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                             Wellsite selection by grizzly bears Ursus arctos in west – central 
Alberta      

    Tracy     McKay  ,       Ellinor     Sahl é n  ,       Ole-Gunnar     St ø en  ,       Jon E.     Swenson     and         Gordon B.     Stenhouse            

  T. McKay (tmckay@foothillsri.ca) and G. B. Stenhouse, Foothills Research Inst. Grizzly Bear Program, Hinton, AB, T7V 1X6, Canada.  
–  E. Sahl é n, Dept of Wildlife, Fish and Environmental Studies, Swedish Univ. of Agricultural Sciences, SE-90183 Ume å , Sweden.  –  O.-G. 
St ø en and J. E. Swenson, Dept of Ecology and Natural Resource Management, Norwegian Univ. of Life Sciences, PO Box 5003, NO-1432  Å s, 
Norway. OGS also at: Dept of Wildlife, Fish and Environmental Studies, Swedish Univ. of Agricultural Sciences, SE-90183 Ume å , Sweden. 
JES also at: Norwegian Inst. for Nature Research, PO Box 5685 Sluppen, NO-7485 Trondheim, Norway                               

 Oil and gas development is widespread in west – central Alberta, yet little is known about the potential impacts of oil and 
gas activities on grizzly bear habitat use. Focusing on the impacts of one component of energy development, we studied 
the selection patterns of radio-collared grizzly bears in relation to oil and gas wellsites in the Kakwa region of west – central 
Alberta. For each grizzly bear foraging season (spring, summer, and fall), we calculated a population level resource selec-
tion function (RSF) to assess the probability that bears would select for wellsites versus non-wellsite habitat. We used 
mixed-eff ects logistic regression and model selection to examine factors that could infl uence the probability of wellsite use, 
including: grizzly bear reproductive status, wellsite age, wellsite operational status, surrounding road and wellsite densities, 
adjacent forest canopy cover, and adjacent habitat. Bear reproductive status, surrounding road and wellsite densities, and 
adjacent canopy cover had the most infl uence on the probability of wellsite use. Females used wellsites more than expected 
in all seasons, and males selected for wellsites in summer and fall. Males used wellsites less than females, and females 
with young used wellsites more than both single females and males. Bears were more likely to use wellsites that had lower 
densities of disturbance (roads and wellsites) in the surrounding area. In the fall, older wellsites were also more likely to 
be used by bears. In areas with human access, grizzly bears attracted to anthropogenic features are at a higher risk of 
human-caused mortality; therefore, their use of wellsites could have negative results for this threatened population.   

 Canada is one of the foremost oil-producing countries in the 
world, and oil and gas development has heavily infl uenced 
the landscape of Alberta, especially in western parts of the 
province (Schneider et   al. 2003). Landscape disturbance and 
human-caused grizzly bear mortalities are signifi cant threats 
to the Alberta grizzly bear  Ursus arctos  population (Nielsen 
et   al. 2004b, Festa-Bianchet 2010), which was provincially 
designated as  ‘ Th reatened ’  in 2010. Oil and gas develop-
ment continues to alter grizzly bear habitat in the foothills 
of west – central Alberta, and could have negative impacts on 
bears in this area. 

 Oil and gas operations have been documented to aff ect 
a number of mammal species in North America, including 
caribou  Rangifer tarandus  (Dyer et   al. 2001, 2002, Joly et   al. 
2006), mule deer  Odocoileus hemionus  (Sawyer et   al. 2006, 
2009), and elk  Cervus elaphus  (Powell 2003). However, 
previous investigations of the response of bears to energy 
sector activities in North America have mainly focused on 
the impacts of the exploration and development phase, 
including seismic surveys and exploratory drilling (Harding 
and Nagy 1980, Reynolds et   al. 1986, McLellan and 
Shackleton 1989a), construction of facilities and roads 
(Harding and Nagy 1980, Schallenberger 1980, Tietje and 

Ruff  1983), and human – bear confl icts at camps and facilities 
(Harding and Nagy 1980). Recent research in Alberta has 
included grizzly bear landscape use in response to existing 
seismic cutlines (Linke et   al. 2005), the use of edge habi-
tat along roads and pipelines (Stewart et   al. 2013) and large 
scale habitat use patterns in response to oil and gas features 
(Labaree et   al. 2014). Results from these studies suggested 
relatively low levels of spatial avoidance and displacement of 
grizzly bears in response to oil and gas features. 

 A number of ecological and landscape factors could 
infl uence how individual grizzly bears respond to wellsites. 
Behavioral responses to human activities have been shown to 
diff er by grizzly bear sex class or reproductive status (Darling 
1987, Rode et   al. 2006, Nellemann et   al. 2007, Elfstr ö m 
and Swenson 2009). Diff erences in food availability are pre-
sumed to infl uence grizzly bear habitat selection (Nielsen 
et   al. 2010), and the abundance of bear foods at wellsites 
in our study area showed variation with wellsite age (i.e. 
years since construction McKay et   al. unpubl.). Wellsites are 
relatively small features on the landscape; therefore, habitat 
characteristics in the adjacent area also have the potential to 
infl uence habitat selection at wellsites. Earlier research on 
bear response to human features has suggested that it can be 
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human activity at a site rather than the anthropogenic fea-
ture itself that leads to disturbance eff ects on bears (Swenson 
et   al .  1996, Olson et   al .  1998, Martin et   al. 2010, Ordiz 
et   al. 2013); diff erences in the level of human activities could 
also have an infl uence on wellsite use by bears. Previous 
studies have also shown that grizzly bears may compensate 
for human activity by using areas of increased cover in the 
vicinity of anthropogenic features (McLellan and Shackleton 
1988, 1989b, Ordiz et   al .  2011). 

 Grizzly bear habitat use in response to anthropogenic 
features can impact foraging patterns, movement patterns, 
energetic output, stress levels and mortality risk (White et   al. 
1999, Nielsen et   al. 2006, Roever et   al. 2008a, b, Ordiz et   al. 
2013, Bourbonnais et   al. 2014). Th e development of oil and 
gas wellsites results in both direct habitat alteration and an 
increase in human presence and noise in the area. However, 
to our knowledge, grizzly bear response at the small spatial 
scale of the wellsite has not been previously investigated. 
As oil and gas development expands throughout Alberta, 
knowledge about the possible impacts of wellsites on grizzly 
bear habitat use may be important in order to manage bears 
in areas with current or planned oil and gas activities. 

 Our objective was to investigate how grizzly bears respond 
to the disturbance associated with wellsite construction and 
operations in the Kakwa region of west – central Alberta. To 
determine whether bears may be using or avoiding oil and 
gas wellsites, we assessed habitat selection for wellsites versus 

remaining available  ‘ non-wellsite ’  habitat. In addition, based 
on the range of attributes associated with individual grizzly 
bears and wellsites on the landscape, we investigated what 
parameters might infl uence grizzly bear response to oil and 
gas wellsites.  

 Material and methods  

 Study area 

 Th e Kakwa study area includes a region of 8300 km 2  in west –
 central Alberta, Canada, along the British Columbia (BC) 
border (Fig. 1). Th e elevation ranges from 549 m to 2446 m, 
and the area is mainly comprised of the Lower Foothills, 
Upper Foothills and Central Mixed Wood Subregions 
(Natural Regions Committee 2006). Forest structure includes 
conifer and mixed forests of lodgepole pine  Pinus contorta , 
black spruce  Picea mariana , white spruce  Picea glauca , aspen 
 Populus tremuloides  and balsam poplar  Populus balsamifera . 
During May to September, average monthly precipitation 
ranges from 14 mm to 160 mm, and average daily tem-
peratures range from 3.2 to 14.2 ° C (Environment Canada 
2013). Resource extraction activities have been ongoing in 
this region since the 1950s, including oil and gas develop-
ment and forest harvesting (Andison 1998). Th e Kakwa 
region is part of the Alberta Deep Basin, an area known to 

  

Figure 1. Kakwa study area in west – central Alberta, Canada.  
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contain large volumes of natural gas (Welte et   al. 1984), and 
oil and gas development has greatly increased in the region 
since 2000 (White et   al. 2011). As of 2012, the overall road 
and wellsite densities in the Kakwa study area were 0.64 km 
km �2  and 0.46 wellsites km �2 , respectively. However, across 
the study area, there is a wide range in the density of human 
disturbance, including regions of both low and high road 
densities and areas of low to high oil and gas development. 
Additional human activities in the area include trapping, 
along with recreational activities such as all terrain vehicle 
(ATV) use and hunting.   

 Oil and gas wellsite construction 

 During oil and gas wellsite development, drilling activities 
can occur over a timespan ranging from a couple of days 
to several weeks, depending on the depth and diffi  culties of 
reaching the oil or gas reservoir (Energy Resources Conser-
vation Board [ERCB] 2010). Th ere is a high level of human 
activity at the site during the drilling phase, including heavy 
equipment, truck traffi  c, and numerous workers at the site. 
During wellsite construction, a one to two hectare area is 
cleared of trees, surface vegetation and topsoil. Wells may 
either be put into production for a number of years, capped 
for later extraction, reclaimed (once the well is empty), or 
abandoned without going into production (T. Churchill 
pers. comm.). Operationally active wellsites are maintained 
by oil and gas workers on a regular basis (usually once per 
day), while abandoned or off -production wellsites are visited 
approximately once per year (A. Saxena pers. comm.). Well-
site clearings are not usually replanted during operation of 
the wells; however, early colonizer plant species tend to grow 
in these open areas. Several important grizzly bear foods have 
been observed in abundance at wellsites in the Kakwa area, 
including clover  Trifolium  spp., horsetails  Equisetum  spp. 
and dandelions  Taraxacum  spp., along with  Vaccinium  spe-
cies and other berry shrubs in the forest edges surrounding 
wellsites (McKay unpubl.).   

 Telemetry data 

 Telemetry data were collected for grizzly bears in the Kakwa 
region during 2006 – 2012. Aerial darting, leg-hold snaring, 
and culvert traps were used to capture grizzly bears follow-
ing Canadian Council of Animal Care protocols (animal 
use protocol number 20010016) (Stenhouse unpubl.). 
Captured bears were fi tted with GPS radio collars pro-
grammed to collect hourly locations. Data from collars were 
collected remotely using monthly Very High Frequency 
(VHF) data upload equipment during fi xed-wing aircraft 
fl ights during 2006 to 2012, and/or via satellite transmis-
sions during 2011 to 2012. 

 Only non-denning locations during May through 
September were used in our analysis, and we restricted our 
dataset to bears with    �    90% of their annual home range area 
within our study area boundary. Data were separated by for-
aging seasons for our area, including hypophagia (spring; 1 
May to 15 June), early hyperphagia (summer; 16 June to 31 
July), and late hyperphagia (fall; 1 August to 30 September), 
similar to the periods defi ned by Nielsen (2004a). For each 
season, we restricted our analysis to bears with GPS collar 

locations that included at least half of that season. Th e fi nal 
dataset included location data for 23 grizzly bears, including 
14 females and 9 males, with 21 847 use locations for the 
spring season, 31 261 for summer, and 47 462 for fall.   

 Grizzly bear use of wellsites 

 We compared grizzly bear collar locations (use) with 
random (available) locations to assess the probability of 
habitat selection for wellsites versus the remaining available 
 “ non-wellsite ”  habitat. Annual home ranges were generated 
as minimum convex polygons (MCPs) using ACCRU tools 
in ArcInfo (Nielsen 2010). Random locations were gener-
ated within each individual home range at a standard density 
of fi ve locations per km 2 . 

 All use and available locations were classifi ed as being 
within either  ‘ wellsite ’  or  ‘ non-wellsite ’  habitat. Oil and 
gas wellsite data were obtained as point data from Alberta 
Energy. Using satellite imagery, we determined that a 
100 m radius buff er based at the wellsite centre best incor-
porated the cleared wellpad area along with the surrounding 
forest edge (Fig. 2). Th erefore, use and available locations 
were classifi ed as  ‘ wellsite ’  if they were within 100 m of the 
centre of a wellsite, and classifi ed as  ‘ non-wellsite ’  if they fell 
outside of this distance. For each foraging season, we sepa-
rated our data by males and females, and calculated a resource 
selection function (RSF) at the population level, with use 
and available defi ned by individual bear ( ‘ design III ’ , Manly 
et   al. 2002). We used mixed eff ects logistic regression in Stata 
ver. 12.1 with individual bear included as a random eff ect. 
Results were reported as odds ratios with 95% confi dence 
intervals, interpreted as the likelihood that grizzly bears used 
wellsites compared with non-wellsite habitat.   

 Factors infl uencing wellsite use 

 Th e analysis of grizzly bear use of wellsites included all use 
and available locations for each individual bear. From this 
dataset, any use and available locations classifi ed as  ‘ wellsite ’  
locations were carried forward into the analysis of factors 
infl uencing wellsite use by bears. Across all seasons, 3155 
bear locations and 5546 available locations were within 

  Figure 2.     Oil and gas wellsites, wellsite point data, and 100 m 
buff er distance used for selection analysis.  
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  Table 1. Summary of variables used in the logistic regression models 
for grizzly bear wellsite selection in west – central Alberta, Canada, 
2006 – 2012.  

Variable Description of variable

Reproductive status factor with three levels: females 
with young, single females, males

Wellsite age continuous variable; age since the 
initial clearing of the wellsite, in 
years

Adjacent canopy cover continuous variable; average 
percent canopy overlying the 
forest fl oor within a 300 m radius 
of the use or random location

Surrounding road density continuous variable; road density 
(km km �2 ) within a 1 km radius 
of the use or random location

Surrounding wellsite density continuous variable; wellsite 
density (wellsites km �2 ) within a 
1 km radius of the use or random 
location

  Table 2. Candidate models and parameters used in the logistic 
regression models for grizzly bear wellsite selection in west – central 
Alberta, Canada, 2006 – 2012.  

Ecology Parameters

1 Bear biology reproductive status (RS)
2 Disturbance/human 

presence
wellsite density (WD), road 

density (RD)
3 Surrounding region wellsite density, road density, 

canopy cover (CC)
4 Food/habitat at/

near wellsite
canopy cover, wellsite age (WA)

5 Biology with 
disturbance

reproductive status, wellsite 
density, road density

6 Biology with 
disturbance, plus 
interactions

reproductive status, wellsite 
density, road density, RS  �  
WD, RS  �  RD

7 Cover/habitat, 
disturbance, biology

canopy cover, wellsite density, 
road density, reproductive 
status

8 Biology with hiding 
cover

reproductive status, canopy 
cover

9 Comprehensive RS, WA, WD, RD, CC, RS  �  
WD, RS  �  RD, RS  �  CC

100 m of a wellsite, and were included in the analysis of 
factors infl uencing wellsite use. Th e fi nal analysis included 
22 individual bears in the spring, 23 in summer, and 20 in 
fall. We investigated the infl uence of grizzly bear reproduc-
tive status, wellsite age, wellsite operational status, surround-
ing road and wellsite densities, adjacent forest canopy cover, 
and adjacent habitat (Table 1). 

 To investigate the eff ect of grizzly bear reproductive 
status, we classifi ed bears as males, single females, or females 
with young. Females were determined to be accompanied 
by young (cubs of the year or yearlings) based on confi rmed 
sightings. Reproductive status was specifi c to season (spring, 
summer, and fall) for each year, as some bears lose their 
young over the course of the year. Data from female bears 
with unconfi rmed reproductive status were not included in 
our models. 

 Wellsite age at the time of bear location data was 
determined based on the year of initial wellsite clearing and 
drilling, and was used as an indicator of plant succession and 
abundance of bear foods at the wellsite. As an index of the 
level of human activity at a wellsite, wells were also classifi ed 
as operationally active or inactive. A wellsite was considered 
to be active during initial drilling and while on production. 
Wells were classifi ed as inactive either 1) between these two 
periods of activity, 2) after last production was completed, 
3) after a well was discontinued, or 4) if the well did not go 
onto production. 

 Within the Kakwa study area there is a wide range in 
the amount of development and human activities on the 
landscape. Th e operational status of each wellsite represents 
the level of human activity directly at the well, but it does 
not refl ect the level of habitat alteration and human presence 
in the area surrounding the wellsite. Based on the premise 
that the surrounding area may infl uence habitat selection at 
the wellsite, we applied road densities and wellsite densities 
as indicators of human activity in the area. Due to the 
presence of forestry development, not all roads are directly 
associated with wellsites; therefore, we determined that it 
was relevant to include roads and wellsite densities as sepa-
rate indicators. We calculated road density (km road km �2 ) 
and wellsite density (wellsites km �2 ) using a 1 km mov-
ing window, similar to Mace et   al. (1996). Density values 

were calculated as a 30    �    30 m raster grid and subsequently 
extracted to each use and available location. 

 We used forest canopy cover as an indicator of avail-
able cover in the area adjacent to each wellsite. Horizontal 
cover data were not available for our study area; however, 
we assume that canopy cover refl ects the amount of hiding 
cover due to the dense growth of coniferous trees in forest 
stands in the Kakwa. Similarly, Ordiz et   al. (2011) showed 
that both horizontal cover and canopy cover provide brown 
bears with increased security in Scandinavia. Th e average 
hourly travel distance of all grizzly bears in our study area was 
300 m; therefore, a 300 m buff er was applied to represent 
the approximate area available to a grizzly bear at each hourly 
location. Adjacent cover was then defi ned as the average per-
cent canopy cover (CC) within a 300 m radius of each use 
and available location. To describe available adjacent habitat, 
we used landcover classes originally derived from Landsat
7 imagery (McDermid 2005) along with forest cutblock 
polygons obtained from local forestry operators. Final 
landcover classes included herbaceous habitat, shrublands, 
forest, and regenerating cutblocks classifi ed by age (0 to 20 
years, 21 to 40 years, and    �    40 years since clearing). For each 
use and available location, adjacent landcover was defi ned as 
the dominant landcover within a 300 m radius. 

 We created a set of a priori logistic regression models by 
grouping parameters in combinations that we hypothesized 
to be ecologically relevant for grizzly bears and/or relevant to 
resource management, including: bear-specifi c factors, well-
site-specifi c factors, surrounding level of disturbance, overall 
surrounding landscape, habitat/food availability, and combi-
nations of these groups (Table 2). Variables were checked for 
correlation and collinearity using Pearson ’ s correlation coef-
fi cients and/or pair-wise regression of independent variables 
against each other; variables with correlation coeffi  cients of 
less than 0.6 and non-signifi cant (p    �    0.10) regression coef-
fi cients were included together in analyses. Almost all well-
sites have a road for access, and it was expected that wellsite 
density and road density would be correlated. However, the 
Kakwa study area also includes regions with higher numbers 
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of forestry roads and lower levels of oil and gas development. 
As a result, these variables were not signifi cantly correlated 
(r-values of 0.34, 0.39, and 0.41 for spring, summer, and 
fall data, respectively), and therefore both were included in 
the set of models. Landcover class is closely related to forest 
cover; landcover classes in the Kakwa include mature forest 
(high canopy cover [CC]), shrublands and young cutblocks 
(intermediate CC), and herbaceous habitat (low CC). As a 
result, landcover and canopy cover variables were correlated 
( r     �    0.6). Preliminary analyses indicated that canopy cover 
explained more variation than landcover class. Th erefore, in 
order to simplify the fi nal set of candidate models, canopy 
cover was included and landcover excluded from the analy-
sis. Wellsite status was a signifi cant predictor of wellsite age; 
inactive wellsites were signifi cantly older than active wellsites 
(p    �    0.001). Preliminary analyses indicated that wellsite age 
explained more variation than wellsite status; therefore, well-
site status was excluded from model selection. We limited 
interaction terms to combinations of disturbance-related 
variables and reproductive status of bears, as this was our 
main topic of interest. 

 Mixed eff ects logistic regression models were run using 
Stata ver. 12.1 with individual bear included as a random 
eff ect. Model selection was based on comparing diff erences 
in Akaike ’ s information criterion corrected for small sample 
sizes ( Δ AIC c ). Although AIC is commonly applied for model 
selection, controversy exists regarding appropriate cutoff s for 
selecting and/or averaging top models, with recommended 
 Δ AIC values ranging from 2 to 6 and beyond (Burnham and 
Anderson 2002, Arnold 2010, Richards et   al. 2011). How-
ever, the addition of a single parameter to a model can result 
in a model with  Δ AIC     �      2 even if the additional parameter 
does not have any explanatory ability (Guthery et   al. 2005, 
Arnold 2010), and excluding models with  Δ AIC    �   2 may not 
result in selection of the most parsimonious model (Richards 
et   al. 2011). An alternate approach is to carefully consider 
 Δ AIC values along with a review of the parameters that are 
retained in each of the top models and a test of model fi t. 
Th is review assists in determining whether variables added in 
more complex models truly increase the explanatory power 
and have meaningful coeffi  cients, versus simply adding  ‘ unin-
formative parameters ’  in order to get a slightly lower AIC 
value (Burnham and Anderson 2002, Guthery et   al. 2005, 
Arnold 2010). For each season, we reviewed the models with 
the highest AIC c  weights (AIC c w), verifi ed that a decrease in 
 Δ AIC c  was not the result of a more complicated version of 
the top model, confi rmed that models produced meaningful 
(i.e. non-zero) coeffi  cients (p    �    0.10), and verifi ed model fi t 
(Boyce et   al. 2002, Arnold 2010, Richards et   al. 2011). If 
applicable (i.e. more than one top model), we carried out 
model averaging to calculate parameter estimates. 

 For each set of top models we calculated the area under 
the receiving operating characteristic (ROC) curve (fi xed 
eff ects only) to check for model fi t; a model with no predic-
tive power would have an area under the ROC curve (AUC) 
of 0.5, whereas a model with perfect predictive power would 
have a value of 1.0 (Boyce et   al. 2002). We considered models 
with AUC values greater than 0.75 as having good model fi t. 
To gain insight into how much variability in the fi nal models 
was explained by individual bear (random eff ects) versus the 
variability explained by predictor variables (fi xed eff ects), we 

  Table 3. Probability of grizzly bear use of wellsites versus non-
wellsite habitat. Odds ratios and 95% confi dence intervals, by 
season and sex class in the RSF for grizzly bear wellsite selection in 
west – central Alberta, Canada, 2006 – 2012.  

Season
Females (n    �    14) 

Odds ratio (95% CI)
Males (n    �    9) Odds 

ratio (95% CI)

Spring 2.51 (2.19  –  2.85) 1.07 (0.82  –  1.41)
Summer 5.59 (5.07  –  6.18) 2.59 (2.24  –  3.00)
Fall 2.69 (2.43  –  2.99) 1.93 (1.62  –  2.31)

also calculated and compared marginal and conditional  R  2  
values for the top models (Nakagawa and Schielzeth 2013). 
Th e marginal  R  2  includes the variation explained by fi xed 
eff ects in the model, and the conditional  R  2  includes both 
fi xed and random eff ects (Nakagawa and Schielzeth 2013).    

 Results  

 Grizzly bear use of wellsites 

 For females, odds ratios were signifi cantly greater than 1.00 
across all three seasons, indicating that female grizzly bears 
used wellsites more than expected based on availability 
in spring, summer, and fall (Table 3). Use of wellsites by 
males was not diff erent than expected during spring, but 
males used wellsites more than expected during summer 
and fall.   

 Factors infl uencing wellsite use 

 In the spring, the top two models accounted for 0.63 
and 0.36 of the total AIC c  weight (Table 4). Both models 
fi t the data well, as estimated by AUC-values (0.84), and 
predictive variables accounted for the majority of the varia-
tion explained by the model, as indicated by marginal and 
conditional  R  2 -values (0.21 and 0.34, respectively). Th e top 
model retained the variables of reproductive status, well-
site density, and road density. Th e second to top model 
included reproductive status, wellsite density, road density, 
and canopy cover; this model had a delta AIC-value of 1.11 
(Table 4). Th e second model was a more complex version 
of the top model, but had a similar model fi t (AUC) to the 
top model, and coeffi  cients were meaningful (p    �    0.09 for 
canopy cover). Th erefore, both of the top models were used 
for inference; model averaged estimates and 95% confi dence 
intervals are included in Table 5. Females with young were 
more likely to select for wellsites than single females, whereas 
males were less likely to use wellsites than both females with 
and without young. Wellsite density and road density within 
the surrounding area (1 km radius) had a negative eff ect on 
wellsite selection; bears were less likely to use wellsites in areas 
of higher wellsite and road densities (Fig. 3). Bears were also 
less likely to use wellsites as the surrounding canopy cover 
increased. 

 Analysis of summer data resulted in two models with 
AIC c w-values of 0.85 and 0.14 (Table 4). However, the delta 
AIC c  for the second model was 3.55, it was a more com-
plex version of the top model, and coeffi  cients in the second 
model were not signifi cant. Th erefore, only the top model 
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  Table 4. Top models, log likelihood values (LL), AIC c  weights, and model goodness of fi t as indicated by area under receiver operating 
characteristic (ROC) curve (AUC) in the logistic regression analysis for grizzly bear wellsite selection in west – central Alberta, Canada, 
2006 – 2012.  

Season Model(s) Parameters LL K AIC c  Δ AIC c AIC c  weight AUC

Spring 5 reproductive status, well density, road density  � 776.07 5 1565.90 0 0.63 0.8143
7 reproductive status, well density, road density, canopy 

cover
 � 774.71 6 1567.01 1.11 0.36 0.8103

Summer 5 reproductive status, well density, road density  � 1478.38 5 2970.29 0.00 0.85 0.76
Fall comprehensive reproductive status, well density, road density, canopy 

cover, wellsite age, interactions between reproductive 
status and wellsite and road densities

 � 1138.08 11 2331.15 0.00 0.62 0.76

7 reproductive status, well density, road density, canopy 
cover

 � 1156.85 6 2332.16 1.00 0.37 0.76

  Table 5. Estimated seasonal model coeffi cients with upper and lower 95% confi dence limits for grizzly bear wellsite selection in west – central 
Alberta, Canada, 2006 – 2012. Coeffi cients in bold indicate p-values    �    0.10. Coeffi cients for reference categories are presented as zeroes.  

Spring Summer Fall

Variables  β 95% CI  β 95% CI  β 95% CI

Reproductive status FSingle 0 – – 0 – – 0 – –
FYoung 1.498 1.025 1.970 0.720 0.361 1.078 0.569 0.036 1.102
Males  � 1.059  � 2.592 0.474  � 1.045  � 2.265 0.175  � 0.430  � 1.76 1.462

Canopy cover (CC)  � 0.007  � 0.015 0.001 – – –  � 0.029  � 0.036  � 0.022
Road density (RD)  � 0.423  � 0.731 �0.114  � 0.589  � 0.825  � 0.353  � 0.739  � 1.049  � 0.429
Wellsite age – – – – – – 0.022 0.012 0.032
Wellsite density (WD)  � 0.298  � 0.545  – 0.052  � 0.182  � 0.346  � 0.017  � 0.752  � 1.008  � 0.496
Interactions RS  �  RD FSingle 0 – – 0 – – 0 – –

FYoung – – – – – –  � 0.165  � 0.826 0.496
Males – – – – – – 0.989 0.443 1.535

RS  �  WD FSingle 0 – – 0 – – 0 – –
FYoung – – – – – – 0.468  � 0.059 0.996
Males – – – – – – 0.184  � 0.329 0.679

was used for inference. Similar to results from spring, the top 
model retained the parameters of reproductive status, wellsite 
density, and road density. Th e AUC-value indicated a good 
model fi t, and predictive variables accounted for the major-
ity of the variation explained by the model. Again, males 
were less likely to use wellsites than all females, and females 
with young were more likely to select for wellsites than single 
females (Table 5). Wellsite density and road density contin-
ued to have a negative eff ect on wellsite selection. 

 In the fall, the comprehensive model was the high-
est ranked model (AIC c w    �    0.61), and the second model 
included reproductive status, wellsite density, road density, 
and canopy cover (AIC c w    �    0.37) (Table 4). Th e AUC-values 
(0.76) indicated an acceptable model fi t; however, random 
eff ects (i.e. variation between individual bears) accounted for 
the majority of the variation explained by the models (con-
ditional  R  2     �    0.29, marginal  R  2     �    0.14). Th e second model 
was not simply a more complex version of the top model; 
therefore, both of the top models were used for inference, 
and coeffi  cients were based on model averaging. Coeffi  cients 
for wellsite density, road density, and canopy cover indicated 
the same patterns as in spring and summer; all had a negative 
eff ect on selection (Table 5). Females with young were more 
likely to use wellsites than females without, but diff erences 
between males and females were less pronounced. Wellsite 
age had a positive eff ect on wellsite selection; older wellsites 
were more likely to be selected than newly cleared wellsites. 
Bears were also more likely to select inactive wellsites versus 

active wellsites. Patterns of interaction factors are more com-
plex; females with young tended to select for wellsites with 
higher surrounding wellsite densities than single females and 
males, but males appeared to select for wells with higher road 
densities in the surrounding region.    

 Discussion 

 Both males and female bears in our study showed selec-
tion for wellsites. Th ese results are in contrast to the avoid-
ance of wellsites reported for other species, including mule 
deer (Sawyer et   al. 2009), caribou (Dyer et   al. 2001) and elk 
(Powell 2003). However, other research in Alberta (Labaree 
et   al. 2014) indicated that grizzly bears were generally 
closer than expected to wellsites during spring, and that the 
response in other seasons depended on age – sex class. Grizzly 
bears have also been reported to select for other anthropo-
genic disturbances. In the foothills of west – central Alberta, 
Nielsen et   al. (2004a) reported that grizzly bears selected for 
harvested areas more than expected during the summer, and 
bears in the Kakwa area used forest disturbances more than 
expected (Stewart et   al. 2012). Roever et   al. (2008a) showed 
that grizzly bears selected habitats close to roads in spring 
and early summer, and Graham et   al. (2010) found that 
females with cubs were within 200 m of roads more than 
expected in spring. Berland et   al. (2008) also reported that 
grizzly bears in the foothills of Alberta were not avoiding 
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  Figure 3.     (A) Mean surrounding wellsite density (wellsites km �2 ), and (B) mean surrounding road density (km road km �2 ) for available 
versus used wellsites, by season in west – central Alberta, Canada, 2006 – 2012. Error bars represent standard error (SE).  

disturbed areas, and research in BC suggested that grizzly 
bears were not displaced by seismic and logging activities 
(McLellan and Shackleton 1989a). Grizzly bear use of the 
edge habitat created by cutblocks, roads, and pipelines has 
also been observed in the Kakwa area (Stewart et   al. 2013). 

 When forests are cleared to construct oil and gas wellsites, 
the existing vegetation and top soil is removed. For reclaimed 
wellsites, guidelines include planting species that are repre-
sentative for the sub-region, ecosite, and plant community 
to obtain  “ equivalent land capability ”  (Alberta Environ-
ment unpubl.). However, during production (usually over a 
20-year period), these areas are usually not replanted. After 
initial clearing, early colonizing plant species begin to grow, 
and edge habitat is created where the openings meet the sur-
rounding forest. Dandelion, clover, and  Equisetum  spp. are 
frequent colonizers of disturbed areas, and these species were 
abundant at wellsites in our study area (McKay unpubl.). 
Similarly, Roever et   al. (2008b) reported that roadsides had 
a higher frequency of  Equisetum  spp., dandelions and clover 
than forest habitats. Th ese plants are an important part of the 
diet for grizzly bears in the foothills of west – central Alberta 
(Munro et   al. 2006). Ungulates are also known to forage in 
cleared areas, providing an additional food source for bears. 
Berry species were relatively abundant along the wellsite 
edges in our study area, including important fall food 
items such as  Vaccinium  species. Although most research 
reports the avoidance of wellsites by wildlife, some species 
have been reported to select for oil and gas features when 
a valuable resource is associated with the feature, such as 
deer selection of saline seepage at gas wells in West Virginia 
(Campbell et   al. 2004). It is likely that wellsites in our study 
area provide a concentrated source of bear foods, and these 
food resources could be an important factor driving grizzly 
bear wellsite use. 

 Our regression models indicated that females with 
young were more likely to use wellsites than both males and 
single females, and males used wellsites less than all females. 

Similarly, Steyaert et   al. (2013) found that females with cubs 
in Scandinavia selected areas closer to certain human-activity 
areas than males during mating season. Graham et   al. (2010) 
reported that female bears in Alberta crossed roads more 
often than males, and McLellan and Shackleton (1988) 
found that males used habitat near roads less than other age –
 sex classes, while some females with cubs used these areas 
more than any other age – sex class. In Scandinavia, females 
with cubs were also reported to move in areas with substan-
tially less vegetation cover than males (Steyaert et   al. 2013). 
Males may be more wary of human activity and/or more 
able to avoid human features, as they are more mobile than 
females with dependent young. Other authors have reported 
sexual segregation of habitat use by grizzly bears, including 
the presence of females with cubs in areas with substantially 
less vegetation cover than males (Steyaert et   al. 2013), and 
displacement of females by adult males into lower quality 
or less secure habitats (Mattson et   al. 1987, Wielgus and 
Bunnell 1995, Steyaert et   al. 2013). Females with young in 
our study area may prefer the risks posed by higher human-
activity areas over the risks associated with encountering 
males (Rode et   al. 2006). Alternately, the accessibility and 
abundance of food growing at wellsites may simply outweigh 
the increased risk of encountering humans. 

 Across seasons, a consistent pattern was observed between 
probability of wellsite use and the level of human activity 
in the surrounding region. With decreasing wellsite and 
road densities in the surrounding area, the likelihood of 
grizzly bear use of a wellsite increased. In a working land-
scape such as the Kakwa, wellsite density and road density 
refl ect the level of resource extraction and human activ-
ity in the area. Although bears appear to be selecting for 
wellsites, these results suggest that bears may still prefer areas 
of lower overall human disturbance. Similarly, although 
some research indicates that bears use areas around roads 
(Roever et   al. 2008a, Graham et   al. 2010), research has also 
suggested that bears may select for areas with lower road 
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established a direct link between grizzly bear use of wellsites 
and mortality rates; however, during 2013, two human-
caused grizzly bear mortalities occurred within 100m of 
wellsites in the Kakwa area. Both mortalities involved ille-
gal hunting, and one incident included a female grizzly bear 
with yearlings (Stenhouse unpubl.). Previous research has 
investigated the relationship between grizzly bear demo-
graphics and other human disturbances. In east – central BC, 
Ciarniello et   al. (2009) compared birth and death rates of 
grizzly bears in an area of extensive forestry development 
versus the adjacent undeveloped mountain region. Th e 
authors reported that forest harvest did not appear to have 
negative eff ects on reproductive parameters of female bears, 
but the area with extensive development had a higher rate of 
mortality than the adjacent mountains. McLellan (1989a, b) 
studied reproductive rates, survival, and population growth 
rates in southeastern BC in an area with forestry activities, 
gas exploration, and recreation. Eight out of nine known 
grizzly bear mortalities were human-caused, although the 
deaths could not be directly linked to industrial activities 
(McLellan 1989a), and no direct impacts of disturbance on 
reproduction were observed (McLellan 1989b). Schwartz 
et   al. (2010) reported that grizzly bear survival in the Greater 
Yellowstone Ecosystem was directly related to the level of 
human development on the landscape within a grizzly bear ’ s 
home range; survival rates decreased as road density, number 
of homes, and development increased. To assess the sensi-
tivity of grizzly bear population growth to road densities, 
Boulanger and Stenhouse (unpubl.) modeled the eff ect 
of road density on survival rates for grizzly bear range in 
Alberta. Th e authors reported that grizzly bear survival was 
directly related to road density, and they identifi ed threshold 
levels at which population levels would decline. Our data 
indicate that females with young are more likely to use well-
sites; this highlights the importance of investigating thresh-
olds and developing wellsite mitigation measures with the 
specifi c goal of reducing human caused mortality risk for 
reproducing females. 

 Reducing or limiting human use of linear access to grizzly 
bear habitat and/or reducing sightability of grizzly bears adja-
cent to wellsites could decrease human-caused grizzly bear 
mortalities. Possible mitigations for our study area include 
installing gates or berms at linear access features associated 
with wellsites, reclamation of roads leading to abandoned 
wellsites, or reduction of visibility at wellsites. Mitigation 
measures could be focused on those wellsites more likely to 
be used by grizzly bears, based on the results of our model. 
Th ese mitigative actions during and following oil and gas 
wellsite activities could play an important role in improving 
survival rates of grizzly bears in areas of energy sector devel-
opment in Alberta.                   
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densities (Mace et   al. 1996, Apps et   al. 2004). Th ese results 
imply that patterns of habitat use around anthropogenic 
features may be more complicated than direct avoidance or 
displacement from the features themselves. Grizzly bears 
have been reported to adjust their daily activity patterns 
according to levels of human activity (Olson et   al .  1998, 
Martin et   al. 2010, Northrup et   al. 2012), and changes in the 
level of human activity in an area can also result in changes 
in grizzly bear habitat use or movement patterns (Rode et   al. 
2006, Ordiz et   al. 2012). While grizzly bears in our area 
were not displaced by the wellsites themselves, it appears 
that they may avoid areas with a higher risk of encountering 
humans. Th ere may be a threshold for wellsite density above 
which bears may avoid wellsites, and this avoidance could 
result in displacement from certain areas within a bear ’ s 
home range. 

 Adjacent canopy cover had an infl uence on wellsite 
selection in our study, and bears were more likely to use 
wellsites next to areas with lower canopy cover. Forest cover 
not only provides concealment for bears (and other wild-
life), it also provides shelter during hot or cold tempera-
tures, and areas with dense canopy cover may be less likely 
to be used by humans because of low accessibility to such 
areas. Canopy cover also refl ects habitat type; in the Kakwa 
region, areas with lower canopy cover correspond to regener-
ating cutblocks, meadows, and shrublands. Grizzly bears in 
our study area have been reported to select for regenerating 
cutblocks in summer, and bear foods are known to grow 
more in areas with an open forest canopy (Nielsen et   al. 
2004c, Roever et   al. 2008b). It appears that the increased 
food availability in open areas may be more important than 
the presence of cover adjacent to these anthropogenic fea-
tures. Th e infl uence of adjacent habitat on wellsite use may 
also refl ect larger scale habitat selection patterns; regardless, 
knowledge of which habitats are most likely to have wellsite 
use could have applications for mitigation strategies. 

 Wellsite age was not an important predictor in spring or 
summer, but appeared to have an eff ect on wellsite selection 
in the fall. Older wellsites were more likely to be selected by 
bears, which may be a result of vegetation succession, with 
a larger amount of valuable food resources growing on or 
adjacent to these wells compared to more recently cleared 
wellsites. Data collected in 2011 indicated that abundance of 
bear foods increased with wellsite age (McKay unpubl.). 

 Wellsites are relatively small patches in the forest com-
pared to other anthropogenic disturbances (e.g. regenerating 
cutblocks), and in our study it appears that these features 
are not causing signifi cant displacement of grizzly bears. 
However, the primary limiting factor for grizzly bears in 
Alberta is human-caused mortality (Festa-Bianchet 2010). 
Areas with a higher level of human access in Alberta are 
associated with an increased risk of human-caused grizzly 
bear mortalities; bears near roads are more likely to be shot 
or hit by vehicles (Benn and Herrero 2002, Nielsen et   al. 
2004b, Roever et   al. 2008a). An open canopy allows more 
bear foods to grow on the forest fl oor, potentially attract-
ing bears (Nielsen et   al. 2004c, Roever et   al. 2008a). While 
wellsite clearings could provide good grizzly bear forag-
ing habitat, the potential increase in mortality risk could 
result in wellsites functioning as attractive sinks (Delibes 
et   al. 2001, Nielsen et   al. 2006). Current research has not 
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