
 

Compost and Fertilizer - Alternatives or 
Complementary? 

Management Feasibility and Long-Term Effects on Soil 

Fertility in an Ethiopian Village  

Workneh Bedada 
Faculty of Natural Resources and Agricultural Sciences 

Department of Soil and Environment 

Uppsala 
  

Doctoral Thesis 

Swedish University of Agricultural Sciences 

Uppsala 2015 



Acta Universitatis agriculturae Sueciae 

2015:123 

ISSN 1652-6880 

ISBN (print version) 978-91-576-8444-8 

ISBN (electronic version) 978-91-576-8445-5 

© 2015 Workneh Bedada, Uppsala 

Print: SLU Service/Repro, Uppsala 2015 

Cover: Agricultural landscape in Beseku, Ethiopia 

(photo: E. Karltun) 



Compost and Fertilizer: Alternatives or Complementary? Man-
agement Feasibility and Long-Term Effects on Soil Fertility in an 
Ethiopian Village 

Abstract 

Decline in soil fertility due to nutrient depletion is a concern for low-input crop produc-

tion in the highlands of Ethiopia. Fertilizer addition is insufficient due to infrastructural 

and socioeconomic constraints. Effects of compost addition, alone or in combination 

with NP fertilizer, on crop productivity and soil fertility were studied in long-term on-

farm experiments in Beseku, Ethiopia. The combined treatment resulted in an added 

benefit (synergy), i.e., a higher yield than when compost or fertilizer was added alone. 

The highest yield increase was found for maize where the combined treatment had 78% 

and 26% higher yields compared to the control and fertilizer treatment, respectively.  

Plant available concentrations of B, P, S, and Zn increased in the compost and/or the 

combined treatment compared to the control. Soil organic carbon and total nitrogen 

stocks increased in the combined treatment compared with the fertilizer treatment. 

Substrate-induced respiration from the combined treatment was lower compared to the 

compost treatment, but catabolic versatility was higher in the combined treatment com-

pared with the compost and the control. This suggests that a combination of compost 

and fertilizer induces a wider microbial catabolic capability which might lead to higher 

nutrient mobilization. The apparent yield synergy in the combined treatment likely 

attributed to; (1) alleviation of micro- and macronutrient limitations allowing for a 

more efficient use of fertilizer N and P and/or (2) improvement of the soil microbial 

catabolic capability. However, the indirect effects of compost on soil physical proper-

ties leading to improved nutrient use efficiency are also a possible explanation. 

The plot level N balance was strongly negative for the fertilizer treatment and the 

control, whereas it was close to steady-state in the combined and compost treatments. 

All treatments except the control had positive P balances. Therefore, the addition of 

compost, alone or in combination with fertilizer, improves the nutrient status of the soil 

and serves as a complement to fertilizer use reducing the dependence on mineral ferti-

lizer in low-input crop production systems.  

The major factor limiting the adoption of compost by farmers was lack of 

knowledge. Practical and theoretical training had a positive effect on adoption. 
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1 Introduction 

1.1 Background 

Ethiopia is an agrarian country that depends on agricultural production for the 

growth of the national economy. The agricultural sector accounts for nearly 

46% of gross domestic product (GDP) and close to 80% of export earnings and 

73% of total employment (ATA, 2013). The sector is mainly operated by 

smallholder farmers that directly rely on agriculture for their food supply and 

cash income. While the country’s future development and self-sufficiency in 

food production is relying on enhanced agricultural production, the agricultural 

production system is still mainly rain-fed and has a low degree of mechaniza-

tion. Increased productivity in the agricultural sector has been constrained by 

high population pressure, deforestation and resource base degradation, soil 

erosion and soil fertility depletion (Lemenih et al., 2005a; Feoli et al., 2002; 

Taddese, 2001; Shiferaw & Holden, 1999; Hurni, 1988). In order to accom-

plish the necessary agricultural intensification, the current land management 

practices need to be changed. 

In the past, the decline in soil fertility was partly compensated by increasing 

arable land at the expense of forests, bush and grazing land or by putting 

cropland under fallow. However, in highly populated areas (e.g., the high-

lands), this alternative is no longer a possible alternative since land suitable for 

conversion to cropland is becoming scarce (Headey et al., 2014; Josephson et 

al., 2014; Lemenih et al., 2008; Lemenih et al., 2005b; Drechsel et al., 2001a). 

Long fallow periods are no longer an alternative due to small and continuously 

decreasing farm sizes associated with population growth (Abegaz & van 

Keulen, 2009; Shiferaw & Holden, 1999). Smallholder farmers nowadays tend 

to continuously cultivate their cropland (Lemenih et al., 2005a), and the soils 

no longer have time to recuperate fertility. This in turn leads to nutrient deple-

tion (Abegaz & van Keulen, 2007; Haileslassie et al., 2005). Fragmentation 
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and scarcity of cultivable land continue to increase and remain a constraint in 

the highlands.  

A more sustainable management of the soil resource can be achieved 

through improved agricultural management such as crop rotation with N-fixing 

legumes, addition and recycling of nutrients and erosion control. Direct addi-

tion of nutrients can be done through mineral fertilizer or organic inputs such 

as manure and compost, or through combination of both nutrient sources. In 

Ethiopia, mineral fertilizer is the main yield-augmenting off-farm input. How-

ever, due to economic, infrastructure and policy related constraints (IFPRI, 

2010; Spielman et al., 2010), the current level of fertilizer input, which is 16 kg 

ha
-1

 on average (Spielman et al., 2010), is much lower than required to main-

tain soil fertility and ensure acceptable yield levels (Abegaz & van Keulen, 

2007). Although organic inputs, such as farmyard manure and crop residues, 

are potential sources of plant nutrients and have beneficial effects on soil fertil-

ity, there is competition from alternative uses of these resources; both manure 

and crop residues are used for fuel and crop residues are also used as animal 

feed and for construction (Abegaz & van Keulen, 2009; Haileslassie et al., 

2005).  

Compost is another alternative source of plant nutrients (Ngwira et al., 

2013; Odlare et al., 2011; Vanlauwe et al., 2011). Composting is a microbial 

(biological oxidation) process through which fresh organic matter is trans-

formed into a stable product (de Bertoldi et al., 1983). The transformation 

process results in mineralization and partial humification of the organic materi-

al. The metabolic activity and exothermic processes during the composting 

increases the temperature in the composting mass which creates a strong selec-

tive pressure in favor of thermophilic organisms. Various maturity indicators 

for composts have been suggested (Gómez-Brandón et al., 2008; Said-

Pullicino et al., 2007; Goyal et al., 2005). Though there is no single parameter 

that completely defines maturity, the C:N ratio and reduced rate of CO2 evolu-

tion from mature compost can be used as reliable indicators. Composting re-

sults in a reduction of the volume of organic material, destruction of weed 

seeds and sanitation through reduction of harmful pathogens. However, the 

process can also result in loss of N through ammonia volatilization (Goyal et 

al., 2005). Amendment of soil with compost improves the biophysical and 

chemical properties of soils. Increases in soil organic matter (SOM), enhanced 

soil fauna and increased microbial biomass have been documented as a result 

of compost addition (Erhart & Hartl, 2010).  

However, for resource constrained small-holder farmers organic resources, 

such as manure or compost, may not be available in sufficient quantities to 

reach optimum application rates and hence, may not supply sufficient nutrient 
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amounts (Vanlauwe et al., 2011). When mineral and organic resources are 

limited, combined use of smaller amounts of mineral and organic nutrient re-

sources is an alternative option for restoring soil fertility since it is a more af-

fordable investment in a low-input farming system (Vanlauwe et al., 2010). 

The mineral fertilizers available to most Ethiopian farmers, di-ammonium 

phosphate (DAP) and urea only supply nitrogen (N) and phosphorus (P), 

whereas organic inputs replenish SOM fractions that contain different soil 

micro- and macronutrients. SOM is also known to improve soil structure and 

water holding capacity. Combined use of these often scarce resources has the 

potential of replenishing soil fertility, maintaining SOM and thereby enhancing 

productivity (Vanlauwe et al., 2011).  

1.2 Plant nutrient depletion in the highlands of Ethiopia: an 
overview 

The Ethiopian highlands are endowed with inherently good biophysical condi-

tions for agriculture production, and the majority of humans and livestock are 

found there (Amsalu et al., 2007; Shiferaw & Holden, 1999). However, there is 

an increased pressure on the land from growing human and livestock popula-

tions. Consequently, agricultural land expansion has been and is widespread 

leading to deforestation (Kindu et al., 2013) and cultivation of marginal soils 

that are less suitable for agriculture (Drechsel et al., 2001a; Drechsel et al., 

2001b). Land use systems are not sustainable and problems with erosion and 

plant nutrient depletion are common (Amsalu et al., 2007). Furthermore, crop-

ping intensities are high in the highlands resulting in a substantial nutrient re-

moval due to high population growth driven continuous cultivation of the same 

land without fallow periods (Lemenih et al., 2005a; Drechsel et al., 2001a).   

However, in order to attain food self-sufficiency and achieve the desired 

long-term economic growth, the decline in soil fertility need to be halted and 

land use intensification need to be accompanied by sufficient external nutrient 

inputs to compensate for the nutrient removal through harvested products and 

losses (Bekunda et al., 2010; Mugwe et al., 2009). It is believed that integrated 

soil fertility management can improve African food security (Breman & 

Debrah, 2003), and that Ethiopia is no exception. Across the region of the sub-

Saharan Africa (SSA), combined use of organic resource with mineral fertilizer 

has been recognized as a means to counterbalance the soil fertility problems 

(Palm et al., 1997). For the smallholder farmer, the investment in mineral ferti-

lizers constitutes the major annual cash investment. Due to low cash flow and 

limited availability of credit the recommended fertilizer application rates are 

not within the reach of most resource poor farmers. Since the required rates of 
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application for organic inputs to compensate for this would be very high, the 

combined application of these inputs can be a sound strategy for the smallhold-

er farmers (Vanlauwe et al., 2011; Gentile et al., 2008).  

1.3 Integrated plant nutrient management and soil nutrient 
budgets  

Following the abolition of fertilizer subsidies in SSA (Stoorvogel et al., 1993), 

increased use of organic resources (e.g., alley cropping, live-mulch systems) 

became an area of interest to sustain agricultural production. Nevertheless, 

constraints such as insufficient availability of organic resources and labor in-

tensive technologies have limited the potential of such low input sustainable 

agriculture methods to increase the agricultural production in SSA (Vanlauwe 

et al., 2001b). The integrated soil fertility management (ISFM) concept has 

evolved through these experiences, advocating the use of both organic and 

mineral input because: (i) the two resources fulfill different functions to main-

tain plant growth, (ii) under most small-scale farming conditions, neither of the 

two inputs is available or affordable in sufficient quantities to be applied alone, 

and (iii) synergies can be achieved when applying both inputs in combination 

(Gentile et al., 2008; Palm et al., 1997).  

Integrated soil fertility management (Figure 1) was defined by Vanlauwe et 

al. (2010) as: 
 

A set of soil fertility management practices that necessarily include the use of 

fertilizer, organic inputs, and improved germplasm combined with the 

knowledge on how to adapt these practices to local conditions, aiming at max-

imizing agronomic use efficiency of the applied nutrients and improving crop 

productivity. All inputs need to be managed following sound agronomic princi-

ples.  
 

That is, ISFM recognizes the combined use of available and locally relevant 

technologies aiming at maximizing agronomic use efficiency of the applied 

nutrients and improving crop productivity. In a meta-analysis based on litera-

ture data aiming to quantify the impact of ISFM component on agronomic 

efficiency of nitrogen fertilizer, Vanlauwe et al. (2011) found that mixing ferti-

lizer with manure or compost resulted in the highest agronomic efficiency of 

the nitrogen fertilizer, and this effect was higher at low N input rates.  

As documented in several case studies, combined use of organic and miner-

al fertilizer has resulted in a higher crop yield and improved soil quality attrib-

utes (Chivenge et al., 2011; Vanlauwe et al., 2011; Chivenge et al., 2009; 

Gentile et al., 2009; Gentile et al., 2008; Palm et al., 1997). The terms interac-
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tion and added benefit (Chivenge et al., 2009; Gentile et al., 2009; Vanlauwe et 

al., 2001a; Palm et al., 1997) have been used to describe the synergistic effect 

of combined use of organic and inorganic inputs compared with inorganic 

input alone. Interaction appears to be a commonly used term for this in litera-

ture (e.g., see Gentile et al., 2008; Chivenge et al., 2009; Gentile et al., 2009), 

although added benefit is suggested as a better phrase (Palm et al., 1997). In 

this thesis, it has also sometimes been referred to as synergy.  

Added benefit (AB) can be quantitatively defined as:  

AB = (YOF – Yctrl) – (Y’O + Y’F)     [1] 

where YOF is the response of the combined organic and mineral fertilizer 

treatment and Yctrl is the response of a unfertilized control treatment. Y’O is the 

response increase of the organic treatment and Y’F is the response increase of 

the mineral fertilizer addition. Y’O and Y’F are calculated as: 

Y’O = fO (YO – Yctrl)      [2] 

Figure 1. Conceptual relationships between agronomic efficiency of fertilizer N and implementa-

tion of various components of ISFM towards complete ISFM. Soils that are responsive to ferti-

lizer and those that are poor and less-responsive are distinguished. The ‘current practice’ step 

assumes the use of the current average fertilizer application rate in SSA of 8 kg fertilizer nutri-

ents ha
−1

. Paths A and B refer to soils that show acceptable response to management (‘responsive 

soil’) and soils that show minimal or no response (‘poor, less-responsive soil’) due to other 

constraints beside the nutrient contained in the fertilizer, respectively. Path C refers to the effect 

of rehabilitation of less responsive soil by addition of an organic matter resource. Redrawn from 

Vanlauwe et al. (2010). 
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Y’F = fF (YF – Yctrl)      [3] 

where YO is the response obtained from the an organic treatment alone and YF 

is the response obtained from an inorganic fertilizer treatment alone. The re-

sponse differences in eq. [2] and [3] are multiplied with the fraction of the 

organic (fO) and fertilizer (fF) that are used in the combined treatment com-

pared to the single organic (YO) and fertilizer treatments (YF).  

Added benefits in terms of extra yield or improved soil fertility resulting 

from combined use of organic and inorganic inputs have been compared with 

the sum of the responses from either of the input added alone and possible 

hypotheses have been suggested. Vanlauwe et al. (2001a) proposed two hy-

potheses: the direct and indirect mechanisms as outlined in Figure 2. In the 

direct mechanism, temporary immobilization of mineral fertilizer N suggested 

to improve uptake of organic input derived N through N limited decomposition 

of low- or medium quality organic residues. The immobilized N is subsequent-

ly mineralized at a later time improving the synchrony between N availability 

and crop need. The findings by Gentile et al. (2008) and Gentile et al. (2009) 

corroborate this view point. 

Residue quality is important for the observed added benefits as available 

mineral N (Gentile et al., 2008) and crop harvest increase (Gentile et al., 

2009). Combining mineral fertilizer with low quality maize (Zea mays L.) 

residue (C:N ratio of 31) reduced N loss and resulted in a positive interaction 

Figure 2. Schematic representation of added benefit due to combined use of organic and inorganic 

fertilizes.  
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effect. In contrast, addition of high quality tithonia [Tithonia diversifolia 

(Hemsl.)] residue (C:N ratio of 12) led to a net N mineralization that resulted in 

early season N loss and a negative added benefit. When low quality residue 

was combined with mineral fertilizer, a net immobilization and subsequent 

release of fertilizer-N thus resulted in a better synchrony between nutrient 

availability and crop demand by reducing early season available N. However, 

application of high quality tithonia together with mineral fertilizer eliminated 

the period of net immobilization by providing the N needed for decomposers. 

The incorporation of medium quality residue, e.g., calliandra [Calliandra calo-

thyrsus (Meisn)]; with a C:N ratio of 14, together with fertilizer had the poten-

tial to optimize residue-derived N release without increasing potential N losses 

(Gentile et al., 2008). Another direct mechanism that may explain the existence 

of the added benefit is that the organic resource contains a range of macro and 

micro plant nutrients that are not found in the NP fertilizer. Thus, the combined 

organic and mineral fertilizer input enhances crop harvest through alleviation 

of multiple nutrient limitations and may improve the nutrient recovery, as dis-

cussed in Palm et al. (1997) and references therein. Nutrients other than N and 

P that have been found to be limiting in many African soils include zinc (Zn), 

sulfur (S) and boron (B) (Wendt & Rijpma, 1997).  

Soil microbes play a substantial role in the direct benefit since they respond 

to alteration of soils such as addition of organic inputs (Ritz et al., 2009; 

Stockdale & Brookes, 2006; Wardle et al., 1999). They mediate several soil 

ecological processes that are a part of nutrient cycling, organic matter degrada-

tion and plant root-microbes interactions. By using methods that looks at the 

response of the microbial community to soil management, it is possible to ob-

tain indications on the importance of the microbes for different soil processes 

for an improved understanding of the interaction between fertilizer and organic 

matter addition. Methods that have been employed to assess changes in the soil 

microbial composition and functions under different soil environments, habi-

tats or agricultural management practices are categorized into molecular profil-

ing (Schwieger & Tebbe, 1998; Liu et al., 1997), phenotypic/biochemical pro-

filing (Bossio et al., 1998; Frostegård et al., 1993), and physiological profiling 

(Campbell et al., 2003; Degens & Harris, 1997; Garland & Mills, 1991) ap-

proaches. Potentials and limitations of these methods are discussed in Paper III. 

The indirect mechanism is explained by enhanced efficiency in the utiliza-

tion of fertilizer N (agronomic efficiency of N, AE-N) through organic input 

addition-related improvement in soil physical properties such as improvement 

in soil structure, infiltration and water holding capacity, and a better crop root 

development, which may result in higher demand by the plant for the fertilizer 

nutrient. 
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1.4 Participatory approach  

Farmers often have a good understanding of the decline in soil fertility and the 

drivers behind it. They respond to changes based on their accumulated indige-

nous knowledge and their experience but may not be in a position to adequate-

ly address the problem due to limited access to resources. It is also possible 

that their understanding of the problems have dimensions that are overlooked 

and difficult to observe by available scientific methods (Gray & Morant, 2003). 

In participatory research, scientists, farmers and other stakeholders get in-

volved in a common process including problem identification, prioritization 

and implementation of interventions and subsequently, evaluation of outcomes. 

In participatory research, the farmer is not limited to being an object for re-

search, but participates as a subject in the research process. 
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2  Aims of the study     

Compost addition had been chosen through a participatory process by the 

farmers in the study area as an intervention of interest to mitigate declining soil 

fertility. It was hypothesized that the addition of on-farm made compost in 

realistic (i.e., raw material availability, workload) amounts can serve as a quan-

titatively important complement to fertilizer addition in crop production sys-

tems in the highlands of Ethiopia. Based on literature information, it was also 

hypothesized (i) that the simultaneous addition of mineral N and organic matter 

leads to improved N use efficiency and (ii) that compost addition alleviates 

nutrient limitations other than for N and P. Finally, it was hypothesized that 

farm household resource availability affects the decision to adopt compost as 

part of the farming system. 

The overall aim of this research was to test the effects of compost addition 

on crop productivity, soil properties and function, agronomic N use efficiency 

and feasibility of adoption.  

The specific aims were:   

 

 to compare the effects of separate and combined addition of compost and 

NP fertilizer on the productivity of crops, build-up of soil organic carbon 

and plant available micro- and macronutrients in on-farm experiments (Pa-

per I & II). 

 to assess and quantify the added benefits (synergy) in terms of grain/tuber 

harvests and the agronomic N use efficiency under combined use of com-

post and NP fertilizer (Paper II). 

 to examine differences in plot level N and P balances with respect to com-

post and NP fertilizer added alone or in combination (Paper II). 

 to test if compost and NP fertilizer added alone or in combination affected 

the composition of the soil microbial communities and their capacity to uti-

lize different C sources (Paper III).  



20 

 to evaluate if access to information and household resources affected the 

decision to adopt compost and to evaluate the practical feasibility of pro-

ducing and using compost (Paper IV). 
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3 The study area 

Research in the Munessa area, where this study has been done, started over a 

decade ago with the aim to assess the effects of deforestation and subsequent 

changes in the land-use on soil fertility and biodiversity (Figure 3). The re-

search includes chronosequence and land-use comparison studies which de-

scribed the decline in soil fertility over time as a result of deforestation and 

subsequent conversion to and utilization as cropland [e.g., Lemenih & Itanna 

(2004); Lemenih et al., (2005a); Tolera et al., (2008)], participatory problem 

assessment and intervention identification together with the local farmers [e.g., 

Karltun et al., 2013a; Lemenih et al., (2011); Karltun et al., (2008)], and stud-

ies regarding the decline and gradual elimination of legumes from the cropping 

system due to theft (Chiwona-Karltun et al., 2009) and the re-introduction of 

Figure 3. The Beseku studies since 2000; 1: Lemenih et al., 2008; Tolera et al., 2008; Lemenih 

et al., 2005a; Lemenih et al., 2005b; Lemenih et al., 2004; 2: Karltun et al., 2013a; Lemenih et 

al., 2011; Karltun et al., 2008; 3: Karltun et al., 2013b; Chiwona-Karltun et al., 2009; 4: (Be-

dada et al., 2014; Bedada et al. Paper II & III; 5: Karltun et al., 2013b; Bedada et al. Paper IV. 
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faba bean cultivation through farmer-led participation (Karltun et al., 2013b). 

The present studies of on-farm compost experiments and evaluation (Papers I, 

II, III and IV) are an integrated part of the studies on factors and processes that 

affect soil fertility in the Munessa area. 

The field study was conducted in Beseku in Arsi Negele district of the cen-

tral highlands of Ethiopia. The village is situated at the border of Munessa 

natural forest, in the eastern escarpment of the Central Rift Valley, between 

7°20′ and 7°25′ N and 38°45′ and 38°50′ E at an altitude of about 2100 meters 

above sea level (Figure 4). The area has a bimodal rainfall distribution, with a 

short rainy season between March and early June and the main rainy season 

between late July and the beginning of October (Lemenih et al., 2005b). The 

mean annual rainfall in the area is 932 mm, with an annual mean minimum 

temperature of 9.4°C and maximum temperature of 22.7°C (Figure 1 of Paper 

I). The lowest minimum daily temperature is 5.5°C (December), with the high-

est maximum daily temperatures of 25.4°C in March. The soils in the experi-

mental area are originating from volcanic lava and ashes through quaternary 

volcanic activities in the Rift Valley and its surroundings. They are classified 

as Humic Andosols with a loam texture, a CEC ranging between 25 and 32 

cmolc kg
-1

, and a base saturation ranging between 48 and 68% (Lemenih et al., 

2005a).  

The farming system in the area is a mixed crop-livestock production system 

(Lemenih et al., 2005a). The two major cultivated crops are maize (Zea mays 

L.) and wheat (Triticum aestivum L.), 43% and 33% of crop land area, respec-

tively. Sorghum (Sorghum bicolor L. Moench) and barley (Hordeum vulgare 

L.) are also cultivated but with less areal coverage, 11% and 10% of crop land 

area, respectively. Between May and August, farmers may cultivate potato 

(Solanum tuberosum L.) as a food security crop to provide staple food between 

August and November until other crops (mainly maize and wheat) are harvest-

ed (Karltun et al., 2013a). Late maturing varieties of maize are planted in late 

April/early May during the short rainy period: harvesting is during late No-

vember to early December. Wheat is planted in August and harvested four 

months later in November. Livestock, predominately cattle, have an important 

role in the farming system, as they support crop production by providing 

draught and threshing power and manure as an input to restore soil fertility 

(Lemenih et al., 2005a). Manure is often applied to the fields close to the 

homestead, but is also used as dung cakes for fuel (Karltun et al., 2013a). The 

more distant farm fields receive less or no manure. Crop residues are either fed 

to livestock or used as fuel source. The residues that are left on the croplands 

are sometimes also burnt to ease land preparation (Lemenih et al., 2005b). 
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Figure 4. Location of the study area and the sites of on-farm experiments in Beseku, Ethiopia. 

The inset picture is extracted from Google earth, imagery date 22
nd

 of December 2013. 
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4 Effects of compost added alone or in 
combination with NP fertilizer on crop 
productivity and soil nutrient buildup 
(Paper I and part of Paper II) 

4.1 Background 

The Munessa natural forest, which is found adjacent to the present study site, 

have for over 70 years been subjected to deforestation and large forest areas 

have been converted to cropland and grassland through this process (Lemenih 

et al., 2005b). The soils are Mollic Andosols (WRB, 2014i; Lemenih et al., 

2005a) and have good potentials to be high yielding agricultural soils. As doc-

umented in the earlier research reports (Karltun et al., 2013a; Lemenih et al., 

2005a; Lemenih et al., 2005b), farmers have cultivated the deforested areas 

with little or no external nutrient inputs and this has consequently resulted in 

depletion of soil quality attributes and reduction in agricultural productivity. A 

previous study showed that almost all soil quality parameters considered are 

declining over time (Lemenih et al., 2005a). Isotope studies using the natural 

abundance of 
13

C and 
15

N indicated that after deforestation there was an inten-

sive mineralization of organic matter resulting in mineralization of large quan-

tities of N. When the mineralization of SOM declined after 15-25 years, so did 

the release of N. As a result, N became limiting for crop growth and addition of 

fertilizer became necessary to sustain the crop production (Lemenih et al., 

2005b).  

Recognizing this problem, a participatory research project aimed to develop 

strategies to cope with the declining soil fertility was initiated (Karltun et al., 

2013a). The target was to identify, implement and evaluate locally acceptable 

integrated soil nutrient management options to cope with the declining soil 

fertility. As outputs of these processes, the farmers brought up the idea of try-

ing compost making and addition. Therefore, on-farm experiments with com-
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post addition alone or in combination with mineral fertilizer were initiated 

(Figure 3) and implemented on four farms with the aim of using locally availa-

ble composting materials. Since the prices for mineral fertilizers continue to 

increase, resource-poor farmers may not afford to purchase the desired amount 

for an optimal application or could afford to purchase considerably less com-

pared with resource rich farmers (Haileslassie et al., 2007; Elias & Scoones, 

1999). From the local farmers’ perspective, it was perceived that the compost 

could have a high significance as a potential replacement of fertilizer. 

4.2 Aims  

In order to address the key issue of continuous nutrient removal and depletion 

of soil quality attributes and consequently reduction in crop production in the 

low-input agricultural systems in Beseku, four on-farm experiments were con-

ducted with the aims (i) to compare crop productivity and soil organic matter 

buildup in soils receiving mineral fertilizers (NP) and compost, either alone or 

in combination (Paper I); (ii) to test if long-term addition of compost and NP 

fertilizer, alone or in combination, results in differences in available soil nutri-

ent status (parts of Paper II). The effects were assessed through measuring crop 

harvests and soil nutrient status based on measured data complemented with 

data from literature.  

4.3 Materials and methods 

A randomized complete block design with four treatments and three blocks was 

used for the experiments at all sites. The treatments (Table 1 of Paper I) were: 

(1) a full dose of compost (C) applied alone at 27 t ha
-1

 on fresh weight (FW) 

basis or a dose equivalent to 2.4 t ha
-1

 organic matter on dry weight basis; (2) a 

full dose of fertilizer (F), i.e., at a dose equivalent to 100 kg di-ammonium 

phosphate (DAP) ha
-1

 + 50 kg urea ha
-1

; (3) half compost and half fertilizer 

(CF) at a dose equivalent to of 13.5 t ha
-1

 compost FW or 1.2 t ha
-1

 organic 

matter + 50 kg DAP ha
-1

 + 25 kg urea ha
-1

; and, (4) a control with no input 

(Ctrl). Each treatment plot was 6 x 6 m with no spacing between plots and 

blocks. This was in accordance with the farmers’ interest of not leaving any 

unused space on their farm fields.  

The Beseku village is divided into four different sub-villages or ‘gotes’. In 

order for the experiments to be geographically distributed over the village and 

capture variations in soil status and farmer management, the experiment was 

replicated on one field for each of the four households. We selected one farmer 

from each gote based on willingness to participate and after assessment of the 
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capacity to carry out the experiments. The assessment primarily considered the 

dedication of the farmer and did not consider wealth status, or specific farm 

and field properties. The selection of farmers was not entirely random and 

contained a systematic element, but the farm field assigned for the experiment 

was selected by the respective farmer with no external influence. The farmers 

participated in the on-farm research are referred to as IB, KW, MM, and TM in 

the thesis. On three farms, the treatment application and the recording of har-

vest and soil nutrient status was maintained throughout the experimental period 

(2007 to 2012). However, the fourth farmer (MM) dropped out after two years 

due to illness. 

Di-ammonium phosphate was applied at sowing and urea was top dressed 

40 to 45 days after sowing. The quantity of compost addition was determined 

in such a way that a full compost dose represented an N addition similar to 

mineral fertilizer addition; it was assumed 35% of the N in the compost would 

mineralize and become plant available during the crop-growing period. The 

participating farmers prepared their own compost in a pit dug under the shade 

of trees or bushes from organic materials that are accessible to the farm own-

ers, but application on the plots was seasonal and was handled jointly by the 

researchers and farmers each year.  

The rate of compost application was kept constant throughout the experi-

mental period. The origin and composition of the composts (Table 1) were not 

standardized; instead, the compost reflected the organic resources available to 

each household. Each year, the farmers decided which crop they would grow 

on the experimental sites, and were provided with the appropriate varieties and 

amount of seeds needed for every season. The crops grown by the farmers are 

presented in Table 2 of Paper I. Maize was the most favored crop and was 

grown in five out of six years during the experimental period. 

Table 1. Average nutrient contents of the on-farm made compost sampled and analyzed in 2007 

and 2012. 

Farm pH
a
 

OC Tot-N 
C:N 

Tot-P  P
 
 S B Cu Fe Mn Zn 

% g kg
-1

 Mehlich-3 extractable in mg kg
 -1

 

IB 7.40 10.7 1.05 10.3 2.1  593 235 4.25 2.32 204 290 33.0 

KW 8.39 10.9 1.03 10.8 3.0  843 442 5.96 2.29 146 372 35.6 

TM 8.60 10.5 0.91 11.6 2.9  1000 523 6.77 1.62 152 321 30.6 

Reference soil
b
 

10-yr 6.38 4.46 0.36 12.4   16.4 38.7 0.49 2.58 196 300 14.8 

a 
pH (H2O) determined on 1:2.5 soil to suspension ratio.  

b 
Reference soil denotes soil from farm field cultivated for 10-years (10-yr). 
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Farmers preferred to grow late maturing maize varieties, therefore, sowing 

was done during the short rainy season (April) and the crop remained on the 

field through the main rainy season: harvesting was in late November to early 

December. However, potato and wheat were grown sequentially over one 

cropping season. The potato was planted during the short rainy period of the 

season (April-May) and wheat was sown after potato harvest at the start of the 

main rainy period of the season (August). Faba bean (Vicia faba L.) and wheat 

were grown on two fields during the course of the study and potato was grown 

on one field during the second and fifth years of the experiment (Table 2 of 

Paper I). 

Four compost subsamples were randomly drawn from the mature compost 

pile of each site prior to field application. The samples were analyzed for or-

ganic carbon (OC), total N, nitric acid extractable P according to Swedish 

Standard (SSI, 1997) and Mehlich 3 extractable P, S and the micronutrients B, 

Zn, copper (Cu), iron (Fe), and manganese (Mn). Organic C and total N were 

analyzed by dry combustion on a LECO® CHN elemental analyzer. Micro- 

and macronutrients were extracted with the Mehlich-3 procedure (Mehlich, 

1984), and analyzed with an ICP-OES (Perkin-Elmer Optima DV 5300). Com-

post pH was determined in a 1:2.5 compost to water suspension ratio. The 

mean nutrient contents of compost samples from each site are presented in 

Table 1. 

Background soils had a pH-H2O of 6.6, a soil OC content of 4.2%, a total N 

(Kjeldahl method) content of 3.9 g kg
−1

, and a P-Olsen content of 15 mg kg
−1

 

at the start of the field experiments in 2007. During the 2012 cropping season, 

another set of soil samples were collected from each experimental plot at all 

sites immediately after crop harvest for nutrient analysis. In this sample collec-

tion, two pits were dug near the center of each plot and soil samples were col-

lected carefully and uniformly along each soil depth interval (0 to 10 cm and 

10 to 20 cm) with a hand trowel. The samples were extracted with the Mehlich-

3 procedure (Mehlich, 1984) and analyzed for P, S, K, magnesium (Mg), calci-

um (Ca), sodium (Na), B, Cu, Fe, Mn and Zn with ICP-OES. Organic C and 

total N were analyzed by dry combustion on an LECO CHN elemental analyz-

er. In the same season, another set of soil samples were collected at 0-10 and 

10-20 cm soil depths with core sampler for bulk density determination. The soil 

carbon content for each depth was converted into stock (g m
−2

) as: C = zρc, 

where C represents the carbon stock in g m
−2

, z is the thickness of the sampled 

layer (m), ρ the bulk density in kg m
−3

, and c the carbon concentration in g 

kg
−1

. Total N (g N m
−2

) stock was calculated with the same equation. However, 

the computed C and total N stocks were finally expressed in t ha
−1

 for ease of 

data presentation. 
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4.4 Results and discussion 

4.4.1 Effects on harvests of different crops 

Treatment effects on crop harvests were significant (P < 0.05) for all crops 

grown across the sites and seasons. For maize, the highest yields were obtained 

from the combined treatment across seasons and sites compared to the full dose 

of compost or the fertilizer alone treatment (Figure 5). The overall mean for 

maize yield for the experimental period followed the order CF > C > F > Ctrl, 

with the highest yield of 4.53 t ha
-1

 from CF and the least from the control at 

2.59 t ha
-1

. The yield pattern, with the lowest yields in the control and the high-

est in the CF treatment, was consistent despite seasonal variations in crop per-

formance (Figure 4b of Paper I). The overall mean yields from C and F were 

comparable, whereas the CF treatment resulted in a relative yield increment of 

11% over sole application of compost and 25% over sole application of ferti-

lizer. For wheat and potato, the yields obtained from CF, C and F were compa-

rable (Figure 6). For faba bean, CF had a relative increase in harvest of 45% 

compared to the control. The overall combined yield was in the order of CF > 

C > F > Ctrl for faba bean, CF > F > C > Ctrl for potato, and F > CF > C > Ctrl 

for wheat. The higher crop yields from the CF treatment indicate a synergy 

when adding compost and NP fertilizer together. While harvests from compost 

alone and the combined treatments were comparable, the grain yields from the 

different crops are enhanced in soils receiving the combined treatment, com-

pared with fertilizer alone. This finding is in agreement with other research 

reports from SSA, which documented improved crop harvests under combined 

use of organic and inorganic plant nutrient sources (Chivenge et al., 2011; 

Vanlauwe et al., 2011; Chivenge et al., 2009; Vanlauwe et al., 2001a). 

4.4.2 Effects on soil properties 

Long-term application of compost alone or in combination with NP fertilizer 

improved soil properties such as soil organic carbon (SOC), total N, P, K, Ca, 

and Mg in the upper 10 cm of the soil (Figure 7, Table 2). Compared with the F 

treatment, the SOC and total N stocks significantly increased (P < 0.05) in C 

and in CF treatments (Table 2). This result corroborates the findings of 

Bhattacharyya et al., (2009), Goyal et al., (1999), Srivastava et al., (2012), who 

reported increases in SOC and total N from long-term experiments with organ-

ic materials alone or in combination with mineral fertilizer. Application of F 

alone slightly decreased both SOC and total N stocks compared with the unfer-

tilized control in the surface soil layer. While the addition of fertilizer alone 

reduced soil pH, the compost alone had the opposite effect of increasing soil 

pH, compared with the other treatments. The reduction in soil pH with the F 
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treatment could be attributed to the acidifying effects of the di-ammonium 

phosphate fertilizer, as the long-term use of acid forming N fertilizers acidifies 

the soil through microbial oxidation of ammonium (Schroder et al., 2011; 

Barak et al., 1997). 

 

Figure 5. Effect of combined and sole addition of compost and NP fertilizer on maize grain har-

vests: (a) mean seasonal maize grain harvests averaged over sites, and combined over seasons and 

sites (the far right bars), and (b) treatments mean harvest against season effect. Yr-07, Yr-09, Yr-

10, Yr-11, Yr-12, and Combined denote seasons 2007, 2009, 2010, 2011, 2012, and data com-

bined over seasons and sites, respectively. Maize was not grown in 2008. C = compost alone; CF 

= half C and half F combined; F = NP fertilizer alone; Ctrl = unfertilized control. Means not 

sharing the same letters within a season [a–c (2007–2012), a–b (2009– 2010), and a–a (2011)], 

and combined over seasons and sites (aʹ–cʹ) indicate significant difference among treatments (P < 

0.05). 
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Table 2. Initial soil condition and treatment effects on some soil properties in the upper 10 cm 

layer from on-farm experiments at Beseku, Ethiopia after 6-years of treatment application. Means 

in a column not sharing the same letters indicate significantly differences at P < 0.05. 

Treat-

ment 
BD

a
 pH 

Soil OC Total N 

C:N 

B Cu Zn 

% t ha
-1

 g kg
-1

 t ha
-1

 Mehlich-3 extractable in 

mg kg
-1

 

C 1.01 6.93a 3.95a 38.4a 3.91a 3.80a 10.1 0.83a  2.41ab  18.1a  

CF 1.03 6.74b 3.83ab 38.5a 3.80ab 3.83a 10.1 0.67ab  2.48a  16.9ab  

F 1.01 6.54c 3.57b 33.8b 3.58bc 3.38b 10.0 0.49b  2.32ab  15.6b  

control 1.03 6.65bc 3.52b 34.5ab 3.52c 3.45b 10.0 0.53b  2.31b  15.4b  

Pr>Ftrt
b
 ns 17.2*** 5.0** 5.6** 7.1*** 7.1*** ns 9.3*** 3.6* 6.5** 

Initial soil condition (0-10 cm)
c
 

control  6.61 4.22  3.86  11.1    

C = compost alone; CF = half C and half F combined; F = fertilizer alone; control = unfertilized control. 
a 
BD = bulk density (g cm

-3
); Soil pH was determined on a 1:2.5 soil to water suspension.  

b
 Pr > Ftrt = F-values for the treatment effect and level of significance [P < 0.05 (*), P < 0.01 (**), P < 0.001 

(***), and ns= not significant at P < 0.05]. Data was taken at the end of 2012 cropping season. 
c
 Soil C, N and P were determined by oxidation, Kjeldahl method and the Olsen method, respectively.  

 

Figure 6. The effects of compost addition, with and without NP fertilizer, on the harvests of 

potato tuber (FW), wheat and bean grain. C = compost alone; CF = half compost and half ferti-

lizer combined; F = NP fertilizer alone; Ctrl = unfertilized control. Mean values with different 

letters indicate significant difference (P < 0.05) among treatments for the wheat (A–B), bean (a–

b) and potato (aʹ–cʹ). Error bars show standard error of the mean. 
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While application of NP fertilizer only contributed to increased soil P lev-

els, compost application increased the concentrations for several nutrients, and 

there were expected dose-response patterns with compost addition (Figure 7). 

Available P increased more in the C and CF treatments than in the control, due 

to the addition of P through the compost (Table 1). In agreement with this re-

sult, Takeda et al. (2009) observed enhanced mineralization of organically 

bound P with the application of organic inputs in Andosols through increased 

phosphatase activity and microbial biomass P in the soil. Despite the obvious 

increase in available P in the CF and C treatment (Figure 7), the P level for all 

treatments was well below a calculated average (30.9 mg P kg
-1

) for published 

soil P critical levels (Rutgers, n.d.; Savoy, 2009; Fixen, 2006; Sawyer et al., 

2003; Chilimba et al., 1999; Wendt, 1995). The available P concentration in 

the F treated soils was lower compared to the C treatment, but the application 

appeared sufficient to maintain the soil P status at a higher level compared to 

the control. 

Addition of compost with or without NP fertilizer increased Mehlich-3 ex-

tractable concentrations of S, though these values were lower than the critical 

Figure 7. Treatment effects on some Mehlich-3 extractable concentration of macronutrients in the 

0-10 cm and 10-20 cm soil depths in on-farm field experiments at Beseku, Ethiopia after 6-years 

(seasons) of treatment application. Data present means of three sites and three replications at each 

site. Bar graphs not sharing the same letters denote significant differences (P < 0.05) among 

treatments for 0-10 cm (a-c) and 10-20 cm (A-B). Error bars show standard error of the mean. C: 

alone; CF: half C and half F combined; F: NP fertilizer alone; Ctrl: unfertilized control. 
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levels reported in literature, 10 mg S kg
-1

 extracted by ammonium acetate and 

acetic acid (Grobler et al., 1999). This implies that the Mehlich-3 extractable S 

levels in soil in the current study are low, especially since Mehlich-3 method 

extracts relatively more soluble S than the calcium chloride extraction method 

and other methods such as monocalcium phosphate and monocalcium phos-

phate + acetic acid, as described by Rao and Sharma (1997). The Mehlich-3 

extractable K, Mg and Ca concentrations were higher in the C treatment than in 

the control, and there were elevated levels in the CF treatment although only 

significant (P = 0.011) for Mg indicating a dose-response relationship for the 

compost addition (Figure 7). The addition of ash to the compost during prepa-

ration (Paper I) probably contributed to the treatment effects for Ca and Mg. In 

this study, the Mehlich-3 extractable concentrations of all the three cations fell 

within the very high range reported by Rutgers (n.d.).  

The observed changes in the concentrations of macro- and micronutrients 

were mainly related to compost addition. The levels of Mehlich-3 extractable B 

and Zn were built-up in the surface soil layer due to the addition of compost, 

whereas, other micronutrients remained virtually unchanged, as the concentra-

tion range in the compost (Table 1 of Paper II) was similar to the intrinsic soil 

concentrations. The added micronutrients not taken up by plants appeared to 

remain in the upper 10 cm of the soil (soil plough layer), as no treatment ef-

fects on the soil below 10 cm were found (Table 1 of Paper II). It was noted 

that the micronutrients, such as B, Zn and Cu, increased with compost addition 

alone or in combination with NP fertilizer above the critical levels mentioned 

in the literature (Rutgers, n.d.; Horneck et al., 2011; Wendt, 1995). Boron defi-

ciency is reported in many crops all over the world, and Andosols are consid-

ered potentially deficient in B (Fageria et al., 2002). Even crops with a small B 

requirement, such as cereals, can suffer from seed set problem if B soil levels 

are low (Shorrocks, 1997). Overall, addition of compost alone or in combina-

tion with NP fertilizer increased SOC, total N and several Mehlich-3 extracta-

ble nutrients in the upper 10 cm of the surface soil suggesting that compost can 

be a valuable complement to mineral fertilizer use. 
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5 Effects of compost added alone or in 
combination with NP fertilizer on plot 
level soil nutrient flows and balances 
(part of Paper II) 

5.1 Background 

Nutrient balances are useful tools used to assess sustainability of a given land 

use system and provide information of productivity or indicators of potential 

land degradation (Lesschen et al., 2007). With the nutrient balance approach, 

the amounts of nutrients that are entering and leaving a system with predefined 

boundaries are estimated, and the balance is calculated as a difference between 

inputs and outputs (Lesschen et al., 2007; Stoorvogel & Smaling, 1990). Nutri-

ent flows and balances can be calculated at various spatial scale ranging from 

individual plant to plots of land or farms or higher levels (Schlecht & Hiernaux, 

2004). Even though nutrient balance calculation at large-scale provides a good 

starting point to target soil fertility polices at broader scale, crop or farming 

system specific balances can be chosen as entry point where soil fertility de-

cline is pronounced (Lesschen et al., 2007). 

Stoorvogel and Smaling (1990) introduced a nutrient balance approach 

where the soil nutrient balance is defined by five inputs and five outputs. The 

five major inputs are: mineral fertilizers, organic sources, wet and dry deposi-

tion from the atmosphere, biological nitrogen fixation, and sedimentation, 

whereas the five major outputs are: harvested products, crop residue removal, 

leaching, gaseous losses, and soil erosion. The balance between the inputs and 

the outputs indicates whether an agriculture system is a net gainer or net looser 

of soil fertility (Stoorvogel & Smaling, 1990).  
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5.2 Aim 

Increased nutrient addition does not always improve a negative nutrient bal-

ance since nutrient removal can increase through increases in harvests and 

other losses. The aim of this study was to quantify the possible impact on N 

and P soil stocks as a result of the addition of compost alone or in combination 

with NP fertilizer. We examined plot level N and P flows and balances with 

respect to the different treatments we used in the on-farm studies.   

5.3 Input-output fluxes and balance calculations 

For the experimental plots, nutrient flows and balances were calculated with 

the revised methodology described in Lesschen et al. (2007): four input (IN1-4) 

and five output (OUT1-5) fluxes for N, and three input and three output fluxes 

for P. The input fluxes were inorganic (IN1) and organic (IN2) N and P fertiliz-

ers, symbiotic and non-symbiotic N fixation (IN3), and atmospheric deposition 

(IN4) of N and P. The output fluxes were crop harvest (OUT1, N and P), resi-

dues (OUT2, N and P), leaching (OUT3, N), gaseous loss (OUT4, N), and ero-

sion (OUT5, N and P). IN1 and IN2 were based on inputs used at farm plots 

(measured data). To estimate symbiotic N fixation, 55% (average values for 

legumes) of total N uptake was assumed to be fixed (Lesschen et al., 2007; 

FAO, 2004). Non-symbiotic N fixation, as a function of rainfall, was estimated 

according to Lesschen et al. (2007) and FAO (2004). Wet deposition per year 

(IN4, N and P) was estimated as a function of rainfall (Smaling & Fresco, 

1993) and average nutrient contents in rainwater (FAO, 2004). 

OUT1 were estimated from the grain of maize, wheat and faba been and tu-

ber of potato harvests (Paper I) and whereas OUT2 was estimated based on 

biomass estimations, removal factors and nutrient concentrations of crop resi-

dues. Crop nutrient (N and P) concentrations were obtained from literature 

sources (Tesfaye et al., 2012; Jensen et al., 2010; Haileslassie et al., 2007; 

Randall et al., 2006; Roy et al., 2006; FAO, 2004; Aldrich et al., 1986). Our 

assumption was that the variation in grain yield and residue biomass is normal-

ly much larger than the variation in concentrations of N and P in grain and 

residue biomass. 

Residue removal factors were used to account for part of the crop residues 

left on the field after harvest; however, data on residue removal are scarce. 

Elias et al. (1998) assumed about 80% of the crop residues are completely 

removed from the field in the highlands of Ethiopia. Based on field observa-

tions and farmer interviews at the present study site, a residue removal factor of 

0.85 for maize, 0.90 for faba bean, 0.80 for wheat, and 0.30 for potato (as it is a 

low-residue crop) were assumed in the calculation of OUT2. For the maize 
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crop, biomass was determined after harvest; for other crops, harvest indexes 

published in literature sources were used (CSA, 2013; Alemu et al., 2012; 

Jensen et al., 2010; Roy et al., 2006; Keftasa, 1987). 

OUT3 and OUT4 were estimated from measured data for clay content (%), 

SOC content (%), CEC (cmol kg
-1

), precipitation (mm yr
-1

), mineral and organ-

ic fertilizer N (IN1 + IN2) and amount of N in SOM (kg N ha
-1

) (Bedada et al., 

2014; Lemenih et al., 2005a), and data from literature sources: crop maximum 

rooting depth (m), (FAO, 2004); and decomposition rate of organic resources 

(Haileslassie et al., 2007). Then, N leaching (OUT3) was calculated according 

to a regression model developed by De Willigen (2000), and considered valid 

for a wide range of soil and climatic conditions. Leaching loss was considered 

less important for P fluxes, and was not considered in the P balance calculation. 

Gaseous N (N2O, NOx and NH3) losses (OUT4) were estimated according to a 

regression model proposed by Lesschen et al. (2007). We have estimated soil 

erosion (OUT5) at field level to be low (0.5 to 1.6 ton soil ha
-1

) depending on 

crop types. Since the Mollic Andosol soil type is classified as a low erodible 

soil by FAO (2004), and all experiments are on flat or very gentle slopes, no 

evident signs of on-going erosion have been observed in the experiments. We 

assumed proportional losses of P at an N:P ratio of 4:1. Full nutrient balances 

(kg N or P ha
-1

 yr
-1

) were calculated for both treatments and crop types as a 

difference between inputs and outputs. 

5.4 Results and discussion 

In Paper II, we presented details of the difference between N and P balance 

calculations and the differences in inputs and outputs. For the balance calcula-

tion, total N and P concentrations in the compost input were used. The compost 

dose in the experiment was calculated based on the assumption that 35% of the 

N in the compost was mineralized in the first cropping season and that the min-

eralized N represented an N addition similar to that of the full fertilizer treat-

ment. This had effects on the total input of P in fertilizer and compost. The C 

treatment had a dose of 11 kg ha
-1

 yr
-1

, whereas, in the CF treatment, P addi-

tions were higher, with 6 kg ha
-1

 yr
-1

 in compost and 12 kg ha
-1

 yr
-1

 in fertilizer 

(Table 1 of Paper I). The CF treatment received less P than the F treatment, 

which gave 24 kg ha
-1

 yr
-1

. Therefore, the higher yield in the CF treatment 

could not be considered a P effect alone. The N-fixing effect of the beans 

should be interpreted with some care, as it was not measured but estimated 

from an empirical relationship. The estimates indicated an N input considerably 

higher than the one through fertilizer in the F treatment (Table 5 of Paper II). 
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The export through grain or tuber harvest and crop residues is the highest 

nutrient output (Table 5 of Paper II). High biomass yields (e.g., potato) and 

high N amounts removed in the harvested edible parts explained that the high-

est N export rates were found in potato, wheat and beans. This was in agree-

ment with Haileslassie et al. (2007), who reported similar results for potato in 

the highlands of Ethiopia. However, although potato and bean have low export 

through harvest residues, this is an important export pathway for maize and 

wheat. Crop residues from maize and wheat are generally either directly grazed 

or removed from the croplands for different purposes. Thus, there will be a 

considerable loss of nutrients from the system through harvest residues.  

The control had strongly negative balances of ‒74 kg N ha
-1

 yr
-1 

and ‒14 kg 

P ha
-1

 yr
-1

 (Table 5 of Paper II, Table 3), and this can be considered an approx-

imation of the mineralization of N and P from the soil organic matter. When 

averaged over the estimated balances for the crops, all treatments had positive 

P balances except the control treatment, which had a strongly negative P bal-

ance. The N balance for the F treatment was of a similar magnitude as the N 

balance in the control. This was logical as the mineralized N is utilized by the 

crop despite the nutrient addition in the fertilizer. If this mineralized N is not 

replenished through the return of N containing crop residue or other organic 

resources, it can be considered as soil mining. Comparison of the soil N stock 

with the original (initial) soil N stock at the start of the experiment indicated 

that ΔN for the control and F treatment were strongly negative (P < 0.05), sug-

gesting depletion of N whereas the CF and C treatments appeared to be close to 

steady-state (Table 5 of Paper II, Table 3). This agreed with the C 

Table 3. Treatment effects on N and P full balances of different crops grown in on-farm field 

experiments in Beseku Ethiopia. Data are weighted averages based on number of years each crop 

was grown at all sites. 

Treat

ment 

Full N and P balances: kg ha
-1

 yr
-1

 
∆ soil 

N
a
 

Maize Wheat Potato Bean Mean 

N P N P N P N P N P 

C +26 +17 -7 +6 +4 +20 +68 +21 +23 +17 4ns 

CF -27 +10 -52 +1 -44 +9 0 +4 -30 +8 8ns 

F -55 +7 -98 -5 -85 0 -17 +5 -61 +5 -66* 

Ctrl -71 -13 -107 -23 -81 -16 -52 -17 -75 -14 -55* 

a 
The change in soil N refers to the average soil N concentration difference between initial measured at the start 

of the experiment and at the end of the experimental period. The asterisk (*) denotes that the change in soil N 

pool is different from zero, i.e., H0 is rejected; whereas, ns indicates that the difference is not different from 

zero at P < 0.05. C: compost alone, F: NP fertilizer alone, CF: half C and half F combined, and Ctrl: unferti-

lized control. 
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treatment accumulating 0.4% N per season, (Figure 8a) and the CF treatment 

depleting N fractions of 0.5% per season, both as a percentage of soil N stock, 

compared with the average N depletion of 1.2% per season in the F and control 

treatments (Figure 8a). 

The estimated proportion of different P fluxes in relation to measured avail-

able P in the soil stock was strongly positive or negative for all treatments 

(Figure 8b). Since the differences in the available soil P pool are the accumu-

lated effect of 5 years treatments it implies that crops could mobilize P from 

sources not included in the operationally defined “plant available” pool. Alter-

natively, the plant has the capacity to ‘pick-up’ P from a larger soil volume, 

i.e., a greater soil depth. The N and P depletion values as percentage of soil 

nutrient stocks were greater than the values reported for Burkina Faso, which 

were 0.3% for N and 1.1% for P (Lesschen et al., 2007).  

The N and P balance calculations presented in this study (Paper II) were 

based on data from field experiments and some literature sources. The nutrient 

composition data of each crop and the nutrients exported in the OUT1 and 

OUT2 were based on secondary data. The assumption was that crop nutrient 

concentrations might not vary considerably compared to the higher variability 

measured in grain/tuber and biomass yields and some of these data were from 

research based in Ethiopia. Some authors have been critical of the nutrient 

balance approach by Stoorvogel and Smaling (1990) for lack of validation with 

empirical measurement (Faerge & Magid, 2004) and the use of transfer func-

Figure 8. N and P fluxes in relation to (a) N, and (b) available P expressed as percent of soil 

stocks (0-20 cm) after six-years of treatment application in on-farm experiments in the high-

lands of Ethiopia. N_min and P_min are average N and P exported (% of soil stock) in the 

biomass of the unfertilized control treatment at respective farm fields, which indicate the soil 

supply capacity or amounts of soil N and P available through mineralization. The N_in and 

P_in, and N_out and P_out refers to the total N and P inputs (IN1-4), and the total N and P 

exported (OUT1-5) expressed as percent of soil N and P stocks, respectively. N_dep and P_dep 

denotes N and P depleted (%) in relation to soil N and P stocks. 
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tions in the absence of measured data (Hartemink, 2006; Schlecht & Hiernaux, 

2004). Although the nutrient balance may contain some systematic errors, it 

gives a good sense of possible differences between treatments when applied to 

experimental setups since several potential systematic errors might be similar 

between the treatments. Given the combination of measured, observed and 

literature data, the calculated balances for N and P are approximate and associ-

ated with some uncertainty. However, when compared with independent data 

like the change in the soil pool and earlier studies in the area (Lemenih et al., 

2005a; Lemenih et al., 2005b), the results confirm that the decline in the 

productivity of the farming system in the area can be explained with continued 

loss of soil organic matter and nutrient mining and that only NP fertilizer addi-

tion is insufficient to mitigate that trend. 



41 

6 Exploring crop production synergies 
under combined addition of compost and 
fertilizer (Paper III and part of Paper II) 

6.1 Background 

Above, I have described the effects of fertilizer and compost additions on SOC 

and micro- and macronutrients in the surface soil in the on-farm experiments 

(Paper I and II) and their effect on nutrient budgets for N and P. There was also 

an apparent synergy where crop harvests and N use efficiency for the added N 

were higher from the combined use of compost and NP fertilizer than other 

treatments when the crop was given either input alone (Paper I and II). In this 

section the major focus is on interpretation of and possible explanations for the 

added benefit of the combined application relating to the conceptual figure of 

the explanations presented in Figure 2.  

6.2 Aims 

To get an insight into the possible processes behind the apparent synergy ob-

served in the compost experiments (Paper I and II), studies were conducted 

aiming: i) to assess and quantify the added benefits and agronomic N use effi-

ciency due to combined use of compost and NP fertilizer (parts of Paper II); ii) 

to test if addition of NP fertilizer and compost added alone or in combination 

affected the adaptation of the soil microbial communities and their capacity to 

utilize different C sources (Paper III). Treatment effects were assessed through 

substrate induced respiration (SIR)/community level physiological profiles 

(CLPPs), functional diversity and catabolic evenness of the soil microbial 

community. We hypothesized that the capacity of the soil microbial community 

to utilize different carbon sources is affected by the type of input added and 

that the effect of this adaptation on nutrient mineralization can result in a nutri-
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ent mobilization that is more than additive which could explain the synergetic 

effects of the combined compost and NP fertilizer treatment.  

6.3 Materials and methods 

For these studies samples and data from the on-farm experiments described 

above were used. Details of the treatments and experimental setup are given in 

section 3.1. Crop performance due to treatment effects was determined as 

grain/tuber yield, as presented in Paper I. The extra grain/tuber yield generated 

in the combined treatment (CF), which is defined as added benefits (AB) ac-

cording to Vanlauwe et al. (2001a), was calculated for each crop. Agronomic 

use efficiency of fertilizer N (AE-N, kg kg
-1

), the change in grain yield per unit 

of fertilizer N applied, was determined according to Vanlauwe et al. (2011).  

For the soil microbial study, soil samples were collected with an auger from 

the upper 10 cm of the surface soil of each experimental unit in 2011 when the 

maize crop was at a grain filling stage. At this sampling occasion, the experi-

ment had received the same treatment for five consecutive seasons. Details of 

procedures including soil preparations for the MicroResp assay are given in 

Paper III. To assess the soil microorganisms’ ability to metabolize different 

carbon sources, the total amount of respired CO2 was quantified and the sub-

strate induced respiration (SIR) from the 15 freshly prepared single carbon 

source calculated. Basal respiration (BR) was calculated from the no-substrate 

(water only) control. Basal respiration (BR) reflects the slow release of availa-

ble carbon for microbial maintenance (Insam et al., 1991), whereas SIR reflects 

the size of the active microbial biomass (Schomberg & Steiner, 1997). Catabol-

ic versatility (CV), measures the degradative potential of the soil microbial 

community (Wenderoth & Reber, 1999b), was calculated according to Wen-

deroth and Reber (1999a). The higher CV value indicate ability of soil 

microbes to catabolize a wide range of carbon substrates.  

6.4 Results and discussion 

The F treatment had significantly lower (P < 0.05) mean basal respiration (BR) 

compared to the C and control treatments (Figure 9), which suggests lower 

carbon availability in the F treatment for maintenance at the time of sampling. 

In Paper I, we reported significantly (P < 0.05) lower SOC in the F than in the 

C treatment based on the combined data analysis. Crop harvests and biomass 

production in the F treatment were also comparable with that from C and con-

trol treatments (Table 1 of Paper III). However, the fact that the C and control 

treatments had significantly higher BR than the F treatment suggests that other 
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factors, e.g., fertilizer-stimulated SOM degradation might have contributed in 

addition to low soil carbon in the F treatment. Enhanced initial turnover rate of 

organic carbon or plant residue under increased N availability has frequently 

been found and is often followed by a lower turnover rate at later stages (Ilstedt 

& Singh, 2005; Corbeels et al., 2000; Henriksen & Breland, 1999). Such an 

effect may also have contributed to the similar BR in the CF and control treat-

ments in spite of the compost addition in the former.   

The average SIR induced by the addition of substrates varied significantly 

(P < 0.05) among treatments, with the highest mean SIR in the C treatment and 

the lowest in the CF treatment (Figure 9). The increased respiration rates from 

the C treatment compared to the CF treatment could be explained by increased 

activity of the soil-based microbial community due to higher input of compost 

(Fuchs, 2010; Knapp et al., 2010; Saison et al., 2006; Ros et al., 2003) and 

increased soil microbial biomass (Ros et al., 2003). Compost amendment has 

also been reported to affect size and composition of the soil microbial commu-

nity (Saison et al., 2006). Compost-borne microbial community composition 

and biomass could also contribute to changes in the capacity to respire different 

substrates. However, there is still little information available to substantiate if 

compost microbiota leaves an imprint on soil microbial communities in the 

long-term (Knapp et al., 2010). However, the fact that both the control and the 

F treatments have SIR levels that are intermediate to the C and CF treatments 

Figure 9. Mean substrate induced respiration (SIR) and basal respiration (BR) of soils from an on-

farm field experiment in Beseku Ethiopia. Bars of same color not sharing the same letters (a-c) 

indicate significant treatment difference at P < 0.05. C: compost alone, F: NP fertilizer alone, CF: 

half C and half F combined, and Ctrl: unfertilized control. 
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does not necessarily mean that this is the only explanation. A direct effect of 

fertilizer could be one possible explanation for lower SIR in the CF compared 

with the C treatment. This may be a result of a shift in the relative importance 

of soil microorganisms (Geisseler & Scow, 2014), but this explanation needs 

further investigation. 

Catabolic versatility was significantly higher in the CF than in the C and 

control treatments, with the least versatility obtained from the control plot (Ta-

ble 4 of Paper III). There could be a possibility that the CF treatment better 

supported both fungal and bacterial communities which may have led to a bet-

ter mobilization of plant nutrients and consequently resulted in increased crop 

harvests (Table 1 of Paper III, Paper I). Zhang et al. (2015) reported signifi-

cantly higher phospholipid fatty acid levels for both bacteria and fungi under 

the combined use of compost and mineral fertilizer (NP) compared with the 

compost or fertilizer alone treatments which lends support to this explanation. 

When grouped into different carbon guilds, carboxylic acids induced the 

highest respiration rates and amino acids the lowest (Figure 2 of Paper III). The 

higher utilization of the carboxylic group in the C treatment compared to 

treatments with mineral fertilizer, suggests fertilizer might have affected the 

activity and adaptation of the microbial community to utilize easily metabo-

lized organic acids. Overall respiration in the CF treatment was larger than in 

the control (Figure 2 of Paper III). However, differences were non-significant 

for -amino butyric acid and cysteine when tested singly and respiration in-

duced by N-acetyl-glucosamine was higher in the F than in the C treatment 
(Figure 10). A negative association between fungi:bacterial ratio and substrate-

induced heat release from N-acetyl-glucosamine addition are reported by 

Herrmann et al. (2014). As fungal cell walls are typically composed of com-

plex structures such as chitin, which is a polymer of N-acetyl-glucosamine 

(Zamani et al., 2008; Adams, 2004), the higher respiratory response of fertiliz-

er treated soils to N-acetyl-glucosamine could be related to its preferential utili-

zation by fungi. 
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Figure 10. Colorimetric evolution of carbon dioxide (+ std., n = 9) for soils from an on-farm field experiment in Beseku of Ethiopia: substrate induced 

respiration (SIR) measured 6 h after addition of 15 different single-carbon sources based on MicroResp techniques. Bars not sharing the same letters (a-b) 

indicate significant (P < 0.05) difference between treatments for each carbon sources. C: compost alone, CF: half C and half F combined, F: NP fertilizer 

alone, and Ctrl: unfertilized control. 
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All substrates induced respiration rates above the control (water only) as in-

dicated by positive SIR values of individual substrates (Figure 10). However, 

only six of the fifteen substrates exhibited significant treatment effects on car-

bon utilization. The -Ketoglutaric and citric acids induced 5.1 and 4.2 times 

higher respiration than that of glucose, respectively (Figure 10). The least soil 

microbial response was obtained from lysine, which was 12% less than that of 

glucose. For sludge treated soils collected from Lanarkshire, Scotland, Camp-

bell et al., (2003) reported the highest respiration from fructose and the lowest 

from lysine. Elsewhere, Sradnick et al. (2013) and Herrmann et al. (2014) re-

spectively reported high respiration responses (6 µg CO2-C g
-1

 h
-1

) for oxalic 

and citric acids and for -ketoglutaric acid (6-10 µg CO2-C g
-1

 h
-1

). Compared 

with the results reported by Herrmann et al. (2014) and Sradnick et al. (2013), 

the patterns of respiration from the multiple carbon sources are similar, but 

with generally higher respiratory responses from the present study soils sug-

gesting higher microbial activity and functional capacity. Overall, the variabil-

ity in respiration response to the added substrates indicates that certain carbon 

sources may be too insensitive to discriminate different systems (input types in 

this case) due to their ease of utilization by microorganisms or to differences in 

their availability owing to changes in other soil properties.   
The canonical discriminant analysis successfully separated the MicroResp 

profiles (CLPPs) data or treatments (Wilks’ Lambda: 0.023, F = 3.09, P < 

0.001) (Table 5 of Paper III, Figure 11); implying that the CLPPs were actually 

dependent on the input types added. The discrimination was seen in the first 

(Can1, P < 0.001) and second (Can2, P < 0.05) canonical variables, which 

together explained 94% of the variation. The correlation coefficient between 

the individual substrate respiration rates and the canonical variables indicated 

that ascorbic and -ketoglutaric acids were responsible for the discrimination 

of CLPPs in the compost from the three treatments on Can1 (Table 6 of Paper 

III; Figure 11). On Can2, alanine and cysteine-HCl (P < 0.01) contributed most 

to the discrimination of the CF from the unfertilized control (Table 6 of Paper 

III; Figure 11), whereas, glucose, N-acetyl-glucosamine and lysine were re-

sponsible (P < 0.05) in separating the F, CF and control treatments from C 

treatment on Can1. Ascorbic and -ketoglutaric acids were easily utilized un-

der the C treatment, and amino acids alanine and cysteine-HCL were efficient-

ly degraded under CF treatment, whereas N-acetyl-glucosamine was readily 

utilized under F treatment (Table 6 of Paper III). According to Sradnick et al. 

(2013), the strong correlation coefficients of these substrates with the canonical 

variables would indicate that soil microorganisms with similar function are 

associated to specific carbon sources. 

 



47 

 

Table 4. Added benefits (AB, t ha
-1

) in terms of extra maize and bean grain harvest obtained by 

combining compost with NP fertilizer in on-farm field experiments in Beseku, Ethiopia. 

Variable 
Maize  Faba bean 

IB KW TM Pooled MM KW Pooled 

Y’O
a
 0.62  0.67  1.26  0.85   0.24  0.05  0.14  

Y’NP
a
 0.39 0.43  0.93  0.59   0.14  0.09  0.12  

AB  0.57 0.76  0.83  0.72   0.23  1.16  0.69  

Significance level  

(H0: AB = 0)
b
 

ns * ** *  ns * * 

a
 Y’O and Y’NP are the yield responses to organic and mineral fertilizer, respectively (see eq. 1, 2 and 3 of Paper 

II). The calculations were done according to Vanluawe et al.  (2001), and yield data are taken from Paper I.  
b
 Significance level, P < 0.05 (*) or P < 0.01 (**), denotes that the extra maize grain yield generated is greater 

than zero (i.e., H0 is rejected); ns: not significant at P < 0.05. 
 
 

In Paper II, we computed input interaction effects as added benefits. Added 

benefits in terms of extra grain yield harvest from the combined addition of 

compost and NP fertilizer treatment were over 700 kg ha
-1 

in maize and over 

1100 kg ha
-1

 in faba bean (Table 4). As described above, the positive interac-

Figure 11. Canonical discriminate analysis of the MicroResp profiles under different input 

types (amendments) for soils from an on-farm experiment in Beseku, Ethiopia. The R
2
 between 

Can1 and the group variable is 0.84, which is larger than the corresponding R
2
 for Can2 (0.78). 

C: compost alone, F: NP fertilizer alone, CF: half C and half F combined, and Ctrl: unfertilized 

control. 
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tion effects can be explained either by the direct or indirect mechanisms formu-

lated by Vanlauwe et al. (2001a). The findings by Gentile et al. (2009) support 

the view of Vanlauwe et al. (2001a) that when mineral fertilizer is combined 

with maize residue, a net immobilization and subsequent release of fertilizer-N 

results in better synchrony between nutrient availability and crop demand by 

reduced early season available N. In addition, the incorporation of medium 

quality residue with fertilizer has the potential to optimize residue-derived N 

release without increasing potential N losses (Gentile et al., 2008). The direct 

mechanism may have contributed to the added benefits generated in the current 

study. However, they reported a negative added benefit when fertilizer is com-

bined with high quality residue of tithonia, which the authors ascribed to net 

mineralization and potential losses of N (Gentile et al., 2009). In contrast to 

these findings, we found positive added benefits due to combined application 

of a high quality organic resource (C:N ratio c. 11) and mineral fertilizer. This 

may question the improved synchrony as an explanation of our results and 

other explanations need to be examined. There is also an argument that com-

bined application of organic input and mineral fertilizer enhances crop harvest 

through alleviation of multiple nutrient limitations (Palm et al., 1997). The 

application of compost resulted in increased micro- and macronutrient concen-

trations in the soil (Table 1 of Paper II; Figure 7). It is interesting to note that 

critical nutrients like S, B and Zn which has been found to be low in many 

Ethiopian soils in the country-wide inventory of agricultural soils carried out 

within the Ethiopian Soil Information System (Gustafson, 2014) all had signifi-

cant positive treatment effects as a result of the compost addition. The same 

elements have also been reported to be deficient in other parts of Africa (Wendt 

& Rijpma, 1997). Thus, the direct mechanism may have contributed to the 

added benefits generated in the current study. 

The indirect mechanism (Vanlauwe et al., 2001a) is explained by enhanced 

efficiency in the utilization of fertilizer N (AE-N) through organic input addi-

tion related to improvement in soil physical properties such as improved in soil 

structure, infiltration and water holding capacity, and better crop root develop-

ment, with improved nutrient uptake as a result (Figure 12). The soil in Beseku 

is a fine textured soil with high concentration of soil organic matter, the top soil 

contained as high as 52 g SOC kg
-1

 in a bulk soil cultivated for a decade after 

deforestation (Lemenih et al., 2005b). Despite this, significant treatment effects 

have been observed in the on-farm experiments on the soil physical properties 

such as improved infiltration rate (Yimer & Karltun, 2012) for both the CF and 

C treatments. Thus, the indirect mechanism cannot be ruled out as a possible 

explanation. 
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On the basis of the results here, it is not possible to point out one single 

mechanism that resulted in the added benefits of the combined use of compost 

and mineral fertilizer. Most probably, more than one of the suggested mecha-

nisms have contributed and both alleviation of multiple nutrient limitations and 

indirect effects on soil properties may well have played important roles. 

  

Figure 12. Agronomic efficiency of N (AE-N) of three treatments for different crops (a), and 

linear relationship between AE-N and average maize grain yield combined over sites by seasons 

(b). Simple linear regression equation (y), line of best fit, and statistical significance are presented. 

Yield data is taken from Paper I. C: compost alone, F: NP fertilizer alone, CF: half C and half F 

combined. 
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7 Household resource availability and 
adoption of compost (Paper IV) 

7.1 Background 

Declining soil fertility due to unsustainable land-use has long been identified as 

a bottleneck to improved productivity in the highlands of Ethiopia (Karltun et 

al., 2013a; Yirga & Hassan, 2010; Lemenih et al., 2005a; Lemenih et al., 

2005b). Contributing factors include increased population growth, land short-

age and unsustainable land management (Headey et al., 2014; Josephson et al., 

2014; Berry, 2003), absence of N-fixing crops from crop rotation in the agri-

cultural systems (Karltun et al., 2013b; Chiwona-Karltun et al., 2009), insuffi-

cient use of mineral fertilizer due to infrastructure or economic related con-

straints (IFPRI, 2010; Spielman et al., 2010).  

In the context of on-going research in the Munessa area in Ethiopia, a pro-

ject was initiated aiming at testing the use of compost as an alternative strategy 

to cope with the declining soil fertility. This was done after a series of focus-

group discussions and in-depth interviews with the community members to 

identify locally acceptable integrated soil nutrient management options. Four 

participatory on-farm experiments with compost making and addition were 

initiated and the experiments were used as field demonstration sites for six 

seasons (Paper I). In connection with the experiments field training on compost 

making and integration in the crop production were organized. A stakeholder 

workshop where farmers, agricultural extension staff, local politicians and 

researchers discussed how to enable farmers to improve their management of 

soil fertility was also held in connection with the experiments. The field exper-

iments have been scientifically evaluated) and results from these long-term 

field experiments indicated that application of reduced rate of compost alone or 

in combination with NP fertilizer improved crop harvests, soil micro- and mac-

ronutrient status and soil organic carbon (Paper I-II). However, the uptake of 

this technology among other farmers has not been systematically studied.  
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Studies indicate that although considerable efforts have been made to en-

hance the diffusion and uptake of various agronomic management options that 

help improve productivity and income of smallholder farmers in Ethiopia, the 

success rate in terms of adoption has yet been very low (Wossen et al., 2015; 

Abate et al., 2011). Socio-economic variability and differences in soil fertility 

management (Cobo et al., 2009; Haileslassie et al., 2007; Elias & Scoones, 

1999; Gray, 1999) are important factors that affect soil fertility. Farm house-

holds also differ in their access to farm household resources like cash, labor, 

livestock and access to land (Haileslassie et al., 2007), which might impact 

their capacity to adopt new technologies in order to maintain a sustainable 

nutrient balance of the cropping system. For instance, farmers who have few 

cattle (often poor farmers), only have limited access to manure, and the amount 

of fertilizer they are able to buy is limited.  

7.2 Aims 

The aims of this study were to assess if access to information and household 

resources affect the decision to adopt compost. We hypothesized that differ-

ences between farmers in the access to information and household resources 

availability would affect the decision to adopt compost.  

7.3 Materials and methods 

Household interviews were carried out on households (HH) of different socio-

economic levels in the village of Beseku Ilala peasant association (PA). Details 

of the HHs selection procedures and characteristics studied are presented in 

Paper IV. Of the 45-50 HHs from each of the four sub-villages or gotes, 10 

HHs were randomly selected from each gote and interviewed with a semi-

structured formal questionnaire that consist of closed and open-ended ques-

tions.  

A logistic regression model was used to study the relationship between HH 

characteristics and compost adoption defined as a binary dependent variable 

with a value of 1 when compost is used and 0 otherwise. Adoption of agricul-

tural technologies such as this has been assumed to be motivated by utility 

maximization. Farmer adopts a new technology if the perceived utility of the 

new practice is larger than the older practices. In this case, adoption is expected 

if the perceived advantages of compost exceed the present (older) nutrient 

management options. 
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7.4 Results and discussion 

Variables included in the logistic regression model explained 74% of the prob-

ability of the household decision to adopt or not to adopt compost, as indicated 

by significant (P < 0.001) log-likelihood ratio test (Table 5). Access to agricul-

tural extension services or training (TRNG) on improved agricultural technolo-

gies such as different nutrient management options were used as a proxy for 

access to information (Table 5; Figure 13). Training was thus found a key vari-

able that positively and significantly (P < 0.01) affects the compost adoption 

decision. The high percentage of farmers that said that they got information 

about compost making from other farmers in Beseku (Figure 2 of Paper IV) 

indicates the importance of farmer-to-farmer information exchange for tech-

nology adoption. Interestingly, of those who had compost-related practical and 

theoretical training, a significantly higher proportion (63%) had adopted com-

post compared to 21% for those who had only theoretical background (Figure 

13), suggesting the importance of technology-specific training for better uptake 

(Weir & Knight, 2004).  

Figure 13. Prior knowledge and impacts of training and training frequencies on the adoption 

of compost in Beseku, Ethiopia. Percent of total is the proportion of the HHs who know com-

post or got training to total HH interviewed (n = 44). 
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Table 5. Logit model estimated coefficients for factors affecting compost adoption in Beseku, 

Ethiopia. 

Variables 
Estimated 

coefficient 
S.E 

Wald 

χ
2
 

Pr > 

χ
2
 

Likelihood CI (95%) 

LCI UCI 

Intercept -15.05 6.97 4.67  0.031 -37.05 -4.60 

Access to information - TRNG 5.59 2.18 6.58 0.010 2.20 12.06 

Total land owned in ha - TL -1.93 0.99 3.83 0.050 -4.59 -0.20 

Education level - EDU 0.78 0.37 4.58 0.032 0.28 2.06 

Total family size - TFS -0.66 0.32 4.42 0.036 -1.64 -0.20 

Age of the farmer - AGE 0.25 0.13 3.96 0.047 0.07 0.65 

Number of cattle owned - NCATT 0.38 0.21 3.39 0.066 0.05 0.99 

Land holding certificate - LHC 2.00 1.81 1.23 0.268 -1.47 6.40 

Labor force index - LFI -0.01 0.04 0.01 0.909 -0.09 0.09 

-2 Log-likelihood = 16.6; Likelihood ratio test (27.97) is significant (P < 0.001), with 8 D.F.; Max-rescaled 

pseudo R
2
 = 0.74. 

 

Access to information about a new practice has long been identified as a key 

determinant of adoption (Asfaw et al., 2012; Wubeneh & Sanders, 2006; 

Adesina & Zinnah, 1993). Farmers who have access to extension services tend 

to be more progressive and receptive to new innovation (Asfaw et al., 2012). 

However, some farmers may strategically delay adoption of a new technology 

until they build confidence through watching and learning from fellow farmers 

(Dercon & Zeitlin, 2009). 

The probability of compost adoption was also positively and significantly 

(P < 0.05) associated to the education level (EDU) of the farmer. A positive 

impact of education on technology acquisition is generally expected as it en-

hances farmer's ability to acquire and analyze new ideas, and provides specific 

or general skills that contribute to farm productivity (Weir & Knight, 2004). 

Asfaw et al. (2012) reported positive or no impact of education on technology 

adoption. Age is another HH variable that affects technology adoption positive-

ly or negatively. Elderly farmers are supposed to have rich farming experiences 

and may rely more on traditional or indigenous knowledge and it might take 

times to compromise their practices. Elderly farmers may also tend to be more 

risk-averse than younger farmers or might wait until the new technology is 

taken up among fellow farmers. Somda et al. (2002) for instance, reported a 

negative association of age of farmers with compost adoption in Burkina Faso, 

which they attributed to differences in knowledge and willingness to take risks. 

The positive and significant (P <0.05) association of age with compost adop-

tion at Beseku could be explained by more adult male aged between 18- and 

60-year (Table 1 of Paper IV), which was 21% higher for the adopters com-

pared to the non-adopters.  
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The number of cattle (NCATT) owned by the HH was positively associated 

with the probability of compost adoption at P < 0.07 as it provides manure for 

compost preparation. The adopter farmers all indicated that they use farmyard 

manure as a plant nutrient source and they applied significantly less DAP ha
-1

 

compared non-adopter farmers (t = -3.20, P < 0.01; Table 1 of Paper IV). Total 

family size (TFS, P < 0.05) was negatively related to compost adoption. For 

labor intensive technology such as compost, large family size would provide 

the needed labor during peak time of the season and thus may directly affect 

adoption. For instance, in an inorganic fertilizer (Wubeneh & Sanders, 2006) 

and chickpea (Asfaw et al., 2012) adoption studies in Ethiopia, family size was 

reported an important determinant of adoption. The effect of total family size 

on compost adoption was however negative in the present study (Table 5). 

Although the reason for this is not clear, it might imply that the availability of 

family labor was less important for the adoption decision. However, for the 

non-adopter group, labor shortage and knowledge gap were ranked high as 

variables constraining adoption (Figure 14). We also assessed if labor require-

ments for the major farm activities and their frequencies (the number of times 

these activities done) vary between adopter and the non-adopter farmers (Table 

2 of Paper IV) but did not find significant difference between the two groups, 

implying that labor demands for the major farm activities are similar. Thus, 

there might be more important variables determining adoption than access to 

labor.  

Land is an important asset in agrarian societies of any rural HH and posses-

sion of land could be an important determinant of agricultural technology adop-

tion. In the present study, it was found that farmers with small landholdings 

had a higher probability of compost adoption than those with large farms. The 

Figure 14. Constraints to compost adoption mentioned by non-adopters. 
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inverse relationship between compost adoption and landholdings could be as-

sociated with the pressing need to increase productivity on the already limited 

per capita farm size. The average landholding of the farm households surveyed 

was 1.2 ha, and 14% of the HH own less or equal to a quarter of ha and 52% 

1.0 ha. One possible way of raising agricultural productivity is through put-

ting more land under cultivation. However, land constrained farmers may opt 

for intensification. Feder et al. (1985) argued that farmers tended to intensify 

farming when their farm size is small. Furthermore, Headey et al. (2014) indi-

cated that increased use of agricultural inputs are positively correlated with 

land-constrained households. We also observed that the adopter group in-

creased their croplands by renting-in more cropland and was more involved in 

sharecropping than the non-adopters group (Table 2 of Paper IV), which could 

be a combination of land shortage and commitment to increase production. 

However, research findings on the effect of farm size on agricultural tech-

nology adoption are not consistent. Asfaw et al. (2012) reported a positive 

correlation between farm size and chickpea (Cicer arietinum) adoption in Ethi-

opia, which they attribute to ease of access to improved seed and credit. Wub-

eneh and Sanders (2006) argued that a positive relationship could be explained 

by higher risk-bearing potential of HHs with large farms compared to small 

farms. However, this may not the case in Beseku as landholding is already 

fragmented. According to Feder et al. (1985), the association of farm size to 

technology adoption depends on fixed adoption costs, risk preferences, human 

capital, credit constraints, labor requirements and tenure arrangement. Since 

the adoption of compost does not require any large investment and cannot be 

considered to be a high risk option, these factors have not been obstacles for 

small farms to go for the adoption in Beseku.  

In general, the present study indicated that technology specific training, 

farmer-to-farmer technology exchange and education level were important 

determinants for compost adoption. However, farmers with small farm size 

readily adopted compost suggesting the need for them to increase productivity 

by tenable means based on their livelihood options. The results also suggest a 

need to improve extension on compost preparation in order to improve aware-

ness and knowledge in the farming community. Perceived health risk concerns 

in connection to compost preparation raised by farmers should be recognized 

and information on these aspects should be included in agricultural extension 

information and services. We show that compost can be prepared from locally 

available resources as seen from the present study. However, more research is 

needed to quantitatively assess the available resources for compost production 

in different farming systems, particularly in rural settings where population 

pressure is rising. 
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8 Conclusions  

 This study provides compelling evidence on the positive effects of compost 

addition, alone or in combination with NP fertilizer, on crop harvests, SOC 

build-up, improvement in several plant available micro- and macronutrients 

and agronomic N use efficiency.  

 The added benefits we obtained from the combined use of compost and NP 

fertilizer at a reduced application rate suggest that fertilizer and compost 

should be seen as complementing rather than substituting each other.  

 Alleviation of multiple nutrient limitations, the indirect effects on soil prop-

erties and the improvement in catabolic versatility of soil microbes are like-

ly explanations to the added benefits of the combined use of compost and 

mineral fertilizer. 

 Access to information was a key determinant for compost adoption fol-

lowed by farm size (higher adoption on small farms) and education level. 

The main perceived constraints for non-adoption were lack of knowledge, 

labor and time constraints, and/or lack of commitment.  

 In general, local compost production has a potential to reduce farmers’ need 

for investment in fertilizer. 
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9 Future perspectives 

The results obtained in the on-farm experiments in Beseku are of significant 

importance for low-input farming systems where access to external inputs, such 

as mineral fertilizer, is a major production constraint. The present results may 

not necessary be similar in areas with different soils, climate or farming sys-

tems. More studies on the effects of the combined use of fertilizer and organic 

resources should therefore be carried out in different agro-ecological zones. 

Extension efforts also need to be strengthened for improved adoption of com-

post in the farming communities.  

The lack of knowledge and the health risk concern raised by farmers in rela-

tion to compost preparation needs to be addressed through improved extension 

on compost preparation. Compost can be prepared from locally available re-

sources as seen from the observed adoption. However, more research is needed 

to assess quantities of available resources for composting in different farming 

systems. 

In order to better understand the mechanisms behind the synergy between 

compost and fertilizer on-farm research should be complemented with experi-

ments where processes can be studied in detail under more controlled condi-

tions. The possible macro- and micronutrient limitations can be verified in 

nutrient exclusion experiments. Studies using 
15

N could be used to study the 

synchrony between N addition and N uptake. Finally, the rapid development in 

the area of microbial ecology based on high throughput genome sequencing 

might have potential to get a better insight in the microbial processes. 
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