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Morphological and Behavioral Adaptations of 
Moose to Climate, Snow, and Forage 

Abstract 

This thesis focuses on the behavioural and morphological adaptations of moose to 
snow and climate: specifically, seasonal migration, habitat choice, and following 
behaviour, plus the relationships among morphology, climate, snow, and 
seasonality. I examine intake and availability of winter forage, and perform one of 
the first large-scale tests of a widely used optimal foraging model by videotaping 
free-ranging moose making their own choices.  The study of seasonal migration and 
habitat choice showed that the effect of snow differs with variation in snow 
severity: in locations with large differences in snow depths in a short distance, snow 
depth is important, but in locations where snow depth is less variable, snow quality 
emerges as more important. The thesis is one of the first to use a new method to 
evaluate the importance of snow quality. Testing between competing hypotheses to 
explain morphology, the importance of snow was further emphasized relative to 
temperature and latitude. In snowier areas, moose had larger hooves and longer 
legs than expected from their size and age. Morphology both conformed to, and 
was in opposition to some of the most well-known ecogeographical rules: in areas 
with cold winters, moose were heavier (Bergmann’s rule) and had shorter ears 
(Allen’s rule). There was also some evidence that moose morphology was related to 
heat stress during summer. The quality of the two main winter forages (birch and 
willows) differed within and between species. Willows had more available browse, 
and lower levels of secondary defence compounds than birch, but also less nitrogen 
and more fibre. These differences in forage quality also emerged in the test of the 
Spalinger-Hobbs model, as moose preferentially fed on willow, which was also the 
faster food to ingest. Most importantly, the analysis revealed that the foraging 
parameters varied within a foraging bout, and thus parameterizing the model from 
only the first few minutes of a bout would greatly mis-estimate intake. In the face of 
climate change, my results emphasize the need for research relating behaviour and 
morphology to environmental conditions. As moose are well adapted to snow and 
winter conditions, climate change may have negative consequences on southern 
populations as temperatures will rise, and some ranges may become unsuitable. 
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“First, therefore I will speak of the Elke, which the Savages call a Mose: it 
is a very large Deare, with a very faire head, and a broad palme, like the 
palme of a fallow Deares horne, but much bigger, and is 6 footewide 
between the tipps, which grow curbing downwards: he is of the bignesse of 
a great horse”. 

 
Samuel Champlain, 1603 
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Introduction 

 
 

Ungulates and their environment 

 
One of the central concerns of wildlife ecology is to understand the 
interactions between the animals and their environments. For ungulates, 
both survival and distribution are dependent on abiotic as well as biotic 
factors, including availability and quality of forage, as well as climate 
conditions and competition for resources. At high latitudes, ungulates are 
exposed to a great annual range of climatic conditions. This strongly 
seasonal climate results in long and cold winters with reduced forage 
availability, followed by short and intense summers with prolonged 
daylight, high temperatures and an intense burst of available food of high 
quality. Understanding how animals survive and thrive in these areas has 
long been a challenge to ecologists, and has led to the development of 
several theories and hypotheses to explain the relationships among climate 
and the behaviour and morphology of animals.  

In seasonal ecosystems, winter is often the critical time of the year, and 
the occurrence of snow, cold, and the costs of gaining and allocating 
energy has shaped many of the evolutionary responses of ungulates 
inhabiting these areas (Halfpenny and Ozanne, 1989; Parker and 
Gillingham, 1990). During winter, low ambient temperatures affects 
metabolic rates and induces biochemical changes (Schwartz et al., 1988; 
Halfpenny and Ozanne, 1989; Parker et al, 1993), there is no increment in 
food resources, snow covers much of the food and increases the energy 
cost for locomotion (Coady, 1974; Sandegren et al., 1985; Klein, 1995). 
When mobility is restricted and food resources are limited due to snow, 
survival is often strongly affected by heat and energy conservation.  

In my thesis, I mainly focus on the behavioural and morphological 
adaptations of moose to climate conditions, and examine intake and forage 
that is available to moose during winter.  
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About the moose  

 
The moose (Alces alces) is the largest member of the deer family, and can 
reach a live weight of 650 kg or more, males being generally larger than 
females. The European moose evolved in Eurasia some 100 000 – 300 000 
years ago (Bubenik, 1998), and the first moose arrived in Scandinavia 
following the receding ice after the latest glaciation 9000 – 10 000 BP 
(Cederlund and Bergström, 1996). The size and distribution of the Swedish 
moose population has varied dramatically: in the beginning of the 19th 
century, moose numbers reached a record-low with only small populations 
left in mid-Sweden (Bergström et al., 1993; Åkerberg, 2005). After 
changes in harvest strategies together with a reduction of the Scandinavian 
carnivore populations, the population started to recover. Subsequent 
changes in forest practices in the 1960’s and 1970’s allowed the moose 
population to increase further until it reached a (post-harvest) population 
size of approximately 315 000 individuals in the early 1980’s (Hörnberg, 
1991; Ingemarson, 2005). Today, the post-harvest population size is 
approximately 200 000 individuals (Kindberg et al., 2008). Consequently, 
harvest numbers have changed as well, and peaked in the beginning of the 
1980’s, when almost 175 000 moose were harvested annually (Bergström 
et al., 1993), compared to 82 370 individuals in 2007 (Kindberg et al., 
2008). The economic significance of the moose population is substantial, 
with an annual hunting value close to 1.43 billion SEK, incorporating 
recreational as well as meat values (Mattsson et al, 2007). There are, 
however, also several negative aspects of the moose population. Moose-
vehicle accidents now number almost 5000 accidents annually, with a cost 
of almost 340 million SEK (Swedish Road Administration), and the severe 
browsing damage caused by moose on young forest stands (Persson et al, 
2000; Lavsund, 2003), results in annual costs of up to 1.30 billion SEK 
(Glöde et al., 2004).  

The moose is classified as a concentrate selector (Hofmann, 1985), and 
meets its nutritional requirements by consuming a wide variety of plants 
and plant parts. Generally, moose prefer deciduous species, dwarf shrubs, 
and herbs such as rowan Sorbus aucuparia L. willow Salix spp., aspen 
Populus tremuloides L., birch Betula pendula L. and B. pubescens L., oak 
Quercus robur L., blueberrry Vaccinum myrtillus L., meadowsweet 
Filipendula ulmaria, L., grasses Poaceae spp. and sedges Carex spp. 
(Bergström and Hjeljord, 1987; Shipley et al., 1998, Broman, 2003; 
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Månsson et al., 2007). During winter, the selection of available browse is 
scarce, and mainly consist of annual shoots of deciduous trees such as 
willow and birch, and annual shoots of pine Pinus sylvestris L. (Shipley et 
al, 1998). To fulfil its nutritional requirements during winter, the moose 
has to consume 3-6 kg twigs (dry weight) daily (Baskin and Danell, 2003).  

In this thesis, the moose was chosen as the main study object, since its 
distribution covers almost the entire range of Sweden, ranging from the 
coastal areas in the south-east, to the mountain ranges in the north-west. 
The moose is well adapted to a variety of different habitats and 
environmental conditions, and well suited for a life in the cold. The moose 
is thus a suitable object when studying morphology, behaviour, and 
foraging topics, especially with regard to various climate regimes, and to 
provide insight into how this important ungulate’s morphology may change 
under climate change.  
 
 
 

Behavioural and morphological adaptations to life at 

high latitudes 

 

“If an animal didn’t need legs for mobility, it would be far better off 
without them”                                       Halfpenny and Ozanne, 1989   

 
Ungulates at high latitude areas have evolved numerous adaptations that 
enable them to survive in their periodically harsh environments. Some of 
these adaptations relate to morphology and physiology, and include 
features such as long legs that allow easy movement through deep snow 
(Bubenik, 1998), large hooves with tendons and cartilage that allow the 
digits and dewclaws to spread on soft surfaces and to squeeze together 
before lifting the hoof (Coady, 1974), and an exceptionally isolative winter 
hair coat (Geist, 1987). Physiological adaptations also include nasal and 
counter-current heat exchange to reduce heat loss (Marchand, 1991), and 
changes in activity levels and metabolic rate (Parker and Robbins, 1984; 
Renecker and Hudson, 1986; Cederlund et al, 1989; Parker et al., 1993).  

As a consequence of being so well-adapted to cold, many northern 
ungulates are easily heat stressed during both summer and winter, which 
may lead to a decline in their physical condition (Parker and Robbins 1984; 
Renecker and Hudson 1986; Sargeant et al., 1994). The moose is an 
excellent example of a cold-tolerant species, as their large body size, long 
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legs, and warm pelage makes them extremely well adapted to winter 
conditions (Renecker and Hudson, 1986; Dussault et al., 2004). Of the 
northern ungulates, moose are perhaps the best adapted to cold 
temperatures: the lower extreme of the thermal-neutral zone (below which 
moose must expend energy to maintain body heat) lies somewhere below -
30C for winter-adapted moose (Renecker and Hudson, 1986). Instead, 
moose instead have great difficulty in dissipating surplus heat during warm 
temperatures, particularly during late winter and spring (Parker and 
Robbins, 1984; Renecker and Hudson, 1986; Dussault et al., 2004) when 
temperatures above -5°C may cause heat stress (Renecker and Hudson, 
1986). However, the long legs of moose might be important in 
thermoregulation by allowing them to radiate excess heat (Kelsall and 
Telfer, 1974) and thus may help to reduce heat stress. For moose, it has 
been suggested that its distribution is limited by warm rather than cold 
temperatures (Renecker and Hudson, 1986; Karns, 1998; Van 
Ballenberghe and Ballard, 1998).  

In addition to morphological and physiological adaptations, the survival 
of most over-wintering animals is dependent on their actions. High latitude 
ungulates like the moose are known to adjust their behaviour according to 
environmental properties at both large (migration between seasonal ranges) 
and small (within over-wintering ranges) scales (Coady, 1974; Telfer and 
Kelsall, 1984; Ballard et al., 1991; Nicholson et al., 1997; Bruggeman et 
al., 2006). Migration is a common behaviour of herbivores at high 
latitudes, and involves trade-offs in the allocations of time and energy, 
especially when considering the travel costs between ranges. 
Understanding migration and habitat selection within home ranges may 
therefore involve foraging conditions and models based on optimal 
foraging theory (Börger et al., 2008). When considering the importance of 
the vegetation, migration patterns of ungulates has been suggested to be 
influenced by the tendency for the animals to utilize food plants that may 
differ in importance during different seasons and/or grow in different 
habitats (Thompson and Vukelich, 1981; Bergström and Hjeljord, 1987). 
Migration has also been suggested to be determined by selection for high 
forage quality (i.e. the forage maturation hypothesis), and predicts that 
ungulates select for intermediate forage biomass to maximize energy intake 
by following phenological gradients while migrating (Hebblewhite et al., 
2008).  

The distance between the summer and winter ranges of migrant moose 
varies considerably: some moose migrate 170 km, while others travel only 
very short distances (Ballard et al., 1991) but still show a clear shift 
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between non-overlapping ranges. The proportion of migrating animals 
increases towards the north, and may vary within a population due to 
changes in habitat suitability and climate severity (Ballard et al., 1991; 
Dingle, 1996). Many studies suggest that moose migrate to winter areas 
with less snow and more suitable forage conditions (Coady 1974; Sweanor 
and Sandegren, 1989). In Scandinavia, moose populations below 60°N are 
not known to be migratory. With regard to snow conditions, not only snow 
depth, but also snow quality (i.e. density and hardness) may be important 
for migration and habitat choice, and snow quality has been shown to 
explain almost 90% of the variance in sinking depths (and hence the 
energetic cost of walking) of over-wintering ungulates (Bunnell et al., 
1990).  

Since seasonal migration of northern ungulates still leaves them in 
snowy environments during winter, winter condition and survival can 
depend on them being able to reduce their energetic costs as much as 
possible even at smaller scales (i.e. within their winter ranges). One of the 
possible ways to do so is when the animal reduces the cost of walking in 
snow by placing its feet in the footprints of another animal (Fancy and 
White; 1985; Murray and Boutin, 1991; Crête and Larivière; 2003). This 
trail-following behaviour can reduce the energy spent when walking with 
more than half for the animal following behind (Fancy and White, 1985) – 
which can be of great importance for survival during winter. Moose are 
also able to use a special gait in deep snow (Figure 1), owing to the 
exceptional angle between the unusually long shin bone (tibia) and the 
metatarsus 
of the hind 
leg 
(Bubenik, 
1998).  
 

Figure 1. 
Moose walking 
in deep snow. 
Note the 
special gait 
used by moose.  
Photo: Eric 
Andersson.  
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Hypotheses linking morphology to the environment 

 
“The moose is singularly grotesque and awkward to look at. Why should it 
stand so high at the shoulders? Why have so long a nose? Why have no tail 
to speak of? 

                                                Henry David Thoreau, 1817-1862 
 
The geographical pattern in the morphology of mammals has long been of 
great interest to ecologists, and has lead to the development of numerous 
hypotheses relating morphology to the environment. Mammals in general 
show a pattern of being larger (e.g. Bergmann’s rule, Bergmann, in Mayr, 
1963), and having relatively shorter appendages (legs, ears, rostrum, etc) in 
the cooler parts of a species range (e.g. Allen’s rule, Mayr, 1963). If 
animals in cold and snow-free areas are optimally designed according to 
the above rules, they should be large and have short thick legs in order to 
conserve heat. If however, snow rather than temperature acts as a selective 
force regarding foot size and leg length, feet should be larger and weight 
load (body weight/foot or hoof area) lighter to reduce the energetic cost of 
walking during winter (Parker et al., 1984; Telfer and Kelsall, 1984; Fancy 
and White, 1985). Leg length also appears to be affected by several factors, 
such as nutritional constraints, heat conservation, efficiency of locomotion, 
and the ability to handle snow and to reach food (Coady, 1974; Parker et 
al., 1984; Telfer and Kellsall, 1984; Fancy and White, 1985, Klein et al., 
1987; Murray and Boutin, 1991; Bubenik, 1998; Murray and Lariviére, 
2002). There may thus be several, sometimes contradictory, selective 
forces acting on animal morphology, and the environmental causes for 
many of the observed morphological clines remains a subject of debate, 
and calls for further investigation. 

 So far, two often cited hypotheses (ecogeographical rules) have been 
proposed to explain the relationships between geography and size: 
Bergmann’s rule (Bergmann 1847, in Mayr, 1963) hypothesised a general 
negative association between body size and environmental temperature, so 
that within a species, larger animals should be found in cooler climates or 
at higher latitudes. Allen’s rule (Mayr, 1963) suggests that populations of 
the same species at higher latitudes tend to have shorter body appendages 
than population at lower latitudes, as the less surface area an organism has 
relative to its body mass, the less heat it will loose. Other hypotheses allied 
with the two above are James’ hypothesis (James, 1970), and the size-
dependent hypothesis (Olalla-Tárraga et al., 2007), and other rather closely 
associated hypotheses that relate body sizes of mammals to productivity 
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and/or seasonality (Boyce, 1978; Geist, 1987). Others yet relate body size 
to forage quality in seasonally variable environments (Jarman, 1974), 
release from competition (McNab, 1971), and habitat structure (Bro-
Jørgensen, 2008).  

To understand the morphological variations and adaptations of animals, 
it is important to include the climate variables influencing them. At high 
latitudes, the strong seasonality in weather conditions and in the 
availability and quality of forage poses especially strong selective pressure 
compared to areas where environmental conditions are more or less equal 
throughout the year (Boyce, 1978; Bradshaw and Holzapfel, 2008). The 
winter-adapted northern animals must thus be adapted both to cold 
temperatures and snow during winter, and to warm summers. 
Understanding the relationships between animal morphology and 
environmental conditions is now becoming increasingly important, given 
the predicted changes in climate Hofgaard et al., 1999; Hughes, 2000; 
Millien et al., 2006). Global warming is likely to affect both plants and 
animals, and poleward range expansions (and contractions for northern 
winter-adapted species) as well as morphological changes have already 
been indicated for several species (Hughes, 2000; Yom-Tov, 2001).  
 
 

Foraging during winter  

 
In boreal forests, ungulates such as the moose are not only consumers, but 
also have considerable impacts on their environment by modifying the 
structure and composition of their food plants (Persson et al., 2000; Stolter, 
2008), and the energy balance and nutrient cycling within their habitats 
(Pastor and Cohen, 1997).  

Forage intake of herbivores to a large extent depends on intrinsic 
constraints (e.g. morphological and physiological characteristics) which 
determines the range of foods they tolerate, and environmental constraints 
(such as seasonality) which affects the availability and quality of resources. 
The quality and quantity of forage is important for herbivores and strongly 
affects their feeding patterns within landscapes, as well as among browse 
species and individual plants and plant parts (Palo et al., 1992; Hódar and 
Palo, 1997; Shipley et al., 1998; Bergman et al., 2001; Alm et al., 2002; 
Behmer, 2002; Stolter et al., 2005; Månsson et al., 2007).  

During winter, the reduction in available forage caused by snow 
accumulation and the subsequent decrease in food intake is potentially one 
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of the most important mechanisms affecting animals during the winter 
(Hovey and Harestad, 1992; Klein, 1995; Loison et al., 1999). One of the 
critical aspects of snow accumulation is how it reduces accessibility of 
forage at lower levels, but if the snow supports the weight of the 
herbivores, it also allows them to reach browse higher up a tree and 
previously out of reach. Variations in forage quantity and quality with 
height within a tree may thus be particularly important during the winter 
season, due to the changes in forage availability caused by snow. The 
digestive system of the ruminant moose is well adapted to process the 
woody winter browse efficiently: large bites and lengthy chewing breaks 
down the food material into particles capable of passing quickly out of the 
rumen, and as a generalist browser and concentrate selector (Belovsky, 
1986) moose are also able to ingest moderate amounts of a variety of 
secondary plant compounds (Stolter et al., 2005). In conformity with 
general optimal foraging theories, herbivores consume more slowly 
digestible forage in relation to its availability in times of low food 
abundance (i.e. during winter), as they become less selective when food 
abundance decreases (Owen-Smith and Novellie, 1982; Storms et al., 
2008). The moose thus appears to be a “nutrient mixer” during summer, 
and an “energy maximiser” during winter (Broman, 2003).  

 The demands on feeding ungulates during the critical time of year 
when they are forced to feed on low quality forage makes the winter season 
especially suitable for testing foraging theories. Constraints such as 
availability and quality of forage are crucial to foraging models, and have 
frequently been used to model forage intake of large ungulates (Belovsky 
1978, Pyke, 1984; Illius and Gordon, 1991). In general, foraging theory 
predicts that herbivores will balance their diet as a result of nutritional 
needs, food quality, and availability of alternate foods, and aim at 
predicting forage intake with respect to time and energy spent, vs. energy 
gained while feeding. Most herbivore foraging models assume that intake 
rate is limited by the morphological and physiological abilities of 
consumption and processing, and thus focus on the constraints of 
searching, bite size, biting, and chewing (Shipley and Spalinger, 1992; 
Spalinger and Hobbs 1992; Gross et al., 1993; Laca et al., 1994; 
Woodward 1997). However, in most ungulate studies, measurements to 
parameterize these models have been confined to short term trials, using 
only a few minutes at the beginning of a bout of a captive, food-deprived 
ungulate, which seems a remarkably short duration for larger herbivores 
which may have foraging bouts exceeding an hour (Risenhoover, 1986; 
Cederlund et al., 1989; Gillingham and Klein, 1991). If the assumptions 
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regarding invariance throughout the longer foraging bouts of larger animals 
are perfectly met, the use of short term studies to parameterize the 
variables poses no risk. Conversely, if the parameters change during a bout, 
the estimated intake rate will be increasingly in error as the difference 
between the observation period (from which we extrapolate the parameter 
values) and the actual foraging bout increases. Therefore, employing 
foraging models (parameterised from short-term studies) on herbivores 
with long foraging bouts might be leading to mis-estimations of intake 
rates. Studies of large ungulates at a more realistic time scale are rare, and 
so far are limited to one study of two male moose, feeding on a single 
forage species in a large exclosure (Pastor et al., 1999). One of the aims of 
this part of the thesis work was thus to study complete foraging bouts of 
wild, free-ranging moose making their own choices, in order to better test 
the Spalinger-Hobbs (1992) foraging model, and investigate the quantity, 
quality, and availability of winter forage.  
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Objectives 

 
In this thesis, the main objectives were to study moose inhabiting high 
latitude areas to gain insight into their specific needs and adaptations in 
relation to winter conditions. Below, I list the main questions that were 
addressed in papers I – V. With an eye to the future, I also discuss the 
results from a climate change perspective. 

 
 

1. How does large scale moose behaviour (i.e. seasonal migration) relate to 
environmental factors such as snow conditions and forage composition?  

 
2. Do moose adjust their small-scale behaviour (i.e. within seasonal ranges) 
according to variations in quantity and quality of snow, and is there an 
easier way than those used today to quantify snow quality directly in the 
field?  

 
3. If there is local adaptation in moose morphology to climate, is it a result 
of adaptation to cold winters, warm summers, or snow conditions? 

 
4. How is forage availability affected by changing snow depths, and how 
does quantity and quality of forage vary within trees, as well as between 
climatologically different areas? 

 
5. Does foraging moose in winter behave according to the assumptions of 
invariance with time made by most existing foraging models? Will the 
models need modifications when applied to wild ranging animals, or do we 
need to parameterize them differently than with values from short-term 
estimates of captive food-deprived animals? 
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Study area  

The different studies of the thesis were performed in 21 locations spanning 
almost the entire length and breadth of Sweden (Figure 2).  
The main part of the study (Papers II, IV, V, and parts of paper III) was 
performed close to Abisko (68°21′N, 18°49′E) in the mountains of northern 
Sweden. For paper IV, three separate locations were used ranging from the 
mountains of Abisko in the east, to the Norwegian coast 66 km to the west 
(grey colour on in Figure 2). Together, these locations form a steep 
climatic gradient with large differences in temperature and precipitation 
(Alexandersson et al., 1991; Aune, 1993; Bjørbæck, 1993; Forland, 1993, 
Table 1). The study of migration and habitat choice in Paper I was 
conducted in the Robertsfors location just north of Umeå (black square in 
Figure 2). Moose morphology (Paper III) was studied in 19 of the 21 
locations, spanning a 1245 km north-south gradient within Sweden, 
including locations from the Bothnian coast in the east, to the mountain 
range 483 km to the west.  

The climate changes from south to north and from east to west with 
increasing winter severity and lower temperatures, and covers all 
vegetation zones in Sweden (Table 1). In the alpine vegetation zones, 
forested valleys are dominated by mountain birch, Betula pubescens ssp. 
Czerepanovii (Orlova) Hämet-Ahti in dry to mesic areas, and willows, 
Salix spp. in more moist areas. Additionally, aspen, Populus tremula, 
rowan, Sorbus aucuparia, and Scots pine, Pinus sylvestris occur as 
scattered individuals or stands. The treeline is 700–800 m a.s.l., with 
surrounding mountains within the study locations reaching up to 1700 m 
a.s.l. During the growing season, the area is used as grazing grounds for 
reindeer Rangifer tarandus. In the boreal zones, the forests are dominated 
by Scots pine Pinus sylvestris, and Norway spruce Pícea abies, 
interspersed with birch, Betula spp., aspen, Populus tremula, rowan, 
Sorbus aucuparia, and willows, Salix spp. Within the boreo-nemoral zone, 
the occurrence of hard wood trees increases, including elm Ulmus glabra, 
ash Fraxinus excelsior, oak Quercus alba, lime/linden Tilia cordata, maple 
Acer platanoides and beech Fagus silvatica. The proportion of pine 
generally increases towards the north, while agricultural land and 
deciduous species decrease. Forests are typically logged with a rotation 
period of 80-100 years. In all locations, the field layer is comprised of 
dwarf shrubs such as blueberry, Vaccinium myrtillus L., lingonberry, V. 
vitis-idaea., black crowberry, Empetrum nigrum ssp. hermaphroditum 
(Lange ex Hagerup) Böcher, sedges, Carex spp., grasses, Poaceae spp., 
and dwarf birch, Betula nana in the northern locations.  
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Sweden Finland

Norway

Abisko

500 km

 
 
 

 
 
 
 
 
 
 
 
 
Figure 2. Study area showing the 
21 locations included in the 
thesis. The three northernmost 
locations (grey) were used in 
Paper IV. The black square 
shows the Robertsfors location 
used in Paper I. Paper II and V 
were conducted only in the 
Abisko area. All locations except 
the two most northwestern areas 
(grey) were used in Paper III. 

Methods 

All studies included in the thesis were based on free-ranging moose, almost 
all individually marked. The moose were immobilized between 1990 and 
2007, with Ethorphine and Xylazine (Sandegren et al., 1987) using a dart 
gun (Model 1M, Daninject) from helicopters. Each animal was marked 
with unique ear-tags, and most moose were also equipped with a radio 
collar (Televilt International, Lindesberg, Sweden). The locations of radio-
collared moose were determined by triangulation, and the centre of their 
home ranges were calculated using the adaptive kernelling (Worton, 1989) 
option of the program Tracker (Camptonus AB, 1994).  

Distance between summer and winter ranges was defined as the 
straight-line distance between the centroids of the ranges. Moose were 
classified as migratory if the minimum convex polygons (White and 
Garrott, 1990) for its winter and summer areas during consecutive years 
did not overlap.  



 
21

 

  Table 1. Climate characteristics for study sites. The table show coordinates (lat., long.), mean monthly temperature (ºC) and precipitation 
(mm) during the three warmest summer months (June, July, August) and the three coldest winter months (December, January, February), 
together with mean snow depth for the months with the deepest snow cover (January, February, March), and duration of snow cover (days 
with snow on the ground). In the table, study locations are sorted by descending latitude from Abisko in the north, to Mark in the south. 
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Migration and habitat selection  

 
To evaluate the composition of each moose's home range, systematic line-
transect sampling was performed within moose ranges of 36 migrant and 
30 resident moose within the Robertsfors location, and 9 migrant moose 
within the Abisko location. The composition of the vegetation was 
estimated along the transects, including tree species in both study 
locations, and the occurrence of clear cuts, mires, agricultural fields, and 
lakes within the Robertsfors location. For pine, stands between 5 and 30 
years of age were included in the analyses to ensure that all important pine 
areas were considered, because the maximum browse production of pine is 
between 15-20 years (Bergström and Hjeljord, 1987). Pines were not 
present in more than trace amounts at the Abisko location. Snow depth was 
measured in year-round ranges of residents, and in winter and summer 
ranges of migrant moose. Both ranges of a given migrant were examined 
on the same day so that snow conditions in winter ranges vs. summer 
ranges were not confounded by changes in temperature or precipitation. 
When moose tracks were encountered along thetransects in the Robertsfors 
location, the depths of the tracks were measured from the top of the snow 
layer down to the bottom of the footprint. Sinking depths of calves and 
adults were separated and treated as two potential indices of snow quality 
(“effective snow depth”), because foot loading is much greater for adults 
than for calves (Kelsall and Prescott, 1967). Within the Robertsfors 
location, sinking depths alone were used to assess snow quality, but in the 
Abisko location, snow density estimates were further refined by calculating 
the force per unit area (kg/cm2) needed to reach the depth equal to the 
moose footprint (see the section below for methods used to estimate snow 
quality). 
 

Behaviour in varying snow conditions 

 
To study the behavioural response of moose to variations in snow 
conditions, fresh (2 – 10 min old) footprints from free-ranging moose (37 
adults and 31 calves) were examined in the Abisko location. The 
proportion of trail-following behaviour (i.e. placing their feet in the 
footprints previously made by other moose, see Figure 3) was recorded 
along each trail for a total of 258 and 145 tracks of adults and calves 
respectively.  
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Figure 3. Moose following behaviour. Note that the second moose is placing its feet into the 
footprints of the one making the trail, thus saving valuble energy needed for winter 
maintenance. Photo: Eric Andersson.  

 
 

The properties of the snow were measured immediately adjacent to the 
footprints, and the depth of the footprint was measured to the nearest cm. 
To assess snow quality, a mechanical dynamometer (PIAB model DT/DTN 
300, CA Mätsystem AB, Täby, Sweden) attached to a steel extension rod 
with a replaceable circular disc on the other end of the rod was used to and 
measure the force required to press the disc down through the snow to the 
depth equal to that of the adjoining footprint. Snow quality was then 
indexed by calculating the force per unit area (kg/cm2) needed to reach the 
depth equal to the moose footprint. The occurrence and location of any 
harder layers within the snow pack was also recorded, and total snow depth 
was measured to the nearest cm. In addition to snow properties, altitude, 
snow and air temperatures, and the vegetation coverage at the site of the 
moose trails was recorded.  
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Morphology in relation to climate  

 
Moose morphology was studied on 1435 live free-ranging moose in 19 
different study locations. The morphological measurements included 
rostrum length (i.e. head length), total body length, ear length, leg length, 
and the length and width of the hooves (Figure 4). Hoof size was 
calculated by using the formula for an ellipsoid, which most resembles the 
shape of a real moose hoof. Weight load was calculated by dividing body 
mass by the total area of the four hooves (Telfer and Kelsall, 1979). Leg 
length was measured by adding the length of the cannon bone (radius and 
ulna fused), to the length of the metacarpus for fore legs, and the length of 
the shin bone (tibia) to the length of the metatarsus for hind legs. The 
length of front legs and hind legs was then used as a measure of average 
leg length. 
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Figure 4a) Moose morphology measurements (cm). 1. Rostrum length, 2. Ear length, 
3.Body length, 4. Cannon bone, 5. Metatcarpus, 6. Shin bone, 7. Metatarsus, 8. Hoof length. 
9. Hoof width.  b). Immobilized moose being measured in the field. Photo: C. Lundmark. 
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Age was determined by tooth wear (Skunke, 1949). Live body mass was 
measured by manoeuvring the moose onto a tarpaulin attached to a scale 
suspended from the helicopter. In addition to immobilized moose, 
morphological data was retrieved from moose killed by car or train 
collisions at the Abisko location. For moose that were later shot by hunters, 
or otherwise dead, the age estimate was improved by counting the number 
of annual cementum layers of the first molar (Bubenik, 1998). Since size 
varies with age (Sand et al., 1995; Schwartz, 1998;), we used the Gompertz 
growth equation (Zullinger et al., 1984; Sand et al., 1995; Moscarella et 
al., 2001) to control for differences in size with age among capture 
locations because age structure may vary among locations 

 

Foraging conditions during winter 

 
Quality and availability of forage was studied within the three 
northernmost study locations: Abisko, Vassijaure, and Skjomdal. The 
vertical distribution of quality and biomass of annual shoots were studied 
by cutting 24 birch and 23 willow trees at the bite diameter exhibited by 
moose in the area. The concentrations of secondary defence compounds 
(phenols and tannins) were analysed using the Folin-Ciocalteau reagent 
method (Waterman and Mole, 1994; Shofield et al., 2001), and fibre 
content was analysed on a subset of the shoot samples using acid detergent 
fibre (ADF) extraction (Mould and Robbins, 1981) and a near infrared 
spectrophotometer (NIR System Process Analytics 6500) and interpolated 
to the total sample set (Foley et al., 1998). The effect of snow 
accumulation on forage availability was studied in randomly-selected trees 
of birch and willow, after every snowfall of more than five cm during the 
1997/1998 winter.  
   To test one of the most widely-used foraging models regarding 
herbivores feeding in food concentrated patches (Spalinger and Hobbs, 
1992) forage intake was studied in the Abisko location between January 
and April 1999. The durations of 21 and 15 entire foraging bouts of free-
ranging adults and young were measured. Of these, detailed studies of bites 
and chews were analyzed for 9 adults and 4 young, from distances of 5 to 
30 m. In total, foraging bouts of adults and young comprised 843 and 386 
minutes for adults and young respectively. Later, analyzing the videotapes, 
lengths of bite and chew sequences were carefully measured, and the 
number and rates of bites and chews were counted and calculated. Dry 
matter intake was calculated from the sizes and numbers of twigs eaten and 
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the relationship between length and biomass of birch and willow twigs 
collected within the study area (n = 107 for each species). To relate the 
observed foraging behaviour to the Spalinger-Hobbs (1992) model, we 
applied the observed mean values of bite size (S) bite rate (h), and 
maximum chewing rate (Rmax) to the foraging model (Eq.1), thus tentatively 
presuming that the underlying assumptions of the model were valid (i.e. 
that the foraging parameters do not change with time). Next, to compare 
the above intake with intake incorporating changes with time, we applied 
the linear regression equations derived from these changes to the model. 
Finally, intake rates were calculated using data from the first 10 minutes of 
the foraging bouts, as a way to compare the intake estimates given by using 
data obtained from entire foraging bouts with the results given by using 
only data from short-term trials (e.g. 10 min.). 

 

Results  

Migration and habitat selection (Paper I, II)  

Vegetation composition 

The results of the study of seasonal ranges in the Robertsfors location 
showed that home ranges were not much different in the composition of the 
vegetation, regardless if moose were migrant and moved between summer 
and winter ranges, or if they were resident and stayed within the same area. 
Comparing between ranges of migrant and resident moose, the only 
difference found was that winter ranges of migrants had less agricultural 
fields than did residents' ranges.  

For migrants, winter ranges were not different in terms of vegetation 
from the summer ranges they left. This pattern was also noted within the 
northernmost study location (Abisko), where the results showed no 
difference between seasonal ranges at tree-stand level (here, birch and 
willow, p > 0.13, unpublished data).  

 Concerning habitat selection at lower levels (i.e. within the home 
ranges), moose preferred ranges with a lower proportion of open habitats 
(mires, clear cuts, and fields), while ranges with deciduous trees were 
neither preferred nor avoided (Table 2). There was also a tendency for 
moose to choose ranges with more pine and spruce.  
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Snow conditions 

Comparing winter ranges of migrants to the year-round ranges of residents 
in Robertsfors, there was no significant difference in snow depth per se. In 
fact, there was even a tendency for deeper snow in winter ranges of 
migrants than in ranges of residents (p=0.08). Within home ranges, moose 
preferentially used ranges with less snow (p=0.04, Table 2).  

 In the northernmost study location (Abisko) however, the results 
differed from those in Robertsfors. In this mountainous region, snow depth 
was important, as winter ranges of migrant moose had significantly less 
snow than summer ranges (80.0 vs. 56.2 cm, p > 0.01).  

 Snow quality (as indexed by sinking depths of moose) differed between 
ranges of migrants and residents in the Robertsfors location, as migrant 
calves sank significantly less deep into the snow at their winter ranges than 
what resident calves did (p=0.007). For adults, sinking depths did not differ 
between ranges. In the Abisko location, snow quality did not vary between 
seasonal ranges (p>0.09).  

Table 2. Comparison of snow depth (cm) and habitat characteristics (%) at used vs. 
available areas within home ranges of individual moose in Robertsfors  (n=66 moose: 36 
migrants and 30 residents). 

 

 

 

Used areas 

 

Available areas 

 

 Mean SE Mean SE 

Snowdepth 51.5 3.07 59.2 1.79 

Mire 0.12 0.38 0.18 0.02 

Pine 6.84 0.24 6.69 0.11 

Spruce 5.13 0.01 4.14 0.01 

Deciduous 1.89 0.01 1.70 0.01 

Clear cut 0.01 0.41 0.04 0.19 

Field 0.14 0.54 0.04 0.24 
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Behaviour in snow (Paper II) 

 
Sinking depths of moose were to a large extent be explained by snow 
quality, which emerged as the most important factor when selecting among 
multiple competing models (Table 3a) Snow quality was also involved in 
the best model when combining several environmental variables (i.e. snow 
depth, altitude, and air temperature) to explain sinking depth (by using 
AIC-analyses). The effects of air and snow temperature may be explained 
by their indirect influences on snow metamorphosis, and that ranges 
situated at higher elevations had deeper snow (which was more supportive, 
p < 0.01 in bivariate correlations). Snow depth per se was only the third 
important single variable in affecting sinking depth, and it did not emerge 
at all in the best model when combining several variables.  

The study of following behaviour showed no strong effect of either 
snow depth, snow quality, nor sinking depth on the extent to which moose 
followed in the tracks of other moose (Table 3b). Instead, following 
behaviour seemingly responded to the temperature of the air, possibly due 
to the effects of temperature on snow quality (snow density increased 
significantly with increasing temperatures).  

 
 
 
 
 
 
Table 3. AIC-table for a) sinking depths 
(the depth of the footprints), and b) 
following behavior (the proportion of a 
200m moose trail when moose put their 
feet exactly in the footprints of other 
moose). Models are sorted by Akaike 
weights (W), and also show the difference 
in AIC values between the models (∆), as  
well as the r-square (r) for the variables 
used in the model: snow depth, snow 
quality (as indexed by the force needed to 
press a simulated moose foot down to the 
depth of a moose footprint), snow 
temperature, sinking depth, air 
temperature, vegetation coverage, and 
altitude.  

 
 
 

a) 

AIC 

 

∆ 

 

R 

 

W 

 

Variables in 
Model 

298.75 0.00 0.16 0.37 snow quality 

298.85 0.10 0.16 0.35 altitude 

299.40 0.66 0.16 0.26 snow depth 

305.23 6.48 0.08 0.01 snowtemp 

307.70 8.95 0.04 0.00 air temperature 

309.27 10.52 0.02 0.00 coverage 

     

b) 

AIC 

 

∆ 

 

R 

 

W 

 

Variables in 
Model 

397.27 0.00 0.05 0.33 airtemp 

398.84 1.57 0.02 0.15 altitude 

399.17 1.91 0.02 0.13 snow depth 

399.20 1.93 0.02 0.13 snowtemp 

397.27 0.00 0.05 0.33 airtemp 

398.84 1.57 0.02 0.15 altitude 
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Morphology in relation to climate (Paper III)  

Morphology in relation to snow  

Moose morphology was more closely linked to snow conditions than to 
environmental temperature or latitude. In locations with more severe snow 
conditions, moose had significantly larger hooves and longer legs than that 
expected by their size.  

 Weighing the relative importance of the duration of snow cover vs. 
snow depth, the results indicated that the most important variable to hoof 
area was the duration of snow cover. Weight load did not follow the snow-
coping hypothesis.  
 

Heat conservation and heat stress 

Moose body mass supported the original proposal of Bergmann, thus 
describing a relationship of climate to body mass alone, not surface area in 
relation to body mass (Bergmann, 1847 in Mayr, 1963). Body mass of 
moose was also related to seasonality, but the test of the competing 
hypotheses (Bergmann’s rule vs. the seasonality hypothesis, Table 4) 
revealed that the evidence for the seasonality hypothesis was weaker than 
for Bergmann’s rule (both mass and body length were more related to 
annual temperature and latitude).  

 
Table 4. Testing between the competing hypotheses of heat conservation (Bergmann’s rule), 
and the seasonality hypothesis. The magnitude of the F-values (bold face) indicate that 
annual temperature is the stronger predictor of both body mass and body length after 
controlling for inter-correlations among the three predictor variables. A “yes” in the 
columns indicates that the sign of the correlation was as predicted by the hypothesis; a “no” 
would mean that the correlation was in the opposite direction, thus not supporting the 
hypothesis at all). Bergmann’s hypothesis  is supported over the  seasonality hypotheses. 
 
  

Heat conservation vs. Seasonality hypotheses 

 

 Seasonality Heat conservation (Bergmann’s rule) 

                                   Latitude                       Annual temp 

Females Body mass 0.07 (0.80) yes 0.46 (0.52) yes  3.35 (0.11) yes 

 Body length 0.01 (0.92) yes 0.11 (0.75) yes  0.37 (0.55) yes 

         

Males Body mass 0.04 (0.84) yes 0.00 (0.96) yes  1.38 (0.29) yes 

 Body length 0.05 (0.83) yes 0.12 (0.74) yes  0.82 (0.38) yes 
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Although lengths of both rostra and legs were related to heat stress, the 
direction of this relationship was not in line with the heat stress hypothesis 
since they were in fact shorter in warm summers. The observed pattern in 
rostrum lengths and leg lengths also strongly falsifies the heat-conservation 
hypothesis (and thus also Allen’s rule), as both legs and rostra were longer 
in areas with cool winters (Table 5).  
 
 
 
Table 5. Testing between the competing hypotheses of heat conservation (Allen’s rule) and 
the heat stress hypothesis.  F- and p-values (within brackets) are the effects of the individual 
climate variables in the general linear model (thus controlling for the correlation between 
summer and winter temperature). Values in bold indicate the larger F-values if in the 
direction predicted by the hypothesis. A “yes” below indicates that the sign of the 
correlation was as predicted by the hypothesis; a “no” means that correlation was in the 
opposite direction, thus not supporting the hypothesis at all. Weighing the relative support 
for the competing models by comparing the F-values, the heat stress model is favoured over 
the heat conservation model because ear lengths exhibited the pattern expected for the 
former (however, ears were also shorter in areas with cold winters).  
 

 

 

 

 

 

 

 
                   
 

 

Quality and availability of winter forage (Paper IV) 

 
Accumulating snow had little effect on forage availability, at least for the 
larger herbivores such as the moose. Although snow had significant effects 
at the lower parts of the trees, most of the forage was found above the 
mean snow depths, and still within the reach of herbivores.  

Analysis of the vertical distribution of biomass of birch and willow 
revealed that most of the willow biomass (87%) was found within the 

  

Heat conservation vs. Heat stress hypotheses 

 

 Heat stress (summer temp) Heat conservation(winter temp) 

    

Females Ear length 0.51 (0.49) yes  0 15 (0.71) yes 

 Rostrum length 0.16 (0.70) no  0.09 (0.77) no 

 Leg length 0.01 (0.91) no  1.08 (0.31) no 

       

Males Ear length 0.07 (0.80) yes  0.00 (0.97) yes 

 Rostrum length 3.94 (0.07) no  0.09 (0.77) no 

 Leg length 1.09 (0.77) no  1.38 (0.26) no 
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browse height of moose. Willows was thus of greater accessibility to 
moose than birch, even though the total biomass of birch browse within 
trees was greater. Considering now overall forage quality between birch 
and willow, birch had higher concentrations of nitrogen and secondary 
defence compounds than willow, but less fibre. The vertical distribution 
showed the same pattern for both forage species: concentrations of 
nitrogen increased with height, and fibre decreased. The concentration of 
non-tannin phenols increased with height of willow, while tannins 
decreased with height of birch. Our results thus indicate that the best 
forage is found at the top of birch trees, and at the middle to top levels of 
willow, which also has more available food in the middle heights, which is 
easily accessible to herbivores.  
 

Foraging in winter (Paper V) 

 
The average moose in the Abisko location spent more time in resting and 
bedding activities (86 and 98 min for adults and young respectively) than 
in moving and/or feeding activities (72 and 80 min). Although adult moose 
spent a smaller proportion of their active time in feeding than young moose 
(48 % vs. 63 %), they fed more intensively than young moose by using 
more time per bite and chew. Adults also took almost twice as many bites 
of willow compared to birch (1091 vs. 576), even though feeding on birch 
appeared more time consuming than feeding on willow, as birch needed 
longer chewing time. In this study, young moose were not studied when 
feeding on birch.  

  The feeding behaviour of moose changed over the duration of a 
foraging bout, as moose bit and chewed more slowly with increasing 
sequence length, and young moose also took smaller bites the longer a 
sequence lasted, thus leading to reduced intake rates (Figure 5).  

The underlying assumptions of foraging model (regarding invariance of 
bites and chews with time) did therefore not hold when being tested on 
free-ranging moose feeding at their own choice during winter. As a 
consequence, the Spalinger-Hobbs (1992) foraging model underestimated 
intake of willow by 17% for adults and 23% for young moose, while intake 
of birch was overestimated by more than double (107%). The higher 
quality willow had more available forage within the browse height of 
moose, compared with birch (as shown in Paper IV), which also may add 
to making willow the “faster food”, since more food is easily available 
compared to birch.  
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Figure 5. Intake rate vs. bite and hew sequence lengths for a) adult moose feeding mountain 
birch, b) adults feeding on willow, and c) young moose feeding on willow. The curves show 
the intake rates calculated by the Spalinger-Hobbs (1992) model incorporating the observed 
changes with time in bite size an rates of bites and chews. The horizontal line shows the 
intake rates calculated by the model assuming that the assumptions of the model are valid 
(i.e. that no variables change with time. Mean sequence lengths are indicated by an arrow. 
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Intake rates calculated by using data from only the first 10 min of the 
foraging bouts overestimated intake of birch by adults 31%, and 
underestimated intake of willow for both adults (24%) and young (15%), 
compared with intake calculated using data from entire bouts (Figure 6).  

 
                                                                        

Figure 6. Forage intake (gdm,    
grams dry mass) calculated for 
foraging bouts of moose feeding on 
birch (B) and willow (W). The 
figure shows intake calculated by 
applying data obtained from the first 
10 min of a foraging bout (white) 
and intake calculated from data 
obtained from an entire bout (grey 

 

General discussion  

Effects of snow on behaviour and morphology 

Seasonal migration and habitat choice  

The behaviour of free-ranging ungulates reflects trade-offs among a wide 
range of factors, such as foraging and digestive efficiencies, food 
availability and quantity, changes in body mass and condition, and 
environmental variations in climate and snow conditions. The effects of 
snow on moose migration differed between the Robertsfors and Abisko 
locations. In the northernmost study location (Abisko), the results showed 
that snow depth was important, as winter ranges of migrant moose had 
significantly less snow than summer ranges (Paper II). Here, the 
topography is highly variable, and snow depth varies dramatically in short 
distances because of the mountains causing a “precipitation shadow” 
(mean snow depth 55.7 cm, range 2 – 245 cm), and moose may therefore 
greatly benefit by migrating even short distances. Heavy snowfall events 
have been documented as being associated with moose leaving their 
summer ranges to migrate towards winter ranges in ranges with less deep 
snow (Ball et al., 1999), and moose in the Abisko location have frequently 
been observed to behave similarly. In the Robertsfors location however 
(Paper I), snow depth was not important in selection of winter ranges. This 
trend is in the opposite direction of what might be expected if a benefit of 
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migration is a winter range with less snow than that experienced by a non-
migrating animal, and migrant moose in this location does thus not appear 
to benefit by having winter ranges with less snow than their summer 
ranges, nor with less snow than resident moose. In this coastal region, 
differences in snow depth and precipitation within the location are smaller 
compared to Abisko (mean snow depth 59.2 cm, range 35 – 100 cm), but 
snow depths should still be enough to allow a rather powerful test, 
especially since depths of 40 to 50 cm are generally associated with moose 
leaving their summer range (Coady, 1974; Sandegren et al., 1985). 
Although snow depth was not important in selection of seasonal ranges in 
the Robertsfors location, it affected habitat selection at a smaller scale (i.e. 
within seasonal ranges), as moose preferentially used sites with less snow. 
These results show that snow conditions may be important for habitat 
selection, but that it may vary between different ranges both at large (i.e. 
geographically separated locations such as Abisko and Robertsfors) and 
smaller scales (i.e. when selecting sites within home ranges). 

The variability in results regarding snow depths per se indicated that 
other aspects of snow may be involved in behaviour of moose, and Paper I 
shows that snow quality may influence the selection of winter ranges in the 
Robertsfors location. Here, calves of migrant moose calves sank 
significantly less deep into the snow at their winter ranges than what 
resident calves did, thus indicating that snow was of higher quality at 
ranges of migrants. Compared to residents, migrants may thus benefit by 
migrating to ranges with less snow, as sinking depth is important by 
directly determining how much energy an animal has to spend when 
moving. For adults, sinking depths did not differ between ranges, which 
might be because foot loading increases greatly with age (Kelsall and 
Prescott, 1967). It may thus be that it was only the sinking depths of calves 
that was a sensitive enough measure to reveal small differences in snow 
quality between ranges. Adults, with their heavier foot loading, may thus 
have been too crude a measure for this initial study on snow quality. In the 
Abisko location, snow quality did not differ between seasonal ranges 
(perhaps because of generally colder and drier climate in the north), so at 
this location it seems that it may be the large differences in snow depths 
that drive the seasonal migration of moose. In summary, areas with less 
variable snow depths, snow quality emerges as one of the possible snow 
variables involved in seasonal migration, while in areas with more variable 
snow depths, migration may be driven by snow depths alone (or in 
association with snow quality). 
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Sinking depths and following behaviour 

To further study the importance of snow conditions, sinking depths of a 
simulated moose hoof was used to more precisely index snow quality 
(Paper II). Here, snow quality emerged as the most important variable in 
affecting sinking depths, and snow quality was also involved in the best 
model when combining several environmental variables. The importance of 
snow quality most likely relates to its effect on the energetic effects of 
sinking depths on energy costs while walking in snow. The results strongly 
suggest that the traditional view of snow conditions by measuring snow 
depth per se may thus not be enough. In fact, snow depth was only the third 
important single variable in affecting sinking depth, and it did not emerge 
at all in the best model when combining several variables. When 
examining the other variables included in the best combined model 
regarding sinking depths (air temperature and altitude), the effects of air 
and snow temperature may be explained by their indirect influences on 
snow metamorphosis (snow quality increased significantly with air 
temperature, and that ranges situated at higher elevations had deeper snow 
which was more supportive (snow quality increased significantly with 
snow depth).   

The study of following behaviour showed no strong effect of snow 
depth, snow quality, nor sinking depth on the extent to which moose 
followed in the tracks of other moose. Instead, following behaviour 
seemingly responded to the temperature of the air, possibly due to the 
effects of temperature on snow quality (snow density increased 
significantly with increasing temperatures). Behavioural decisions such as 
choosing if and when to walk in the footsteps of another animal thus are 
more difficult to explain than the direct measurements of sinking depths 
per se, and it may be necessary to combine several variables in addition to 
snow. The paradoxical importance of snow quality (reducing the energy 
cost in some cases by decreasing sinking depths, but in others increasing it 
by forcing the animal to work harder when moving through crusted snow) 
may partly explain why we did not detect stronger evidence for the 
importance of snow quality for following behaviour. As also noted in 
previous studies (Johnson and Marks, 2004), snow quality is notoriously 
difficult to quantify, especially in late winter when snow approaches the 
melting temperature.  
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Morphology in relation to snow 

In paper III, the analysis revealed evidence of variation in moose 
morphology among locations, and that moose morphology was more 
closely linked to snow conditions than to environmental temperature and 
latitude. Moose had significantly larger hooves and longer legs in locations 
with more severe snow conditions. Since moose were not significantly 
larger in more snowy areas, the larger hooves could not simply be 
explained by correlations between hoof size and body size. Hoof size may 
thus be the most direct response to snow-induced morphological selection.  

The longer legs of moose in locations with deeper snow corresponds to 
the general pattern that animals living in snow often possess 
disproportionately long limbs in comparison to those in less snowy areas 
(e.g. Coady, 1974; Telfer and Kelsall 1984; Fancy and White, 1987; Klein 
et al., 1987; Marchand, 1991; Murray and Boutin, 1991). The results 
regarding leg lengths thus show stronger support for the snow-coping 
hypothesis than hypotheses relating morphology to temperature or 
seasonality, and suggest that snow is more important than temperature in 
shaping the morphology of northern ungulates (Garroway and Broders, 
2005).  

Weight load did not follow the snow-coping hypothesis (e.g. that moose 
are morphologically adapted to snow, by for example having less foot load 
in snowy areas). The relationships between weight load and snow 
conditions was perhaps the most difficult factor to assess in this study, 
since many factors such as weight, speed, type of location, and behaviour 
are involved in determining the actual weight an animal places on each 
hoof (Kelsall and Prescott, 1967). Perhaps most importantly, moose can 
voluntarily increase hoof area by spreading the digits of the hooves, and 
thereby decrease weight load when walking on soft surfaces (Coady, 
1974). As indicated in previous studies (Van Voorhies, 1997), snow-
induced selection is far from consistent among northern populations, but 
may vary due to differences in the ability to cope with snow by other 
means of adaptation (such as migration, habitat choice, or following 
behaviour), or by differences allocating energy during the snowy season 
(i.e. by forage intake, heat conservation, and behaviour). In addition, 
differences in snow conditions may have several causes, and moose may in 
fact be responding to one of these other factors, such as the density and 
composition of the vegetation, and exposure to wind and sunlight.  
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Morphology in relation to temperature, latitude, and 

seasonality 

Heat conservation and heat stress 

If moose conform to the rules of Bergmann and Allen, an “optimally 
designed” animal in a cold snow-free location should be large and have 
short thick legs in order to conserve heat, while in a warmer location with 
deep snow, body size should be small and legs longer. However, animals 
are generally shaped by a variety of demands acting on energetics and 
survival (sometimes even contradicting demands), so a simple universal 
explanation for the relationships between temperature and body size should 
not always be expected. The results shown in Paper III supported 
Bergmann’s rule (with respect to body mass), and are thus in accordance 
with the original proposal of Bergman, describing a relationship of climate 
to body mass alone, not surface area in relation to body mass. This pattern 
regarding the relationships between body mass of moose and 
environmental conditions has also previously been reported for moose in 
Scandinavia (Solberg et al., 1999; Herfindal et al., 2006a,b). In addition to 
temperature, body mass of moose was also related to seasonality, but the 
test of the two competing hypotheses (Bergmann’s rule and the seasonality 
hypothesis) revealed that the evidence for the seasonality hypothesis was 
weaker than for Bergmann’s rule.  

The only extremities that followed Allen’s rule were the ears. For 
Allen’s rule to be important, the extremities have to be sites of substantial 
heat loss or we would expect little natural selection to have occurred. 
Northern mammals such as the moose often show strong physiological 
adaptations to low temperatures (such as heat exchange between veins and 
arteries in the legs and a very isolative winter hair coat, Geist, 1987; 
Marchand, 1991). For cold-adapted animals like the moose, legs may thus 
not be as great a source of heat loss during winter as one might expect 
given their length. Although lengths of both rostra and legs were related to 
heat stress, the direction of this relationship was not in line with the heat 
stress hypothesis since they were shorter in warm summers. The observed 
pattern in rostrum lengths and leg lengths strongly falsifies the heat-stress 
hypothesis (and also Allen’s rule as they were longer in areas with cool 
winters). The unexpected pattern in our results regarding 
temperature/latitudinal adaptations may thus be a result of the multiple 
environmental demands on moose living at high latitude locations and may 
be driven by selection for long legs in deep snow, regardless of thermal 
costs. 
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Foraging in winter  

Migration and vegetation composition 

If migration is adaptive, it must involve some positive change in the 
moose's environment to compensate for the cost of travelling between the 
seasonal ranges. In partially migratory populations (such as moose 
populations north of 60°N), one possibility is that both migrants and 
residents use similar ranges during a given season, but then migrants move 
to areas which are better in some way during the other season. The results 
of the study of seasonal ranges in the Robertsfors location (Paper I) 
showed that home ranges were not much different in the composition of the 
vegetation, regardless if moose were migrant and moved between summer 
and winter ranges, or if they were resident and stayed within the same area. 
This pattern was also noted within the northernmost study location 
(Abisko), where the results showed no difference between seasonal ranges 
at tree-stand level (here, birch and willow, p > 0.13, unpublished results). 
Overall, there was thus little evidence that seasonal migration served to 
move moose between ranges which differ in the composition of their 
vegetation per se. Concerning habitat selection at lower levels (i.e. within 
the home ranges), the results showed that moose did select certain habitat 
types (thus suggesting that our sample sizes were adequate). Moose 
preferred ranges with a lower proportion of open habitats (mires, clear 
cuts, and fields), while ranges with deciduous trees were neither preferred 
nor avoided. There was, however, a tendency for moose to choose ranges 
with more pine and spruce.  

Foraging behaviour and the quality and quantity of winter forage 

The quantity and quality of twigs of annual growth differed between birch 
and willows (Paper IV). Willows were of greater accessibility to moose 
than birch, even though the total biomass of birch browse within trees was 
greater. Willows also had lower concentrations of secondary defence 
compounds and nitrogen, than birch, but more fibre. The inter-specific 
differences appeared to affect intake of winter browse - in Paper V, moose 
were observed to take almost twice as many bites of willow compared to 
birch, even though birch needed longer chewing times, and thus were more 
“time consuming” to ingest than willow. The results in Paper IV thus 
support the results of previous studies that herbivores prefer the species 
with lower concentrations of secondary defence compounds (Rousi et al., 
1991; Stolter et al. 2005), and that nitrogen may be of lesser importance in 
the choice of browse species during winter (Palo et al., 1997; Shipley et 
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al., 1998, Stolter et al. 2005). The vertical distribution of nitrogen and fibre 
showed the same pattern for both forage species: concentrations of 
nitrogen increased with height, and fibre decreased. The concentration of 
non-tannin phenols increased with height of willow, while tannins 
decreased with height of birch. Our results thus indicate that the best 
forage is found at the top of birch trees, and at the middle to top levels of 
willow. Consistent with this, the analysis of the video-tapes of foraging 
moose (Paper V), revealed that moose most commonly fed at height 
between 1.5 and 3.5 m (unpublished data), and were rarely observed to 
feed at lower levels of the trees where the lesser quality food is found. 
Moose also frequently feed on the top of felled trees when available 
(Danell et al., 1990), thus gaining the benefits of the availability of high 
quality food that is normally out of reach.  

 The differences in quality and availability of forage between forage 
species were also evident when testing the Spalinger-Hobbs (1992) 
foraging model (Paper V). Under the assumptions that model parameters 
were invariant during the course of a foraging bout, the model 
underestimated intake of willow and overestimated intake of birch. As 
shown in Paper IV, the higher quality willow (lower levels of secondary 
defence compounds) also had more available forage within the browse 
height of moose, compared with birch, which also may add to making 
willow the “faster food”, since more food is easily available compared to 
birch. The results of Paper V regarding intake rates coupled with the 
results of Paper IV regarding forage quality thus show that intake rate 
declines with decreasing forage quality, and the results thus agrees with 
previous findings that less digestible forage needs to be chewed longer and 
takes longer to digest (Shipley and Spalinger 1992; Bergman et al., 2001). 
The differences in forage quality play a central role in foraging theory 
(Searle et al., 2005), and is caused by multiple factors, including 
reductions in bite mass and prolonged bite rates of the lower quality 
forage, rather than in time allocated to actually cropping (biting) the food.  

  The results regarding the vertical distribution of quantity and quality 
of forage (Paper IV) and foraging rates (Paper V) thus agree with the 
qualitative predictions of optimal foraging theory: that herbivores in 
general prefer to feed on forage with higher quantity and quality of food. 
Here, moose feed predominantly on the higher quality and more abundant 
willow, but also to a great extent on birch which had more nitrogen, but 
also more secondary defence compounds. In nature, where there commonly 
is a great diversity of plants, animals can cope with secondary defence 
compounds and variations in nutrient concentrations by eating a variety of 
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forage species (Stolter et al., 2005; Provenza et al., 2007), and by choosing 
between different parts of the plants. The complex distribution of forage in 
the wild may thus make it beneficial for large herbivores to show 
intermediate selectivity, rather than foraging on only the highest quality 
food possible (Alm et al., 2002; Simpson et al., 2004). Moose at high 
latitudes (where there are few forage species to choose among during 
winter), should thus make the best use of the available forage: birch for its 
high nitrogen content, and willow for its generally low concentrations of 
secondary defence compounds. Selecting the most favourable forage will 
ultimately allow moose to deposit more fat and protein, which may be of 
substantial importance in terms of winter survival (Moen et al., 1997).  

The test of the Spalinger-Hobbs (1992) foraging model (Paper V) 
revealed that forage intake changed with time, and also that intake rates 
calculated by using data from only the first 10 min of the foraging bouts 
greatly mis-estimated forage intake. The intake of birch was overestimated, 
and willow intake was underestimated. This study thus suggests that, 
unless the model is parameterized by observing complete foraging bouts, 
intake rates may be mis-estimated by enough to be important to ecologists 
employing the Spalinger-Hobbs (1992) model to understand the ecology of 
free-ranging ungulates with long foraging bouts like the moose.  

Conclusions  

In this thesis, I combined variables relating to climate and foraging 
conditions and studied behaviour and morphology of moose. The thesis 
highlights the importance of considering the relationship between the 
above variables, as they are all more or less inter-correlated.  

The study of seasonal migration and habitat choice showed that the 
effect of snow depth per se differs between locations depending on 
variations in snow severity: in locations that show large differences in 
snow depths within rather short distance, snow depth is important, but in 
locations where snow depth is less variable snow quality emerges as the 
more important factor. So far, the importance of snow quality for seasonal 
migration, habitat choice, and behaviour is far less studied than the 
importance of snow depth, perhaps due to the difficulties in quantifying 
snow quality. Overall, the results suggest that snow quality is involved in 
the habitat selection and behavioural decisions made by moose, and that 
snow conditions are much more important for moose migration and habitat 
choice than vegetation composition. 
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 The importance of snow conditions was further highlighted in the study 
of moose morphology. At high latitudes with cool temperatures and severe 
snow conditions, moose were heavier, had larger hooves and longer legs. 
These morphological attributes can be seen as adaptations to deep snow 
(hooves and legs) and cold weather (body mass), but one must also bear in 
mind that moose must survive the entire year, not just the winter period so 
their morphology may be a compromise among several selective forces. In 
this study, moose both conformed to, and were in opposition to some of the 
most well known ecogeograhical rules (Bergmann’s and Allen’s). The 
results of this thesis regarding body mass are thus in agreement with 
previous studies showing that a combination of several explanatory 
environmental variables may be needed to understand morphological 
patterns, and that latitude or temperature alone is not enough. I further 
suggest that the approach of testing among competing hypotheses 
simultaneously (regarding climate variables and morphology) is the best 
way to the evidence among these competing hypotheses, rather than testing 
only one in a given study. This is because testing each hypothesis one at a 
time might erroneously support all hypotheses because of intercorrelations 
among variables (e.g. latitude, temperature and seasonality).  

 When feeding during winter, moose showed strong preference for 
willow over birch, but still did consume considerable birch, which is in 
accordance with previous studies that moose is well adapted to browsing 
on forage of mixed quality, and that they may balance the gains and 
“losses” of intake by feeding on different forage types: willow for less 
defence compounds, and birch for higher nitrogen levels and less fibre. 
Moose also have the choice to crop twigs at different parts of the trees, and 
can easily reach the higher quality foods at higher levels of the trees. Since 
calves in our study were not recorded while feeding on birch, I suggest that 
further foraging studies test if young moose eat lower proportions of birch 
than do adult moose. Furthermore, since the quality of willow browse may 
vary between willow species (Stolter et al., 2005), future studies should 
ideally consider willows separately to relate the preferences of moose to 
the characteristics of these different willow species. 

The detailed studies of foraging behaviour of free-ranging moose 
reported here are among the first large-scale studies of wild moose feeding 
at their own choice in their natural environment. The results from the test 
of the Spalinger-Hobbs (1992) foraging model were important, and showed 
that intake changed with time, and can not be assumed to be equal through 
the course of a foraging bout (or during a bite or chew sequence). 
Consequently, the assumption of parameter invariance in one of the most 
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widely used foraging models for wild herbivores led to miss-estimations of 
intake that were large enough to be biologically important. In addition, the 
duration of the previous short term tests of the assumptions of the model 
are probably too short for large herbivores with long foraging bouts, 
compared to small herbivores for which short term trials may be 
reasonable. The study also show that may be important to separate between 
age classes of the studied herbivore, and between forage species when 
developing or using optimal foraging models. Based on the he results from 
the test of the Spalinger-Hobbs (1992) foraging model, I strongly suggest 
that future studies should try to obtain foraging parameters from entire 
foraging bouts when parameterizing the model, rather than using data from 
only a few minutes at the beginning of a bout (particularly if captive, food-
deprived ungulates are used). Additionally, there is a need to conduct tests 
of animals feeding in more realistic environments, rather than on a single 
species of uniform density and distribution in a man-made test arena. 
Ideally, optimal foraging of a particular herbivore should also be studied in 
more than one season, as intake rate may be influenced by seasonal 
differences in appetite or other factors (Parker and Robbins, 1984; Parker 
et al. 1984). 

Future perspectives 

To understand the underlying causes of behaviour and morphology of 
ungulates such as the moose, both environmental conditions (snow depth, 
snow quality, and temperature) and forage conditions (quantity and 
quality) needs to be investigated further. Lately, there has been an 
increased interest in how animals are adapted to their environment, 
especially given the current rapid rates of climatic change (Post and 
Stenseth 1999; Post et al., 2008). Global climate change has already 
influenced the body size and distribution of several animal species, and 
will likely have an even greater impact in the future (Hofgaard et al., 1999; 
Simberloff et al., 2000; Barnosky et al., 2003; Parmesan and Yohe, 2003; 
Thomas et al., 2004; Millien et al., 2006; IPCC, 2008). Most models of 
climate change predict that northern Scandinavia will experience increased 
precipitation and temperature during both summer (2-4°C ) and winter (3-
7°C) (Kjellström et al., 2005; Persson et al., 2007). In the winter season 
snowfall may decrease due to the higher temperatures, except from high 
latitude areas where the increased precipitation will lead to increased 
snowfall (Kjellström et al., 2005; Persson et al., 2007). It is therefore 
important to further investigate how changes in snow conditions may affect 
northern ungulates such as the moose (Ball et al. 1999). The effects of 
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snow may to a large extent depend on its quality, and thus differ largely 
between wet, heavy snow (that may be more supportive), and dry snow (in 
which animals may sink all the way through). I therefore suggest that 
future studies continue to evaluate the effects of varying snow quality, and 
further develop methods to assess snow quality directly in the field. The 
new method (combining several snow quality aspects into one single 
variable) presented in the thesis shows promise, and may be a step forward 
in understanding how snow is experienced by the animal.  

 During summer, there will not only be an increase in mean summer 
temperatures, but also in the number of warm days (Kjellström et al., 2005; 
Persson et al., 2007). For the heat-sensitive moose, increased temperatures 
will be detrimental, and moose may already show signs of being negatively 
affected by climate change (Van Ballenberghe and Ballard, 1998; Murray 
et al., 2006). As changes in the environment are likely to be more 
important towards the edges of a species range (Davis and Shaw, 2001; 
Weladji and Holand, 2003), the distribution of moose may thus change, 
with southern populations declining, or their range withdrawing to the 
north (Karns, 1998; Van Ballenberghe and Ballard, 1998; Dussault, 2005; 
Murray et al., 2006). Considering morphology, there is historical evidence 
that animals became smaller during warmer periods and larger during 
colder time periods (Smith and Betancourt 1998, 2003). Theoretically, 
moose could thus get smaller in a warming future, at least at their 
southernmost ranges. However, if the rules of Bergmann and Allen are 
true, they should also develop longer legs and ears to radiate heat. The 
results regarding the morphological patterns of moose in relation to climate 
are still however, somewhat unclear, and I recommend that future research 
investigate it further. 

If we are to keep the moose population large enough for sustainable 
harvest in a climate changed future, we must understand how they are 
affected by, and adapted to, their environment. Changes in climate will 
most likely make some areas unsuitable as moose habitats, and render 
moose of lower condition and fecundity, which will reduce moose 
numbers, probably mostly so in the southern range of the population. In 
addition, moose may be shift between habitats as a response to changing 
climate, although when considering migration, the philopatric moose may 
not respond immediately by changing migration behaviour in order to find 
new, more suitable home ranges (Sweanor and Sandegren, 1989; Andersen, 
1991a, b). Migration may thus sometimes become even mal-adaptive due 
to (unexpected) changes in snow conditions or food availability, since 
migration behaviour is maintained through several generations and appears 
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to lag behind changes in the environment (Andersen, 1991b). To increase 
the accuracy of future management plans (and to minimise increased risks 
of browsing damage caused by moose) I therefore strongly suggest that the 
effects of climate (snow conditions and temperature) and forage (quantity 
and quality) be studied further.  
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Sammanfattning 

Avhandlingen fokuserar på älgens beteendemässiga och morfologiska 
(utseendemässiga) anpassningar till varierande snö- och 
klimatförhållanden. Mer specifikt behandlas säsongsbundna vandringar 
mellan sommar- och vinterområden, habitatval, och beteenden som leder 
till att minska energiåtgången då älgarna förflyttar sig inom snötäckta 
områden. Avhandlingen tar också upp sambanden mellan älgens morfologi, 
klimat, snö, och säsongsbundna klimatvariationer, samt intag, kvalitet, och 
tillgång på föda under vintern. Genom att videofilma frilevande älgar  
genomfördes ett av de mer omfattande testerna av en av de mest använda 
modellerna för optimal furagering,.  

 Resultaten belyser vikten av flera aspekter av snö, klimat och 
vinterföda, och visar att beteende och morfologi kan vara en kompromiss 
mellan flera, ibland motsägelsefulla faktorer. Studien av säsongsbundna 
vandringar och habitatval visade att betydelsen av snö varierar mellan olika 
områden beroende på variationer i snödjup. I områden där snödjupet 
varierar stort är det den faktor som mest påverkar vandringar och 
habitatval. I områden där snödjupet är mindre varierande (men fortfarande 
tillräckligt djup för att utlösa vandringar) är snöns kvalitet av större 
betydelse. Avhandlingen är därigenom en av de första att belysa betydelsen 
av snöns kvalitet, och gör också ett första test av en ny metod att direkt 
mäta snökvalitet i fält, genom att kombinera flera aspekter av snö till en 
enda variabel.   

 De jämförande studierna av olika hypoteser som används för att 
förklara morfologin hos däggdjur i relation till klimat och geografisk 
utbredning, visade att snö var av större betydelse än temperatur, latitud, 
och säsongsmässiga klimatvariationer. I områden med djupare och mer 
varaktigt snötäcke hade älgarna större klövar och längre ben än vad som 
kan förväntas av deras kroppsstorlek. Älgarnas morfologi överensstämde 
med, men stod också i motsats till de mest använda hypoteserna gällande 
olika djurarters storlek i förhållande till klimat och geografisk utbredning: 
områden med kalla vintrar var älgarna tyngre (Bergmann’s regel) och hade 
kortare öron (Allen’s regel). Detta stämde med hypoteserna att älgarnas 
morfologi reducerar värmeförluster i kallt vinterklimat. Resultaten visade 
också på visst stöd för hypotesen att älgarna är känsliga för varma 
temperaturer.  

Kvaliten hos de två viktigaste födoslagen tillgängliga under vintern 
(björk och viden) varierade både inom träden och mellan trädarterna. 
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Viden hade mer tillgänglig föda inom beteshöjd, och lägre halter av 
försvarssubstanser (fenoler och tanniner) än björk, men också lägre halter 
av kväve, och högre fiber-innehåll. Födans kvalitet ökade med trädens höjd 
för både björk och viden. Skillnaderna mellan de två arterna visade sig 
också vid testen av Spalinger-Hobbs (1992) modell för optimal furagering. 
Älgarna föredrog att äta viden, som också gick snabbare att inta än björk. 
Resultatet av testet visade på viktiga skillnader mellan den ursprungliga 
modellen och det födointag som uppvisades av älgarna i studien. Modellen 
underskattade intaget av vide, och överskattade intaget av björk jämfört 
med de resultat som visades i studien.  De stora skillnaderna i intag av 
björk jämfört med viden visade också att det är viktigt att skilja mellan 
födoarterna, samt mellan olika åldersklasser av djur då man ska 
vidareutveckla eller använda modeller för optimal furagering.  

Resultaten i avhandlingen visar på behovet av fortsatta studier gällande 
sambandet mellan beteende, morfologi, snö och övriga klimatfaktorer, 
speciellt med tanke på framtida klimatförändringar. Då älgar är väl 
anpassade till snö- och vinterförhållanden kan både de direkta effekterna 
av stigande temperatur och nederbörd och de indirekta effekterna (genom 
påverkan på tillgång och kvalitet av föda) av klimatförändringar få negativa 
konsekvenser för älgstammen, speciellt i deras södra utbredningsområde.  
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