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Ecology and genomics of microorganisms reducing the 
greenhouse gas N2O. Examples from the Rhizosphere

Abstract
Nitrous oxide (N2O) is a potent greenhouse gas and the major ozone depleting 
substance in the stratosphere. One major source of N2O is incomplete denitrification, 
whereas the only known tropospheric sink of N2O is the microbial enzyme nitrous 
oxide reductase. Denitrification is defined as the stepwise reduction of nitrite to 
dinitrogen via nitric oxide and N2O by facultative anaerobic microorganisms. This 
thesis aims to elucidate the phylogenetic diversity of the N2O reductase encoding gene 
nosZ and its context in microbial genomes in relation to other genes in the 
denitrification pathway, as well as the relative influence of plants and soil on the 
activity, abundance and structure of N2O-reducing communities in the rhizosphere. 

Phylogenetic analysis of publicly available nosZ gene sequences revealed that its 
genetic diversity is divided into two distinct clades termed clade I and clade II, the 
latter having not been accounted for in previous studies. Newly developed molecular 
tools revealed that it is abundant in a wide range of environments. Analysis of 
microbial genomes showed that co-occurrence patterns of nosZ with other 
denitrification genes were neither randomly distributed among taxonomic units nor 
among habitats. Many genomes had truncated pathways as organisms possessing 
nosZII often lacked other genes involved in denitrification, suggesting these organisms 
may act as N2O-sinks in the environment. Pot experiments with sunflower and barley 
indicated a niche differentiation between the two nosZ gene variants, as nosZI showed 
an affinity for plant roots while nosZII was more abundant in the surrounding soil. 
However, denitrification and N2O-production activity in soil were controlled by 
edaphic factors. Moreover, an intercropping experiment with cocksfoot and lucerne 
showed that intercropping had a negative influence on nosZII abundances on cocksfoot 
roots which in conjunction with phylogenetic placement of sequencing reads indicated 
the presence of organisms with only nosZ lacking a denitrification pathway.

In conclusion, the development of new molecular tools combined with comparative 
genomic analysis sheds new light on the ecology of biological N2O reduction in the 
rhizosphere.

Keywords: nitrous oxide, nosZ, nirS, nirK, microbial genomes, community assembly, 
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nirS gene encoding for heme-binding nitrite reductase
NO nitric oxide
NO2

- nitrite
NO3

- nitrate
NOR nitric oxide reductase
nosZ gene encoding for nitrous oxide reductase
ppb parts per billion



10



11

1 Introduction
Nitrous oxide (N2O) is a colourless, odourless, non-toxic gas, commonly 
known as laughing gas. The Intergovernmental Panel on Climate Change 
(IPCC) report on climate change (2013) considers N2O the third most 
important greenhouse gas. The atmospheric concentration levels of the gas
have increased from 271 ppb in 1750, as determined by ice core analysis, to 
324 ppb in 2011 of which 5 ppb have been added since 2005. Moreover the 
IPCC states that, considered over a 100 year period, the global warming 
potential for N2O is 298 times higher than that of CO2, thus making the gas 
responsible for around 7 % of the global radiative forcing despite occurring at 
far lower concentrations than CO2. Historically, the concentration of N2O
currently observed in the atmosphere has not been as high since at least 
800 000 years ago, and levels are rising with increasing speed. The 
stratosphere is considered the main sink for N2O, where the gas undergoes 
photolysis to NO which in turn destroys ozone molecules. N2O is now 
considered the most dominant ozone depleting substance (Ravishankara et al., 
2009).

1.1 Nitrous oxide emissions from terrestrial ecosystems
Of global N2O-emissions, 62% are attributed to terrestrial ecosystems where 
agricultural systems comprise the largest single source of N2O (Skiba and 
Smith, 2000). The other third is produced in the oceans, whereas additional
sources are the combustion of fossil fuels in power plants and vehicles as well 
as the production of nitric acid (IPCC, 2007). Smith et al. (2012) could 
effectively link the global rise of N2O levels to overall inputs of reactive N into 
agricultural systems. This reactive N includes biologically fixed N and N fixed 
as synthetic fertilizer, as well as N mineralized from soil organic matter 
(SOM), when natural land is converted to agriculture, as well as NOx 
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deposition from combustion. Thus, they identified agricultural systems as the 
main source responsible for rising N2O levels. 

1.2 Biological processes regulating N2O
N2O is part of the N cycle, which begins with the fixation of atmospheric 
nitrogen into ammonium (NH4

+) either by diazotrophic microorganisms or 
through the Haber-Bosch process in the industrial production of fertilizers. The 
NH4

+ that is not incorporated into growing plant or microbial biomass can 
either be aerobically oxidized to NO3

- via nitrification or converted to N2

through anaerobic ammonia oxidation (ANAMMOX). The NO3
- produced by 

nitrification can be reduced to N2 via denitrification, which in addition to 
ANAMMOX is a major pathway by which fixed N is returned to the 
atmosphere. However, NO3

- can also be reduced to NH4
+ by the process 

dissimilatory nitrate reduction to ammonium (DNRA).

In soils, N2O-emissions can be primarily attributed to nitrification and 
denitrification (Okereke, 1993; Zumft, 1997). The former is a two-step process 
where ammonia (NH3) is first oxidized to nitrite (NO2

-) via the intermediate 
hydroxylamine (NH2OH) by ammonia oxidizing bacteria and archaea, and then 
to nitrate (NO3

-) by nitrite oxidizing bacteria. While N2O can be produced from 
oxidation of hydroxylamine, it has been pointed out that denitrification is the 
main cause of N2O emissions also from ammonia oxidizers (Kool et al., 2011).
Also DNRA can give rise to N2O, here toxic NO can accumulate in the cell and
is detoxified to N2O (Spiro, 2012). However, this process is considered to 
contribute only marginally to overall N2O budgets (Kool et al., 2011).
Nevertheless, which process constitutes the dominant source of N2O in a given 
system at a given point in space and time will depend on substrate availability 
and environmental conditions and can thus vary substantially (Baggs, 2011). In 
contrast, the only known biological sink for N2O is the reduction to N2 by 
nitrous oxide reductase, whose part in the denitrification pathway was in focus 
in this thesis.

1.3 The denitrification pathway
Denitrification is a facultative, anaerobic respiratory pathway in which NO3

- or 
NO2

- is reduced to N2 with the intermediates NO and N2O. N2O can either be 
an intermediate or end product of denitrification, which is why the process is 
considered both a source and a sink for N2O (Chapuis-Lardy et al. 2007; Jones 
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et al. 2014; Philippot, Andert, et al. 2010). The first step in the denitrification 
pathway is the reduction of NO3

- to NO2
- which can either be catalyzed by a 

membrane associated nitrate reductase (NarGH) or its soluble periplasmic 
homologue (NapAB). This two electron step is considered to be the most 
energy conserving step in the denitrification pathway (Chen and Strous, 2013).
The next step, the reduction of NO2

- to NO, is regarded as the defining step of 
denitrification since nitrate reduction as a trait can exist decoupled from later 
steps in the denitrification pathway and be part of DNRA while NO as a free 
radical is cytotoxic and needs to be reduced further to N2O (Shapleigh, 2006; 
Zumft, 1997). Dissimilatory nitrite reduction is performed by two functionally
equivalent but evolutionarily distinct enzymes: the copper binding nitrite 
reductase, encoded by the gene nirK, and the heme binding reductase, encoded 
by the gene nirS. Both enzymes are located in the periplasm and until recently 
have been considered mutually exclusive in the genomes of denitrifying 
organisms. However, in paper II both genes were found in the genomes of a 
number of organisms, although whether both enzymes are functional in the 
same cell has not been shown so far. Reduction from NO to N2O is carried out 
by nitric oxide reductase (NOR), which is a membrane bound protein with 
three structurally homologous variants. Since NO is a potent intercellular 
signalling compound and cytotoxin, its reduction to the relatively benign N2O
is not unique to denitrification and many microorganisms possess NOR to 
detoxify (Zumft, 2005). The last step of the pathway is nitrous oxide reductase 
(N2OR) which is the only known sink of N2O apart from stratospheric 
photolysis. N2OR is a copper binding enzyme situated in the periplasm. 
Energetically, the complete denitrification pathway results in the transport of 
30 protons across the cytoplasmic membrane to drive ATP synthesis when 
NADH is used as electron donor, six of which are contributed by N2O-
reduction (Richardson et al., 2009). Thus, N2O reduction contributes about 
20% to the overall energy gain of the denitrification pathway (Richardson et 
al., 2009), and many organisms have been shown to lack the nosZ encoding 
gene for N2OR (paper II, Jones et al. 2008). On the other hand, bacteria such 
as Wolinella succinogenes, Campylobacter fetus, the thermophile Geobacillus 
thermodenitrificans and the soil bacterium Anaeromyxobacter dehalogenans,
have been demonstrated to grow with N2O as the sole electron acceptor (Liu et 
al. 2008; Payne et al. 1982; Sanford et al. 2002; Sanford et al. 2012) and many
with the nosZ gene often lack other genes typically associated with the 
denitrification pathway (paper II, Jones et al. 2008). This has led to the 
conception that the denitrification pathway is a modular pathway where 
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organisms can have different combinations of denitrification genes (paper II;
Zumft 1997).

1.4 Denitrifier community ecology
Denitrification as a facultative respiratory pathway is found amongst a wide 
variety of organisms (Philippot et al., 2007). In paper II, the genomes of 262 
genera from 19 different phyla across bacterial, archaeal, and fungal domains
were found to harbour either a nirK, nirS or nosZ gene. However, closely 
related microbial strains may or may not possess the ability to denitrify (paper 
I; paper II; Cavigelli & Robertson 2001; Jones et al. 2008). This effectively
renders taxonomy-based approaches to assess the denitrifying microbial 
community useless. Instead, denitrifier communities are studied by using
functional genes as opposed to 16S rRNA or other taxonomic marker genes,
and PCR-based tools have been developed since the late 1990’s (Braker et al., 
1998; Hallin and Lindgren, 1999; Scala and Kerkhof, 1999). With the advent 
of bioinformatics and improved sequencing techniques these tools are being 
constantly refined in order to better capture the extant genetic diversity of
denitrifying communities present in the environment (paper I; Dandie et al. 
2007a; Throbäck et al. 2004; Verbaendert et al. 2014). Conceptually, this 
approach utilizes the idea of ‘functional guilds’ in which a group of organisms 
is defined by a shared ecosystem function rather than taxonomic affiliation 
(Simberloff and Dayan, 1991). It is thereby assumed that a functional guild can 
be targeted using one or several marker genes encoding the functional trait in 
question. The modularity of the denitrification pathway requires the 
employment of several functional gene markers in order to comprehensively 
assess communities that drive ecosystem functions such as N2O-regulation.
Another implication of the modular pathway concept is that a given denitrifier 
community might perform differently in situ depending on the community 
structure of organisms harbouring different set-ups of denitrification genes 
present (Philippot et al. 2011; Jones et al. 2014). Since denitrification is such a 
wide-spread function it is important to consider that other characteristics such 
as chemolithoautotrophy versus heterotrophy with different environmental cues 
may also play an important role in determining how denitrifier communities
assemble in situ. While most studies point out habitat filtering as the driving 
force behind community assembly (e.g.Horner-Devine & Bohannan 2006; 
Jones & Hallin 2010), recent research shows that recruitment of microbial 
communities to a given niche from a surrounding matrix can also be based on 
stochastic processes (Burke et al., 2011a). Due to the modular nature of the 
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denitrification pathway, it is of importance whether a given N2O-regulating 
community is the result of adaptation to different niches where denitrification 
might pose a competitive advantage or stochastic processes based on 
biogeography, or a combination of both. 

1.5 Abiotic factors influencing denitrification activity

A basic driver of N2O-regulation is soil moisture as it regulates the availability 
of oxygen in soil pores. While it has been postulated that N2O-emissions have 
their optimum at 70-80% water-filled pore space (Davidson et al., 2000), a
comprehensive comparison of 51 soils has shown that this is highly dependent 
on soil type (Butterbach-Bahl et al., 2013). Since denitrification is a facultative 
respiratory pathway in the absence of oxygen, low oxygen levels result in the 
upregulation of denitrification genes. Interestingly Bakken et al. (2012) found 
that N2OR in contrast to NIR and NOR is upregulated before oxygen is 
completely depleted in Paracoccous denitrificans. Temperature is another 
important factor that can influence denitrification activity in soils. It has been 
found that the stimulation of denitrification by an increase in temperature by 
10°C exceeded the observed stimulation of CO2 emissions (Schaufler et al., 
2010). This is attributed to the fact that the microbial C and N cycles are tightly 
interlinked and that increased soil respiration due to increased overall 
microbial activity result in lower oxygen levels in soils (Butterbach-Bahl et al., 
2013). Another key factor for denitrification is NO3

- availability. Here it is 
postulated that N2O-emissions increase with N saturation in any given 
ecosystem where NO3

- has the strongest stimulation effect on N2O emissions 
of five investigated N compounds (Liu and Greaver, 2009). Soil pH also has a 
strong influence on denitrification activity (Bergaust et al., 2010; Clark et al., 
2012; Simek and Cooper, 2002), especially the ratio of end products (Bakken 
et al., 2012; Šimek et al., 2002). It has been speculated that as N2OR cannot 
assemble properly at low pH’s (Bakken et al., 2012). Since many known 
denitrifiers depend on carbon compounds as electron donors, soluble carbon 
and thus soil organic matter content also affects denitrification rates (Bijay-
Singh et al., 1988; Burford and Bremner, 1975). These general environmental 
drivers fluctuate largely both spatially and temporally, especially in a medium 
as heterogeneous as soil. Temporary water-logging, seasonal changes from 
drought to rewetting as well as transition zones between upland and wetland 
soils can result in ‘hot spots’ and ‘hot moments’ for denitrification (Groffman 
et al., 2009). Indeed, Parkin (1987) found that the bulk of denitrification 
activity in a soil core was localized in a minute fraction of the core constituting 
a decaying leaf.
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1.6 Denitrifier community structure

Even though environmental factors play an important role determining 
denitrification activity and N2O emissions, the actual outcome ultimately 
depends on the microbial community in situ. However, microbial communities 
in turn are shaped by environmental factors. The main factors shaping 
denitrifier communities in soils include carbon availability, soil moisture, 
temperature and pH (Wallenstein et al., 2006). In soil, these factors vary 
largely in conjunction with physical parameters such as particle size, soil 
organic matter content and porosity. This spatial heterogeneity could be shown 
to be reflected in the structure of denitrifier communities (Enwall et al. 2010; 
Philippot et al. 2009a). Apart from environmental cues, biogeographical 
distribution and site history are factors that cannot be neglected concerning 
microbial community composition in general (Green and Bohannan, 2006; 
Lindström and Langenheder, 2012; Martiny et al., 2006) and denitrifier 
community composition in particular (Jones and Hallin, 2010; Prasse et al., 
2015; Zhu et al., 2015). An interesting feature in this context is that several 
steps of the denitrification pathway are encoded by different genes and gene 
variants, most prominently the nirK and nirS genes that encode two very 
different enzymes providing the same function but which have evolved 
independently (Jones et al. 2008). Since organisms in most cases only possess 
one of the two genes (paper II), it has been discussed whether these occupy 
different ecological niches and indeed indications for this have been found 
(Enwall et al., 2010; Hallin et al., 2009; Jones and Hallin, 2010). N2OR has 
long thought to be encoded by one variant of the nosZ gene predominantly 
found in proteobacteria (Scala and Kerkhof, 1999) however a new gene variant 
from a greater variety of organisms has been detected more recently (paper I;
Simon et al. 2004; Sanford et al. 2012). While the two clades of nosZ are 
phylogenetically related also here there is indication for niche differentiation 
between the two (paper III and IV, Jones et al. 2014).

1.7 Plants as factors regulating denitrification
The rhizosphere, defined as the soil influenced by plant roots, is a hotspot for 
denitrification due to higher inputs of organic carbon and nitrogen from plant 
roots via exudates, mucilage and shed root cells as well as fluctuating levels of 
oxygen (Henry et al., 2008; Klemedtsson et al., 1987; Prade and Trolldenier, 
1988). However, this effect has been shown to vary across plant species 
(Crush, 1998; Wheatley et al., 1990). This may be of profound importance for 
N2O-emissions, which are typically higher in soils planted with different 
agricultural crops when compared to that of bulk soils (Ding et al. 2007; Dong 
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et al. 2005; Hénault et al. 1998; Højberg et al. 1996; Klemedtsson et al. 1987; 
Ni et al. 2012; Sey et al. 2010; Verma et al. 2006). Moreover, plants have been 
found to influence denitrifier microbial community structure. Higher 
proportions of denitrifiers relative to other heterotrophic organisms have been 
reported in proximity to roots (Berg and Bothe, 1992; Clays-Josserand et al., 
1995) and significant differences in denitrifier community composition have 
been observed between the rhizosphere and the surrounding bulk soil (Chèneby 
et al. 2004; Hamonts et al. 2013; Philippot et al. 2002; Ruiz-Rueda et al. 2009).
Sharma et al. (2005) found that maize plants select denitrifiers carrying the 
nirK gene over those with nirS genes, further indicating a niche differentiation 
between organisms carrying these genes. Similarly, paper III indicates that 
organisms carrying the Clade I nosZ have an affinity to plant roots which is not 
shared by those with Clade II nosZ.

1.8 Aim and outline of the thesis

The aim of this thesis was to investigate the ecology of the N2O-reducing 
microbial community both in general and in the rhizosphere as a model system.
Since N2O-reduction is taxonomically wide spread the microbial community 
providing this function was assessed using the nosZ gene as a proxy.

In paper I the phylogenetic diversity of N2O-reducing microorganisms and to 
develop tools to comprehensively target them in a large variety of 
environments. Moreover, co-occurrence patterns of denitrification genes 
relevant for N2O-regulation in microbial genomes were put into context
regarding taxonomy and habitat preferences of respective organisms,
generating hypotheses about their ecology (paper II). The tools and 
hypotheses developed in paper I and II were applied in the rhizosphere as a 
relevant model system for N2O-regulation. Here, the relative influence of soil 
type and plant species (paper III) and intercropping (paper IV) on 
denitrification activity and the community assembly of N2O-reducing 
microorganisms in the rhizosphere were investigated.
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2 Diversity of nitrous oxide reductase

2.1 Nitrous oxide reductase

N2OR is a soluble enzyme located in the periplasm. Structurally, the enzyme is 
a homodimer with each monomer binding six copper ions in the form of two 
copper clusters, a di-nuclear electron transfer and storage site, CuA and a tetra-
nuclear cluster, CuZ (Dell’Acqua et al., 2011). Enzyme synthesis is 
upregulated by transcription factors sensitive to oxygen (FNR), nitric oxide and 
nitrite (NNR), and nitrate (NarR) levels (Richardson et al., 2009). The CuZ 
center can be damaged by oxygen and is inactivated by transient oxygen
(Frunzke and Zumft, 1986) which likely can be the cause for elevated N2O
emissions in environments with highly fluctuating O levels (Richardson et al., 
2009). Since the two copper centres together require 12 copper ions (Haltia et 
al. 2003; Paraskevopoulos et al. 2006) the enzyme is highly copper dependent
and it has been shown that N2O emissions rise in copper deficient media 
(Granger and Ward, 2003; Matsubara et al., 1982). Compared to other 
denitrification enzymes, the activity of N2OR has also been shown to be more
affected by low temperatures (Bakken et al., 2002) which putatively could 
explain observed peaks in N2O emissions during winter time (Dörsch et al., 
2004; Sehy et al., 2003). However these peaks could also be attributed to 
nutrient release during freeze-thaw cycles (Christensen and Christensen, 1991).
Nevertheless, the abiotic factor affecting N2OR that is most widely discussed is 
pH (Simek and Cooper, 2002). Indeed the enzyme has been shown to be 
sensitive to pH and to have its activity optimum at pH > 7 in vitro, which
seems, however, to be dependent on the electron donor (Berks et al., 1993; 
Dell’Acqua et al., 2008). Accordingly, a number of studies report higher N2O-
emissions from denitrification at low pH 
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2011; Kesik et al., 2006). However, others report adaptation of denitrifier 
communities to low pH levels in situ (Parkin et al., 1985; Šimek et al., 2002; 
Yamulki et al., 1997) and Palmer et al. (2010) could demonstrate consumption 
of N2O at low pH.

2.2 nosZ as a molecular marker

While abiotic factors certainly are of importance for the formation and 
functioning of N2OR, the ultimate factor regulating whether N2O will be 
reduced to N2 in a given environment is whether there are organisms present 
that harbour the gene encoding the enzyme - nosZ.  Denitrification as a trait is 
widespread among many bacterial and archaeal phyla, and even fungi. 
Moreover, since the trait is facultative, denitrification genes are likely to be 
horizontally transferred (Alvarez et al., 2013; Jones et al., 2008; Philippot, 
2002). Since the energy gain from N2O-reduction is comparatively low, it has 
been discussed whether nosZ is more prone to gene loss, as suggested by the 
observation that a large fraction of denitrifiers do not possess the gene (paper 
II; Jones et al. 2008). Although it has been shown that nosZ phylogenies are 
most congruent with 16S rRNA phylogenies from the same organisms
compared to other denitrification genes (Dandie et al. 2007a; Jones et al. 2008),
closely related genes can be found in distantly related organisms and vice versa 
and closely related organisms may or may not possess a nosZ gene (Philippot, 
2002). Of this follows that comprehensive studies of the N2O-reducing 
microbial community cannot rely on 16 rRNA as a molecular marker but need 
to address the functional gene itself. 

The PCR-based assays used in microbial community ecology rely on primer 
sequences specific to the target gene. Primers for functional genes typically
target regions within the gene that encode for conserved structural features of 
the enzyme such as catalytic domains, which in the case of nosZ include 
regions encoding for the CuA and the CuZ active sites (paper I). The 
comprehensiveness and specificity of a given primer pair depends on the 
variation present in the sequences used in their design. In case of nosZ, the 
primers used during the last decade were based on sequences obtained from 
cultured proteobacterial species (Henry et al., 2006; Scala and Kerkhof, 1999; 
Throbäck et al., 2004) that were relevant for human health and agriculture. 
However, the increasing number of sequenced genomes from a more diverse 
range of organisms available in the databases, combined with indications for a 
wider range of N2OR diversity (Jones et al., 2011; Sanford et al., 2002; Simon 
et al., 2004), prompted a re-evaluation of the nosZ sequence diversity present 
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in the databases, and new primers were designed to target a hitherto 
unaccounted clade of the gene (paper I). 

2.3 nosZ sequence diversity and abundance

The diversity of nosZ genes described in previous studies consisted primarily 
of sequences from -, - - proteobacteria due to the limitations of
sequence databases (Jones et al. 2008; Palmer et al. 2009). However, the rapid 
increase of available genome sequences since the advent of affordable next 
generation sequencing methods has resulted in a dramatic expansion of the 
known nosZ diversity. For comparison, while Jones et al. (2008) found 43 
distinct sequences of nosZ in public databases, 142 sequences were obtained in 
paper I and 314 in paper II. The maximum likelihood phylogeny of the 142 
full length nosZ sequences in paper I revealed an entire new clade of potential 
N2O reducers belonging to a wide range of bacterial and archaeal phyla,
designated clade II (Figure 1). Organisms possessing a nosZ from this new 
clade included hyperthermophilic archaea, - and -proteobacteria, 
Gemmatimonadetes and Bacteroidetes. The latter three groups have been 
shown to be highly abundant in soils and fresh water lakes (Lauber et al., 2009; 
Newton et al., 2011), thus hinting at the relative ecological importance of nosZ
Clade II. This was corroborated by quantitative PCR showing nosZ Clade II to 
be equally abundant or in even higher abundance than the traditional nosZ
Clade (subsequently designated nosZ Clade I) in a variety of environments, 
spanning from arable soils and rice paddys to lake sediment and waste water 
treatment plants (paper I). Earlier studies have found that, compared to the 
abundance of the nitrite reductase genes nirS and nirK potentially producing 
N2O, the nosZ gene abundance was 2-10 times lower (Bru et al., 2011; Hallin 
et al., 2009; Henry et al., 2006). The discovery that nosZ Clade II is similar 
abundance in many environments as nosZ clade I has diminished this gap,
however nir abundances are still substantially higher. Interestingly, Sanford et 
al. (2012) demonstrated that a strain of the nosZ Clade II harbouring bacterium
Anaeromyxobacter dehalogenans could grow more efficiently with N2O as 
electron acceptor compared to a nosZ Clade I harbouring Pseudomonas stutzeri
strain, indicating a higher efficiency of the clade II N2OR. In addition, while
several denitrifying species with nosZ Clade I have been shown to exhibit 
inhibition of N2O respiration in the presence of nitrate (Blackmer and Bremner, 
1978; Richardson et al., 2009), this was not observed for Anaeromyxobacter.
This could indicate that i) Clade II N2OR might be affected differently by 
environmental factors, which is supported by the fact that it has a different 
secretion pathway, and ii) that organisms possessing nosZ Clade II might be 
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adapted to different ecological niches than canonical denitrifiers with nosZ
Clade I (cf. paper III). This is underscored by the fact that most nosZ Clade II
organisms as shown earlier belong to different bacterial and archaeal phyla. In 
paper I, many species with nosZ Clade II were among the Bacteroidetes.
Interestingly Philippot et al. (2009a) found that Bacteroidetes (nosZ Clade II)

-proteobacteria (nosZ Clade I) showed contrasting spatial patterns across 
a pasture thus indicating adaptation to different environmental conditions in 
situ which, one might speculate, inter alia could be temperature and O, NO3

-

and pH levels affecting denitrification.
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Figure 1. Unrooted maximum likelihood phylogeny of full-length nosZ amino-acid sequences 
obtained from genomes. The distribution of signal peptide motif detected for each clade is 
indicated. Symbols on tree tips specify major taxonomic groups, and scale bar indicates corrected 
substitutions per site. Nodes with > 70% bootstrap support (n=500) are denoted by dots.

2.4 Secretion pathways of N2OR

An interesting observation in paper I was that the two different nosZ clades 
had signal peptides coding for different protein translocation pathways. With 
the exemption of the archaeal genus Ferroglobus and some Chloroflexi, all 
members of nosZ Clade II had the signal peptide coding for the widely used 
secretory pathway (sec) where proteins are transported unfolded across the 
cytoplasmic membrane. By contrast, all sequences coding for nosZ Clade I had 
the signal peptide coding for the twin arginine translocation (tat) pathway, in 
which proteins are transported across the membrane already folded 
(Pohlschröder et al., 2005). This pathway is used by many organisms to 
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transport redox proteins (Lee et al., 2006). Rose et al. (2002) could see that the 
tat pathway was much more extensively used among halophilic archaeal strains 
compared to mesophilic or thermophilic archaeal strains and thus drew the 
conclusion that the pathway might be an adaptation to high salt concentrations 
outside the cytoplasm which interfere with protein folding. However, the 
halophilic bacterium Salinibacter ruber did not show the same extensive use of 
the Tat-pathway in general (Dilks and Giménez, 2005) and for N2OR in 
particular (paper I). Energetically the Tat-pathway requires the equivalent of 
10 000 ATP to transport a folded protein while the Sec-pathway requires 1 
ATP per 20 amino acids (Lee et al., 2006). This large difference raises the 
question why organisms use a secretion pathway as comparatively costly as the 
Tat-pathway? One rationale is that complex co-factors can be inserted in the 
cytoplasm which sidesteps the requirement for additional mechanisms to 
export the cofactor and to catalyse its insertion into the protein in the periplasm
(Palmer and Berks, 2012). However even though the CuZ center of N2OR is a 
complex co-factor it is inserted in the periplasm (Zumft, 2006). Although this 
puzzle is not yet solved it is intriguing to think that using the less costly Sec-
pathway might contribute to more efficient usage of N2O as electron acceptor 
as observed for Anaeromyxobacter dehalogenans by Sanford et al. (2012).
Additionally, operons encoding for Clade II type N2OR include accessory 
genes different from those encoding Clade I N2OR (Sanford et al. 2012; Simon
et al. 2004) indicating different mechanisms of protein folding, translocation 
and assembly. 

2.5 Does N2O reductase diversity matter?

An ongoing debate in ecosystem ecology is whether biological diversity 
matters for ecosystem functioning. In ecosystem models, microbial diversity 
and community structure are usually not addressed and instead put into a black 
box of kinetic constants and response functions (Schimel, 2001). This is based 
on the assumption that microbial communities are resistant, resilient and 
functionally redundant as well as so taxonomically diverse that incorporation 
into models is deemed neither necessary nor feasible (Allison and Martiny, 
2008). Here it is assumed that turnover rates do not change with environmental 
conditions and that microbial processes are never limited by the abundance of 
any microorganism (Schimel, 2001). Microbial communities are believed to be 
resistant in the sense that disturbances do not result in changes of community 
composition, and resilient, meaning that if they change they quickly return to 
their original stage. However in accordance with Hooper et al. (2005), who 
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state that higher levels of biodiversity correspond to increased ecosystem 
functioning, an extensive review has found that a majority of microbial 
communities are neither resistant nor resilient, especially when longer time
periods and repeated disturbances are considered (Allison and Martiny, 2008).

In case of denitrifying bacteria, Philippot et al. (2013) could show that removal 
of 75% of bacterial OTU’s (operational taxonomic units) led to a decrease in 
potential denitrification activity of about 48 to 88 %, and that the diluted 
communities stabilized at this lower level showing that these communities 
were neither resistant nor resilient. Functional redundancy in turn means that
loss of diversity does not alter the functional performance of a given biological 
system and thus figures as a null hypothesis of biodiversity (Loreau, 2004; 
Nannipieri et al., 2003). The common definition for functional redundancy is in 
terms of niche similarity, where species with identical niches may still differ in 
their ability to exploit resources. This definition is however flawed since 
organisms in a changing environment such as soil that differ in their ability to 
exploit resources, are not redundant. While a community might temporarily 
perform equally after diversity loss, differences in performance would become 
evident over time with changing conditions. This can be exemplified with 
denitrifiers that perform alike under certain conditions, but have different 
niches when it comes to e.g. low temperature. Here, loss of those organisms 
adapted to low temperatures would lead to lower overall community 
performance in winter time even though a measurement at warmer 
temperatures would not show this. Consequently, one needs to ask whether 
organisms can be perfectly redundant, meaning that losing any species from 
the community would not alter the function within the range of environmental 
conditions prevalent in situ (Johnson, 2000).
Cavigelli & Robertson (2001) observed that different denitrifier communities 
from geomorphically similar soils had different N2O-emission rates and that 
each community was regulated differently by environmental factors. Moreover 
inocculation with Agrobacterium tumefaciens lacking the nosZ gene led to an 
increase in N2O-emissions in three different soils (Philippot et al., 2010b).

In paper I, a previously unknown diversity of N2O-reducing organisms from 
very different microbial phyla is described. These nosZ clade II bearing 
organisms have been shown to have different N2O-sink capacities and to be 
regulated differently by environmental factors compared to nosZ clade I (Jones 
et al., 2014). According to Loreau (2004) perfect redundancy requires stable 
coexistence while stable coexistence in turn requires differences between 
organisms which lead to functional complementarity and not redundancy 
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which is why he argues that perfect functional redundancy cannot exist. 
However, he further argues that spatial and temporal environmental variability 
makes functional redundancy possible at small spatial and temporal scales. 
This was confirmed by studies on plants showing that while plant communities 
appeared to be redundant in terms of biomass in short term, diversity increased 
biomass production in the long run (Reich et al., 2012). In conclusion it seems 
thus unlikely that a given N2O-reducing community is redundant over long 
periods of time and changing environmental conditions. 

2.6 Conclusions and perspectives

Given that nosZ Clade II was in equal or higher abundance than nosZ Clade I
in most environments investigated in paper I, its ecological significance in 
terms of N2O reduction should not be underestimated, as demonstrated in Jones 
et al. (2014). Future studies quantifying the genetic potential for microbial N2O
reduction need to address both nosZ Clades in order to assess the N2O-reducing 
community comprehensively. Since most studies concerning the influence of 
abiotic factors on denitrification and N2O reduction have been carried out using 
canonical denitrifiers carrying nosZ clade I, effort should be put into 
investigating whether nosZ Clade II carriers are affected differently by these 
factors and thus maybe occupy different ecological niches. The latter is 
corroborated by the observations in paper III where the two clades differ in
their affinity to plant roots and should be investigated further. The 
environments where nosZ gene abundances were assessed in paper I, were
limited in number and no marine samples were investigated. Future studies 
should investigate more environments and include marine samples in order to 
assess the significance of nosZ Clade II for N2O reduction on a global level.
Furthermore, studies regarding differences in cellular regulatory mechanisms
between nosZ clade I and nosZ Clade II N2OR should be performed in order to 
possibly relate different ecological niches to physiological constrains. 
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3 Co-occurences of denitrification genes

3.1 Modularity of the denitrification pathway

That the denitrification pathway is modular, meaning that organisms do not 
always have the complete set of denitrification genes, has been previously 
suggested (Zumft, 1997). However, the scope of this modularity and how it 
relates to taxonomy and habitat preferences has not been addressed. This is 
perhaps unsurprising since studying the genetic potential of microorganisms
requires fully sequenced microbial genomes, which until recent years have not 
been available in sufficient numbers. Paper I was focused on the N2OR gene 
nosZ, and the next logical step appeared to be to investigate how N2O-
reduction is connected to N2O-production in microbial genomes. Since NO 
needs to be detoxified to N2O, nitrite reductase is usually considered to be the 
N2O-producing step in the denitrification pathway. Two evolutionary different 
and most often mutual exclusive (paper II) nitrite reductases exist encoded by 
the genes nirS and nirK and it has been indicated that these occupy different 
ecological niches (Enwall et al., 2010; Hallin et al., 2009; Jones and Hallin, 
2010). One of the aims of paper II was to investigate the frequence of co-
occurrence of nosZ with either nirS or nirK since if the nosZ gene would be 
lacking more frequently in genomes with one or the other nitrite reductase gene 
this would theoretically increase the potential for N2O-emissions in a given 
environment dominated by this gene. 

In paper II, all microbial genomes available at the time (November 2012)
containing either the nitrite reductase genes nirK or nirS or the nitrous oxide 
reductase gene nosZ were downloaded from the National Center for 
Biotechnology Information database (NCBI, USA). At that point, the NCBI
contained around 5000 microbial genomes including fungi, of which many 
were drafts. As a side note, today (August 2015) there are 47 777 fully 
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sequenced prokaryotic genomes alone. Nevertheless, after curating the data 
there was a dataset of 652 genomes containing either a nir or a nos gene
(Figure 2) in no less than seven different combinations. Distinct co-occurrence 
patterns of the two genes with nosZ were detected where nosZ co-occurred 
much more often with nirS than with nirK (Figure 3). This could be interpreted 
such that the nirS gene can serve as an indicator for canonical denitrifiers who 
reduce nitrite all the way to dinitrogen which was emphasized by the fact that 
one of the nitric oxide reductase genes qnorB and cnorB almost always co-
occurred with nirS while it was often lacking with nirK. In contrast, the lack of 
a nosZ gene in the majority of all cases in organisms with nirK could be 
interpreted such that nirK might be an indicator for nitrite reducers putatively 
giving rise to N2O-emissions. That many nirK-type organisms lacked a nor
gene is surprising given the fact that nitric oxide is a toxic free radical. 
However these organisms might be detoxifying using a third nitric oxide 
reductase named qCuANor that has been described in Bacillus azotoformans
(Suharti et al., 2004) which was not included in the study. 
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Figure 2. Maximum likelihood phylogeny of full-length 16S/18S rRNA sequences from 652 
organisms with denitrification genes. The coloured ring represents taxonomic affiliation as 
indicated by the legend. Bootstrap values > 70% are indicated by black circles. Classification is 
based on the SILVA database with denomination according to NCBI taxonomy.
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Figure 3. Pie charts depicting genomic co-occurrence of the nosZ gene with the nirK and nirS 
genes in percentage of a) the total number of organisms harbouring nosZ, b) organisms from nosZ 
Clade I and c) from nosZ Clade II. Genomes with only nosZ (black), nosZ and nirK (light grey) 
and nosZ and nirS (dark grey) are indicated. Six genomes harbouring both nirS and nirK in 
addition to nosZ are excluded, as well as eight halophilic Archaea that group outside Clade I and 
II in b) and c).

3.2 nirK and nirS niche partitioning

Niche partitioning between nirK and nirS communities has been suggested in 
several studies (Desnues et al. 2007; Jones & Hallin 2010; Junier et al. 2008; 
Knapp et al. 2009; Smith & Ogram 2008). Especially soil moisture has been 
pointed out as a partitioning factor since nirS has been found to be dominating 
in waterlogged and wet soils (Ligi et al. 2013; Kim et al. 2008; Petersen et al. 
2012; Philippot et al. 2009c) as well as sediments (Abell et al., 2010; Nogales 
et al., 2002) whereas nirK communities dominated in comparatively dry soils 

. Moreover, it has 
been suggested that organisms harbouring nirS are better adapted to stable
anoxic environments, while nirK communities tend to dominate under more 
recurrently changing conditions (Graham et al., 2010; Knapp et al., 2009; 
Petersen et al., 2012).
In an evolutionary context, the existence of more than one allele in a 
population is prohibited by genetic drift and allele fixation. With the caveat 
that evolutionary theory was originally developed with monophyletic animal 
populations in mind and providing that horizontal gene transfer occurs in 
denitrifier communities (Jones et al. 2008; Alvarez et al. 2013) one can 
extrapolate that: Two functionally equivalent genes can co-exist only if i)
communities are geographically or temporally separated so that exchange of 
genetic material cannot occur, ii) communities harbour only one of the genes 
due to genetic barriers prohibiting gene transfer (Kurland et al., 2003), or iii)
the genes are not truly functionally equivalent meaning that possessing the one 
or the other provides a selective advantage under different environmental 
conditions. In case of the two functionally equivalent genes nirS and nirK we 
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know that this is unlikely to be the case since the two genes have been found in 
the same environment in numerous studies (e.g. Bañeras et al. 2012; Enwall & 
Hallin 2009; Smith & Ogram 2008). Considering ii, in paper II we can see 
that Ascomycota and Actinobacteria exclusively have a nirK gene while in 

-bacteria only have nirS, thus indicating putative genetic barriers in 
these phyla. The study however, also shows that both genes occur in closely 
related strains of -, - -proteobacteria indicating that no genetic 
constraints concerning transfer of the nir genes exist in these classes. It has 
been shown that a nirK gene from a Pseudomonas aureofaciens strain could 
replace a knocked out nirS gene in a Pseudomonas stutzeri strain and encode a 
functional nitrite reductase (Glockner et al., 1993). Thus there might be genetic 
constraints concerning the acquisition of one of the nir genes in some 
microbial phyla but not in others. Concerning the latter the most plausible
explanation why there are still two functionally equivalent genes left is iii; 
adaptation to different environmental conditions.

When comparing the 652 genomes, 10 were found to harbour both nirS and 
nirK, which earlier had been thought to be mutually exclusive in the genomes 
of denitrifiers. The question whether both genes translate into functional 
enzymes remains however unanswered. It is intriguing to speculate whether 
possessing both gene variants is a result of adaptation to certain environmental 
conditions, which is indicated by the fact that these organisms were 
significantly overrepresented in wastewater treatment plants and among 
extremophilic organisms (paper II). Wastewater treatment plants built to 
optimize nitrogen removal use a two-step process where aerobic ammonia 
oxidation to nitrite and further to nitrate is facilitated by aeration and 
denitrification occurs under anaerobic conditions so that oxygen levels 
fluctuate rather rapidly and substantially. Four of the organisms harbouring 
both nitrite reductases that were isolated from wastewater were Pseudomonas 
stutzeri strains. Pseudomonas stutzeri occurs naturally in soils and sediments 
and can be an opportunistic pathogen (Lalucat et al., 2006). Strains of this
species have been shown to denitrify under high oxygen levels (Ji et al., 2015; 
Su et al., 2001), a characteristic which is thought to be an adaptation to highly 
fluctuating oxygen levels such as in tidal sand flats (Gao et al., 2010). Under 
such rhythmically changing conditions it might be of advantage to employ both
enzymes in order to gain maximum efficiency. Given that other environmental 
factors are kept relatively constant in a wastewater treatment plant, such fine-
tuned adaptation to one factor is not unlikely to happen. However research is 
required to elucidate if, how and under which conditions the two enzymes are 
active in the same cell.
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3.3 Taxonomy as a proxy for co-occurrence types

Although 16S rRNA based taxonomy at species level cannot serve as a proxy 
for N2O-regulation as a trait, the question of whether genomic co-occurrence 
patterns of denitrification genes are independent of taxonomy remains
unanswered. The ecological coherence of high taxonomic ranks, defined such 
that members of a taxon share general life strategies or traits that distinguish 
them from other taxa, has been proposed previously (Philippot, Andersson, et 
al. 2010).  The rationale is that phylogenetic relationships and ecotypes 
coincide to a certain extent in monophyletic lineages with the underlying 
assumption that the particular lineage has evolved to occupy a specific
ecological niche. A prominent example here is the phylum Cyanobacteria, in 
which all representatives are photoautotrophs. However, such a straight-
forward pattern is only the case for a few microbial phyla, whereas the 
majority has members at lower taxonomic ranks that are adapted to many 
different ecological niches, thus obscuring possible coherent ecological
characteristics (Philippot, Andersson, et al. 2010). Nonetheless members of 
theses phyla or other higher taxonomic ranks can still have an overall 
preference for a particular habitat or environmental parameter setting  which is 
not strong enough to be detectable among its subtaxa, but becomes apparent 
when higher taxonomic units are considered (Koeppel and Wu, 2012). A
number of studies have associated shifts in higher order community structure 
with health conditions such as diabetes (Giongo et al., 2011) obesity (Ley et 
al., 2005) and cancer (Turnbaugh et al., 2007), while other studies could 
associate higher taxonomic ranks with particular environments such as marine 
or fresh water (Glockner et al., 1999; Zwart et al., 2002). However, a pit-fall of 
such association studies is the inability to determine whether the higher order 
associations truly reflect habitat associations of the whole taxonomic unit or 
only of a few highly abundant lower level taxa. Re-evaluation of two studies of 
the human skin and gut microbiome show this to be the case for the phylum 
Firmicutes in human guts that had been associated with obesity, where only the
Clostridiales within the Firmicutes phylum were associated with obesity
(Koeppel and Wu, 2012).

In case of co-occurrence types of nir and nosZ genes, seven different types 
were found to not be randomly distributed among the different taxonomic 
divisions of organisms in the dataset (paper II). Instead, significant patterns
could be discerned at the phylum, class and order levels. The Ascomycota and 
Actinobacteria had the same pattern (nirK-only) throughout all taxonomic 
ranks, whereas nosZ-only types were overrepresented among members of the 
Bacteroidetes, even though other patterns could also be observed in this 
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phylum. However, a third of these organisms also did not have a nor gene,
which could be attributed to the order Flavobacteriales making this pattern
more specific to the Flavobacteriales than the Bacteroidetes in general. In 
contrast, patterns of partial pathways were significantly underrepresented 
among Proteobacteria, - -proteobacteria. The picture that is 
thus emerging when N2O-regulation is considered is one of three different 
groups of organisms: one that potentially produces N2O but does not reduce it 
(Actinobacteria and Ascomycota), one that consists of canonical denitrifiers 
capable of producing and reducing N2O (Proteobacteria), and one that 
potentially reduces but does not produce N2O (Bacteroidetes or 
Flavobacteriales). This coincides with the results of Philippot et al (2009a, 
2009b) who investigated the abundance of different taxa at high taxonomic 
ranks, as well as the abundance of different denitrifier genes and potential N2O
production and denitrification rates on a field that was subjected to different 
cattle grazing regimes. Interestingly, the percentage of N2O to total 
denitrification activity (N2 + N2O) was lowest in the region of the field with the 
highest relative abundance of Bacteroidetes and lowest abundance of 
Actinobacteria. Furthermore, regions of the field in which nirS and nosZ Clade 
I were most abundant also had the highest relative abundance of 
Betaproteobacteria, corresponding to our finding that the co-occurrence of nirS
and nosZ is the predominant pattern of denitrification genes within this class.
Thus, taxonomic information in conjunction with the co-occurrence patterns 
described in paper II have the potential power to predict N2O-emission 
potential in situ. However, a distinction has to be made between taxonomic 
units that always show the same pattern such as the Actinobacteria and the 
nirK only pattern, and those where there is a significant association only such 
as the Betaproteobacteria and the nirS and nosZ pattern, where by no means do 
all Betaproteobacteria have this pattern. Even though there are significant 
trends among the Proteobacteria, we observe all co-occurrence patterns within 
this phylum indicating that denitrification as a facultative trait is evolutionarily 
labile among taxa at species and strain level, with frequent transitions between 
genetic set-ups. Martiny et al. (2009) state that for Prochlorococcus, the 
transition between high-light and low-light habitats occurs at greater 
phylogenetic depth than the transition between different temperatures, which in
turn occurs at greater depth than transitions between habitats with different 
nitrate concentrations, indicating that some transitions are more difficult to 
make than others. Analogously, the acquisition of denitrification genes may be 
more difficult for Ascomycota and Actinobacteria, resulting in nitrite reduction 
being conserved at greater phylogenetic depth, whereas it might be
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comparatively easy for Proteobacteria resulting in gene transfer occuring at 
species and strain level.

3.4 Conclusions and perspectives

Paper II confirmed that the denitrification pathway is highly modular with a 
range of different possible co-occurrence patterns between the nir and nos
genes. However, the co-occurrence patterns were neither randomly distributed 
among taxa nor among habitats. Even though there are exceptions, we 
identified a significant pattern of nirS genes being representative of canonical 
denitrifiers and nirK as being more likely associated with nitrite reducers with 
truncated denitrification pathways. This corroborates earlier suggestions that 
organisms with either gene residing in their respective genome occupy 
different ecological niches. The two different clades of nosZ also show non-
random co-occurrence patterns where organisms with nosZ Clade II in more 
than one third of all cases do not have a nir gene while this is much more rare 
in organisms with nosZ Clade I. Thus nosZ Clade II organisms are more prone 
to act as N2O sinks which has been demonstrated recently (Jones et al., 2014).
Paper II was a hypothesis generating study and indeed many questions arise 
from it. The basis of the study were fully sequenced microbial genomes from 
public databases which at the time of download were still heavily biased 
towards culturable strains important for human health and agriculture.  It 
would thus be interesting to see whether the observed patterns can be 
confirmed in genome studies focusing on environmental samples. In addition, 
since the number of available genome sequences in the databases rises 
exponentially over time, it would be of interest to do a follow up study in some 
years and see if our observations are corroborated with a larger dataset. The 
hypothesis of whether organisms with nirS or nirK occupy different niches 
regarding stable versus fluctuating anoxic conditions could be tested in 
microcosm studies that are subjected to different oxygen regimes with 
subsequent gene quantification. These could be combined with metagenomic 
analyses and denitrification activity measurements in order to test the 
hypothesis that nirS organisms represent canonical denitrifiers, which if 
dominant may lead to lower N2O-emissions. Establishing a link between the 
nirK/nirS ratio, fluctuating conditions, and high N2O-emissions could then also 
answer why we see hotspots and hot moments of N2O-emissions in 
environments with fluctuating oxygen levels. Pseudomonas stutzeri strains are 
relatively easy to cultivate so that investigating if, when and how the four 
strains which have both nirS and nirK residing in their genomes use the 
enzymes should probably not prove too difficult. Maybe this could lead to the 
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discovery of a highly efficient waste water treatment strain? Another 
interesting question that arises from paper II is whether taxonomy can serve to 
predict denitrification gene co-occurrence patterns and thus N2O-emission 
potential. Here it would be of special interest to explore the N2O-reducing 
Bacteroidetes and see if a putative N2O sink function can be narrowed down to 
Flavobacteriales or whether this observation merely is a case of database bias 
or if it is reflected in nature and if so, what are the underlying ecological and 
evolutionary mechanisms?
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4 Community assembly in the rhizosphere
The rhizosphere of agricultural crops is an import model system to study 
denitrification and N2O-emission dynamics since denitrification is stimulated 
by a living root system (Woldendorp, 1962) and because the major part of 
anthropogenic N2O-emissions originates from agricultural soils (IPCC, 2013; 
Smith et al., 2012). The relative influence of  plant species versus edaphic 
factors on denitrification rates and N2O-emissions and how this relates to the 
microbial community structure has long be discussed (Philippot et al., 2009c)
and was a focus in the experiment in paper III. Here, a pot experiment was set 
up in growth chambers growing barley (Hordeum vulgare) and sunflower 
(Helianthus anuus) in two agricultural soils, one with a high clay content and 
one with a high portion of sand (Figure 4). 

Monoculture systems that are prevailing in today’s agricultural systems have 
been shown to give rise to higher N2O-emissions compared to those with 
mixed plant species (Niklaus et al., 2006; Sun et al., 2013) which is why paper 
IV focused on the effect of intercropping on denitrification rates and the 
community structure of N2O-reducing microorganisms. In this experiment 
lucerne (Medicago sativa) and cocksfoot (Dactylis glomerata) were grown in 
rhizoboxes either as single crops or intercropped in an agricultural soil from a 
site near Alnarp, Sweden (Figure 5).
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Figure 4. Pot experiment with barley and sunflower as well as unplanted soil randomized on a 
tray in a growth chamber kept at 20°C during day time and 15° during night with 18h day length. 
(Photo: Daniel Graf)
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Figure 5. Sketch of a rhizobox, indicating the height, width and depth (left), and photo of a 
rhizobox with intercropped cocksfoot (Medicago sativa) and lucerne (Dactylis glomerata) taken 
at the soil and root sampling occasion (Photo: Georg Carlsson).
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4.1 Denitrification and N2O-emissions in the rhizosphere

Increased rates of denitrification in rhizosphere compared to bulk soil have 
been measured in a number of studies (Bakken, 1988; Højberg et al., 1996; 
Klemedtsson et al., 1987). The activity was positively correlated to NO3

-,
where at low NO3

- concentrations, denitrification rates could even be lower in 
the rhizosphere compared to bulk soil (Qian et al., 1997; Smith and Tiedje, 
1979). The positive rhizosphere effect on denitrification activity has been 
shown to decrease with moisture tension (Bakken, 1988) and was confined to 
an air-filled pore space below 10-12% (v/v) (Prade and Trolldenier, 1988).
However, studies on rice paddy fields have found that N2O-emissions occur 
mainly during periods when the fields are not flooded (Lindau et al., 1990; 
Xing, 1998). The primary driver behind the rhizosphere effect is postulated to 
be low molecular organic compounds from roots and denitrification rates have 
been positively correlated to soluble organic C (Baggs and Blum, 2004) and 
the addition of root exudates or mucilage (Henry et al., 2008; Mounier et al., 
2004). However, the latter studies could not observe any differences in the 
denitrifier community composition depending on rhizodeposits. Differences 
between plant species with regard to their effect on denitrification activity have 
been observed for legumes and cereals (Kilian and Werner, 1996; Scaglia et 
al., 1985; Svensson et al., 1991), with legumes generally stimulating higher 
activity, but also for different grass species (Patra et al., 2006) and wetland 
species (e.g. Ruiz-Rueda et al. 2009). Some studies also report plant species to 
significantly influence the denitrifier community composition (Bremer et al., 
2007; Chèneby et al., 2004; Hamonts et al., 2013; Patra et al., 2006; Philippot 
et al., 2002; Ruiz-Rueda et al., 2009) while others could not find such a 
connection (Deiglmayr et al., 2004).

Emissions of N2O have been observed to be greater in the presence of growing 
plants, particularly legumes, than from bare soil (Klemedtsson et al. 1987; 
Højberg et al. 1996; Ni et al. 2012; Dong et al. 2005; Ding et al. 2007; Sey et 
al. 2010; Hénault et al. 1998; Verma et al. 2006). Emission factors vary from 
0.1% to 7% of nitrogen applied in different agricultural systems (Skiba and 
Smith 2000), reflecting differences in vegetation type, crop management,
inherent soil properties and climate. In papers III and IV we could not observe 
any differences between planted and unplanted soil concerning denitrification 
activity in any of the soils used in the experiments. This might be attributed to 
the fact that we did not add any fertilizer during the experiment, putatively 
resulting in comparatively low NO3

- levels. However no N limitation of the 
plants could be observed in the three soils. In addition no plant species effect 
could be observed for either nosZ Clade I or Clade II communities in the soil. 
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However, a significant plant effect could be observed for the nosZ Clade I 
community in paper IV, which mainly could be attributed to compositional 
differences between the unplanted soil and the soil planted with lucerne (Figure 
6) which indicates that a putative plant effect on the N2O-reducing community 
both depends on the plant and the clade of nosZ involved. Paper III also 
showed that soil effects overrode plant effects even in association with roots 
concerning both the community structure of nosZ Clade I and II and the gene 
abundances of 16S rRNA, nirK, nirS and nosZ II.  This is in accordance with a 
number of recent studies that have shown that soil effect overrides plant effect 
considering microbial community structure in the rhizosphere (Bulgarelli et al., 
2012; Edwards et al., 2015; Lundberg et al., 2012; Prasse et al., 2015).

Interestingly, denitrification and N2O production could only be measured from 
barley and cocksfoot roots, but not from sunflower and lucerne even though 
gene abundance data showed that bacteria in general, as assessed by 16S rRNA 
genes and N2O-reducing bacteria were present in similar abundances on the 
roots of all species (papers III and IV). However, Li et al. (2007) reported 
significantly higher concentrations of malate and citrate in the rhizosphere of 
faba bean compared to the rhizosphere of maize, which is in accordance with 
previous observations that dicots, particularly legumes, produced and excreted 
more organic acids to the rhizosphere than monocots (Raghothama 1999). The 
denitrification activity assay protocol used in papers III and IV was based on 
glucose, acetate and succinate, and denitrifying and N2O-reducing 
microorganisms specialized on the usage of specific exudates that putatively 
dominate the root surface of lucerne and sunflower might not have been 
activated and thus, no activity could be measured.
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Figure 6. Non-metric multidimensional scaling of generalized UniFrac distances) of nosZ Clade I 
(stress: 0.06) where open symbols depict communities on root samples and closed symbol denote 
soil samples where blue=cocksfoot and red=lucerne. Triangles symbolize samples from 
rhizoboxes with monocultures and squares from those with intercropping. Black stars depict 
unplanted soil.

4.2 Community assembly processes in the rhizosphere

The principles underlying assembly and structure of microbial communities,
especially in relationship to ecosystem functioning, are of general concern in 
microbial ecology. Traditionally, community assembly has been regarded as 
the result of a continuum of abiotic and biotic factors driving community 
structure (Weiher and Keddy, 1995), where the driving forces are habitat 
filtering, dispersal, diversification and drift (cf. Vellend 2010; Nemergut et al. 
2013). Neutral theory as proposed by Hubbell (2001) is based on the 
assumption that in case of ecological redundancy of organisms the composition 
of communities at a local scale is influenced only by random immigration, 
birth and death events (Woodcock et al., 2007). While neutral theory applies 
the concept of ecological redundancy broadly, the competitive lottery model 
(Sale, 1978) applies it within the frame of a given niche such as the root or soil. 
Burke et al. (2011) could explain the large variation in the community structure 
of microbial communities based on taxa between individual specimens of the 
coastal macro algae Ulva australis with the competitive lottery model. 
Nevertheless, they identified a core of functional genes present in all taxa 
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associated with the surface of the algae suggesting that assembly is not random 
in terms of function. Thus,a given microbial community in situ is most likely 
the result of a combination of both niche driven and neutral processes. In fact, 
Ferrenberg et al. (2013) could demonstrate that while neutral processes 
dominate in shaping forest soil communities shortly after a wildfire, the 
community is later predominantly shaped by habitat filtering, thus indicating 
that different processes take effect under different circumstances. 

From an ecological point of view, conventional agricultural fields constitute a 
habitat subjected to recurring perturbations, thus keeping it at a pre-
successional stage, and unlike natural systems with permanent vegetation, 
living roots are a temporary phenomenon in this system. Hence, every year a 
new microbial community is recruited from the soil to constitute the root 
microbiome of the annual crop and the question arises whether community 
assembly is based on ecological niche partitioning, neutral processes or a 
combination of both. One aim of paper III was to study whether nosZ Clade I 
and II denitrifiers are recruited to roots stochastically or whether they occupy 
particular niches in the rhizosphere. Both edge principal component analysis 
and non-parametric multidimensional scaling in paper III and IV showed that 
the structure of root sample N2O reducing communities was more variable than 
in the soil communities. The net relatedness index further showed that the nosZ
communities in the root samples tended to be relatively more phylogenetically 
dispersed across the phylogeny than soil samples irrespective of the soil type. 
Taken together this indicated that community assembly on roots is not based 
on niche partitioning since that would imply selection of close relatives based 
on advantageous traits for that particular habitat, but rather an important role 
for competition between close relatives where traits are conserved (Webb et al., 
2002). Thus, in accordance with Burke et al. (2011a, 2011b) it seems likely 
that the community assembly of nosZ Clade I and Clade II communities  on
roots in the rhizosphere might be based on the lottery hypothesis which states 
that within a pool of organisms capable of utilizing resources in a given habitat 
priority effects take place. However this data only describes the community 
assembly within each clade of nosZ and whether members of the two clades 
assemble to a common community based on neutral processes or if they 
separate due to habitat filtering remains unanswered.

As described in papers I and II, the two clades of nosZ have a distinct 
taxonomic affiliation and show distinct co-occurrence patterns with other 
denitrification genes. Hence, it seems logical to ask whether organisms 
representing either clade occupy different ecological niches in different 
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environments. This idea is in accord with Jones et al. (2014) who found that 
phylogenetic diversity and abundance of nosZ Clade I and II were differently 
affected by various edaphic factors in bulk soil, and the observation that nosZ
Clade I, but not Clade II could be readily amplified in roots from various 
macrophyte species (Hallin et al., 2015). In paper III, gene abundance data 
indicated an affinity to plant roots of nosZ Clade I organisms, whereas the 
abundance and structure of nosZ Clade II organisms was mainly governed by a 
soil effect. While the pattern was the same for nosZ Clade II in paper IV, this 
could not entirely be corroborated for nosZ Clade I, where no significant 
difference in abundance between root and soil communities could be observed. 
Still, the idea that nosZ Clade I has an affinity to plant roots is asserted by 
earlier studies showing that the gene was in greater abundance in the proximity 
to roots compared to bulk soil (Hamonts et al., 2013; Ruiz-Rueda et al., 2009).
Overall, data indicates that nosZ Clade II has a preference for soil, which 
putatively implies that these organisms predominantly are subject to different 
environmental cues than nosZ Clade I organisms which should be investigated 
further. 

4.3 Effects of intercropping

Intercropping is the agricultural practice of growing two or more crops
simultaneously in the same location, and is considered to be a more sustainable 
method for increasing crop yields compared to high-impact practices 
associated with monoculture-based farming systems (Brooker et al., 2015). The 
increase in plant biomass resulting from intercropping relies on efficient use of 
resources via niche complementarity (Hooper and Vitousek, 1997). In 
particular, enhanced N use efficiency is a key feature of intercropping (Brooker 
et al., 2015) and several studies have shown that soil N pools increase with 
decreasing plant diversity (Mueller et al., 2013; Niklaus et al., 2006; Zak et al., 
2003). Interestingly, higher N2O-emissions have been observed in monoculture 
systems compared to intercropped systems (Niklaus et al., 2006; Sun et al., 
2013), indicating an effect of intercropping on microbial communities either 
producing or reducing N2O. In paper IV we observed that the abundance of 
nosZ Clade II was significantly lower in association with cocksfoot roots from 
rhizoboxes that were intercropped with cocksfoot and lucerne compared to 
those planted with cocksfoot alone. This coincided with a higher ratio of 
potential N2O-production to total denitrification activity on intercropped 
cocksfoot roots compared to single cropped ones. Moreover, amplicon 
sequencing data showed that most nosZ Clade II reads associated with roots 
were most similar to sequences associated with Ignavibacteria, 
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Gemmatimonades and Opitutaceae. The two known Ignavibacteria genomes 
harbouring nosZ genes are Ignavibacterium album and Melioribacter roseus
and both possess the nosZ Clade II gene, but no nir or nor genes (Graf et al., 
2014). These organisms as well as a number of species within the Opitutaceae 
do, however, possess nrfA gene (R. Sanford et al., 2012; Song et al., 2014).
Sanford et al. (2012) found nosZ Clade II in 15 genomes of organisms that also 
possessed the nrfA, encoding the enzyme catalysing the reduction of nitrite to 
ammonium within the dissimilatory nitrate reduction to ammonium (DNRA)
pathway.  The process has been shown to be positively correlated to high C:N 
ratios (Schmidt et al., 2011; Song et al., 2014), which is found in direct 
association with roots of non-legume plants such as cocksfoot where the plant 
competes for NO3

- and provides low molecular weight C (Danso et al., 1987; 
Ehrmann and Ritz, 2013). In cereal-legume intercropping systems, competition 
for soil N by the cereal results in depletion of N in the rhizosphere of the 
legume, which in turn stimulates N-fixation activity (Danso et al., 1987; 
Ehrmann and Ritz, 2013; Hauggaard-Nielsen et al., 2001). This in turn 
probably decreases the C:N ratio making it plausible that heterotrophic 
microorganisms associated with lucerne roots became C limited due to growth 
stimulation by excess N and started to compete for C produced by the 
cocksfoot roots with the DNRA organisms, resulting in lower numbers of the 
latter. Thus, one possible scenario is that organisms harbouring nosZ Clade II 
in association with cocksfoot roots perform DNRA and reduce N2O, while
intercropping with lucerne results in a decrease in the C:N ratio, and 
subsequently organisms performing DNRA decrease in number which leads to 
an increase of the N2O-production/denitrification ratio on intercropped 
cocksfoot roots. Alternatively it could be that when N is not limiting due to the 
presence of lucerne, denitrifiers become more dominant. Among those many 
could lack nosZ resulting in a higher N2O-production/denitrification ratio.

4.4 Conclusions and perspectives
The rhizosphere of agricultural crops is an important system to study N2O-
reducing microorganisms due to the often high denitrification activity, which 
increases the risk for N2O-emissions. Paper III and IV indicated a niche 
differentiation between nosZ Clade I and II organisms. Here, one needs to keep 
in mind that the majority of studies on N2O-reducing organisms have been 
conducted targeting nosZ Clade I only. The present papers emphasize that 
conclusions drawn from these studies cannot simply be expanded on N2O
reducing organisms in general. This is also affirmed by the observation that the 
dominant group of nosZ Clade II organisms associated with roots in paper IV 
probably were organisms performing DNRA. Thus, future research needs to 
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address the environmental factors controlling organisms harbouring nosZ
Clade II in further detail as well as their abilities to perform DNRA. In 
addition, the affinity of nosZ Clade I to plant roots should be studied further in 
order to understand the mechanisms behind this. One particular difficulty in
these studies was to develop assays to assess potential denitrification and N2O-
production rates in association with roots. The harvested root biomass was 
comparatively low so that the assay had to be scaled down substantially. While 
the results showed a distinct difference in root-associated denitrifier activities 
between the different plant species, development of more sensitive assays is 
required.
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5 General conclusions and perspectives
Due to accelerating climate change, the mitigation of anthropogenic N2O-
emissions is an urgent matter. During the recent decades significant progress 
has been made studying microorganisms as driving forces of the N-cycle even 
though many open questions remain. Although the activity, abundance and 
community structure of denitrifying microorganisms is dependent on abiotic 
factors, whether N2O is emitted or reduced to N2 in a given environment 
ultimately depends on whether there are microorganisms present that are 
capable of doing so. Thus, understanding the effects of environmental drivers 
on microbial biodiversity, and in turn the effect of changes in biodiversity on 
N2O-regulation, is crucial. The advent of molecular methods in general and 
high-throughput sequencing in particular has greatly facilitated this endeavour. 
This thesis aimed to further elucidate the ecology of N2O-reducing 
microorganisms by exploring the genetic diversity, the genomic context, and 
the relation to plants as habitat shaping factors in the rhizosphere, the results of 
which are summarized in the following conclusions.

A new gene variant of the N2OR encoding gene nosZ (Clade II) was 
described, which largely belongs to organisms taxonomically distinct from 
the previously known nosZ (Clade I) harbouring organisms, and is in equal 
abundance in many environments (paper I). Future research needs to 
consider nosZ Clade II whenever the N2O-reducing microbial community is 
assessed. 

Investigation of microbial genomes revealed that co-occurrences patterns of 
N2O-reducing nosZ with nir and nor genes were non-randomly distributed 
among taxonomic groups and habitats (paper II). Seven different co-
occurrences patterns were observed elucidating the modularity of the 
denitrification pathway. Thus, denitrifiers with a complete pathway 
constitute only one group of organisms providing the ecosystem function of 
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denitrification and the existence of various consortia of NO2
-- and N2O-

reducers in a given environment needs to be taken into consideration when 
denitrification and N2O-reduction are assessed as functions. 

Indications for niche differentiation between organisms harbouring either 
nirS or nirK (paper II) and nosZ Clade I or II (paper III and IV) have 
been found. However, whether these organisms differentiate due to 
different substrate affinities, adaptation to certain environmental factors or 
ecological strategies needs to be further investigated. 

In soil, denitrification and N2O-production as well as the abundance and 
structure of denitrifying and N2O-reducing communities was mostly 
affected by edaphic factors compared to plant factors, even though nosZ
Clade I abundance could not be explained by either (paper III). Thus, 
future studies ought to address the circumstances in terms of soil type, plant 
species and environmental conditions under which a rhizosphere effect on 
N2O-emissions occurs. 

N2O-reducing communities on roots differed both in terms of abundance 
and composition from those in the corresponding soil (paper III and IV). 
While abundance and structure of nosZ Clade II communities could 
predominantly be explained by soil even in association with roots the nosZ
Clade I community structure was explained by soil and a comparatively 
large plant factor which together with higher abundances of this clade in 
association with roots (paper III) might indicate niche differentiation 
between the two clades in the rhizosphere.

Intercropping with Medicago sativa negatively affected the abundance of
nosZ Clade II in association with roots of Dactylis glomerata and increased
the N2O-production/denitrification ratio (paper IV) which in conjunction 
with phylogenetic placement of sequencing reads indicated the presence of 
organisms with only nosZ lacking a denitrification pathway. The fact that 
these organisms decreased when a legume was present might indicate that  
organisms harbouring nosZ Clade II might be subject to different 
environmental cues than those with the Clade I type, which warrants further 
investigations.

Future research on the ecology of N2O-reducing microorganisms can draw 
from a rich reservoir of methods and from a vast amount of publicly available 
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sequence data and, despite some limitations, from accompanying metadata. 
The data mining study in paper II gave valuable insights into the modularity 
of the denitrification pathway and future research should make more use of the 
readily available data at public databases to gain deeper insights and generate 
hypotheses to be tested in field studies or laboratory experiments. Moreover, 
the continued development of microbial ecology theory should be prioritized to 
be able to place the data generated in sequencing studies into a theoretical 
framework that greatly could enhance the interpretation of results. This would 
provide a great advantage, especially when studying all but straight-forward 
processes as denitrification and N2O-reduction.
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