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Abstract 

Hidalgo, A.M. (2015). Exploiting genomic information on purebred and crossbred 

pigs. Joint PhD thesis, between Swedish University of Agricultural Sciences, Sweden 

and Wageningen University, the Netherlands 

 

The use of genomic information has become increasingly important in a breeding 

program. In a pig breeding program, where the final goal is an increased crossbred 

(CB) performance, the use of genomic information needs to be thoroughly evaluated 

as it may require a different strategy of what is applied in purebred (PB) breeding 

programs. In this thesis, I explore the use of genomic information for the genetic 

improvement of PB and CB pigs. I first focus on the identification of genomic regions 

affecting traits that are important to breeders. I identified two quantitative trait loci 

(QTL) regions for gestation length, one for Dutch Landrace on Sus scrofa 

chromosome (SSC) 2 and the other one for Large White on SSC5. I also fine-mapped 

and narrowed down the region of a previously detected QTL for androstenone level 

SSC6 from 3.75 Mbp to 1.94 Mbp. A tag-SNP of this fine-mapped region was further 

investigated and no unfavorable pleiotropic effects were found; indicating that using 

the studied marker for selection would not unfavorably affect the other studied 

traits. After that, the focus was changed to the application of genomic selection in 

pigs. Within-population predictions showed high accuracies, whereas across-

population prediction had accuracies close to zero. Using combinations among Dutch 

Landrace and Large White populations plus their cross showed that multi-population 

prediction was not better than within-population. The exception was when the CB 

pigs were predicted with records from both parental populations added to the CB 

training data. When using PB pigs to train CB ones, the predictive ability found 

indicates that selection in the PB pigs results in response in the CB ones. When 

assessing the source of information used to estimate the breeding values used as 

response variable, I showed that a more accurate prediction of CB genetic merit was 

found when training on PB data with breeding values estimated using CB 

performance than training on PB data with breeding values estimated using PB 

performance. I also studied the accuracy of using CB pigs in the training population 

to select PB for CB performance. Predictive ability when using CB phenotypes for 

training was observed, however, the accuracy was lower than using PB phenotypes 

in the training population. Lastly, I evaluate the inclusion of dominance in the model 

when using a CB training population. Results showed that accounting for dominance 

effects can be slightly beneficial for genomic prediction compared with a model that 

accounts only for additive effects.
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1.1 Introduction 

Animal breeding aims to select the best animals to be the parents of the next 

generation. A large variety of techniques, strategies and methods have been 

developed to achieve this goal. In recent years, genotyping technology has improved 

considerably and high-throughput genomic information became available. Efficient 

use of this information, hence, is crucial for the competitiveness of a breeding 

company. In this work, therefore, I will explore the use of genomic information for 

the genetic improvement of purebred and crossbred pigs. In this general 

introduction, I will first concentrate on the identification of genomic regions that 

affect traits that are important to breeders. After that, I will focus on the application 

of genomic selection, and later on crossbreeding with emphasis on heterosis and 

dominance. These topics are relevant in the application of genomic information in 

the present breeding situation.  

 

1.2 QTL mapping 

Most traits of economic importance in livestock production are quantitative, i.e., are 

affected by many loci to various degrees. The genes affecting a quantitative trait, so-

called “quantitative trait loci” (QTL), are difficult to identify, yet they are relevant for 

breeding purposes. Currently, 13,030 QTL for 663 traits have been described for pig 

(Animal QTLdb, http://www.animalgenome.org/QTLdb). 

 

Genetic markers can be divided in three groups: 1) direct markers: loci that code for 

the causative mutation, 2) LD markers: loci are in population-wide linkage 

disequilibrium with the causative mutation, 3) LE markers: loci are in population-

wide linkage equilibrium with the causative mutation in outbred populations 

(Dekkers 2004). Direct markers are the most difficult to detect because proving 

causality is extremely hard. The LD markers can be detected using candidate genes 

(Rothschild and Soller 1997), fine-mapping (Andersson 2001; Georges 2007) or 

genome-wide association studies (GWAS); LD markers are located close to the 

causative mutation so that linkage disequilibrium between marker and QTL exists. 

The LE markers within linkage distance of a QTL can be identified by using breed 

crosses or analysis of large half-sib families within the breed.  

 

The first study that detected a QTL in pigs, identified a region affecting fat deposition 

on chromosome 4 (Andersson et al. 1994). This study, along with other 

contemporaneous studies, performed linkage mapping in an F2 design using 

microsatellite markers spread across the genome. The F2 were, in general, obtained 
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from crosses between a European-descent commercial breed and either a European 

Wild Boar or Asian breed, such as Meishan (e.g. Knott et al., 1998; De Koning et al., 

1999). Many QTL regions were detected using this methodology (reviewed by 

Rothschild et al. (2007)), however the confidence interval of these QTL were usually 

very large which hampered the use of this information in a breeding program. On 

top of the large confidence intervals, most of these QTL were detected in 

experimental populations using crosses, therefore the identified QTL could hardly be 

used directly for selection within breeds as they differ in frequency across breeds 

(Dekkers 2004). In practice, QTL analysis in crossed populations has been superseded 

by GWAS analyses within purebred populations, which will be described later. 

 

The fine-mapping approach aims to find the causative mutation or at least refine the 

mapping resolution of a previously detected QTL region, which should lead to 

narrowing down this QTL region. The major factors affecting the mapping resolution 

are: 1) marker density, 2) crossover density, 3) accuracy of inferring the QTL 

genotype, and 4) molecular architecture of the QTL (Georges 2007). Provided that 

there are enough markers, then to increase the mapping resolution, there is the 

need to increase the number of recombinations. This increase can be achieved by 

breeding additional generations or increasing the population size (Darvasi and Soller 

1995). The fine-mapping approach has been successful in detecting the causal 

mutation only for a small number of QTL, for example FAT1 (Berg et al. 2006) and 

the insulin-like growth factor 2 gene (IGF2) (Van Laere et al. 2003). 

 

Besides the linkage approach used for QTL mapping, other approaches were 

developed and applied in pig breeding, such as the candidate gene approach. The 

candidate gene approach involves 1) selecting the candidate gene based on its 

known biological function, 2) amplifying the gene, 3) finding polymorphic regions, 4) 

large scale genotyping of the polymorphic region, 5) phenotyping and genotyping a 

target population, 6) performing an association between phenotype and genotype, 

and finally 7) assessing the detected associations (Rothschild and Soller 1997). The 

candidate gene approach was successful in detecting few QTL, for example the 

porcine melanocortin-4 receptor (MC4R) gene (Kim et al. 2000). This approach 

discovered LD markers, which allows selection across animals of the same 

population, therefore is relevant for breeding (Dekkers 2004). 

 

The pig genome sequence was published in 2012 by the Swine Genome Sequencing 

Consortium (Groenen et al. 2012). In the meantime, the identification of high 

numbers of single nucleotide polymorphisms (SNP) and the development of 
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methodologies to simultaneously genotype large numbers of SNP, enabled the 

design of a SNP chip for pigs with approximately 60,000 markers (Ramos et al. 2009). 

The higher marker density across the genome allowed performance of genome-wide 

association mapping, for the identification of QTL. GWAS evaluates whether 

variations in the genome (e.g. SNP) are associated with variation in a given trait. The 

assumption underlying a GWAS is that significant associations occur because the SNP 

is in linkage disequilibrium (LD) with a causative mutation affecting the trait. The first 

study performing a GWAS in pigs identified a cluster of markers associated with 

androstenone level on chromosome 6 (Duijvesteijn et al. 2010).  

 

To make use of markers linked to QTL in breeding, Fernando and Grossman (1989) 

developed a methodology that incorporated markers associated with quantitative 

traits into the conventional mixed models genetic evaluation. This method was 

applied by breeding companies as a complementary tool to the pedigree-based 

genetic evaluation (Ibáñez-Escriche et al. 2014). Before incorporating new markers 

in the genetic evaluation, it is recommended to assess the pleiotropic effects of that 

marker on other production and reproduction traits. This check is important to avoid 

unfavorable effects due to pleiotropy and/or due to genetic hitchhiking. Such 

unfavorable effects are examined by testing the association between the marker and 

the other traits.  

 

So far, only a handful of causative mutations has been discovered and for the 

majority of QTL regions the causal variation has not been identified. The general 

finding from GWAS for quantitative traits, in livestock species, is that the majority of 

the economically important traits are controlled by many genes with small effects. 

Therefore, given the polygenic nature of most traits in livestock and the availability 

of a large number of genetic markers across the genome, genomic selection became 

the method of choice for application in animal breeding.  

 

1.3 Genomic selection 

Genomic selection (GS) entails using markers across the genome to estimate 

breeding values (Meuwissen et al. 2001). The assumption underlying genomic 

selection is that the effects of QTL will be captured by markers due to LD. In GS, 

individuals with both phenotypes and genotypes compose the so-called training 

population. Information on the training population is used to estimate direct 

genomic values (DGV) of selection candidates that are genotyped but do not have 

phenotypes. Selection based on DGV can be performed in these selection 



1 General introduction 

 

 

11 

 

candidates. The DGV is an estimate, based on the animal’s genomic information, of 

the value that an animal transfers to its progeny. To calculate the DGV, marker 

effects can be estimated by regressing the phenotypes on the marker genotypes in 

the training population. Afterwards, the genotypes of each selection candidate are 

multiplied by the marker effect and summed, resulting in the DGV. Various methods 

have been developed for the application of GS. These methods are generally based 

on mixed models, simple linear regression or shrinkage-based approaches. A 

detailed overview and evolution of these methods is described by Garrick et al. 

(2014). 

 

In animal breeding, the selection of the best animals to be the parents of the next 

generation is performed typically to achieve a response to selection. The response 

to selection (R) is determined by the intensity of selection (i), the accuracy of 

prediction (r), the genetic standard deviation (σa) and the generation interval (L): 

 

R = 
i * r * σa

L
 

 

Studies on genomic predictions have shown a solid increase in accuracy over 

pedigree-based predictions (BLUP). The degree of increase varies across traits, lines 

and species (e.g. Hayes et al., 2009; Tussel et al., 2013). In addition to the increase in 

accuracy, GS allows selection at a younger age of the selection candidates because 

the genotype that will be used for prediction can be obtained right after birth. 

Therefore, there is no need to spend a long time waiting for the expression and 

recording of the animals own phenotype, e.g. daily gain, or the phenotype of their 

offspring, e.g. milk production. This leads to a reduction in the generation interval, 

which is a larger benefit in some species (e.g. cattle) than in others (e.g. broilers). 

The potential for changing the intensity of selection with GS exists but it depends on 

the number of genotyped individuals; the more genotyped animals the higher the 

intensity and therefore a greater expected response to selection. Genomic selection, 

therefore, can affect response to selection through these three factors, i, r and L. 

 

Genomic selection was first applied in dairy cattle (VanRaden et al. 2009), where the 

aim is to improve the performance of purebred animals. In pigs, two major pig 

breeding companies (PIC, Topigs Norsvin) began GS implementation in purebred 

lines in 2012-13. The delay in implementing GS in pigs, compared to cattle, can be 

attributed to: 1) the later release of the commercial SNP chip (Jan. 2008 for cattle vs 

Aug. 2009 for pigs), 2) the high genotyping cost compared to the value of an animal, 
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3) the different structure of the business (open nucleus vs. closed nucleus), 4) the 

need to distinguish from competitors in the market, 5) the uncertainty whether GS 

of purebreds results in gains in the crossbreds. The latter (crossbred production) 

plays an important role in pig production, and the crossbred breeding goals in pigs is 

probably a main difference between dairy cattle breeding and pig breeding. 

Implementation of GS in pigs for the crossbred breeding goals, hence, may require 

different strategies which are not yet fully developed. Besides the different 

strategies that need to be assessed, the accuracy of methods that are currently 

implemented for cattle may be reduced when the aim is to improve crossbred 

performance. Many factors affect this lower accuracy, such as the low number of 

genotyped crossbred individuals, genetic correlation between purebred and 

crossbred performance being different from 1, and the lower relationship between 

the purebred and crossbred individuals. Assessing accuracy of genomic prediction 

for the performance of purebred and crossbred animals, therefore, is a research field 

in development and of great interest for pig and poultry breeding companies. 

 

1.4 Crossbreeding 

Crossbreeding is the process of mating individuals from different breeds or lines to 

produce a crossbred offspring. It is standard practice in the modern pig production 

set-up, and as indicated in the preceding section, is a relevant difference compared 

to, for instance, dairy cattle breeding. Crossbreeding is applied to capitalize on breed 

complementarity and heterosis, and to protect the genetic progress in the pure lines.  

 

Focusing on the importance of heterosis for crossbreeding, three types can be 

distinguished: individual, maternal and paternal (Clutter 2010). It is the individual 

heterosis that benefits the crossbred progeny and is a result of its own hybrid state 

and the primary aim for improving production traits. The maternal heterosis benefits 

the crossbred progeny and is a result of the hybrid state of its dam. Maternal 

heterosis is highly relevant for reproduction traits, e.g. mothering ability, because it 

benefits the offspring especially in the period that the offspring is dependent on its 

dam. Maternal heterosis is therefore a major reason for the extensive use of two-

generation crossbreeding schemes in pig production (Bidanel 2010). The paternal 

heterosis benefits the crossbred progeny and is a result of the hybrid state of its sire. 

The benefit of paternal heterosis is limited, not having the same relevance as the 

maternal heterosis in crossbreeding. In general, heterosis is found across traits and 

species and varies roughly from 0% to 30%, including negative values as well (Bondoc 

et al. 2001; Bidanel 2010).  



1 General introduction 

 

 

13 

 

Dominance is labelled to be one of the main causes of heterosis (Falconer and 

Mackay 1996; Charlesworth and Willis 2009). This is because the hybrid superiority 

is attributed to the advantage of the heterozygotes over the mean of the two 

homozygotes. Studies in pigs and cattle have found that there is dominance variance 

for different traits in purebred populations (Su et al. 2012; Nishio and Satoh 2014; 

Sun et al. 2014). In addition, these studies have also reported that using a model that 

accounts for dominance resulted in either higher or similar accuracy for prediction 

of breeding values than using a model that only fits additive effects. Prediction of 

crossbred performance, accounting for dominance, has not been reported. 

Accounting for dominance in prediction of crossbreds is expected to result in a 

considerable increase of accuracy compared to purebred results because more 

dominance is envisaged in crossbred than purebred populations (Nishio and Satoh 

2014). Therefore, using a model that accounts for dominance when crossbred 

individuals are used in the prediction might be important. 

 

1.5 This thesis 

The objective of my research is to exploit genomic information in purebred and 

crossbred pigs to generate knowledge and results that could be used to improve 

genetic progress. The thesis can be divided in two parts: 1) in this part the aim is to 

discover and investigate genomic regions that affect gestation length and boar taint, 

including an assessment of pleiotropic effects of the identified marker; 2) in this part 

the potential of genomic selection in pig breeding is investigated by determining the 

accuracy of genomic prediction using different training and validation populations, 

selected from multiple purebred lines and their crossbred offspring, and different 

models.  

 

The first part of this thesis comprises Chapters 2-4 and concentrates on finding 

important genomic regions and test for possible application of these results in pig 

breeding. In Chapter 2, a GWAS is described with the aim to detect SNP and also to 

identify candidate genes that are associated with gestation length. Gestation length 

is an important trait in pig breeding due to its relation with maturity of the piglet at 

birth. Detecting significant SNP with effects on gestation length is therefore desired. 

In Chapter 3, the region of a previously detected QTL is fine-mapped, aiming at the 

identification of SNP that affect androstenone levels. This fine-mapped region is 

evaluated in Chapter 4 for possible pleiotropic effects on production and 

reproduction traits in pigs. The combined results of Chapters 3 and 4 allow an 

informed decision on the usage of these markers in a breeding program. 
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The second part comprises Chapters 5-8 and focuses on strategies to implement GS 

in pig breeding when crossbreeding schemes are accounted for. In Chapter 5, the 

accuracy of genomic breeding values from within-, multi- and across-population 

predictions in pigs is evaluated, including the accuracy of using purebred training 

data to predict performance of crossbred pigs. This last analysis will indicate how 

well crossbred performance will respond to the current practice of selecting within 

purebred populations. For this chapter, the response variable used for training was 

the deregressed breeding value (DEBV) from a routine genetic evaluation, which 

contains a mix of purebred and crossbred animals. To separately assess the value of 

phenotypic information from purebred and crossbred pigs I investigated the source 

of information used to estimate the DEBV: should it be based on purebred or 

crossbred performance? Therefore, in Chapter 6, while the training and validation 

populations were the same as in Chapter 5, the training was performed twice with 

different phenotypes as input: first using DEBV based on purebred offspring, and 

second using DEBV based on crossbred offspring. The DEBV from crossbred offspring 

is expected to lead to better predictions of purebred animals for crossbred offspring 

performance. Later, more genotyped crossbred animals became available and a 

training population could be constructed that consisted of genotyped crossbred 

animals. Hence, in Chapter 7 we compare the accuracy of prediction from using 

either only crossbred or only purebred animals as training population when 

predicting purebred animals for crossbred performance. Finally, as indicated above, 

the performance of crossbreds typically shows heterosis, and dominance is expected 

to strongly contribute to this heterosis. Therefore in Chapter 8, the performance of 

the dominance model is empirically compared to the additive model for prediction 

of purebreds for crossbred performance based on a training with data from 

crossbred pigs.  

 

Lastly, Chapter 9 is where the two parts, mapping and prediction, come together. I 

discuss the relevance of my findings, how breeders can benefit from the combination 

of genomic selection with the information of important genomic regions identified 

in GWAS. Also, I discuss the impact that high-density SNP chips and sequence data 

can have in GWAS studies. In addition, I expatiate on strategies for applying genomic 

selection, especially when crossbreeding information is used. To finalize, I give 

concluding remarks by summarizing the new insights from this thesis. 
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2.1 Introduction 

With the development of high-throughput and cost-effective genotyping methods, 

exploiting genomic information became an indispensable approach for major 

breeding companies. Pig production relies on crossbreeding, hence, the use of 

genomic data for selection for crossbred performance needs to be carefully 

assessed. Implementation of genomic selection in crossbreeding schemes cannot be 

a simple copy of what is applied in breeding programs for purebred performance.  

 

For the research presented in this thesis, I used genomic information from purebred 

and crossbred pigs. I have detected genomic regions associated with gestation length 

and with androstenone level by genome-wide association and fine-mapping 

analyses. Further, I studied potential pleiotropic effects of the androstenone level 

QTL on chromosome 6 on production and reproduction traits. To investigate the 

potential and peculiarities of applying genomic selection in a crossbreeding setting, 

I evaluated and showed that there is predictive ability between purebred and 

crossbred pigs. Consequently, genomic selection in purebred pigs will result in gains 

in the performance of crossbreds. In this Chapter, I discuss the relevance of my 

findings in a broader context. I will discuss how to integrate individual genetic 

markers with genomic selection, as well as different strategies for applying genomic 

selection in pig breeding using genotypes and phenotypes of purebred and crossbred 

animals.  

 

2.2 Integrating individual genetic markers with genomic 

selection 

For qualitative traits, DNA tests were developed, starting some 25 years ago, which 

allowed selection against an undesired condition or phenotype. For example, a 

recessive allele (HAL 1843TM) in the porcine ryanodine receptor (RYR1) gene that 

causes malignant hyperthermia in stressful conditions (Fujii et al. 1991). When a 

single locus is controlling the trait, a DNA test is an effective tool for selection. The 

majority of the production traits in livestock, however, are continuously distributed 

(quantitative) because many quantitative trait loci (QTL) are controlling the trait. Due 

to the high number of loci affecting the trait, individual QTL only explain a proportion 

of the total genetic variance.  

 

Because of the typically small effects, selection based only on individual markers was 

not applied in pig breeding companies. This was in contrast with the expectations 

that were set after the initial boom of genetic markers (Ibáñez-Escriche et al. 2014). 
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Genetic markers that explain part of the variance and are in linkage disequilibrium 

with a QTL, were incorporated into the genetic evaluation using customized SNP 

panels (Van Eenennaam et al. 2014). Such markers were used as complementary tool 

(Ibáñez-Escriche et al. 2014) resulting in marker-assisted BLUP (MA-BLUP) being 

applied by pig breeding companies. Like most QTL, the QTL regions for gestation 

length identified in Chapter 2 also explained a relatively small proportion of the 

genetic variance, 1.12% for the Dutch Landrace and 0.77% for the Large White pigs. 

Further, in Chapter 3, I fine-mapped a previously identified QTL region for 

androstenone level that also explained a small proportion of phenotypic variance, 

6% in the Duroc population (Duijvesteijn et al. 2010). These results are concordant 

with the vast literature that reported 13,030 QTL for 663 traits usually with small 

effects (Animal QTLdb, http://www.animalgenome.org/QTLdb).  

 

With the development of methods that allow to perform genomic prediction based 

on a large number of genetic markers (Meuwissen et al. 2001), and after the 

availability of commercial SNP chips, genomic selection (GS) became the center of 

attention for animal and plant breeders. Since then, GS has been implemented in 

dairy cattle (VanRaden et al. 2009) and it was shown to result in higher accuracies 

than traditional genetic evaluations (BLUP) (Hayes et al. 2009b). The main positive 

point of GS lies in its ability to capture the infinitesimal nature of the majority of 

economically important traits, which was exactly the main cause for the limited 

success of marker-assisted selection. In GS, all markers have their effects estimated 

without the need to know the biological meaning. All that is needed is a training 

population and sufficient computational power to run the genomic evaluation. The 

training population, which is phenotyped and genotyped, has to have sufficient size 

(Misztal 2011) and preferably be related to the selection candidates.  

 

Even though only few causative mutations have been identified so far, such 

significant markers will continue to be identified. Further developments in 

genotyping technology resulted in a reduction of costs, enabling the production of 

commercial high-density (HD) SNP chips (e.g. Illumina Bovine HD 770k SNP chip). 

Therefore, with more animals genotyped, which increases the sample size, and with 

the genome more densely covered with markers, which leads to a smaller distance 

between the SNP and the causative mutation, a more precise detection of QTL is 

expected. Genome-wide association studies (GWAS) using HD SNP panels have been 

performed in cattle (e.g. Purfield et al. (2015)). In pigs, a HD SNP chip has been 

recently developed with approximately 660,000 SNP, however, GWAS with this HD 

SNP chip are still lacking. The ultimate level of genotypic information is the sequence 
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data. Sequencing determines the order of all nucleotides of the DNA of a given 

organism. Therefore, sequence data contain the causative mutations of the trait. A 

GWAS using sequence data, hence, is expected to find the causative mutation 

(Meuwissen and Goddard 2010). There have been efforts to increase the numbers 

of sequenced animals (e.g. Daetwyler et al. (2014)), to enable GWAS with sequenced 

individuals. The approach that has been taken is to perform a GWAS using HD SNP 

chip genotype data and then focus on the identified peaks, performing a region-wise 

association study (RWAS) using imputed sequence data (Sahana et al. 2014; Wu et 

al. 2015). This method was able to refine previously detected QTL regions, however, 

it was not able to identify the causative mutation, mainly because of strong blocks 

of linkage disequilibrium. Another factor that might be hampering the identification 

of the causative mutation is that imputation is not 100% accurate, especially for rare 

variants and small reference panels.  

 

As these significant regions on the genome are still being found and described, it is 

of interest to integrate the significant markers in the genomic evaluation. This 

integration is relevant because, while the causative mutations are not detected, 

these significant markers provide knowledge regarding the genetic architecture of 

the trait. Although the effects found are not large, they might add to the prediction 

accuracy and thus should be explored. Integrating these markers into the genomic 

evaluation would be a form of marker-assisted genomic prediction. Here, the marker 

genotype (0, 1 or 2) is fitted as a fixed effect in the genomic prediction model (MA-

GBLUP). The outcome of this analysis is an estimate of estimated breeding value 

(EBV) of the animal and an estimate of the marker's allele substitution effect. After 

that, multiplying the estimate of the marker effect by the animal’s genotype (0, 1 or 

2) and adding this value to the EBV results in the animal’s EBV from MA-GBLUP. MA-

GBLUP offers the possibility to apply the results described in Chapters 2 and 3 to 

within-population genomic predictions as described in Chapters 5-7. 

 

Before implementing MA-(G)BLUP it is important to know the effect of the QTL on 

all traits in the breeding goal. Hence, assessing pleiotropic effects of that marker on 

other traits is recommended to avoid unfavorable effects due to pleiotropy and/or 

due to genetic hitchhiking. Grindflek et al. (2011) found markers on the pig genome 

affecting simultaneously the levels of boar taint compounds (e.g. androstenone) and 

of sex hormones. Given that the androstenone markers have an unfavorable impact 

on sex hormones, the use of such markers for selection would be challenging. I 

showed in Chapter 4, however, that selection for the marker on chromosome 6 that 

reduces androstenone level will have no unfavorable effect on production and 
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reproduction traits studied. Therefore, the use of that marker to reduce 

androstenone level in a breeding program becomes of interest. 

 

To show whether integrating significant markers with genomic prediction is relevant, 

I performed a MA-GBLUP analysis using the most significant marker of each 

population described in Chapter 2 and the marker studied in Chapter 4. Markers 

were: rs81308021 for androstenone level in the Duroc, rs81366467 for gestation 

length in the Dutch Landrace and rs344547786 for gestation length in the Large 

White. Individuals from three pig populations were used: 833 Duroc, 1,615 Dutch 

Landrace and 1,904 Large White animals. These animals were genotyped using the 

Illumina PorcineSNP60 BeadChip (Ramos et al. 2009) and quality control was 

performed on the genotypes according to the methods described in Chapter 5. After 

quality control, 41,289 SNP for the Duroc, 42,360 SNP for the Dutch Landrace and 

41,005 SNP for the Large White remained out of the initial 64,232 SNP. We analysed 

the data using ASReml 3.0 (Gilmour et al. 2009) with the model: 

 

y = μ + b1SNP + Zu + e 

 

where y is the vector of pre-corrected phenotypes, µ is the overall mean, b1 is the 

vector of regression coefficients of each SNP, SNP is the incidence vector for b1 with 

genotypic information (0, 1 and 2), Z is the incidence matrix for u, u is the vector of 

random additive genetic effects, assumed to be ∼N(0, G𝜎𝑢
2), where G is the genomic 

relationship matrix, and e is the residual error, assumed to be ∼N(0, I𝜎𝑒
2), where I is 

an identity matrix. The accuracy of prediction was estimated as the correlation 

between the EBV and the corrected phenotype in a set of validation animals. The 

validation population consisted of the 20% youngest genotyped animals of a given 

population. Phenotypes were corrected for fixed effects as described in Chapter 5. 

Prediction results of MA-GBLUP were compared to the results obtained from using 

the traditional genetic evaluation (BLUP), marker-assisted BLUP (MA-BLUP) and 

genomic evaluation (GBLUP) (Table 2.1).  
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Table 2.1 Accuracies of prediction for androstenone level (AND) and gestation length (GLE) 

using different methods. 

    Accuracy† (Bias*) 

Trait Breed Ntraining Nvalidation BLUP MA-BLUP GBLUP MA-

GBLUP 

AND DU 666 167 0.39 (1.43) 0.42 (1.29) 0.43 (1.01) 0.45 (1.07) 

GLE DL 1,292 323 0.29 (0.73) 0.31 (0.79) 0.41 (0.81) 0.42 (0.81) 

GLE LW 1,523 381 0.41 (1.11) 0.41 (1.11) 0.46 (0.90) 0.46 (0.90) 

DU - Duroc, DL - Dutch Landrace, LW - Large White, N - number of animals 
† - Correlation between EBV and pre-corrected phenotype 
* - Regression coefficient of the phenotype on the EBV 
 

MA-GBLUP resulted in the highest accuracy for all three analyses (Table 2.1). In the 

Large White population, no difference was observed from either including or 

excluding the marker as fixed effect for gestation length when comparing BLUP with 

MA-BLUP, nor when comparing GBLUP with MA-GBLUP. This result in the Large 

White population is probably due to the minor allele frequency (MAF) of the most 

significant marker being very low (0.01) (Chapter 2), which means that the majority 

of the animals had the same genotype. Therefore adding the same marker effect to 

the EBV of the vast majority of the animals would not affect the accuracy. For 

androstenone level in the Duroc, and for gestation length in the Dutch Landrace, 

there was an increase in accuracy when the significant marker information was used. 

The increase in accuracy for MA-BLUP over BLUP was greater than for MA-GBLUP 

over GBLUP. As BLUP uses only pedigree information, fitting the most significant 

marker as fixed effect can differentiate animals with regard to the QTL, leading to a 

possible increase in accuracy. The increase in accuracy of MA-GBLUP over GBLUP 

was not as great because GBLUP already accounts for the significant marker in the G 

matrix. However, even when the same genotypic information is present in the G 

matrix, fitting the significant marker separately as a fixed effect still resulted in higher 

accuracy of prediction because the marker effect is better captured by the model. 

Fitting the marker as a separate fixed effect is not expected to lead to lower 

accuracies, even if the marker is a false-positive. In such a case, the effect estimated 

would be zero, accuracy would remain the same, and thus no harm would be done 

to the prediction. An issue will occur when trying to fit more markers as fixed effects 

than the number of animals. In this case, estimation problems occur because of a 

lack of degrees of freedom to fit all effects simultaneously by least squares (Lande 

and Thompson 1990). However, markers with large effects are not so common, 

therefore this issue is not likely to become a problem for the MA-GBLUP model. The 

regression coefficients of the phenotype on the EBV were in general close to 1 in all 
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analyses included in Table 2.1, which indicates unbiased predictions. Less bias was 

observed for MA-BLUP than for BLUP, and for the genomic models GBLUP and MA-

GBLUP compared with MA-BLUP and BLUP. These analyses were performed in 

purebred animals, therefore I can predict that MA-GBLUP would result in greater 

response to selection in the pure lines over GBLUP. In a breeding program where the 

goal is to select purebred animals for purebred performance, MA-GBLUP is therefore 

recommended for traits with known significant marker(s). To extrapolate to 

prediction of crossbred performance, MA-GBLUP would be beneficial for both 

purebred and crossbred performance when the QTL is the same for purebred and 

crossbred performance. If the interest is to select purebred animals for crossbred 

performance, as is the case in pig breeding, I would expect that using MA-GBLUP 

could improve accuracy of prediction as long as the marker is affecting the crossbred 

population. 

 

2.3 Genomic selection in pigs 

Genomic selection has been introduced in dairy cattle breeding aiming to improve 

performance of purebred animals (VanRaden et al. 2009). In pigs, however, the end 

product is a crossbred animal which may require different strategies for the 

implementation of GS from what is currently applied in dairy cattle. In pig breeding, 

specialized sire and dam lines are kept in the breeding stock and crossed to produce 

a three-way or four-way cross finisher pig (Merks and De Vries 2002).  

 

In this thesis, I have analyzed androstenone level and reproduction traits. 

Reproduction traits generally have low heritability, but gestation length has 

moderate heritability. Genomic selection has a large added value for low-heritability 

traits (Muir 2007; Calus et al. 2008) because the accuracies of these traits are usually 

low as they depend on the heritability of the trait (Falconer and Mackay 1996; Muir 

2007; Visscher et al. 2008). For production traits, which generally have higher 

heritabilities, traditional genetic evaluation already provides EBV with high accuracy, 

therefore the added value of GS is less. In addition to heritability, other factors affect 

the value of GS, e.g. the time at which traits are measured. GS can have a great 

positive impact on the accuracy of EBV for meat-quality traits, which are measured 

after slaughter therefore usually measured on relatives of selection candidates. Also, 

GS is expected to have a larger impact on sex-limited traits, traits that are difficult 

(expensive) to record, and on traits that are recorded late in life (Muir 2007). This 

positive impact occurs because the accuracy of traditional genetic evaluation is 

limited for these traits. 
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In this section, I will discuss different strategies of genomic selection in pigs and their 

perspectives. The use of within-, across- and multi-population predictions will be 

discussed, along with the use of crossbred information for genomic prediction. 

 
2.3.1 Within-population prediction 

Pig breeders have focused on the estimation of breeding values of purebred animals 

using data obtained also from purebred animals which are kept in nucleus farms. In 

other words, the selection is applied to improve purebred genetic merit with an 

expectation for a response in crossbreds. In Chapters 5 and 6, results of within-

population genomic predictions are presented which showed considerably high 

accuracy of prediction. Within population, genomic prediction generally performed 

better than traditional genetic evaluation based on pedigree, which is also observed 

in other studies in pigs (e.g. Tusell et al. (2013)). Therefore genomic prediction, 

within-population, is recommended when the aim is to increase purebred 

performance. In practice, breeding companies currently perform within-population 

genomic prediction by applying the single-step approach (Misztal et al. 2009). This 

approach is preferred by breeding companies because current data sets still contain 

a large amount of data on phenotyped animals that are not genotyped. With the 

single-step approach, these records can still be used together with phenotyped and 

genotyped individuals to estimate the breeding values. Additionally, the pipeline for 

implementing the single-step approach is similar to the traditional genetic evaluation 

that was in use previously. The only major change is the replacement of the average 

numerator relationship matrix (A matrix) with an H matrix which contains the 

pedigree-genomic relationships (Legarra et al. 2009).  

 

Once within-population genomic prediction is implemented, accounting for the 

genetic architecture of the trait might be relevant. Weighting the G matrix increases 

the accuracy of prediction (Zhang et al. 2010; Tiezzi and Maltecca 2015; Veroneze 

2015). A practical problem is accounting for the genetic architecture in genomic 

evaluations would require a separate analysis for every single trait because a 

different G matrix would have to be built for each trait. To avoid this problem, using 

the MA-GBLUP methodology, described above, is a way of accounting for the 

markers with large effect in a multi-trait genomic evaluation without the need of 

constructing separate G matrices for each trait. 

 
2.3.2 Across-population prediction 

In pig breeding, multiple dam and sire lines are kept in the breeding stock. It is 

possible that a training dataset is not available for a specific line or that a design 
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might be desired in which training data would only be produced in some of the lines. 

In such cases, performing across-population prediction could be a good strategy 

(Hayes et al., 2009). Across-population prediction involves using population A as 

training dataset to predict population B. Studies in cattle have shown that training in 

one population to predict another results in accuracies close to zero (Harris et al., 

2008; Hayes et al., 2009; Chen et al., 2015). This low accuracy has been attributed to 

the different marker-QTL linkage disequilibrium phase across populations (De Roos 

et al. 2009). In pigs, we have also found accuracies close to zero for across-population 

predictions (Chapter 5). Therefore, under the current circumstances of a low number 

of animals, genotyped with around 60,000 SNP, I would not recommend across-

population prediction. No matter what the reason for the application of across-

population prediction would be, constraints in expenses or genomic breeding 

program design, the results are not encouraging. Instead, I would perform within-

population genomic prediction for the line that has a training population and 

continue the pedigree-based genetic evaluation for the other line. In the future, 

when more animals are sequenced and possibly more causative mutations are 

identified, across-population prediction might yield better accuracies.  

 

2.3.3 Multi-population prediction 

An alternative to across-population prediction is to have, in the training set, some 

animals from the same population that will be predicted, and increase the size of the 

training set by combining populations A and B. The increase in accuracy from multi-

population prediction is highly dependent on the relationship between the 

combined populations (De Roos et al. 2009). Many studies on multi-population 

prediction were performed in dairy cattle and have been reviewed by Lund et al. 

(2014). Generally, there is an increase in accuracy when the same breeds from 

different countries are combined, whereas this increase is minor when the breeds 

are only distantly related. Multi-population prediction in pigs, using Dutch Landrace 

and Large White animals plus the cross between these two populations was 

performed in Chapter 5. Results showed that adding the other population in the 

training set did not improve the accuracy compared with within-population 

prediction. The main reason for that was that the Dutch Landrace and Large White 

populations are only distantly related. Predicting the F1 cross using a multi-

population training data set, which contained the F1 cross plus both parental 

populations, was advantageous over within-population prediction when genetic 

correlation between purebred and crossbred performance was high (>0.9). The 

parental populations are closely related to the F1 which appears to have a positive 

impact on accuracy of multi-population prediction (Chapter 5). Also, having a high 
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genetic correlation between purebred and crossbred performance is relevant in 

boosting the accuracy of multi-population prediction. Thus, multi-population 

prediction in pig breeding can be recommended when predicting crossbred animals, 

given that populations are closely related and/or the genetic correlation between 

purebred and crossbred performance is 1 or close to unity. 

 

2.3.4 Using crossbred information for genomic prediction 

The final goal in pig breeding is to improve performance of the commercial crossbred 

pigs, taking advantage of heterosis and breed complementarity (Visscher et al. 

2000). Crossbred pigs are mostly raised in farms at the commercial level which have 

lower management and biosecurity conditions compared with nucleus farms. This 

difference in conditions between commercial and nucleus farms is often reflected in 

the traits (Dekkers 2007). The same trait when measured in a commercial crossbred 

animal is not genetically the same as when it is measured in a purebred animal at a 

nucleus farm. This difference between the traits is reflected in genetic correlations 

below 1.0, even when the same trait is measured in purebred and crossbred animals. 

Lutaaya et al. (2001) found genetic correlations of 0.62 for growth rate, and 0.32 and 

0.70 for backfat thickness between purebred and crossbred phenotypes. Whereas 

Cecchinato et al. (2010) found genetic correlation of 0.25 for piglet survival at birth.  

A strategy has been proposed in which crossbred animals are used in the training 

population to subsequently select purebred breeding animals for crossbred 

performance. This strategy is expected to give a higher response in crossbred 

performance compared with within-purebred-population selection (Dekkers 2007; 

Kinghorn et al. 2010; Van Grevenhof and Van Der Werf 2015). Besides the increase 

in response at the crossbred level, using crossbred data in the training population is 

also appealing because it allows breeding for traits for which phenotypes are scarce 

in purebreds. Some traits cannot be evaluated in nucleus herds, such as disease traits 

(Ibañez-Escriche and Gonzalez-Recio 2011).  

 

The strategy of maximizing response to selection of purebreds for crossbred 

performance by using a crossbred training population has only been evaluated in 

simulation studies (Dekkers 2007; Kinghorn et al. 2010; Van Grevenhof and Van Der 

Werf 2015). The main issue in performing empirical studies is the need of 

phenotypes and genotypes of crossbred animals. The collection of these data is 

costly because this requires, besides genotyping, the individual recording of 

phenotypes on animals that are kept in group-housing systems and often have no 

pedigree information. Breeding companies were hesitant to make such investments. 
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Recently, however, crossbred data for genomic selection in pigs is becoming 

increasingly important. 

 

In Chapter 5, data on purebred animals were used to predict performance of 

crossbreds. At the time, the number of genotyped crossbreds was not large enough 

to be used as a training population. Accuracies of predicting crossbred performance 

ranged from 0.11 to 0.31 for traits in which the genetic correlation between 

purebred and crossbred performance ranged from 0.88 to 0.90. These accuracies 

were not as great as accuracies for within-purebred-population, but they show the 

predictive ability between purebred and crossbred pigs. For the trait whose accuracy 

of prediction was zero, a low genetic correlation between purebred and crossbred 

performance was found (0.31) which is in line with this low accuracy. The predictive 

ability found for predicting crossbreds with purebred training data indicates that 

selection in the purebreds will result in a response in the crossbreds when the 

genetic correlation between purebred and crossbred performance is high.  

 

In Chapter 5, the response variable for genomic prediction was a deregressed 

breeding value from a routine genetic evaluation. This breeding value was estimated 

based on records from a mix of purebred and crossbred animals. In practice, there is 

no problem with the use of a breeding value from a routine genetic evaluation in the 

evaluation.  For research purposes however, it is important to investigate how the 

choice for purebred, crossbred, or a mix of data used to estimate the breeding values 

for genomic prediction affects accuracy. In Chapter 6, therefore, we looked into the 

source of phenotypic information used to estimate the breeding values for the 

training data set. Training on breeding values of purebred animals estimated using 

crossbred performance, resulted in more accurate prediction of crossbred genetic 

merit than training on breeding values of purebred animals estimated using 

purebred performance; as long as the breeding values that were used as response 

variable have the same reliability. Likewise, in a simulation study, Esfandyari et al. 

(2015) showed that selecting purebred animals based on crossbred performance 

data rather than on purebred performance data resulted in a greater response to 

selection in the performance of crossbred animals.  

 

The results from Chapters 5 and 6 were promising and showed the ability of 

purebred data to predict performance of crossbred pigs. Thereafter, I wanted to test 

whether the use of crossbreds in the training population results in greater accuracies 

than solely using purebreds to select purebreds for crossbred performance. This 

analysis became possible because more data on crossbred animals became available 
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(Chapter 7). There was predictive ability when using crossbred phenotypes as 

training data, however, the accuracies were lower than from using purebred 

phenotypes. Results of simulation studies (e.g. Dekkers (2007)) that showed greater 

accuracy from using data on crossbreds rather than on purebred animals in the 

training population were not confirmed by my results. This discrepancy is explained 

by the high genetic correlation (>0.90) between purebred and crossbred 

performance for the traits studied in this thesis. The simulations studies consider a 

lower genetic correlation between purebred and crossbred performance (0.70 - 

0.80) (Dekkers 2007; Van Grevenhof and Van Der Werf 2015). Further studies with 

other traits with lower genetic correlation between purebred and crossbred 

performance need to be carried out. I would expect that with lower genetic 

correlations between purebred and crossbred performance, the benefits from using 

crossbreds as training population would increase in comparison with using 

purebreds. With a breeding goal in which all traits have high genetic correlation 

between purebred and crossbred performance, there would be no need for a 

crossbred training population, current practice with purebred training would suffice. 

However, not all traits will have a correlation close to 1, as has been shown by other 

studies in pigs (Lutaaya et al. 2001; Cecchinato et al. 2010).  

 

Although greater response to selection is observed in simulation studies from the 

use of crossbred data for training, these scenarios need to be carefully assessed. 

Factors such as the reliability of field records and the generation lag could hinder 

genomic prediction (Ibañez-Escriche and Gonzalez-Recio 2011). As phenotypes will 

be recorded in crossbreds from commercial farms, the recording system must be 

well designed and correctly applied because the large number of crossbred animals 

might be a hindrance to data collection compared with nucleus farms. On top of that, 

the difference in generations between purebred selection candidates and crossbred 

pigs, might hamper the genetic gain of genomic selection based on crossbreds. Thus, 

there is a need for studying whether the additional genetic gains promised by 

simulations can be confirmed by empirical studies. The additional genetic gains must 

offset the disadvantages mentioned above.  

 

Using crossbred pigs in the training population to select purebreds for crossbred 

performance also has an effect on the purebred genetic progress. When genetic 

correlation between purebred and crossbred performance is high, one will still 

observe purebred genetic progress. If, however, the genetic correlation is low, one 

can expect less genetic progress in purebred, or even negative values. With 

crossbred training populations, the evaluation of breeding program performance will 
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need to shift from analyzing the genetic progress in purebreds to monitoring the 

improvement of crossbred performance. 

 

2.3.5 Using dominance information for genomic prediction 

Dominance is important in crossbreeding schemes as it is the likely basis of heterosis 

(Xiao et al. 1995; Falconer and Mackay 1996; Charlesworth and Willis 2009). 

Therefore, using a model that accounts for dominance is expected to be beneficial 

for genomic prediction with a crossbred training population. Hence, I have evaluated 

genomic prediction when dominance effects are accounted for in the model using a 

crossbred training population (Chapter 8).  

 

Some studies have reported dominance variance estimates using real pig data and 

pedigree-based models (Culbertson et al. 1998; Norris et al. 2010). Estimates of 

dominance variance are not so precise because they require massive amounts of 

data especially on full-sib families (Vitezica et al. 2013). Dominance variance 

estimates from pedigree information were found to be zero for gestation length and 

total number of piglets born (Chapter 8). With genomic information, dominance 

variance can be estimated more precisely based on heterozygosity of SNP genotypes 

(Vitezica et al. 2013). Studies using genomic data in purebred pigs, showed that non-

additive effects are relevant factors contributing to the genetic variation of the 

studied traits (Su et al. 2012; Nishio and Satoh 2014). In addition, they also showed 

that accounting for the dominance effects improved accuracy of genomic prediction, 

compared to accounting only for additive effects. Using genomic data from crossbred 

pigs I showed that, for a trait with dominance variation, accounting for dominance 

effects can slightly improve genomic predictions compared with accounting only for 

additive effects (Chapter 8) similar to the reports on purebred pigs mentioned above. 

Even though there was a slight improvement in prediction from adding the 

dominance effect, I expect that the inclusion of non-additive effects in routine 

genetic evaluations is still a long time ahead of us, if breeding companies will ever 

include them at all. It has been shown that breeding programs should focus on 

additive effects as they account for more than 50%, and often even 100% of the 

genetic variation (Hill et al. 2008).  

 

Besides a dominance model, a model accounting for breed-specific effects of marker 

alleles may be relevant in prediction of crossbreeding performance (Ibánez-Escriche 

et al. 2009). I have found indications that the proportion of genetic variance in 

crossbred performance differs between the parental purebreds that contributed to 
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the cross (Chapter 8). Such a model, however, needs to be empirically investigated 

before implementation in breeding programs can be considered.  

 

2.4 Concluding remarks 

In the first part of this thesis I describe research that detected genetic markers 

significantly associated with gestation length, fine-mapped a QTL region for 

androstenone level, and studied potential pleiotropic effects. I expect that GWAS will 

continue to be performed because they provide scientifically relevant results, 

especially with the greater statistical power when more animals will be sequenced 

or genotyped using HD SNP chips. With more markers, the physical distance between 

marker and the causative mutation will be shortened, therefore, QTL regions can be 

fine-mapped. However, finding the causative mutation will require more than just a 

GWAS using denser genotyping or sequence data. Linkage disequilibrium plays a 

major role in GWAS and one may require addition functional evidence to distinguish 

associated variants. The results of GWAS can be incorporated in a MA-GBLUP, to 

increase the accuracy of genomic prediction compared with GBLUP. 

  

In the second part of this thesis I describe genomic prediction using purebred and 

crossbred pigs, which is a subject that is highly relevant for pig breeding. Although 

little has been reported so far, efforts to have more data on crossbred animals have 

been ongoing and contributed to the analyses performed in this thesis. I have shown 

that there is predictive ability from using phenotypes of crossbred animals to predict 

the genetic merit of purebred animals for crossbred performance. Even though the 

results obtained did not confirm the simulation results, I expect that for other traits 

with low genetic correlation between purebred and crossbred performance, the 

simulation results will be confirmed. If confirmed in empirical studies, the use of 

crossbred training populations for genomic selection will be implemented by 

breeding companies. The implementation of crossbred training population will, at 

least in the foreseeable future be without accounting for non-additive effects. 

Reasons for omitting non-additive effects from prediction models are the large 

proportion of the total genetic variance explained by additive effects, the increased 

computational power required to generate for example a genomic dominance 

matrix, and the negligible added-value to accuracy shown so far from adding 

dominance to genomic prediction. 
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Summary 

In the last decade, high-throughput genomic information became available for most 

livestock species. Efficient use of this information is important for the 

competitiveness of a breeding company. Application of genomic selection (GS) in 

pigs, may require different strategies from what is currently applied in dairy cattle 

because the end product in pig production is a crossbred animal. In this work, I 

explored the use of genomic information for the genetic improvement of purebred 

and crossbred pigs. Firstly, working mainly in purebred animals, regions affecting 

gestation length (Chapter 2) and androstenone level (Chapter 3) were detected in 

the pig genome by genome-wide association and fine-mapping. Also, potential 

pleiotropic effects of the androstenone level quantitative trait locus (QTL) on 

reproductive traits were studied (Chapter 4). Secondly, we investigated the potential 

of GS in pig breeding by determining the accuracy of genomic prediction using 

different strategies. These strategies varied in training and validation populations, 

selected from multiple purebred lines and their crossbred offspring, different data 

types and models.  

 

Genome-wide association study (GWAS) identified two QTL regions for gestation 

length, one in the Dutch Landrace and one in the Large White (Chapter 2). Three 

associated SNP were detected in a QTL region spanning 0.52 Mbp on Sus scrofa 

chromosome (SSC) 2 in Dutch Landrace and for the Large White, four associated SNP 

were detected in a region of 0.14 Mbp on SSC5. The region of a previously detected 

QTL for androstenone level on SSC6 was fine-mapped, narrowing the region down 

from 3.75 Mbp to 1.94 Mbp and identifying a candidate mutation in SULT2A1 

(Chapter 3). This fine-mapped region was evaluated for possible pleiotropic effects 

on production and reproduction traits in pigs (Chapter 4). No unfavorable pleiotropic 

effects were found, indicating that using the studied marker for selection would not 

unfavorably affect the other relevant traits. 

 

In the later chapters I have investigated the potential of different strategies for the 

implementation of GS in pig breeding when the aim is to improve crossbred 

performance. Within-population prediction was showed considerably high accuracy 

of prediction (Chapters 5 and 6) while across-population prediction, evaluated in 

Chapter 5 had accuracies close to zero. Multi-population prediction, where 

combinations of Dutch Landrace and Large White animals plus their cross were used 

as training showed that adding data from other populations did not improve the 
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accuracy except when predicting the F1 cross with records from both parental 

populations added to the F1 training data. When only purebred data was used, there 

was some predictive ability for crossbred performance (Chapter 5). In the first study 

the training data contained a mix of records measured on purebred and crossbred 

animals. In Chapter 6, therefore, the source of training data was clearly separated 

into purebred and crossbred records. Training on breeding values of purebred 

animals that were estimated using crossbred offspring performance, resulted in 

more accurate prediction of their crossbred genetic merit compared with training on 

breeding values of those same animals, estimated using purebred offspring 

performance. Genotyped and phenotyped crossbreds in the training population 

were expected to have higher accuracies when predicting genetic merit for crossbred 

performance. However, in Chapters 5 and 6 we did not test this strategy because 

sufficient genotyped crossbred were lacking at that time. Later, with more crossbred 

data, we evaluated this strategy and the accuracies were not improved over the use 

of genotyped and phenotyped purebreds (Chapter 7) mainly due to the high genetic 

correlation between purebred and crossbred performance for the studied traits. 

Finally, the inclusion of dominance in the model, with a crossbred training population 

was evaluated. For a trait that had dominance variation, accounting for dominance 

effects can be slightly beneficial for genomic prediction compared with a model that 

accounts only for additive effects.  

 

Finally, in Chapter 9, the relevance of the findings was discussed, how breeders can 

benefit from the combination of genomic selection with the information of individual 

QTL. To finalize, I make suggestions for future studies and how breeders can make 

use of the results generated in the thesis. 
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