 

applied to Bornsjön soil using a laboratory rain chamber, with a rain intensity of 8-10 mm h-1 97 

and a distance to the soil surface of 1.5 m (Svanbäck et al., 2013) (Table 3). Three artificial 98 

rain events were applied for 3 hours per event, with 1-2 days drying between events. Since the 99 

soil had frequent macropores, no problems with ponding occurred and all water discharged 100 

rapidly through the soil. A total leached volume of 50-64 mm was discharged, equal to the 101 

theoretical pore volume of the Bornsjön soil. Corresponding experiments at this site on 102 

application of pesticides and bromide have demonstrated breakthrough curves equal to less 103 

than 25% of the theoretical pore volume, thus indicating preferential flow (Larsbo et al., 104 

2013). 105 

An undisturbed soil monolith of similar size was sampled from each of the eight 106 

experimental plots at Wiad (Figure 1) (4 structure-limed and 4 without lime) by pressing 107 

plastic tubes with sharp iron rims into the topsoil. Sampling took place on 17 October 2013, 108 

slightly more than two years after structure liming, which at that site had been followed by 109 

conventional tillage and cultivation of cereal crops. In the laboratory the soil monoliths were 110 

then similarly trimmed by hand, the base was prepared and a special base cap was fitted to 111 

each lysimeter. Simulated rainfall was applied using equipment described by Liu et al. (2012), 112 

applying a rain intensity of 32 mm hour-1. After 2 or 2.5 hours leaching, a water volume 113 

corresponding to 77-90 mm discharge was collected. The procedure was repeated 3 times, 114 

with one day in between, with the soil under lid. Total drainage amount was nearly twice the 115 

theoretical pore volume of the Wiad soil. There were generally no problems with water 116 

ponding for the lysimeters from this site, with the water effectively discharging through the 117 

soil columns.  118 



 119 

Soil aggregate tests 120 

At the Bornsjön site, aggregates (mean 8-11 mm diameter) corresponding to in total 120 g 121 

field-moist soil per plot were collected on 27 August 2010, three years after structure liming. 122 

This large aggregates were chosen since they are more friable, weaker and have lower tensile 123 

strength than smaller aggregates (Utomo & Dexter, 1981). Consequently they can act as more 124 

sensitive indicators of aggregate strength than smaller aggregates. Each of 16 replicate 125 

samples from each treatment (4 per plot) was placed in a plastic cylinder (100 mm high, 102 126 

mm in diameter and with 0.6 mm mesh at the bottom) and manually immersed three times in 127 

a beaker with 300 mL synthetic rainwater. The solute was then transferred to a 250-mL plastic 128 

bottle, which was shaken with a slow oscillating movement (90 revolutions min-1) for 10 129 

minutes. Content of soil particles in solution was then determined by turbidimeter (2100N 130 

Hach-Lange company, Düsseldorf, Germany) (Cryz et al., 2002). Large particles and fine 131 

aggregates larger than the claysize (<0.2 μm) were then allowed to settle for 4.5 hours 132 

(Sheldrick & Wang, 1933) and the content of dispersed clay still in solution was determined. 133 

The supernatant water was analysed for particulate P (PP) and dissolved reactive P (DRP).  134 

Two years after structure liming (October 2013), topsoil samples (0-20 cm) from each of 135 

the eight plots (both limed and controls) at Wiad were collected and gently transported to the 136 

laboratory. Soil aggregates (8-11 mm, in total 120 g field-moist soil per plot) and dispersed 137 

clay content were measured after corresponding pre-treatment as for Bornsjön.  138 

 139 

Water analysis  140 

For all samples of drain water and leachate, pH was measured on the following day, DRP 141 

within two days and total P (TP) and total nitrogen (TN) within 4 days, after storage at +4oC. 142 

TotP was analysed as soluble molybdate-reactive P after acid oxidation with K2S2O8 (ECS, 143 

1996), while DRP was analysed after pre-filtration using filters with pore diameter 0.2 μm 144 

(Schleicher & Schüll GmbH, Dassel, Germany) with the same colorimetric determination 145 

(ECS, 1996). Particulate P was estimated as the difference between TP before and after 146 

filtration of the water with the same filters. TN was analysed with a carbon nitrogen (CN) 147 

analyser (Shimadzu, GmBH, Duisburg, Germany).  148 

 149 

Statistics 150 

Coefficient of variance (CV) was used to reflect differences in discharge and leaching 151 

between different plots. To analyse differences in leaching between the different treatments in 152 



the field experiments, a general mixed model (SAS software Version 9.2) was used. To 153 

account for the time series structure of the data, correlations between measurements over time 154 

were modelled with a spatial power covariance structure (Littell et al., 2006). Factors for the 155 

spatial variations were used as covariates at Bornsjön, where they showed a distinct spatial 156 

pattern (Svanbäck et al., 2014). A significance level of α=0.05 was applied, including the p 157 

value associated with the F statistics of a given effect (pr>F). Comparisons between 158 

lysimeters from the same site, which were all treated in the same simulated rain events, were 159 

estimated using basic two-sample test statistics as used in the aggregate studies.  160 

 161 

Results  162 

Field experiments  163 

The narrow drain spacing (8 m) at Bornsjön resulted in high discharge (mean 500 mm yr-1). 164 

At Wiad, discharge of water was low (mean 140 mm yr-1), but the variation in discharge 165 

between different plots was somewhat larger (CV = 30%) than at Bornsjön (CV = 25%). 166 

Apart from less intensive tile drainage, the main reason for the low discharge at Wiad is 167 

probably the topography and location of the plots, in a gentle slope close to the bank of a 168 

stream recipient. Water may leach to the groundwater and thus bypass the tile drains before 169 

reaching the stream. Consequently, TP leaching from the Bornsjön control plots (mean 0.97 170 

kg ha-1 yr-1) was significantly higher than at Wiad (0.30 kg ha-1 yr-1). 171 

The TP leaching losses at Bornsjön (mean 1.0 kg ha-1 yr-1) were significantly (pr>F<0.002) 172 

lower from structure-limed plots than from the non-limed control in the six monitoring years. 173 

This was also the case for PP leaching, which was 83% of TP leaching. The PP leaching 174 

(mean 0.8 kg PP ha-1 yr-1), which demonstrated similar large variance (CV = 75), was 175 

significantly reduced following structure liming at this site (pr>F<0.002). In contrast, PP 176 

leaching losses were not significantly lower after liming at Wiad, when statistically evaluated 177 

with the model and taking the spatial variation in the three previous monitoring years into 178 

account. In that pre-period of three agrohydrological years (2006/2009), P leaching was 179 

similar to that in the control plots in 2011-2013. Leaching of DRP was on average 0.15 kg ha-180 
1 yr-1 and comprised a much lower proportion of TP leaching in the drain water at Bornsjön 181 

than at Wiad (45%). In addition, the CV value for DRP leaching was low (20%) between 182 

plots at Bornsjön (Svanbäck et al., 2014) and did not change after structure liming. Leaching 183 

of DRP was 55% of TP leaching, with a mean value of 0.11 kg ha-1 yr-1 (CV = 70%), at Wiad 184 



and was significantly (pr>F<0.002) lower from plots with structure liming than from the 185 

control plots in the two years monitored (Table 4).  186 

The results were thus contrasting for P forms at the two sites. Only P leaching in PP form 187 

at Bornsjön and in DRP form at Wiad were significantly reduced following structure liming 188 

(Table IV). Simultaneously, there was a significantly lower P-AL content in the topsoil at 189 

Bornsjön (38-44 mg kg-1 soil) compared with Wiad (120-140 mg kg-1 soil). At Bornsjön, the 190 

pH in the topsoil showed no significant differences between structure-limed plots before (6.3 191 

± 0.1) and two or four years after liming (6.5 ± 0.3 both occasions). Moreover, there was no 192 

significant difference in topsoil pH measured before (7.2 ± 0.5) and after (7.3 ± 0.5) liming at 193 

Wiad at six months or two years after liming. The pH in drain water was similarly stable and 194 

with no significant differences between structure-limed and unlimed plots (Table IV).  195 

Nitrogen leaching was nearly 30 kg ha-1 yr-1 at Bornsjön, but quite low from the fallow 196 

plots (6 kg TN ha-1 yr-1). Nitrogen leaching was moderate (12-14 kg TN ha-1 yr-1) at Wiad 197 

after cereals in the experimental period and lower in the pre-period, when ley was grown 198 

(Table IV). The leaching observed after cereals was of the same magnitude as is commonly 199 

found on the Swedish east coast (e.g. Kyllmar et al., 2006). The TN/TP ratio in drain water 200 

was mostly high, except for the fallow at Bornsjön (9:1) (Table 4).  201 

 202 

Simulated rainfall events in the laboratory 203 

For Bornsjön topsoil to which structure lime had been added in the laboratory, the differences 204 

in topsoil P-AL and DPS-AL between structure-limed and unlimed plots were non-significant 205 

after treatments. However, following application of simulated rain, there was a significant 206 

reduction in PP leaching (Table 5), as also observed in the field experiments. The DRP 207 

concentration was only estimated by difference between TP and PP, since the analysis was 208 

disturbed by high pH. Moreover, only small amounts of DRP were measured before liming 209 

and the amounts were only marginally lower (0.01-0.02 kg ha-1) and not significantly different 210 

from those in lysimeters amended with structure lime.  211 

There was no significant difference in topsoil P-AL and topsoil DPS-AL between 212 

structure-limed and unlimed plots at Wiad (Table V). However, application of simulated 213 

rainfall to these lysimeters resulted in a significant reduction in leaching of TP. Similarly to 214 

the field studies (Table 4), for the lysimeters from Wiad the P reduction was statistically 215 

significant for DRP, but not for PP 216 

 217 



Aggregate stability tests 218 

The large-sized soil aggregates (8-11 mm) from Bornsjön showed more resistance to 219 

dissolution in water after structure liming (Figure 1a), irrespective of whether the soil had 220 

been conventionally ploughed (control) or only shallow tilled (an additional treatment given 221 

in Figure 1a). The large-sized soil aggregates from the field plots at Wiad amended with 222 

structure lime similarly displayed significantly greater resistance to dissolution in water than 223 

aggregates from plots with no such amendment. This was apparent both before and after the 224 

clay particles were allowed to settle (Figure 1b). After settling, the supernatant with dispersed 225 

clay colloids from Wiad demonstrated significantly lower P concentrations in both PP and 226 

DRP form after structure liming and also significantly lower turbidity values than the 227 

supernatant from Bornsjön (Table 4).  228 

 229 

Discussion 230 

The two field experiments represented sites with high (Bornsjön) and rather moderate (Wiad) 231 

TP losses compared with the Swedish average of 0.4 kg TP (and 0.2 kg DRP ha-1 yr-1) (Ulén 232 

et al., 2007). At Bornsjön, where the soil has a high clay content, most losses took place in PP 233 

form while DRP losses were moderate. This is similar to findings for drained Finnish soils 234 

with a high clay content (Uusitalo et al., 2001). At Wiad the moderate leaching losses of PP 235 

and DRP via tile drains is a consequence of the low water discharge, while flow-weighted 236 

mean concentration was quite high (0.2 mg TP L-1). The two sites compared also represented 237 

soils with very high (Bornsjön) and  moderate (Wiad) topsoil clay content, but only the 238 

Bornsjön soil demonstrated significant effects of structure liming in reducing PP leaching. In 239 

addition, the two sites represented soil with a low (Bornsjön) and a high (Wiad) level of AL-240 

extractable P and displayed contrasting effects on DRP leaching after structure liming. 241 

Leaching of DRP was only significantly lower for structure-limed soil compared with the 242 

control for the Wiad site, with its high topsoil P status and relatively high (17-18%) DPS-AL 243 

value in the entire subsoil down to the tile drains. One explanation for this could be formation 244 

of Ca-P complexes or Ca-precipitates at Wiad owing to a presumed high concentration of 245 

DRP in the soil water solution and the high pH after liming. Such types of reactions have been 246 

indicated to take place in a clay soil with a history of pig manure addition (Ulén & Snäll, 247 

2007). 248 

There are concerns that a high pH can suppress P availability and reduce plant uptake of P, 249 

especially in coarse-textured soils (e.g. Murphy & Stevens, 2010). However, pH in the field 250 

experiments with structure liming seemed to have equilibrated with the clay in the soil, since 251 



there were no significant differences in soil pH between structure-limed and unlimed plots at 252 

Bornsjön 2 years after liming and at Wiad 0.5 years after liming. Furthermore, quite similar 253 

pH was observed in the drainage water from the limed plots compared with the unlimed plots 254 

at both sites (Table 4), as well as in leachate water from Wiad (Table 5). A general increase in 255 

yield on limed plots has been reported at Bornsjön, especially in the first year after liming 256 

(Svanbäck et al., 2014). This was probably an indirect effect, through improved soil structure, 257 

but the crop (barley) still had a high P content (0.3% of dry weight), which was similar to the 258 

P content in barley crops from non-limed soils. The yields of spring barley and oats at Wiad 259 

showed no significant differences in either year after liming compared with the control. 260 

Recent tests on seeding of winter wheat three days after structural liming showed good results 261 

in the field near the Bornsjön experimental area (data not shown).  262 

Gypsum application causes compression of the electronic double layer and clay colloids 263 

flocculate as lime, but as a result of the increased Ca2+ concentration and electric conductivity 264 

(Haynes & Naidau, 1998), and not the increased pH. Any reduction in P by precipitation 265 

should be minor using this neutral salt. However the cementing effect may be limited in time 266 

and significant effects on P leaching have been reported to end after 2.5 years (Uusitalo et al., 267 

2012). Relatively short-term effects for this and other amendments such as water treatment 268 

residuals and coal combustion slag have also been demonstrated in laboratory experiments 269 

with simulated rain (O’Connor et al., 2005).  270 

Results obtained in lysimeter studies with concentrated simulated rainfall events in the 271 

laboratory should be viewed with caution. They may be regarded more as prolonged water 272 

extraction, which dissolves high amounts of DRP in the water-saturated soil. In all lysimeter 273 

experiments, water flow is also forced into a straighter vertical direction than would occur in 274 

the field and horizontal transport of PP, which typically occurs in field conditions, is 275 

prevented. Topsoil studies may also give less realistic results due to the critical role of the 276 

subsoil (e.g. Sinaj et al., 2002). At Wiad, leaching of DRP may also occur from the subsoil 277 

with its relatively high 18% DPS-AL value (Table 2). However, the DRP/TP ratio in leachate 278 

from the Wiad lysimeter was high (75-80%) and the reduction in DRP was significant, as 279 

found with drainage water from the experimental plots.  280 

After application of the lime in the present field experiments, there was visible mixing with 281 

the soil, most probably facilitated by subsequent tillage, harrowing and growing crops in the 282 

present field experiments. This also illustrates the importance of soil microorganisms and 283 

plant roots in the formation and stabilisation of soil aggregates (Oades, 1993). The settled clay 284 

particles from Wiad soils might contain more P than the colloids in suspension, since the P 285 



concentration was lowered even more than the turbidity (Table 6). The settled material might 286 

include biofilms, root exudates, organic macromolecules and other traces of biological glue in 287 

a corresponding way to water sediment deposits (e.g. Droppo, 2001; Williams et al., 2008). 288 

There is an urgent need for comparable field and laboratory investigations for a better 289 

mechanistic understanding of the formation and dissolution of soil aggregates.  290 

Due to the necessity to reduce the P load and N load in the Baltic Sea area simultaneously, 291 

actions on arable land should focus on soil structure improvements rather than converting 292 

arable land to fallow (Svanbäck et al., 2014). In drain water from structure-limed plots at 293 

Bornsjön and Wiad, the N/P ratio was 60-110 but only 9 in the water from the fallow plots 294 

(Table 4). The latter is close to the level which can promote growth of N-fixing algae in e.g. 295 

the brackish water of Stockholm archipelago (Boesch et al., 2006). However, at Wiad the 296 

TN/TP ratio in the drain water was higher (20:1) after growing grass, and under such 297 

conditions the presence of N-fixing blue-green algae in receiving water is less plausible.   298 

 299 
 300 

Conclusions 301 

Dissolution of large macro-aggregates in water was significantly reduced after liming of two 302 

soils with a high and very high clay content, respectively. In view of the generally high PP 303 

losses from the Bornsjön soil, it could be concluded that at this site efforts to combat 304 

eutrophication of the nearby Baltic Sea should concentrate on mitigation of P losses, 305 

including P in particulate form (PP). Structure liming was demonstrated to reduce PP losses 306 

for at least six years at this site. Results from Wiad highlight the importance of 307 

simultaneously reducing leaching of P in dissolved reactive (DRP) form from soils with a 308 

high risk of DRP leaching, which was shown to be achieved by structure liming. However, 309 

more field studies are needed to clarify the effect of structure liming on P leaching as a 310 

function of available soil P content alone, and in combination with different soil clay contents. 311 

Such studies should be of a long-term nature, since lime distribution into the soil and soil 312 

aggregate formation by biological activities take time. 313 
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 432 

Table 1. Experimental set-up in the Swedish field experiments with structure liming, including number 433 
of agrohydrological years with monitoring before and after treatment. Each treatment was represented 434 
by four replicate plots. At Bornsjön there was a stabilisation year after drainage 435 

 Bornsjöna  Wiadb  

Plot size (m) 24x20 55x60 
Tile drain spacing (m) 8 14 
Lime amendment CaO Ca(OH)2 
Time of application  26 September 2007 13 September 2011 
Number of replicates 4 4 
Load equivalent to CaO (t ha-1) 5 2 
Control No lime, no  P fertiliser No lime, no P fertiliser 
Pre-period  2006/2007 No lime and P fertiliser 
Monitoring before treatment 
 

1 year (2006/2007) 3 years (2006/2009) 

Monitoring after treatment  6 years (2007/2013) 2 years (2011/2013) 
a Site description and results in Svanbäck et al. (2014) 436 
b Site description in Gustafson & Torstensson (1988).. 437 

438 



Table 2. Soil texture and soil phosphorus (P) characteristics of the field plot experiments at Wiad and 439 
Bornsjön, including degree of P saturation in acid lactate extract (DPS-AL)  440 

     Bornsjön Wiad 

Parameters    0-23 23-60 60-90 0-23 23-60 60-90 

pH (H2O) 6.3 6.6 7.0 7.1     -     - 
Clay (%)   59   61   61   26   37   53 
Silt   (%)   40   38   39   43   39   36 
Sand (%)     1     1     0   32   24   12 
Organic matter (%)      3.9     1.1     0     2.0     1.2     0 
P-AL (mg kg soil-1)   49   24   16 143  92   93 
Al-AL (mmol kg soil-1)   16   13   14     6    9                    9 
Fe-AL (mmol kg soil-1)     6.1     5.3     7.5      6    8    8 
DPS-AL (mole-based %)     7     4     2   36  17  18 

 441 

442 



 443 

Table 3. Experimental set-up in laboratory experiments with simulated rain events. Each treatment was 444 
represented by four replicate topsoil from each of the two Swedish field sites  445 

 Bornsjön Wiad 

Lysimeter sampling year 2010a  2013b  
Amendment CaO and Ca(OH)2 Ca(OH)2 
Load expressed as CaO (t ha-1) 5 2 
Application + incorporation into topsoil  To lysimeters in laboratory Before, in the field  
a In untreated fallow. After mixing in the amendments, the soil was reconsolidated for 6 months.  446 
b Two years after application in the field, towards the end of the field leaching study 447 

 448 

449 



Table 4. Mean annual discharge, water pH and leaching losses of total P (TotP), particulate P (PP), 450 
and dissolved reactive P (DRP), total percentage of DRP/P total nitrogen (TN) and TN/TP ratio in the 451 
experimental plot experiments (4 replicates). Treatments were: at Bornsjön structure liming (CaO), a 452 
control (without liming and P fertilising) and unfertilised fallow (Fallow); at Wiad structure liming 453 
(Ca(OH)2), a control (without liming) and a pre-period partly with fallow. All treatments without 454 
fallow were conventionally ploughed.   455 

 Bornsjöna Wiad 
Period 2007/2013 2011/2013 2007/2009 
Treatments CaO Control Fallow Ca(OH)2 Control Pre-period 

Discharge (mm yr-1) 505 546 460 137 142 140 
pH in water     7.1   6.8     7.1     7.1     7.0     - 
TP (kg ha-1 yr-1)     0.59**    0.97     0.77    0.13** 0.30     0.29 
PP (kg ha-1 yr-1)    0.46**    0.82     0.60     0.07 0.14      0.14 
DRP (kg ha-1 yr-1)     0.13    0.15      0.17     0.08** 0.15      0.11 
DRP/TP (%)   20   15    20   50   50    40 
TN (kg ha-1 yr-1)   30   29      6**   14   12      5 
Ratio TN/TP   60   40      9 110   40    20 
a For more details, see Svanbäck et al. (2014). 456 
**Significantly lower leaching losses from 4 limed lysimeters compared with 4 control (pr>F<0.002). 457 
 458 

 459 

 460 

 461 

 462 

463 



Table 5. Mean topsoil lysimeter characteristics, discharge and leaching losses of total P (TP), 464 
particulate P (PP) and dissolved reactive P (DRP) after simulated rainfall in the laboratory  465 

 Bornsjön laboratory lysimetersa Wiad laboratory lysimeters 

Treatments CaO Ca(OH)2 Control Ca(OH)2 Control 

Soil characteristics      
Soil pH   9.5       8.8   5.9     7.5       6.5 
P-AL (mg kg soil-1) 38     41 44 120   140 
Al-AL (mmol kg soil-1) 16     17 15     7       6 
Fe-AL (mmol kg soil-1)   6.6       6.8   4.8     6       7 
DPS-AL (mole-based %)             6       9   5   30                 37 

Lysimeter leaching       
Discharge (mm) 68      68 66 175   179 
Water pH    8.5 8.4   7.1      7.3       7.0 
TP (kg ha-1)   0.03**       0.04**   0.15      0.11**       0.13 
PP (kg ha-1)   0.02**         0.03**   0.13      0.03       0.03 
DRP (kg ha-1)   0.01a         0.01b   0.02      0.08**       0.10 
DRP/PP (%) 25      25 10    75     80 
**Significantly (p<0.05) lower leaching compared with unlimed control.  466 
a For more details, see Ulén et al. (2012). 467 
b Estimated values, since high pH disturbed DRP analysis.  468 
 469 

470 



 471 
Table 6. Mean concentrations of turbidity (nephelometric turbidity units, NTU), total P (TP), 472 
particulate P (PP) and dissolved reactive P (DRP), with standard deviation (SD), after sedimentation of 473 
dispersed particles of larger (8-11 mm) aggregates in tests on samples from Wiad and the ratio 474 
between the two treatments 475 

** Significantly lower concentrations from limed plots (p<0.05) compared with unlimed soil. 476 
 477 

478 

Treatment  Turbidity (NTU) TP (mg L-1) PP (mg L-1) DRP (mg L-1) 
 Mean SD Mean        SD Mean SD Mean SD 

Structure-limed  780** 120 0.24**     0.11 0.18**   0.10 0.05** 0.01 
Control 1300 260 0.60         0.07 0.48   0.05 0.10 0.02 

Ratio    0.6  0.4 0.4  0.5  



FIGURE CAPTIONS 479 
 480 
Figure 1. Map of Sweden and the coastal area south of Stockholm where the two experimental 481 

fields are situated. Sampling sites of topsoil lysimeters are indicated (dots) relative to the 482 

experimental plots (squares) to the right. 483 

  484 

 485 

Figure 2a) Relative turbidity after settling of dispersed particles in samples taken from 486 

Bornsjön in autumn  2010. Control (=100, not structure-limed) compared with structure-limed 487 

plot (SL). SL and control were conventionally ploughed but at Bornsjön relative turbidity 488 

after shallow tillage with a cultivator is included for comparison (diagram based on Ulén et 489 

al., 2012). 2b) Relative turbidity after settling of dispersed particles in samples taken from 490 

Wiad in October 2011. 491 

 492 
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