

This is an author produced version of a paper published in Environmental Science & Technology. This paper has been peer reviewed but may not include the final p

This paper has been peer-reviewed but may not include the final publisher proof-corrections or pagination.

Citation for the published paper:

Herrmann, Anke; Coucheney, Elsa; Nunan, Naoise. (2014) Isothermal Microcalorimetry Provides New Insight into Terrestrial Carbon Cycling. *Environmental Science & Technology*. Volume: 48, Number: 8, pp 4344-4352. http://dx.doi.org/10.1021/es403941h.

Access to the published version may require journal subscription. Published with permission from: American Chemical Society.

Standard set statement from the publisher:

This document is the Accepted Manuscript version of a Published Work that appeared in final form in Environmental Science & Technology, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see: http://dx.doi.org/10.1021/es403941h

Epsilon Open Archive http://epsilon.slu.se

# <sup>1</sup> Isothermal microcalorimetry provides new insight

# <sup>2</sup> into terrestrial carbon cycling

3 Anke M. Herrmann, \*,§, Elsa Coucheney,§<sup>†</sup> and Naoise Nunan<sup>‡</sup>

# 4 AUTHOR ADDRESS

- 5 <sup>§</sup>Department of Chemistry & Biotechnology, Uppsala BioCenter, Swedish University of
- 6 Agricultural Sciences, P.O.Box 7015, SE-750 07 Uppsala.
- 7 <sup>†</sup>Department of Soil & Environment, Swedish University of Agricultural Sciences, P.O.Box
- 8 7014, SE-750 07 Uppsala.
- 9 <sup>‡</sup>CNRS, Institute of Ecology and Environmental Sciences, Campus AgroParis Tech, 78850
- 10 Thiverval-Grignon, France.
- 11 KEYWORDS
- 12 soil carbon | Energy | microbial community | use efficiency | isothermal microcalorimetry
- 13

## 14 ABSTRACT

15 Energy is continuously transformed in environmental systems through the metabolic activities 16 of living organisms, but little is known about the relationship between the two. In this study, we 17 tested the hypothesis that microbial energetics are controlled by microbial community 18 composition in terrestrial ecosystems. We determined the functional diversity profiles of the soil 19 biota (i.e. multiple substrate-induced respiration and microbial energetics) in soils from an arable 20 ecosystem with contrasting long-term management regimes (54 y). These two functional 21 profiling methods were then related to the soils' microbial community composition. Using 22 isothermal microcalorimetry, we show that direct measures of energetics provide a functional 23 link between energy flows and the composition of belowground microbial communities at a high taxonomic level (Mantel R = 0.4602, P = 0.006). In contrast, this link was not apparent when 24 25 carbon dioxide ( $CO_2$ ) was used as an aggregate measure of microbial metabolism (Mantel R = 26 0.2291, P = 0.11). Our work advocates that the microbial energetics approach provides 27 complementary information to soil respiration for investigating the involvement of microbial 28 communities in belowground carbon dynamics. Empirical data of our proposed microbial 29 energetics approach can feed into carbon-climate based ecosystem feedback modeling with the 30 suggested conceptual ecological model as a base.

#### 32 INTRODUCTION

33 Life above- and belowground has evolved complex and diverse communities and a key issue in 34 ecology is to explore the functional significance of community composition. Despite the central 35 role of soil microorganisms in the Earth's biogeochemical cycles, the importance of microbial diversity in ecosystem functioning is still debated<sup>1</sup>. The regulation of our climate and the carbon 36 37 cycle is an important ecosystem service and function. Soil organic matter is the largest carbon 38 pool in terrestrial ecosystems and soils are therefore major players in the global carbon cycle<sup>2</sup>. 39 Organic matter contains energy-rich bonds and is the primary energy source for the abundant and 40 diverse soil biological communities. Through metabolic activities, heterotrophic microorganisms 41 utilize energy stored in organic matter and exchange it within the biosphere and with the 42 atmosphere.

43 According to the second law of thermodynamics, high order energy (exergy) dissipates as low 44 order energy from a system over time and this process is irreversible. From an energy point of 45 view, soil ecosystems can be characterized as open systems of non-equilibrium thermodynamics 46 with the decomposition of soil organic matter to carbon dioxide (CO<sub>2</sub>) as a dissipative process that increases entropy<sup>3,4</sup>. Microbial metabolism is divided into two categories: catabolic reactions 47 48 that release energy and anabolic reactions that demand energy. An example of catabolic reactions 49 in soils is the breakdown of organic material into smaller compounds which releases energy 50 necessary for anabolic biosynthetic reactions. Energy not required for anabolic processes is 51 dissipated as heat and CO<sub>2</sub> is released from the soil system into the atmosphere. However, we do not grasp in detail how life belowground abides by the second law of thermodynamics<sup>5,6</sup>. 52

53 Isothermal microcalorimetry provides information on heat flows of all processes with very 54 high precision<sup>7</sup>. It is of particular interest for studying microbial involvement in soil carbon 55 dynamics as it quantifies all microbial metabolic processes (i.e. the net outcome of catabolic and 56 anabolic processes) not only accounted for by CO<sub>2</sub> measurements. As such, it is an alternative, 57 yet complementary, approach to CO<sub>2</sub> production for exploring microbial activity and carbon 58 dynamics in soil systems. Further information on the use, advantages and challenges of 59 isothermal microcalorimetry in soil and environmental sciences can be found in comprehensive reviews<sup>7-9</sup>. The calorespirometric ratio (ratio of heat-to-CO<sub>2</sub>-C) has been used to evaluate 60 metabolism and metabolic efficiency in soil systems<sup>10,11</sup>, and this ratio appears to vary among 61 soil systems with different land uses<sup>11,12</sup>. Recently, Harris and co-workers<sup>13</sup> proposed a 62 63 dimensionless index of microbial thermodynamic efficiency determined using isothermal 64 microcalorimetry. The index is based on the ratio of energy output in relation to energy input. 65 Small values of this index indicate that microbial energetics are efficient; in other words that the 66 biota has the ability to minimize energy dissipation from a system whilst maintaining 67 metabolism. Although it is known that soil organisms require both energy and carbon to drive 68 belowground processes, little is known about how energy flows are linked to the carbon cycle 69 and if there is a relation between microbial energetics and microbial community composition in 70 the soil. A better understanding of the relationship between the two is likely to help evaluate the 71 efficiency of carbon allocation in soil ecosystems and the consequences of the different 72 efficiencies.

Soil organisms have developed diverse life strategies to assimilate carbon and energy for
 maintenance, growth and reproduction<sup>14</sup>, and they can rapidly adapt to changes in external
 environmental conditions<sup>15</sup> through alternative biochemical pathways<sup>16</sup>. Although the

**ACS Paragon Plus Environment** 

allochtonous r- versus zymogenous K-selection concept<sup>17</sup> has been criticized as being an 76 oversimplified view of the processes of natural selection in ecology<sup>18</sup>, it is still consistent with 77 modern interpretation of community type and soil microbial functioning<sup>14</sup>. In general, 78 79 allochtonous r-strategists are adapted to rapidly acquiring resources when abundant and 80 maximizing their growth rate. These organisms generally release a larger fraction of organic 81 material to the atmosphere as CO<sub>2</sub>. In comparison, zymogenous K-strategists have developed a suite of extracellular enzymes<sup>19-21</sup> to break down complex organic material and they are therefore 82 83 adapted to competing and surviving when resources are limited. In ecosystems dominated by K-84 strategists, it is assumed that more of the organic material is sequestered in soils through carbon 85 allocation to microbial cell maintenance and synthesis of extracellular components such as enzymes, polysaccharides, metabolites, proteins etc.<sup>22</sup>. Consequently, different soil microbial 86 87 communities are likely to call upon different biochemical pathways resulting in different carbon 88 and energy flows through the communities and ecosystems. Under this scenario there may be 89 divergences between CO<sub>2</sub> production and energy utilization among microbial communities with 90 different makeups in the short-term and potentially long-term consequences for the carbon cycle 91 in soil.

Here, we tested the hypothesis that the composition of microbial communities in soils and their functioning controls energy flows as soil organisms have developed diverse biochemical pathways and life strategies. The general assumption is that measurements of microbial energetics provide a more subtle description of microbial processes related to the carbon cycle than do measurements of microbial CO<sub>2</sub> production. Soils from an arable ecosystem which differ only in their contrasting long-term organic matter inputs were chosen<sup>23</sup> to avoid the confounding effects of major soil properties such as soil texture or pH (SI Table 1). For illustration purposes,

#### **ACS Paragon Plus Environment**

#### **Environmental Science & Technology**

- we also proposed a conceptual ecological model of microbial energetics in terrestrial ecosystemsin which the different energy flows are explicitly described (Scheme 1).
- 101 EXPERIMENTAL SECTION

102 We established a laboratory experiment in which we added a range of carbon substrates to 103 soils from an arable ecosystem in order to test the hypothesis. Seven substrates (see SI Table 1 104 for details on all substrates used) or Milli-Q water as control were added separately to either non-105 sterile or gamma-irradiated sterile soil samples. The release of heat or CO<sub>2</sub> after substrate and 106 water additions to gamma-irradiated soil was also included in order to account for abiotic processes (abiotic  $CO_2$  evolution<sup>24</sup> or substrate interactions with soil matrix<sup>25</sup>). We then 107 measured substrate-induced CO<sub>2</sub> production<sup>26</sup> and energy flow profiles and determined the 108 109 strength of the relationship between these profiles and microbial community composition<sup>27</sup>.

110 Site and Sample Collection. Soils were sampled from the Ultuna Long-Term Soil Organic Matter Experiment (Uppsala, Sweden; 60°N, 17°E)<sup>23</sup>. The experiment was started in 1956 on a 111 112 postglacial clay loam classified as an Eutric Cambisol. In this experiment, soils (2 x 2 m blocks) have been treated with mineral nitrogen fertilizers (80 kg N ha<sup>-1</sup>y<sup>-1</sup>; applied annually as either 113 114  $Ca(NO_3)_2$  or  $(NH_4)_2SO_4$ ) or organic amendments (biennial addition at 8 Mg ash-free organic matter ha<sup>-1</sup>y<sup>-1</sup>). The treatments are replicated in four blocks, but one of the four blocks does not 115 116 have randomly distributed treatments and was therefore omitted from the present study. At the 117 end of May 2010, four treatments were selected, viz. (i) Green Manure, (ii) Straw+calcium 118 nitrate, (iii) Farmyard Manure and (iv) Peat+calcium nitrate (approx. 6 months after the last 119 application of organic manure). Eight sub-samples from 0-7 cm depth were taken from each 120 replicate block, sieved < 2mm, composited and mixed per replicate block and stored frozen until

spring 2012. Soils were then adjusted to 45% of their water holding capacity (WHC) and preincubated for two weeks at 25°C to allow any disturbance due to sieving to subside.

123 **Substrate-Induced Respiration.** The use of multiple substrate-induced respiration (MicroResp<sup>TM</sup> approach<sup>26</sup>) is often used to evaluate the functional diversity status of the soil 124 biota and to investigate carbon dynamics in soils. The correct use of this approach requires that 125 126 sufficient substrate is provided to saturate the microbial respiratory metabolism. For this study, seven substrates and recommended carbon concentrations<sup>26</sup> were selected:  $\gamma$ -amino butyric acid, 127 128 D-glucose, citric acid and  $\alpha$ -ketoglutaric acid were prepared so that 30 mg of C substrate per mL 129 soil water were supplied to each well; substrates that did not readily dissolve in water (i.e. N-130 acetyl glucosamine, L-alanine and  $\alpha$ -cyclodextrin) were supplied at a concentration of 7.5 mg C mL<sup>-1</sup> soil water. These substrates are commonly used in functional diversity profiling and they 131 have shown to discriminate between different soil microbial communities.<sup>26,28</sup> For each soil 132 133 treatment, soil samples (300 µL total volume per well, approx. 0.5 g dry soil) were added to a 96-134 well microtiter deep well plates and then 30  $\mu$ L of each substrate was dispensed to each deep 135 well (four replicate wells per substrate plus four Milli-Q water controls). The substrate addition 136 brought the water content to 65% of WHC and soils were incubated at 25° for eight hours. After 137 2 hours, the gel detector plates were mounted onto the microtiter plate system and substrate 138 induced respiration was measured between 2-8 h. The gel detector plates were then read in a 139 plate reader (Multiskan RC, Labsystem Finland). A calibration curve of absorbance (x) versus 140 headspace equilibrium  $CO_2$  concentration (y) was measured independently and absorbance data from microtiter deep well plates were fitted to a power decay model ( $R^2 = 0.976$ ) as follows: y =141  $0.0499 x^{-2.702}$ . 142

143 **Microbial Energetics.** For each soil treatment, eight aliquots of soil (5 g) were placed into 20 144 mL glass reaction vessels and each vessel was sealed with an admix ampoule set up consisting of 145 two 1 ml syringes (SI Fig. 1). Each admix ampoule contained either one of the seven substrates 146 mentioned above or Milli-Q water as control (SI Table 1). The samples where then introduced 147 into a TAM Air isothermal micro-calorimeter (TA Instruments Sollentuna, Sweden) with the 148 thermostat set to 25°C. The calorimeter was then sealed and the samples were allowed to 149 equilibrate for 3 hours. After equilibration, the plungers of the two syringes were slowly pressed 150 down to add the C substrates and Mill-Q water control drop wise (60  $\mu$ L per gram of soil 151 corresponding to the same volume as for substrate-induced respiration described above) and heat 152 flows were determined over 8 hours after substrate addition.

153 Assessment of Abiotic Processes. For each soil treatment, (i) one set of soil samples (300 µL 154 total volume per well) were added to a 96-well microtiter deep well plates to assess CO<sub>2</sub> evolution due to abiotic processes<sup>24</sup>, and (ii) eight aliquots of each soil treatment (5 g soil) were 155 156 weighed into 20 mL glass reaction vessels to evaluate substrate interactions with soil physical 157 properties. The plates and reaction vessels were covered with aluminum foil and samples were 158 then gamma-irradiated to sterilize them (CODAN Steritex APS, Espergaerde, Denmark) at a 159 minimum of 25 kGy. Samples were then kept in a laminar flow cabinet for 36 hours to avoid 160 contamination. To ensure complete sterilization, gamma-irradiation was repeated and samples 161 were then allowed to settle for four weeks. Seven C substrates (see above for substrate selection 162 and concentrations) and Milli-Q water control were filter sterilized with a DMSO Safe 163 Acrodisc® Syringe Filter (0.2 µm Nylon Membrane, 25 mm). For substrate-induced respiration, 164 30 µL of each filter sterilized substrate or Milli-Q water controls had been dispensed to each 165 deep well and samples have been treated as described above. For microbial energetics, the admix

ampoules (SI Fig. 1) were thoroughly cleaned with ethanol and rinsed repeatedly with filter sterilized Milli-Q water prior addition of one of the C substrates or MilliQ water as control. The samples were then introduced into a TAM Air isothermal microcalorimeter and heat flows were determined as described above.

170 Microbial Community Profiles. Phospholipid fatty acid (PLFA) profiling was used to assess the composition of the microbial communities using the method of Frostegård et al.<sup>27</sup>. 171 172 This analysis was used to determine which of the two functional diversity profiling methods, i.e. 173 substrate-induced CO<sub>2</sub> respiration or microbial energetics, was best related to microbial 174 community composition. Phospholipids were extracted from approximately 7-g fresh soil using 175 chloroform, methanol and citrate buffer to the ratio of 1:2:0.8 (v/v/v), fractionated by solid phase 176 extraction, depolymerized and then derivatized by mild alkaline methanolysis. The resultant fatty 177 acid methyl esters were analyzed by gas chromatography (Agilent/HP model 5890N, Santa 178 Clara, California, USA). Mono-unsaturated and cyclopropyl fatty acids were taken as gramnegative bacteria (G-) biomarkers<sup>29</sup>, iso- and anteiso-fatty acids as grampositive bacteria (G+) 179 biomarkers<sup>30</sup>, C18:2(9,12) as a fungal biomarker<sup>27</sup> and carboxylic acids with a methyl function 180 on the carbon chain as biomarkers for actinobacteria<sup>31</sup>. 181

**Statistical Analysis.** All statistical analyses were performed in R version 2.15.1<sup>32</sup> using the 'Vegan: Community Ecology Package'<sup>33</sup>. The resultant data was analyzed by one-way analysis of variance (ANOVA) and homogeneous groups of means established using Duncan's multiple range test. Levene's test was used to evaluate variance homogeneity and, where necessary, data were log-transformed prior further statistical analysis. PLFA and functional diversity profiling of the soils were examined with principal component analysis (PCA) using normalized covariance of %mol of PLFA data, substrate-induced respiration or substrate-induced heat flow data, 189 respectively. Significant differences between soil treatments along ordination axes were analyzed 190 by post-hoc one-way ANOVA followed by Bartlett's test and Tukey multiple pair test 191 comparison on PC scores. The association between the substrate-induced respiration, heat release 192 and PLFA data was determined by comparing the dissimilarity matrices of each of the datasets 193 using the Mantel test based on the Pearson product-moment correlation coefficient (999 194 permutations). Pearson correlation analysis was used to evaluate linear regression between PLFA 195 biomarkers of fungal-bacterial ratio data (X-axis) and respiration as well as microbial energetics 196 data (Y-axis).

Model description and parameterization. A conceptual ecological model of microbial energetics (catabolic and anabolic processes) in terrestrial soil ecosystems under aerobic, dark conditions was devised and it is presented in Scheme 1. As such, reactions requiring light (e.g. autotrophy) are not included in the model which only considers oxygen as a terminal electron acceptor because nitrate and sulfate reduction are negligible in aerobic systems.

Water amended control soils show significant specific heat flows ( $Q_{\text{Control}}$ ) with respect to basal metabolism<sup>13</sup>. It is therefore essential to correct the heat output of each substrate-amended soil in order to obtain heat produced from substrate addition only ( $Q_{\text{Substrate}}$ ):

$$205 \qquad Q_{\text{Substrate}} = Q_{\text{Total}} - Q_{\text{Control}} \tag{1}$$

where  $Q_{\text{Total}}$  (mJ g<sup>-1</sup>soil h<sup>-1</sup>) and  $Q_{\text{Control}}$  (mJ g<sup>-1</sup> soil h<sup>-1</sup>) are the heat flow of each substrateamended and water amended control soil, respectively.

Heat dissipated from abiotic processes was also removed in order to obtain heat flows due to metabolic activity of microbial substrate decomposition only ( $Q_{\text{Metabolism}}$ , mJ g<sup>-1</sup> soil h<sup>-1</sup>).

#### ACS Paragon Plus Environment

#### **Environmental Science & Technology**

Assuming that the abiotic processes that occur in sterile soils and in non-sterile soils generate equal heat flows,  $Q_{\text{Metabolism}}$  can then be obtained by subtracting the heat flow of substrateamended sterile soils ( $Q_{\text{Abiotic}}$ ):  $Q_{\text{Metabolism}} = Q_{\text{Substrate}} - Q_{\text{Abiotic}}$  (2)

When there are no abiotic processes then heat produced from substrate addition only ( $Q_{\text{Substrate}}$ ) is equal to heat flow due to soil biological activity ( $Q_{\text{Metabolism}}$ ).

216 The heat signal  $Q_{\text{Metabolism}}$  is heat dissipated from the soil system and it corresponds to the net 217 outcome of catabolic (energy releasing) and anabolic (energy demanding) processes. It is the 218 sum of energy conversions associated with (i) complete biological oxidation of the added 219 substrate to  $CO_2(Q_{CO_2})$ ; and (ii) the sum of incomplete decomposition and anabolic soil 220 processes ( $Q_{\text{Net soil}}$ ). Incomplete decomposition processes result in intermediate products 221 (intermediary catabolism with CO<sub>2</sub> not being the decomposition end product; Scheme 1 red 222 arrow in Q<sub>Net soil</sub>) and anabolic soil processes include microbial growth and maintenance, 223 production of secondary metabolites, synthesis of extracellular enzymes, extracellular 224 polysaccharides and so forth (biosynthetic anabolism; Scheme 1 green arrows in  $Q_{\text{Net soil}}$ ).

The maximum theoretical available energy that becomes dissipated as heat during metabolism is associated with the complete oxidation of the added substrate carbon to  $CO_2$ . In this case, no energy is conserved within the system. The heat dissipated during the complete oxidation to  $CO_2$  $(Q_{CO_2})$  is derived from the following equation assuming that heat production from possible priming effects of native soil organic matter is negligible in comparison with decomposition of the added substrate:

231 
$$Q_{\rm CO_2} = \Delta H_c^o \text{ (kJ mol}^{-1)} \times \frac{[n(\rm CO_2)_{\rm Substrate} - n(\rm CO_2)_{\rm Control}]}{N_C}$$
(3)

where  $\Delta H_c^o$  (kJ mol<sup>-1</sup>) is the standard molar enthalpy of combustion of the added substrates (SI Table 1);  $n(CO_2)_{substrate}$  and  $n(CO_2)_{control}$  is the amount of CO<sub>2</sub> mineralized (mol) in the substrate-amended and water-amended control soils, respectively, and  $N_C$  is the number of carbon atoms in the substrate.

All intermediary catabolic processes release less heat than the heat associated with the complete oxidation to  $CO_2(Q_{CO_2})$ . The net outcome between intermediary processes and biosynthetic anabolic reactions ( $Q_{Net soil}$ ) can be calculated by the difference between heat dissipated from overall metabolic activity ( $Q_{Metabolism}$ ) and  $Q_{CO_2}$ ):

240 
$$Q_{\text{Net soil}} = Q_{\text{Metabolism}} - Q_{\text{CO}_2}$$
 (4)

The carbon involved in transformations associated with the net outcome of  $Q_{\text{Net soil}}$  remains in the soil system, but CO<sub>2</sub> is lost to the atmosphere.

## 243 RESULTS AND DISCUSSIONS

Assessment of Abiotic Processes. The addition of carboxylic acids to the sterile soils induced significant heat signals with the shape of the curve resembling that of non-sterile soils but of lower magnitude (SI Fig. 2a and b). In contrast to heat production, abiotic  $CO_2$  production was negligible (*cf.* Fig. 1 and SI Fig. 2; SI Table 2). The other substrates and water amended control soils did not result in any measurable abiotic  $CO_2$  production (SI Table 2) or heat flow apart from an initial (less than 30 minutes) small wetting enthalpy peak when adding the substrates to the sterile soils (SI Fig. 2c). The absence of any significant heat signal in water amended sterile control soils beyond 30 minutes indicates that possible enzymes or metabolites released from
microbial cells into soil solution during gamma-sterilization had no discernible effect on energy
flows. In contrast with the sterile samples, adding the substrates and water to the non-sterile
samples resulted in a significant substrate or water-induced heat release (SI Fig. 2d).

255 The origin of the abiotic heat signals upon carboxylic acid addition (SI Fig. 2a and b) is not 256 known, but neutralization reactions and ligand binding of weak acids onto organic material are known to cause substantial exothermic reactions<sup>25,34</sup>. In non-sterile soil it is, however, uncertain 257 258 if abiotic and biotic reactions have similar strengths or if one of them is a stronger sink for 259 breakdown of carboxylic acids. Sensitivity analysis was therefore required to validate if our 260 assumption of equal abiotic heat flows in sterile and non-sterile soils was violated (see below in 261 the following section). Because the first initial immediate reaction was no longer apparent after 262 two hours (SI Fig. 2a and b), we opted for the use of the 2-8 hour incubation period to evaluate 263 the relationship between microbial community composition and functional diversity profiles.

#### 264 **Relationship between microbial community and functional diversity profiles.** The

principal component analysis (PCA) of the microbial energetics data ( $Q_{\text{Metabolism}}$ ) revealed a clear 265 266 separation among soil treatments (P < 0.01, Fig. 2a), but only green manure and straw+calcium 267 nitrate amended soils were separated along PC1 in the respiration data (P = 0.034; Fig. 2b). 268 Furthermore, microbial community composition was also significantly different among soil treatments with actinobacteria (10Me-C18:0)<sup>31</sup>, Gram-negative bacteria/fungal (C18:109c)<sup>35,36</sup> 269 and fungal biomarkers  $(C18:2\omega6,9)^{27}$  being the main variables responsible for the separation of 270 271 the different soil management regimes (P < 0.001, Fig. 2c). Pairwise comparison of dissimilarity 272 matrices between overall microbial metabolic heat profiles and microbial community profiles 273 revealed a significant similarity between the two data sets (Mantel R = 0.4602, P = 0.006, cf. Fig.

| 274 | 2a and c), but no such similarity was detected between respiration and community profiles                                  |
|-----|----------------------------------------------------------------------------------------------------------------------------|
| 275 | (Mantel $R = 0.2291$ , $P = 0.11$ ; <i>cf</i> . Fig. 2b and c). These data clearly show that the composition of            |
| 276 | the microbial community was related to the metabolic processes that occurred in the samples and                            |
| 277 | that this relationship was not apparent when CO <sub>2</sub> evolution was used as an aggregate measure of                 |
| 278 | microbial metabolism. Microbial metabolism in soils consists of a plethora of processes                                    |
| 279 | including reactions that do not produce CO <sub>2</sub> as an end-product. <sup>11</sup> Isothermal microcalorimetry       |
| 280 | quantifies all metabolic processes and therefore accounts for the different processes that occur                           |
| 281 | within different microbial communities, regardless of the different life strategies of soil                                |
| 282 | organisms <sup>14</sup> . This is not always the case with respiration measurements.                                       |
| 283 | Moreover, the mantel test for dissimilarity matrices indicated that overall microbial heat flow                            |
| 284 | $(Q_{\text{Metabolism}})$ and CO <sub>2</sub> data provided different information, i.e. that there are divergences between |
| 285 | the two. This was independent of whether the analysis was based on pairwise comparison                                     |
| 286 | between metabolic heat profiles and respiration profiles of all seven substrates (Mantel R =                               |
| 287 | 0.2173, $P = 0.112$ ; <i>cf</i> . Fig. 2a and b) or when the two carboxylic acids, which generated                         |
| 288 | significant heat flows in sterile soils, were excluded from the analysis (Mantel $R = 0.03488$ , $P =$                     |
| 289 | 0.426). The overall microbial heat flows ( $Q_{Metabolism}$ ) were based on the assumption that the                        |
| 290 | abiotic processes that occur in sterile soils generate equal heat flows in non-sterile soils. This is a                    |
| 291 | challenging assumption to validate however. Sensitivity analysis was done on microbial heat                                |
| 292 | flows assuming (i) $Q_{\text{Substrate}} = Q_{\text{Metabolism}}$ , i.e. there was no abiotic heat release upon carbon     |
| 293 | substrate addition or (ii) that abiotic heat release was 50% of that determined in sterile soils. The                      |
| 294 | analysis resulted in the same conclusion, namely that there were divergences between heat                                  |
| 295 | profiles and CO <sub>2</sub> data ((i) Mantel R = 0.2887, P = 0.059; <i>cf.</i> Fig. 2b and SI Fig. 3a; (ii) Mantel R      |
| 296 | = 0.2266, P = 0.114; <i>cf</i> . Fig. 2b and SI Fig. 3b). Thus, potential violations of this assumption are                |

297 unlikely to affect overall conclusion drawn from this experiment. In contrast, Currie<sup>37</sup> found that 298 heat flows and  $CO_2$  were closely related when combining energy balance with a model that was 299 parameterized through bomb calorimetric analysis, i.e. measurements of stored energy in organic 300 material. However, the two studies are not directly comparable, as different approaches were 301 used. Nevertheless, they warrant further investigation into the relation between energy and 302 carbon cycling in terrestrial ecosystems.

303 Long-term organic inputs of peat+calcium nitrate resulted in the greatest fungal-to-bacterial 304 ratio among the different long-term management regimes (Table 1). The other management regimes had lower ratios and were ranked in the order green manure > farmyard manure > 305 306 straw+calcium nitrate amended soils (Table 1). Soils amended with peat+calcium nitrate 307 dissipated the least heat ( $Q_{\text{Substrate}}$  and  $Q_{\text{Metabolism}}$ ) (Fig. 1a and b), and the net outcome of heat 308 dissipated between anabolic and intermediary catabolic reactions ( $Q_{\text{Net soil}}$ ) was lowest in 309 peat+calcium nitrate or green manure amended soils (Fig. 1a and c). Conversely, green manure 310 amended soils showed the highest CO<sub>2</sub> production among the four soil systems (Fig. 1a and d). 311 Such differences in respiration and heat flows strongly suggest that carbon and energy allocation 312 varied among the four soil management systems. All soils received the same amount of energy ( $\Sigma$  energy input carbon substrates: 1.29 kJ g<sup>-1</sup> soil; SI Table 1). The fact that less heat was 313 314 dissipated in green manure and peat+calcium nitrate systems may be merely due to overall lower 315 metabolic activities. However, lower calorespirometric ratios, i.e. heat output  $Q_{\text{Metabolism}}$  per unit 316 CO<sub>2</sub> (Table 1) indicate that the green manure and peat+calcium nitrate systems, with higher 317 relative abundances of fungi, may have a more efficient microbial metabolism. Consequently, 318 more energy is retained within soil systems that contain higher proportions of fungi. Specifically, 319 Pearson correlation analysis based on all field replicates (n = 12) revealed a negative linear

320 relationship between the fungal-bacterial ratio and the sum of all energy heat flows (Fig. 3a; P <321 (0.001), but there was no relationship between the fungal-bacterial ratio and overall respiratory 322 activity (Fig. 3b; P = 0.66). Normalizing each substrate by the sum of overall heat release 323 response revealed a negative relationship between the fungal-bacterial ratio and substrateinduced heat release of N-acetyl glucosamine additions ( $Q_{\text{Metabolism}}$ : X = -5.17, r<sup>2</sup> = 0.73 or  $Q_{\text{Net}}$ 324 <sub>soil</sub>: X = -6.90,  $r^2 = 0.83$ ). Fungal cell walls contain chitin which is a long-chain polymer of N-325 acetyl glucosamine<sup>38</sup>. Hence, *N*-acetyl glucosamine was used in anabolic processes and therefore 326 327 less heat was dissipated into the atmosphere from soil systems that contain relatively more fungi 328 than bacteria. Overall, our results are in line with a long-standing paradigm in microbial ecology that microbial communities dominated by fungi are more efficient in carbon assimilation<sup>39</sup> and 329 nutrient resource retention<sup>40</sup> than bacterial-dominated communities. 330

331 Implications for carbon cycling in terrestrial ecosystems. Our findings demonstrate that 332 the composition of microbial communities in soil and their functioning are related to energy 333 flows. These findings provide an indication that microbial communities may not be functionally 334 redundant with respect to carbon cycling as hitherto thought. If this were to be confirmed, we 335 would therefore have to re-evaluate the concept of functional redundancy in soil microbial 336 ecology. In the present study, microbial energetics were related to microbial communities at a 337 high taxonomic level and described under optimal, saturated microbial metabolism. Although 338 PLFA profiles only provide a description of microbial community composition at a high taxonomic level, recent research syntheses<sup>41,42</sup> accentuate that this level may matter for 339 340 ecosystem function. In the future it will be necessary to evaluate (i) if the taxonomic level of 341 diversity matters, i.e. different taxonomic levels of diversity for example at the species level may 342 result in a different relationship with energy flows, (ii) if microbial energetics are similar under

#### **ACS Paragon Plus Environment**

343 ecologically relevant substrate levels, i.e. poorer carbon conditions and (iii) if microbial
344 communities with different energy flows respond differently to external forces such as flooding,
345 heat or cold stress and so forth.

346 Our results have significant implications for carbon cycling in terrestrial ecosystems and 347 support the emerging view of carbon sequestration. The classical view that carbon sequestration 348 belowground is mainly due to the molecular property of residing organic matter is increasingly 349 considered obsolete. It is replaced by a conceptual model which describes carbon stabilization as an ecosystem property<sup>43</sup> with soil microorganisms as important facilitators<sup>41</sup>. Data from the 350 351 present study furthermore confirm that soil systems that contain relatively more fungi may have 352 the ability to sequester more carbon belowground in comparison with systems with relatively more bacteria. Allison and co-workers<sup>44</sup> have suggested that changes in microbial metabolism, 353 354 resulting in a decrease in the fraction of assimilated carbon allocated to growth, can explain the 355 apparent acclimation to warming that is often observed for soil respiration. Subtle changes in 356 metabolism, not apparent when aggregate measures such as soil respiration are used as an 357 indicator of community activity, may thus potentially have significant consequences for 358 ecosystem-scale function. Such metabolic changes may therefore have to be accounted for to 359 fully understand terrestrial climate change feedback mechanisms. It is therefore imperative to 360 develop our knowledge of soil microbial community functioning using a microbial energetics 361 approach, if we are to construct a complete understanding of carbon dynamics in soils. The work 362 presented here provides empirical data that can feed into emerging microbial-enzyme carbonclimate based feedback models<sup>44,45</sup>, and the proposed ecological model of microbial energetics in 363 364 soil ecosystems can be used as a start.

In the last century, theoretical ecological frameworks of ecosystem bioenergetics have been 365 proposed<sup>46,47</sup> and energy budget of organic forest floors<sup>48</sup> were established. Currie<sup>37</sup> evaluated 366 367 the relation between carbon and energy and our proposed work on microbial energetics in 368 terrestrial soil ecosystems further develops the area of ecosystem bioenergetics. However, the 369 ecological model is still in its infancy within soil science and there is a clear scope for further 370 development. Soils are structurally heterogeneous and external environmental conditions do not 371 have a uniform effect throughout the soils, resulting in a large diversity of micro-habitats. Future 372 studies could examine microbial energetics under various environmental conditions. Here, soils 373 could be exposed to photoperiods, flooded conditions or oxygen-free atmosphere to estimate the importance of e.g. autotroph<sup>49</sup>, methanogen<sup>50</sup>, sulfate- or nitrate<sup>51</sup> reducing microorganisms on 374 microbial energetics. In a broader perspective, the microbial energetics approach has the 375 376 potential to provide further information when employing ecological theory into microbial 377 ecology to better understand microbial systems. In particular, it provides new insights into the relation between biodiversity and land use extensification<sup>52</sup>, ecosystem development<sup>53,54</sup> as well 378 as key ecosystem functioning such as carbon sequestration<sup>43</sup> and nutrient retention<sup>52</sup>. By taking 379 380 an energetic view of soil microbial metabolism, we may improve our understanding of the 381 significance of microbial biodiversity on ecosystem function and thus improve prediction of 382 microbial feedback mechanisms and ecosystem responses to climate change.

#### FIGURES

**Figure 1.** Substrate-induced heat flows and respiration. (a) Overall responses of four soils from the Ultuna Long-Term Field Experiment. Mean values represent sum of responses to all seven substrates. (b-d) Responses of each carbon substrate separately (N-acet = N-acetyl glucosamine;  $\gamma$ -am =  $\gamma$ -amino butyric acid; L-ala = L-alanine; gluc = D-glucose; cyclo =  $\alpha$ -cyclodextrin; citric = citric acid and  $\alpha$ -keto =  $\alpha$ -ketoglutaric acid): (b) Heat flows  $Q_{\text{Substrate}}$  and  $Q_{\text{Metabolism}}$ , (c)  $Q_{\text{Net soil}}$  and (d) respiration. Heat flows and respiration were determined by isothermal microcalorimetry or MicroResp, respectively; for explanation of heat flow abbreviations see Scheme 1. The error bars indicate standard deviation (n=3). Peat+N = peat+Ca(NO\_3)\_2; GM = Green manure; FYM = farmyard manure; Straw+N = straw+Ca(NO\_3)\_2.  $Q_{\text{Substrate}} = Q_{\text{Metabolism}}$  when there are no abiotic substrate interactions with physical properties and these substrates are suffixed with\* $\Box$ . Substrates suffixed with \* are  $Q_{\text{Substrate}}$  and substrates suffixed with  $\Box$  are  $Q_{\text{Metabolism}}$ . In the latter,  $Q_{\text{Substrate}}$  were corrected for heat outputs derived from sterile soils (Table S2, equation (2)) on the assumption that abiotic substrates interactions with soil matrix are occurring in the same order of magnitude in non-sterile and sterile soils.

## **Environmental Science & Technology**

(a) Sum substrates











**Figure 2.** Functional diversity profiling and composition of soil microbial communities. Principal component analysis representing the effect of contrasting long-term organic matter inputs on (i) the functional diversity profiling of the soil biota based on utilization of 7 different substrates via (a) overall microbial metabolic activity ( $Q_{Metabolism}$ ); and (b) CO<sub>2</sub> respiration and (ii) (c) the composition of the soil microbial communities by PLFA. Values in parentheses on axis labels denote % variation accounted for by the respective components, and 95% confidence ellipses are provided for each soil treatment. Peat+N = peat+ Ca(NO<sub>3</sub>)<sub>2</sub>; GM = Green manure; FYM = farmyard manure; Straw+N = straw+Ca(NO<sub>3</sub>)<sub>2</sub>.



**Figure 3.** Pearson correlation analysis. Linear correlation analysis between fungal-tobacterial ratio (x-axis) and (a) heat flows and (b)  $CO_2$  respiration (n = 12).



Fungal-to-Bacterial ratio



**ACS Paragon Plus Environment** 

### **SCHEMES**

Scheme 1. Conceptual model of microbial energetics of metabolism in aerobic soils. Red and green arrows represent catabolic and anabolic processes, respectively. Heat flows ( $Q_{Subscript}$ ) are represented in orange. Solid lines indicate dominant processes whereas dashed lines represent minor processes.



# TABLES.

**Table 1.** Basic characteristics including fungal-to-bacterial ratios (F:B ratio) and calorespirometric ratio (heat output  $Q_{\text{Metabolism}}$  per unit CO<sub>2</sub>; mJ µg<sup>-1</sup> CO<sub>2</sub>-C) of soils used in study. Mean values (n = 3); common letters show homogenous means using Duncan's multiple range test at 1% significance level.

| Treatment                               | C (%) | N (%)  | C-to-N<br>ratio | Microbial biomass<br>(µg C g <sup>-1</sup> soil) | рН<br>(H <sub>2</sub> O) | F:B<br>ratio <sup>*</sup> | calorespirometric ratio<br>mJ μg <sup>-1</sup> CO <sub>2</sub> -C |
|-----------------------------------------|-------|--------|-----------------|--------------------------------------------------|--------------------------|---------------------------|-------------------------------------------------------------------|
| Green Manure                            | 1.7 A | 0.19 A | 9.7 A           | 205 A                                            | 5.9 A                    | 0.18 A                    | 44 A                                                              |
| Straw+Ca(NO <sub>3</sub> ) <sub>2</sub> | 2.0 в | 0.17 в | 10.7 в          | 254 в                                            | 6.4 в                    | 0.03 B                    | 65 B                                                              |
| Farmyard Manure                         | 2.3 C | 0.23 C | 10.1 C          | 298 с                                            | 6.4 B                    | 0.05 B                    | 66 B                                                              |
| Peat+Ca(NO <sub>3</sub> ) <sub>2</sub>  | 3.9 D | 0.22 C | 17.6 D          | 186 A                                            | 5.8 A                    | 0.33 C                    | 49 A                                                              |

<sup>\*</sup>Fungal-to-bacterial ratio (F:B ratio) was based on the abundance of the fungal PLFA biomarker 18:2 (9, 12)<sup>27</sup> and the sum of 8 bacterial PLFA biomarkers.

## ASSOCIATED CONTENT

**Supporting Information**. Additional information noted in the text is available. This material is available free of charge via the Internet at http://pubs.acs.org.

## AUTHOR INFORMATION

## **Corresponding Author**

\*+46 18 67 1561; fax -46 18 67 3476. Email: anke.herrmann@slu.se

# **Author Contributions**

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

## Notes

The authors declare no competing financial interest.

# ACKNOWLEDGMENT

C. D. Campbell, A. S. Dahlin, A. Rosling and G. I. Ågren commented on the manuscript. This work was supported by the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (Formas). A. Neumann provided laboratory assistance with functional diversity profiling analysis. We would especially like to acknowledge the Department of Soil & Environment, SLU, Sweden for maintenance and access to the Ultuna long-term Soil Organic Matter Experiment. We also sincerely acknowledge three anonymous reviewers who provided insightful comments which assisted us in developing and improving this paper.

#### ABBREVIATIONS

 $CO_2$ , carbon dioxide;  $Q_{Total}$ , heat flows of substrate-amended soils;  $Q_{Substrate}$ , heat flows from added substrate;  $Q_{Control}$ , heat flows from water amended soils/basal metabolism,  $Q_{Metabolism}$ , heat flows from overall microbial metabolic acitivity;  $Q_{Abiotic}$ ), heat flows in sterile soils/abiotic processes;  $Q_{Net soil}$ , net outcome: heat flows of anabolic and intermediary catabolic reactions;  $(Q_{CO_2})$ , heat dissipated during complete biological oxidation of the added substrate;  $H_c^o$ , standard molar enthalpy;  $n(CO_2)_{substrate}$  and  $n(CO_2)_{control}$ ,  $CO_2$  mineralized (mol) in substrate-amended and water-amended control soils, respectively;  $N_C$ , the number of carbon atoms in substrate added.

#### REFERENCES

Prosser, J. I. Ecosystem processes and interactions in a morass of diversity. *FEMS Microb. Ecol.* 2012, *81*, 507–519.

(2) Houghton, R. A. Balancing the global carbon budget. *Annu. Rev. Earth Planet Sci.* 2007, *35*, 313-347.

(3) Addiscott, T. M. Entropy, non-linearity and hierarchy in ecosystems. *Geoderma* **2010**, *160*, 57-63.

(4) Katachalsky, A.; Curran, P. F. *Non-equilibrium Thermodynamics in Biophysics*. Harvard University Press, Cambridge, 1967.

(5) Schrödinger, E. What is life? Cambridge University Press, 1967.

(6) Schneider, E. D.; Kay, J. J. Life as a manifestation of the second law of thermodynamics.*Math. Comput. Model.* 1994, *19*, 25-48.

(7) Braissant, O.; Wirz, D.; Gopfert, B.; Daniels, A. U. Use of isothermal microcalorimetry to monitor microbial activities. *FEMS Microbiol. Lett.* **2010**, *303*, 1-8.

(8) Rong, X.-M.; Huang, Q.-Y.; Jiang, D.-H.; Cai, P.; Liang, W. Isothermal microcalorimetry: A review of applications in soil and environmental sciences. *Pedosphere* 2007, *17*, 137-145.

(9) Wadsö, I. Characterization of microbial activity in soil by use of isothermal microcalorimetry. *J. Therm. Anal. Calorim.* **2009**, *95*, 843-850.

(10) Barros, N.; Salgado, J.; Rodríguez-Añón, J. A.; Proupín, J.; Villanueva, M.; Hansen, L.
D. Calorimetric approach to metabolic carbon conversion efficiency in soils. *J. Therm. Anal. Calorim.* 2010, *99*, 771-777.

(11) Barros, N.; Fejóo, S.; Hansen, S. D. Calorimetric determination of metabolic heat, CO<sub>2</sub> rates and the calorespirometric ratio of soil basal metabolism. *Geoderma* **2011**, 160, 542-547.

(12) Sparling, G. P. Estimation of microbial biomass and activity in soil using microcalorimetry. *J. Soil Sci.* **1983**, *34*, 381-390.

(13) Harris, J. A.; Ritz, K.; Coucheney, E.; Grice, S. M.; Lerch, T. Z.; Pawlett, M.; Herrmann,A. M. The thermodynamic efficiency of soil microbial communities subject to long-term stress islower than those under conventional input regimes. *Soil Biol. Biochem.* 2012, *47*, 149-157.

(14) Fierer, N.; Bradford, M. A.; Jackson, R. B. Toward an ecological classification of soil bacteria. *Ecology* **2007**, *88*, 1354-1364.

(15) Harris, J. A. Soil Microbial Communities and Restoration Ecology: Facilitators or Followers? *Science* **2009**, *325*, 573-574.

(16) Dijkstra, P.; Thomas, S. C.; Heinrich, P. L.; Koch, G. W.; Schwartz, E.; Hungate, B. A. Effect of temperature on metabolic activity of intact microbial communities: evidence for altered metabolic pathway activity but not for increased maintenance respiration and reduced carbon use efficiency. *Soil Biol. Biochem.* **2011**, *43*, 2023-2031.

(17) Winogradsky, S. Sur la microflora autochtone de la terre arable. Comptes RendusHebdomadaire des Séances de l'Academie des Sciences, Paris 1924, *178*, 1236–1239.

(18) Reznick, D.; Bryant, M. J.; Bashey, F. r- and K selection revisited: the role of population regulation in life history evolution. *Ecology* **2002**, *83*, 1509–1520.

(19) Burns, R. G.; DeForest, J. L; Marxsen, J.; Sinsabaugh, R. L.; Stromberger, M. E.;
Wallenstein, M. D.; Weintraub, M. N.; Zoppini, A. Soil enzymes in a changing environment:
Current knowledge and future directions. *Soil Biol. Biochem.* 2013, *58*, 216-234.

(20) Courty, P. E.; Hoegger, P. J.; Kilaru, S.; Kohler, A.; Buée, M.; Garbaye, J.; Martin, F.; Kües, U. Phylogenetic analysis, genomic organization, and expression analysis of multi-copper oxidases in the ectomycorrhizal basidiomycete Laccaria bicolor. *New Phytol.* **2009**, *182*, 736-750.

(21) Rabinovich, M. L.; Bolobova, A. V.; Vasil'chenko, L. G. Fungal decomposition of natural aromatic structures and xenobiotics: a review. *Appl. Biochem. Microbiol.* **2004**, *40*, 1–17.

(22) Jastrow, J.D.; Amonette, J. E.; Bailey, V. L. Mechanisms controlling soil carbon turnover and their potential application for enhancing carbon sequestration. *Clim. Change* **2007**, *80*, 5–23.

(23) Herrmann, A. M.; Witter, E. Predictors for gross N mineralization and immobilization during decomposition of stabilized organic matter in agricultural soils. *Eur. J. Soil Sci.* 2008, *59*, 653-644.

(24) Maire V.; Alvarez, G.; Colombet, J.; Comby, A.; Despinasse, R.; Dubreucq, E.; Joly, M.;
Lehours, A. C.; Perrier, V.; ShahzadT.; Fontaine, S. An unknown respiration pathway
substantially contributes to soil CO<sub>2</sub> emissions. *Biogeosciences Discuss* 2012, *9*, 8663-8691.

(25) von Lützow, M.; Kögel-Knabner, I.; Ekschmitt, K.; Matzner, E.; Guggenberger, G.; Marschner, B.; Flessa, H. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review. *Eur. J. Soil. Sci.* **2006**, *57*, 426-445.

(26) Campbell, C. D.; Chapman, S. J.; Cameron, C. M.; Davidson, M. S.; Potts, J. M. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. *Appl. Environ. Microbiol.* **2003**, *69*, 3593-3599.

(27) Frostegård, A.; Tunlid, A.; Bååth, E. Phospholipids fatty-acid composition, biomass, and activity of microbial communities from 2 soil types experimentally exposed to different heavymetals. *Appl. Environ. Microbiol.* **1993**, *59*, 3605-3617.

(28) Banning, N. C.; Lalor, B. M.; Cookson, W. R.; Grigg, A. H.; Murphy, D. V. Analysis of soil microbial community level physiological profiles in native and post-mining rehabilitation forest: Which substrates discriminate? *Appl. Soil Ecol.* **2012**, *56*, 27-34.

(29) Zelles, L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. *Biol. Fert. Soils* **1999**, *29*, 111-129.

(30) O'Leary, W. M.; Wilkinson, S. G. Gram-positive bacteria. In *Microbial Lipids*, Ratledge,
C., Wilkinson, C. G., Eds.; Academic Press: London, England, Uk; San Diego, California, USA,
1988; pp 117-202.

(31) Zelles, L. Phospholipid fatty acid profiles in selected members of soil microbial communities. *Chemosphere* **1997**, *35*, 275-294.

(32) R Development Core Team. R: a language and environment for statistical computing. Available: http://www.R- project.org, **2008.** 

(33) Oksanen, J.; Blanchet, F. G.; Kindt, R.; Legendre, P.; O'Hara, R. B.; Simpson, G. L.; Solymos, P.; Stevens, M. H.; Wagner, H. Vegan: Community Ecology Package. R package version 1.17-6, **2011.** 

(34) Wyrzykowski, D.; Chmurzynski, L. Thermodynamics of citrate complexation with Mn<sup>2+</sup>, Co<sup>2+</sup>, Ni<sup>2+</sup> and Zn<sup>2+</sup> ions. *J. Therm. Anal. Calorim.* **2010**, *102*, 61-64.

(35) Zelles, L.; Bai, Q. Y.; Beck, T.; Beese, F. Signature fatty acids in phospholipids and lipopolysaccharides as indicators of microbial biomass and community structure in agricultural soils. *Soil Biol. Biochem.* **1992**, *24*, 317-323.

(36) Myers, R. T.; Zak, D. R.; White, D. C.; Peacock, A. Landscape-level patterns of microbial community composition and substrate use in upland forest ecosystems. *Soil Sci. Am. J.* **2001**, *65*, 359-367.

(37) Currie, W. S. Relationships between carbon turnover and bioavailable energy fluxes in two temperate forest soils. *Global Change Biol.* **2003**, *9*, 919-929.

(38) De Nobel, J. G.; Van Den Ende, H.; Klis, F. M. (2000) Cell wall maintenance in fungi. *Trends Microbiol.* **2000**, *8*, 344–345.

(39) Holland, E. A.; Coleman, D. C. Litter placement effects on microbial and organic matter dynamics in an agroecosystem. *Ecology* **1987**, *68*, 425-433.

(40) Wardle, D. A.; Bardgett, R. D.; Klironomos, J. N.; Setälä, H.; van der Putten, W. H.;
Wall, D. H. Ecological linkages between aboveground and belowground biota. *Science* 2004, *304*, 1629-1633.

(41) Schimel, J. P.; Schaeffer, S. M. Microbial control over carbon cycling in soil. *Front. Microbiol.* **2012**, *3*, 1-11.

(42) Philipot, L.; Anderson, S. G. E.; Battin, T. J.; Prosser, J. I.; Schimel, J. P.; Whitman, W. B.; Hallin, S. The ecological coherence of high bacterial taxonomic ranks. *Nat. Rev. Microbiol.*2010, *8*, 523-529.

(43) Schmidt, M. W. I.; Torn, M. S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.
A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D. A. C.; Nannipieri, P.; Rasse, D. P.;
Weiner, S.; Trumbore, S. E. Persistence of soil organic matter as an ecosystem property. *Nature* 2011, *478*, 49-56.

(44) Allison, S.D.; Wallenstein, M. D.; Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. *Nat.Geosc.* **2010**, *3*, 336-340.

(45) Schimel, J. P.; Weintraub, M. N. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: A theoretical model. *Soil Biol. Biochem.* **2003**, *35*, 549-563.

(46) Odum, E. P. The strategy of ecosystem development. Science 1969, 164, 262-270.

(47) Reiners, W. A. Complementary models for ecosystems. Am. Nat. 1986, 127, 59-73.

(48) Reiners, W. A.; Reiners, N. M. Energy and nutrient dynamics of forest floors in three Minnesota Forests. *J. Ecol.* **1970**, *58*, 497-519.

(49) Yuan, H; Ge, T.; Chen, C.; O'Donnell, A. G.; Wu, J. Significant role for microbial autotrophy in the sequestration of soil carbon. *Appl. Environ. Microbiol.* **2012**, *78*, 2328-2336.

(50) Peters, V.; Conrad, R. Methanogenic and other strictly anaerobic bacteria in desert soil and other oxic soils. *Appl. Environ. Microbiol.* **1995**, *61*, 1673-1676.

(51) Silver, W. L.; Herman, D.J.; Firestone, M. K. Dissimilatory nitrate reduction to ammonium in upland tropical forest soils. *Ecology* **2001**, *82*, 2410-2416.

(52) de Vries, F. T.; Bloem. J.; Quirk, H.; Stevens, C. J.; Bol, R.; Bardgett, R. D. Extensive management promotes plant and microbial nitrogen retention in temperate grassland. *PLOS ONE* **2012**, *7*, 1-12.

(53) Insam, H.; Hasselwandter, K. Metabolic coefficient of the soil microflora in relation to plant succession. *Oecologia* **1989**, *79*, 174-178.

(54) Ohtonen, R.; Fritze, H.; Pennanen, T.; Jumpponen, A.; Trappe, J. Ecosystem properties and microbial community changes in primary succession on a glacier forefront. *Oecologia* **1999**, *119*, 239-246.