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Abstract 

Protein-based plastics are considered as a new route for valorisation of oilseed meal 

from the industrial oil crops Crambe abyssinia (crambe) and Brassica carinata 

(carinata) as they cannot be used for animal feed or human food. To convert oilseed 

meals into protein-based plastic films compression moulding was used with varying 

processing temperature, chemical additives and protein extraction conditions. Twin 

screw extrusion was utilized to make films from blends of crambe meal and wheat 

gluten with urea as a combination denaturant and plasticizer. Tensile properties were 

examined and related to protein solubility and protein molecular weight (MW) 

distribution to reveal the underlying effects of different processing conditions. 

Varying the plasticizer content (glycerol) in crambe and carinata meal based plastics 

resulted in a variety of tensile responses with protein MW distributions (HPLC) 

indicating that the tensile changes were due to plasticization effects. Forming oilseed 

meal films at temperatures between 100 and 180 
o
C indicated a minimum in solubility 

between 130 and 140 
o
C, corresponding to the highest Young’s modulus and maximum 

stress. From a range of additives to crambe and carinata meal films, NaOH and NH4OH 

had the most positive effect on strain at maximum stress, especially at the lowest dose 

of NaOH (1.4%) which also resulted in the lowest protein solubility. Processing crambe 

meal/WG/glycerol/urea blends with co-rotating twin screw extrusion produced 

continuous protein-based plastic films within a limited temperature and composition 

window. Proteins were extracted from crambe meal under a variety of conditions with 

concentrates from alkali extraction/isoelectric precipitation showing the lowest protein 

solubility after heating. The relationship between processing, MW distribution and film 

properties is complex. Maximum protein aggregation resulted in improved properties in 

some cases, while in others the properties are controlled by mechanisms other than 

protein aggregation. 
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1 Introduction 

Whether or not we realize it, we are surrounded by protein-based materials. 

The leather of our shoes, the wool and silk in our clothes, the feathers in our 

pillows and duvets are all predominantly made of proteins. As you read this, 

the light is passing through the lenses of your eyes which are predominantly 

made of protein (Augusteyn & Stevens, 1998). Some naturally occurring 

proteins are structured to form materials that are impressive, even by the 

standards of synthetically manufactured polymers – insect silks show high 

degrees of strength and resilience (Omenetto & Kaplan, 2010) while squid ring 

teeth show high toughness in an isotropic protein material (Ding et al., 2014). 

Proteins figure prominently in natural composite materials, such as bones and 

shells, in which they provide toughness to a brittle matrix (Meyers et al., 

2008). 

Natural protein-based materials have been utilized by European humans in 

the form of woven animal fibres, such as wool, for more than 3500 years 

(Kovačević & Car, 2014). The working of animal protein in the form of horn is 

ancient as well, with the worshipful company of horners being one of the 

earliest Livery Companies of London, predating its first recorded mention in 

1284 (Rosedale, 1912). Since 1943 the worshipful company of horners has 

incorporated the plastics industry as well, acknowledging the modern 

equivalent of the ancient art of manufacturing in natural protein-based horn 

(Anon., 2014b). 

If proteins make up such a variety of useful natural products, why are they 

missing from the common modern engineered materials? Proteins are complex 

molecules constructed of 21 amino acids, the order of these amino acid 

residues (AA) in the protein determines the primary structure of the molecule 

(Figure 1). Each amino acid has different characteristics such as size, charge, 

and hydrophobicity. Some AA have the ability to form hydrogen or ionic 

bonds or covalent bridges, these properties determine how the protein molecule 

behaves in a given situation. These characteristics result in the folded 
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configuration of the proteins that 

determines its local secondary structure 

such as α-helices or β-sheets (Figure 1). 

The secondary structural elements of 

the protein interact to form tertiary 

structure, in which one or more protein 

molecules interact to form larger 

structures, sometimes stabilized by 

disulphide bonds. These assemblies can 

further interact to form quaternary 

structures composed of many protein 

subunits, each with their own primary, 

secondary and tertiary structure (Figure 

1). The behaviour of proteins can be 

further affected by the environment 

around them, e.g. the pH alters the 

charge of the AA, urea (U) disrupts 

hydrogen bonds between AA or the 

application of heat can result in 

unfolding, all of which impact the 

structure. 

The behaviour of the protein, at all 

these levels, is under the influence of 

the local environment which determines how the protein will behave. In 

naturally occurring protein materials, such as spider dragline silk, each step in 

silk formation is carefully controlled by the organism. The same high 

performance structure of natural silk has proven difficult to reproduce 

technologically (Brown et al., 2015). The control of all protein structural levels 

stands as a challenge to developing new materials that can approach the 

performance of biologically produced protein materials. 

Proteins have been used as feedstock for materials in the past, such as 

textile fibres or solid objects such as buttons (Ralston & Osswald, 2008). 

Indeed, in 1926 55% of the world’s buttons were manufactured from casein 

protein (Ralston & Osswald, 2008). In order to improve these protein-based 

materials, treatments with chemicals, such as formaldehyde, were used to 

induce AA cross linking (Boyer, 1940), These treatments are viewed 

unfavourably today due to their toxicity (Álvarez-Chávez et al., 2012). 

Manufactured protein-based products were replaced with petrochemical 

polymers after World War II, once the performance of petrochemicals were 

superior at a lower cost (Ralston & Osswald, 2008). 

Figure 1. Hierarchical structure of proteins 

(LadyofHats, 2008) 

beta sheet

alpha helix

Hemoglobin

P13 protein
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The rise of the petroleum industry that led to the end of early protein-based 

materials has brought with it new challenges. Petroleum-based plastics are 

largely not biodegradable, leading to disposal issues on a global scale. Their 

widespread and persistent presence in oceans affects seabirds, turtles and other 

life with its ubiquitous presence (Gall & Thompson, 2015; Wilcox et al., 2015; 

Mrosovsky et al., 2009). The widespread presence of micro plastics in the 

environment also acts to concentrate toxins (Hirai et al., 2011), threatening the 

food chain. Protein-based plastics do not suffer from the same disposal issues 

as they are biodegradable. In addition to disposal issues, the production of 

green house gases during manufacturing and incineration of petroleum-based 

plastics is also cause for concern (Harding et al., 2007). Along with these 

environmental concerns are economic ones related to the security of the 

petroleum supply and questions of long term petroleum sustainability that 

encourage us to explore alternatives. 

Among the alternatives to petroleum-based polymers are those produced 

from the microbial conversion of agricultural products. Examples of such a 

conversion is turning starch into monomers for the manufacturing polylactic 

acid (PLA), and polybutylene succinate (PBS) or though the dehydration of 

alcohols in the case of bio polyethylene (Reddy et al., 2013). Alternative 

polymers can also be synthesized from the chemical conversion of plant oils 

into monomers, such as polyamide 11 (PA11) (Mutlu & Meier, 2010). 

Bio-based polymers synthesized from monomers allow for control over the 

chemical structure as in traditional petroleum-based polymers, which is a 

technological advantage. The energy and process steps required for the 

production of purified monomers may put them at a sustainability disadvantage 

compared to the direct use of agricultural products. Starches have also been 

extensively explored for use as bio-based materials (Zhang et al., 2014) and 

have the advantage of simple, well developed commercial techniques for their 

bulk purification from agricultural products without microbial conversion. 

All of the aforementioned alternatives to petroleum-based polymers rely on 

the primary agricultural product derived from the plants involved; be it plant 

oils, starch used directly, or starch fed to microbes. When agricultural 

resources are used for non food uses this generates some concern regarding 

food security, the so called ―food vs. fuel‖ debate (Graham-Rowe, 2011), in 

our case ―food vs. plastic‖. In terms of both ―food vs. fuel‖ and within the 

concept of bio-refineries, the use of lower value agricultural side streams is 

desirable, since the primary products such as starch and oil already have a 

ready market and multiple uses. Plant proteins from residuals appear to be an 

attractive alternative for bio-based materials as they do not have as many ready 

uses and take few process steps to produce compared with monomers from 
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fermentation (e.g. PLA and PBS) or through chemical reactions (PA 11). 

Proteins are already macromolecules and also incorporate readily reactive 

AAs, which could be advantageous in forming plastic replacement materials. 

Disadvantages of using proteins from residuals are the structural complexity of 

proteins and the nature of the plant AA sequence, which leaves us with the 

challenge of converting non-structural plant proteins into materials with useful 

properties. 

Regarding the ―food vs. fuel‖ debate, current food production requires 

plastics in its production and distribution. The continued use of petroleum-

based plastics for these applications is unsustainable as it is a finite resource, 

with a reserve estimated to be 52.5 years (Anon., 2015). What will take the 

place of these materials in this not so distant future? The development and 

adoption cycle of new plastics when large changes in the production value 

chain occurs takes up to 24 years (Musso, 2009). The development of new 

materials from non-petroleum sources is now an imperative. There are many 

possible alternatives to be explored that are of plant origin and require 

competition for land use with food. In considering the entire system of food 

production, food loss accounts for roughly one third of production (Gustavsson 

et al., 2011). Currently, petroleum-based plastics play a critical role in 

producing and delivering these products throughout the value chain. Finding 

sustainable replacements for these materials will ensure the future high levels 

of production and the integrity of the value chain which, in my opinion, 

justifies considering some part of agricultural land being dedicated to their 

production. Only further analysis of proposed solutions can resolve the balance 

between these competing forces, but first we must develop the technology to 

the point that reasonable comparisons can be made.  

1.1 Industrial oilseeds 

The use of oilseeds is one approach to address some of the issues with the 

petroleum-based economy, offering a sustainable bio-based alternative to 

petrochemicals in the form of plant oils. Using edible plant oils to replace 

petroleum oil is possible in many applications, but the conflict with food uses 

in terms of the market cost and oil quality will remain. Industrial oilseeds offer 

a platform in which the interaction with food production is minimized in both 

the product consumption and genetic sense; by choosing industrial oilseed 

crops that do not easily cross with common food crops more latitude is allowed 

in the composition of the seed (Carlsson, 2009). When industrial crops are 

employed seeds can include potentially toxic components and perhaps confront 

a reduced regulatory regime regarding genetic modification without issues of 



17 

possible contamination of the food supply or food crop gene pool (Carlsson et 

al., 2014). 

After the extraction of oils from Brassica oilseeds a substantial amount of 

seed meal is produced, typically 55-60% of the originally harvested seed 

(Wanasundara, 2011). In the case of industrial oil crops these de-oiled meals 

can be unfit for human or animal consumption due to the presence of 

antinutritional compounds and the regulatory regime these uses require. 

Therefore some use for these meals other than food or feed is sought. Since 

these de-oiled meals contain seed storage proteins, the use of these proteins for 

bio-based materials is an attractive avenue for study. Finding a use for these 

residuals of industrial oilseed processing could help replace products of the 

unsustainable petrochemical industry and improve the economic case for 

industrial oilseeds. 

Of the possible industrial oilseeds available, Crambe abyssinica (crambe) 

and Brassica carinata (carinata) offer some valuable agronomic traits. Both 

grow well in temperate zones with crambe exhibiting good drought tolerance 

(Oplinger et al., 1991) and carinata offering both excellent heat and drought 

tolerance (Rakow & Getinet, 1998). Both crops are unlikely to cross with 

commonly cultivated food crops (Carlsson, 2009) freeing plant breeders from 

concerns of gene pool contamination. Crambe has an established record as an 

industrial oil crop with acceptable yields and a high content of erucic acid in its 

oil, which is already a valuable industrial commodity (Endres & Schatz, 2010). 

In carinata, various oil qualities have already been developed (Taylor et al., 

2010) and in both crambe and carinata molecular techniques have been 

developed for their genetic manipulation (Li et al., 2013; Taylor et al., 2010).  

Crambe and carinata are known to contain mainly 12S cruciferin and 2S 

napin, the same main storage proteins as are found in other Brassica oilseeds 

(Wanasundara, 2011). Although the exact sequence and structure of AAs of 

these proteins in crambe and carinata are not known, there is an expectation 

that they will be similar within the family (Wanasundara, 2011). This suggests 

that the related Brassica napus storage proteins can be used to indicate the 

expected protein properties in crambe and carinata. The globulin of Brassica 

napus, cruciferin, has a molecular weight (MW) of ca. 300 kDa and an 

isoelectic point of ca. 7.3 (Schwenke et al., 1983). Cruciferin is a hexamer with 

each of the 6 units having a heavier α subunit (acidic, 30 kDa) and lighter β 

subunit (basic, 20 kDa) that are connected with a disulphide bridge 

(Dalgalarrondo et al., 1986). The hexameric assembly of curciferin is held 

together through ionic forces as it dissociates reversibly into dimers at low 

ionic strength (Schwenke et al., 1983). Cruciferin further dissociates to 2-3S 

units in 4M U under acidic conditions (Schwenke et al., 1983). Cruciferin 
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originates from multiple precursors resulting in amino acid sequence variations 

within its subunits (Wanasundara, 2011). 

Napin, the 2S albumin storage protein of Brassica seeds, is a dimer with a 

MW of ca.14 kDa held together with two disulfide bridges (Ericson et al., 

1986; Lönnerdal & Janson, 1972) and an isoelectric point above 11 (Lönnerdal 

& Janson, 1972). Within the Brassica, napins show a variety of MW making 

comparisons between Brassica napus, crambe and carinata less likely to be 

accurate in this specific regard, while all are basic, disulfide bonded dimers 

(Byczyñska & Barciszewski, 1999). 

1.2 Plant proteins as a source for bio-based materials 

Plant proteins from a variety of sources have been converted into bio-based 

plastics, including proteins from maize (Reddy et al., 2009; Selling & Sessa, 

2007), wheat (Reddy et al., 2009; Gällstedt et al., 2004), soy (Mo & Sun, 

2002; Zhang et al., 2001), cottonseed (Marquié, 2001), sunflower (Rouilly et 

al., 2006b) and rapeseed (Johansson et al., 2012; Baganz et al., 1999). Unlike 

biologically produced proteins that have a structural role, such as horn or hair, 

these proteins need to be processed in some way to modify them to have the 

properties of useful structural materials in the desired shape.  

The processes used to manufacture protein-based plastics are required to 

fulfil many roles. Processing is required to modify the protein conformation in 

such a way as to form a continuous solid that has adequate physical properties 

to be functionally useful. Various approaches have been tried, among them 

film casting (Chang & Nickerson, 2013), hot compression moulding 

(Johansson et al., 2012), extrusion (Rouilly et al., 2006a), injection moulding 

(Baganz et al., 1999), and fibre spinning (Gillberg, 1979). Each of these 

processes has their analogue in current industrial practice and as such are 

viable routes to the commercial production of oilseed meal bio-based materials. 

Although the various processing methods take different routes to producing 

bio-based materials, they share similar underlying processes. First, the proteins 

present in the feedstock are denatured. That is to say, their conformation is 

modified compared to the original conformation when extracted from the plant. 

In the most commonly used laboratory process, film casting, the protein is first 

dissolved in a suitable solvent. This leads to denaturation of the proteins, 

depending on the solution conditions (Brandenburg et al., 1993). Heat is 

sometimes applied in the solution state promoting further denaturation and 

resulting in improved final properties (Roy et al., 1999). In non-solution 

thermal processing, methods such as compression moulding, extrusion and 

injection moulding, heat is the main agent of denaturation (Bier et al., 2014). In 
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these thermal methods plasticizers, such as glycerol, can be applied in order to 

lower both the glass transition temperature for enhanced processability and 

lower the start of denaturation (Bier et al., 2014). Additives, such as U, can 

also contribute to denaturation as well as plasticization (Türe et al., 2011) 

During processing, protein-protein interactions in the form of AA cross 

links need to occur in addition to denaturation in order to improve the physical 

properties of the final product. In some proteins, such as wheat gluten (WG), 

there are ready pathways to increase protein-protein interactions through 

disulphide bridges (Gällstedt et al., 2004). In most systems AA reactions are 

promoted by heat, changing the reaction pH, the use of enzymes, denaturants, 

reducing agents or chemical cross linkers. The application of heat promotes 

many AA interactions, especially in high pH conditions. These reactions have 

been reviewed by Friedman in the context of food processing (Friedman, 1999) 

and have been studied within the context of protein-based plastics of WG 

(Rombouts et al., 2013; Lagrain et al., 2011; Rombouts et al., 2011; Rombouts 

et al., 2010). 

Increasing the pH in the reaction environment effects the state of the AAs 

through protonation of the -amino group of lysine making it more reactive 

(Friedman, 1999). The formation of new cross links can also occur through 

disulphide bridge rearrangement from intra-protein to inter-protein forms upon 

heating and β-elimination reactions involving non-cystine AAs (Lagrain et al., 

2011)(Rombouts et al., 2013; Rombouts et al., 2010). The variety of new 

bonds possible from a range of AAs suggests that improving the properties of 

oilseed meal-based materials could be possible without resorting to direct 

chemical cross linking. 

When increased cross linking is desired there are multiple chemical options. 

The most common of which is the chemical cross linking of proteins with 

aldehydes, long known in the fixation of proteins in tissues and for leather 

tanning (Kiernan, 2000). Although effective, this method is not desirable for 

both environmental and occupational health and safety reasons due to its 

possible toxicity (Álvarez-Chávez et al., 2012). A more environmentally 

attractive approach exists in the form of enzymatic cross linking (Jiang et al., 

2007), which is compatible with food uses of cross linked proteins. 

The application of polycarboxylic acids has been shown to cross link 

proteins in the presence of sodium hypophosphite or under alkali conditions 

(Reddy et al., 2012; Reddy et al., 2009). Although citric acid (CA) cross 

linking has been demonstrated with gliadin at relatively mild conditions (Xu et 

al., 2015), previous studies with the maize protein zein failed to induce cross 

linking (Selling & Sessa, 2007).  
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Increased protein-protein interaction may not always be desirable. Cross 

linking of AAs at the wrong time can be detrimental to processability and can 

be suppressed by additives that reduce disulphide bonds (e.g. sodium bisulphite 

(SB)) or oxygen scavengers, such as salicylic acid (SA) (Rouilly et al., 2006b; 

Ullsten et al., 2006). There are also opportunities for multiple effects, such as 

applying U, which both promotes denaturation and reduces cross linking 

through the carbamylation of lysine (Rombouts et al., 2013; Türe et al., 2011). 

Phytochemicals present in oilseeds may also affect protein behaviour. 

Phenolics in Brassica protein extracts are known to interfere with protein-

protein interactions, negatively affecting the thermal gelation of cruciferin 

(Rubino et al., 1996).  
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2 Objectives 

The main objective of this work is the valorisation of industrial oilseed 

residuals. As food and feed applications are not available for these protein 

containing residuals, bio-based protein plastics have been selected as a route to 

valorisation. In order to be compatible with plastics industry practice, thermal 

processes for conversion of oilseed residuals were explored. The effects of 

various processing variables were evaluated with regard to application-related 

metrics; i.e. tensile mechanical properties and gas permeability. The effect of 

processing on the proteins was probed by determining changes in their 

solubility, protein MW profile using size exclusion and reversed phase high 

performance liquid chromatography (SE- and RP-HPLC) to be related to 

changes in protein-based plastic performance. 

 

 Determine the effect of heat and plasticizers on the tensile 

properties and protein MW profile of plastics from de-oiled crambe 

and carinata oilseed meal. 

 Use chemical additives to modify the reaction environment of 

plasticised crambe and carinata oilseed meals during thermal 

processing, thereby affecting the tensile properties and protein MW 

profile. 

 Produce extruded films from blends of WG and de-oiled crambe 

meal and examine the effect of processing conditions, crambe:WG 

ratio, U content and glycerol level on film properties with respect 

to packaging applications. 

 Evaluate the effect of protein fractionation on thermally processed 

films from de-oiled crambe meal; describe the MW profile of 

extracted protein concentrates and identify fractions that aggregate 

in response to thermal processing. 
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3 Methodology 

3.1 Raw materials 

Crambe seeds (Crambe abyssinica) (processed with pod intact) were obtained 

from the Plant Research Institute (Wageningen, Netherlands) and carinata 

seeds (Brassica carinata) from Agriculture Canada (Saskatoon, Canada). The 

petroleum distillate method of Appelqvist (Appelqvist, 1967) was used to 

produce oilseed meals of crambe (11.1 ± 0.02% dry basis (db) water) and 

carinata (10.1 ± 0.06% db water), resulting in a fine powder for compression 

moulding (Paper I, II, IV). For extrusion processing, rolled, hexane extracted 

crambe meal was ball milled to a fine powder (Paper III). Wheat gluten powder 

was supplied by Lantmännen Reppe AB, Sweden (77.7% (w/w) protein, 8.1% 

(w/w) starch, and 1.34% (w/w) fat) as reported by manufacturer (Paper III). 

Ball-milled crambe and WG powder were conditioned for a minimum of 48 h 

at room temperature (RT) and 23% relative humidity (RH) before further 

processing (Paper III). 

Nitrogen content of the de-oiled meals was determined using combustion 

nitrogen analysis with a nitrogen to protein conversion factor of NX6.25 

(Wanasundara et al., 2012). 

3.1.1 Protein concentrate production 

Proteins were extracted from de-oiled crambe meal using three main schemes 

(Paper IV), for specific extraction conditions see Figure 2. Both precipitates 

and supernatants were lyophilised to produce concentrates. In Scheme A meal 

was first water extracted and the supernatant lyophilised (concentrate A1). The 

residual was re-extracted with 3.5% NaCl with this supernatant dialyzed (2000 

Da molecular weight cut off (MWCO)) against deionized water (Millipore) to 

remove salts and lyophilised (A2). The residuals were again extracted with 
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0.1N NaOH, the supernatant neutralized to pH 7 with the supernatant dialyzed 

then lyophilised (A3) and the precipitate lyophilised (A4). 

In Scheme B, de-oiled crambe meal was extracted at pH 11, the supernatant 

adjusted to pH 5.5 and the precipitate recovered (B1). The resulting 

supernatant was adjusted to pH 3.5 and the subsequent precipitate recovered 

(B2) and the supernatant concentrated by lyophilisation (B3). The pellet was 

again extracted at pH 11, adjusted to pH 3.5, centrifuged with the precipitate 

Scheme A

extract 7:1
water:meal (pH5.4)

shk. 45m, cent.

extract 5:1
3.5%NaCl:pellet
shk. 30m, cent.

sup., lyo. 
A1(48%) 

extract 4:1
0.1M NaOH:pellet

(pH 12.5)
shk. 30m, cent.

sup. 
dia., lyo. 

A3
(60%)

sup. 
pH7, cent.

precip.
lyo. A4(52%)

sup. dia., 
lyo. 

A2(55%)

final 
pellet 
(2.5%)

Scheme B Scheme C

double extract
7:1 and 5:1 
water:meal

(pH5.4), shk. 60m, 
cent., combine

sup.
lyo.

C1(41%)

extract 5:1
pH10.5:pellet
30m shk, cent.

sup.
pH6,
cent.

sup.
lyo.

C3(50%)

precip.
lyo.

C4(74%)

sup.
pH10.5,

lyo.
C2(37%)

final pellet

split

extract 7:1
pH11:meal

shk. 45m, cent.

sup. pH5.5,
cent.

extract 4:1
pH11:pellet

shk. 20m, cent.

sup.  
pH3.5,
cent.

sup. 
lyo. 

B3(39%)

precip. lyo.
B1(88%)

final pellet 
(2%)

precip.
lyo.

B2(90%)

precip. lyo.
B4(75%)

sup.
lyo.

B5(40%)

sup.
pH3.5,
cent.

Figure 2. Extraction schemes for the production of crambe protein concentrates. sup.- 

supernatant, cent.- centrifuge 20 min at 5000 RCF, precip.- precipitate, dia.- dialyze (2000 

MWCO), %- % protein content in lyophilised concentrate (combustion nitrogen analysis). 

Values denoted as (pHX) are a result of process conditions, all other pH values are control 

targets. All extraction solvent volumes (extract X:Y) are volume (ml):mass (g) based on the 

original mass of de-oiled crambe meal. 
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and supernatant lyophilised (B4, B5 respectively). On adjusting to pH 3.5 for 

the production of B4 there was no observable precipitation at pH 5.5. 

In Scheme C, the meal was doubly extracted with deionised water, 

combining the supernatants. The combined supernatant was then split and half 

directly lyophilised (C1) while the other half was adjusted to pH 10.5 before 

lyophilisation (C2). The pellet was re-extracted at pH 10.5 to recover 

remaining proteins, the supernatant adjusted to pH 6 then centrifuged where 

the supernatant and precipitate were lyophilised (C3, C4). 

3.1.2 Protein-based plastics production 

Compression moulding 

Oilseed meal or protein concentrate was mixed with glycerol or 

glycerol/additives by hand using a mortar and pestle (2-5 min) (Paper I, II, IV). 

When additives were used they were pre-dissolved in glycerol if possible or 

premixed dry with the protein powder (Paper II). For comparison to extruded 

WG/crambe, U was pre-dissolved in glycerol (60 
o
C) and the raw materials 

were mixed in a kitchen type mixer (Paper III). The mixed material was placed 

in an aluminium frame (0.5 mm thick) to control final thickness using 

polyethylene terephthalate release films and placed in heated hydraulic press. 

For post extrusion compression moulding, extruded films were cut into squares 

and pressed in a 0.5 mm thick frame (Paper III).  

Extrusion 

For extrusion, the raw materials were mixed as in WG/crambe above (Paper 

III). The premix was either fed into the extruder as raw dough with a manual 

pusher to ensure feeding or was pre-pelletized by extrusion with a low barrel 

temperature profile. Pre-pelletized material was fed both by hand and 

volumetrically with a screw feeder. The extruder used was a 20 mm co-rotating 

twin (48:1 length:diameter, LTE20-48, Labtech Engineering) equipped with 

either a flat sheet die, 45 mm X 0.07 mm, or 2 strand die for pellet 

manufacture. At the die exit the extrudates were carried by an air cooling 

conveyor with fans (Paper III). 

3.2 HPLC 

3.2.1 SE-HPLC 

A three step extraction procedure was used to determine the amount of soluble 

protein and its MW distribution by size exclusion HPLC (SE-HPLC) (Gällstedt 

et al., 2004) (Paper I, II, IV). Samples were reduced in size (approx. 0.2 mm) 
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by hand cutting where necessary, weighed (16.5 mg) into 1.5 ml centrifuge 

tubes and 1.4 ml extraction buffer added (0.5% sodium dodecyl sulphate 

(SDS), 0.05 M NaH2PO4, pH 6.9). The samples were processed by serial 

extraction: 1) vortex 10 s, shake 5 min at 2000 revolutions per minute, 2) 

sonicate 30 s (amplitude 5 µm), 3) sonicate 30 s followed by cooling and 

sonication for 60 s (amplitude 5 µm). Each extraction step was followed by 

centrifugation at 16000 RCF for 30 min, decanting the supernatant into HPLC 

vials and re-extracting the residual with buffer in the next step. 

Chromatographic separation was performed with a 20 µl sample injection 

under a isocratic mobile phase flow of 0.2 ml min
-1

 (Waters 2690 Separations 

Module, 50/50 water/acetonitrile, 0.1% trifluoracetic acid) through a prefilter 

(SecurityGuard GFC 4000, Phenomenex) and main column (Biosep-SEC-S 

4000 300 X 4.5, Phenomenex). Chromatograms were extracted at 210 nm 

(Waters 996 Photodiode Array Detector) and integrated into two arbitrary 

fractions denoted as high and low MW with the intervals chosen based on the 

specific situation, approximately 8 to 18.5 min and 18.5 to 30 min, 

respectively. Integrated areas were normalized to the total extractable protein 

for the source material and adjusted for protein dilution from glycerol or 

additives. Overlapping peaks from additives (e.g. SA, Paper II) were removed 

manually where necessary. All samples were evaluated in triplicate (Paper I, II, 

IV). 

3.2.2 RP-HPLC 

Serial extraction was carried out on 100 mg samples using 6 extraction steps 

with 1 ml for each extraction, separated by reversed phase HPLC (RP-HPLC) 

as in Rasheed et al. (Rasheed et al., 2015) (Paper IV). Extraction steps were as 

follows: 1) 70% ethanol, RT, 2) 50% propanol, RT, 3) 50% propanol, 60 
o
C 30 

min, 4) 0.5% SDS, 50% propanol, 60 
o
C 30 min, 5) 1% dithiothreitol (DTT), 

50% propanol, 60
o
C 30 min, 6) 1% DTT + 1% SDS, 6 M U 100 

o
C (oven) for 

5 min. These steps were designed to perform the following functions: 1,2) 

disrupt weak non-covalent bonds; 3) thermal unfolding assisting in solubilising 

weakly bound aggregates; 4) disrupt inter-molecular hydrogen bonds and 

denature structure; 5) reduce disulphide bonds and assist in unfolding, 6) inter- 

and intra-molecular hydrogen bonds disrupted with disulfide bonds reduced for 

maximum denaturation and solubility. After the 6 serial extraction steps 

remaining insoluble proteins are considered cross linked with nonreducible 

covalent bonds. 

Separation was carried out with a linear mobile phase gradient of 28-72% 

(acetonitrile in water, 0.1% trifluoracetic acid, Waters 2690 Separations 

Module) over 40 min and a flow of 0.8 ml min
-1

 with a C8 pre-column (5 µm, 
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2 cm X 4.0 mm, Discovery bio wide, Supelco) and main C8 column (5 µm, 

250mm X 4.6mm, Discovery bio wide, Supelco) with a 50 µl injection volume. 

Absorbance was measured at 210 nm (Waters 996 Photodiode Array Detector) 

and integrated over the entire elution. For comparisons between samples, 

normalization was carried out as in SE-HPLC (Paper I, II, IV). Extractions 

were carried out in triplicate. 

3.3 Tensile testing 

Tensile specimens were manufactured to ISO 37 type 3 (die cut) and 

conditioned for a minimum of 48 h at 23 
o
C and 50% RH before testing. 

Specimens were tensile tested at 10 mm min
-1

 on a universal testing machine 

(Instron 5566 (Paper I, II, IV) or Zwick 7010 (Paper III)) under the same 

conditions as during the conditioning period.  

3.4 Immersion  

Five replicates were punched (5 mm diameter disks) from oilseed meal films 

and lyophilised, weighed and immersed in water for 24 h at 4 
o
C to prevent 

microbial growth. After immersion, sample disks were blotted to remove 

surface water and weighed, re-lyophilised and again weighed. The water 

absorption and mass loss during immersion was calculated on a dry basis. 

Drying was carried out by lyophilisation before immersion not with heat as in 

section 3.7 to avoid thermally induced changes to protein structure (Paper II). 

3.5 Oxygen permeability 

The oxygen transmission rate (OTR) was measured according to ASTM 

D3885, 50% RH, 23 
o
C (Mocon OX-Tran Twin). Each sample was covered on 

both sides by aluminium foil exposing 5 cm
2
 to oxygen. Specimen diffusion 

cells were initially purged with nitrogen to measure background oxygen 

leakage. One side of the film was exposed to flowing oxygen at atmospheric 

pressure (Paper III). 

3.6 Scanning electron microscopy 

Sample surface and fracture cross sections of extruded and compression 

moulded samples were examined by scanning electron microscopy (SEM; field 

emission Hitachi S-4800 and Hitachi TM3000). Samples were coated with a 

conductive palladium–platinum layer prior to imaging (Paper III). 
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3.7 Density measurements and moisture content 

Density was measured by the Archimedes principle, weighed in air and n-

hexane. The moisture content was obtained according to standard ASTM 

D664. After drying at 105 
o
C for 24 h and cooling in a desiccator containing 

silica gel for 1 h at room temperature, the final mass was determined (Paper 

III). 
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4 Results and discussion 

4.1 Processing effects on protein molecular weight profile 

In protein-based materials, protein-protein interactions determine the material 

properties. In naturally occurring protein materials, like silk, these interactions 

occur as a consequence of many factors; the primary, secondary and tertiary 

structure and AA bonds such as disulphide bonds (Buehler et al., 2008) and 

those promoted by enzymes such as peroxidase (Bailey, 1991). In oilseed 

storage proteins the natural protein structure does not promote good material 

properties. During processing the conditions to form structures that improve 

material properties of the protein must be provided. Oilseed meals present 

another challenge as they consist of considerable material other than protein. 

As protein is the largest proportion of the oilseed meal, the materials produced 

are viewed in terms of changes to the protein MW profile as a result of 

processing. 

Of the processing options available, the application of heat is simple to 

perform, creates no residues for evaporation or disposal, and fits into existing 

commercial plastics practice. Heat is known to result in protein denaturation, 

the promotion of new AA bonds and the rearrangement of existing bonds 

(Rombouts et al., 2013; Rombouts et al., 2010; Friedman, 1999). On the other 

hand, increased temperatures can also result in protein breakdown (Pommet et 

al., 2004), setting an upper processing temperature range. In examining 

changes in MW profile there are two aspects, the soluble proteins and the 

proteins that have become insoluble during heating by forming a cross linked 

network. The MW of the soluble proteins can be revealed through SE-HPLC, 

the amount of proteins that have become insoluble can be calculated as well. 
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4.1.1 Processing of Industrial oilseed meals 

In the studied oilseed meals the minimum of protein solubility appears at about 

140 
o
C, indicating the maximum extent of aggregation, with increasing 

solubility thereafter (Figure 3a). This is not surprising as the storage proteins 

both meal sources mainly consist of cruciferins and napins which are highly 

conserved between brassica species (Wanasundara, 2011). This similarity in 

the protein makeup leads to their similar behaviour. These changes are not 

distributed evenly across the MW spectrum, with the high MW fraction 

aggregating to a greater extent than low MW fraction in the temperature range 

of 100-140 
o
C (Figure 3b, c). Above 140 

o
C the gains in solubility are mainly 

in the low MW range, suggesting protein fragmentation by thermal breakdown 

(Figure 3b, c) (Pommet et al., 2004) (Paper I). 

 
Figure 3. Changes in solubility and MW distribution of crambe and carinata oilseed meal 

plasticized with 30% glycerol on heating from 100 to 180 
o
C: a) total soluble proteins, summed 

from three extraction steps, b, c) solubility for each extraction step (1-3) divided into high MW 

and low MW fractions. Reproduced from Paper I with kind permission from Springer Science and 

Business Media. 

Plasticizers, such as glycerol (Rasheed et al., 2014; Athamneh et al., 2008) 

or water (Mohammed et al., 2000), have been observed to affect the 

aggregation of proteins on heating. The presence of glycerol results in 

variations in the protein solubility of thermally processed proteins, although the 

effect depends on the source meal and temperature (Figure 4). As with the 

effect of temperature, plasticizers affect high MW and low MW fractions 
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differently (Paper I). At 100 
o
C crambe showed lower solubility at the highest 

glycerol level, while carinata was unaffected by glycerol level. At 130 
o
C both 

oilseed meal types show increased high MW extractable proteins vs. lower 

temperatures, in carinata this increase resulted in a higher total solubility. The 

differences in behaviour indicate that there are changes in protein-protein 

interaction driven by plasticization. The distribution of glycerol between 

protein and non-protein components may be playing a role, where in crambe at 

100 
o
C and 30% glycerol protein mobility and thus reactivity is enhanced 

compared to lower glycerol levels. At 160 
o
C there was little difference in both 

MW ranges with glycerol content. As temperature is increased the proteins 

have more thermal mobility making the effect of glycerol as a plasticizer less 

important. 

 

Figure 4. Solubility of hot pressed oilseed meals as affected by temperature and glycerol level. 

Sum of three serial extractions. Error bars denote one standard deviation. Adapted from Paper I 

with kind permission from Springer Science and Business Media. 

Plasticizers have been observed to affect the aggregation and rearrangement 

of proteins on heating, such as glycerol (Rasheed et al., 2014; Athamneh et al., 

2008) or water (Mohammed et al., 2000). In our system it appears that, in some 

cases, the glycerol level is important and in others less so (Figure 4, Paper I). 

This may be due to the presence of discrete events of protein denaturation at 

certain glycerol/temperature combinations. In the crambe case at 100 
o
C one of 

these transitions may be between 20 and 30% glycerol, in both meals it appears 

there is a transition between 20 and 30% glycerol at 130 
o
C. At 160 

o
C all 

glycerol levels and meals behave similarly, possibly because thermal effects 

dominate at higher temperatures. The presence of the plasticizer glycerol may 

allow protein rearrangement at lower temperatures and affect the thermal 
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aggregation response. Further study with a finer scale of glycerol level and 

temperature is needed to resolve these effects. 

4.1.2 Processing effects in crambe protein concentrates 

To change the final protein profile resulting from processing protein-based 

materials one can also modify the starting profile rather than the processing 

conditions (Paper IV). By solubilising de-oiled crambe meal in different 

aqueous solutions such as pure water, 3% NaCl, or pH11 (NaOH) (Figure 2), 

solutions with differing MW profiles can be obtained (Figure 5). These 

solutions can be lyophilised whole to recover the protein in solution, 

membrane processed (e.g. dialysis) (Kroll et al., 1991) or isoelectrically 

precipitated to concentrate a fraction of the protein (Massoura et al., 1998). 

The combination of different extraction and recovery procedures results in 

protein concentrates of various MW distributions, which when processed with 

heat and plasticizers affects the final MW distribution and level of 

unextractable proteins (Paper IV). 

 
Figure 5. Size exclusion chromatogram of concentrated crambe protein before and after 

processing (130 
o
C, 15% glycerol, 5 minutes): A1) water extract - lyophilisation, B1) pH 11 

extraction – pH 5.5 precipitation. Absorbance adjusted for protein content. All chromatograms are 

the sum of three serial extractions. Arb. units – arbitraty units. 

The extraction and concentration of protein from crambe meal affects the 

types of protein-protein interactions that occur during protein processing 

(Paper IV). Through the use of selected solvents on the pressed films, specific 

types of protein-protein interactions can be disrupted, such as DTT disrupting 

disulphide bonds (Rasheed et al., 2014). Through this selective disruption the 

effect of procedures used to extract protein from the meal on the resulting 
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protein behaviour can be revealed (Figure 6). Proteins produced by direct 

lyophilisation of supernatants (Figure 2, A1 and A3, B3, B5, C1, C3) result in 

protein-protein interactions that are relatively easily disrupted, with high 

solubility in 70% ethanol that disrupts weak intermolecular bonds (Figure 6) 

(Rasheed et al., 2014). Successive extraction of the pressed film samples using 

increasingly disruptive aqueous solutions results in a high level of total 

extraction (Figure 6, Paper IV). 

Figure 6. Total integrated absorbance from RP-HPLC chromatograms for hot pressed crambe 

protein concentrates (130 
o
C, 15% glycerol 5 minutes) extracted in different solvents: 1) 70% 

ethanol, RT, 2) 50% propanol, RT, 3) 50% propanol, 60 
o
C 30 min, 4) 0.5% SDS, 50% propanol, 

60 
o
C 30 min, 5) 1% DTT, 50% propanol, 60 

o
C 30 min, 6) 1% DTT + 1% SDS, 6 M U 100

o
C 

(oven) for 5 min. Absorbance normalized for protein content. Error bars denote one standard 

deviation. Arb. units – arbitraty units 

When proteins are isoelectrically precipitated (Figure 2, B1, B2, B4, C4), 

protein concentrates of higher purity are produced with their MW distribution 

shifted to the high MW end (Figure 5, B1). When hot pressed (130 
o
C, 15% 

glycerol) these protein concentrates show low solubility in SDS buffer, with 

the greatest decreases in the high MW end of the protein distribution (Figure 5, 

B1). Furthermore, the isoelectrically precipitated protein concentrates are 

resistant to alcoholic extraction, with DTT or DTT + U in the solvent 

extractability increases (Figure 6). Despite DTT and DTT + U treatment the 

isoelectric precipitates still have a large amount of unextractable protein 
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compared with most of the lyophilised supernatants (Paper IV). Resistance to 

extraction when DTT and DTT + U is present indicates the existence of 

covalent cross links other than the disulphide type (Rasheed et al., 2014). 

This may lead one to believe that a high MW-rich protein distribution leads 

to a high degree of protein aggregation, but the behaviour of fraction A2 

indicates an alternative hypothesis (Figure 6). Although A2 has a MW 

distribution and purity similar to the other lyophilised supernatants (such as A1 

and A3 (Paper IV)), it has been dialyzed (2000 MWCO) removing low MW 

(non-storage protein) components. On hot pressing (130 
o
C, 15% glycerol) the 

SDS extractable protein in A2 drops substantially across the entire MW range 

in contrast to A1 and A3, despite their similar MW distributions (Paper IV). A2 

also shows low extractability in solutions without DTT. With DTT and DTT + 

U there is some increase in extractability for A2 indicating a degree of 

reducible disulphide bonding and hydrogen bonded aggregation (Figure 6) 

(Paper IV). Despite the increases in solubility of A2 with DTT and DTT + U, a 

large amount of protein remains unextractable, similar to the isoelectrically 

precipitated fractions (B1, B2, B4, C4). The behaviour of A2 suggests that the 

aggregation response observed may not only be a consequence of the protein 

profile, but of low MW substances (<2000 MWCO) that interfere with 

aggregation (Paper IV). 

4.2 Impact of additives on protein profile and processing 
behaviour 

Hot compression moulding of unmodified crambe and carinata industrial 

oilseed meals (Figure 3, 4) indicates that there may be room to improve 

properties by modifying the processing environment; even the best conditions 

resulted in over 20% protein solubility (Paper I). In order to affect the outcome 

of hot compression moulding a series of additives were studied in order to 

assess their effect (Table 1). The additives chosen are fairly benign from an 

industrial health and safety point of view and can be renewably sourced. An 

exception to this is Jeffamine™ (JF) which may be toxic but was chosen to 

provide thermally stable and reactive amine sites compared to U.  

Additives that raise pH (NaOH and ammonium hydroxide (AH)) were 

found to have the largest effect on crambe and carinata meal-based materials 

(Figure 7, Paper II). Solubility decreased with lower additions of NaOH (1.5, 3 

parts per hundred parts of 70:30 meal:glycerol (pph)) and at all levels of AH. 

At higher levels of NaOH (4.5 pph) an increase in both high MW and low MW 

in the extractable proteins compared to the control indicated protein breakdown 

at our pressing conditions (130 
o
C, 30% glycerol). Basic conditions are known 



34 

to promote protein-protein cross linking such as isopeptide and lanthionine 

cross links (Rombouts et al., 2013; Rombouts et al., 2010; Friedman, 1999). 

Sugars that are also present in the meals (Pedroche et al., 2004; Steg et al., 

1994) could form Maillard type cross links, are also promoted by a basic 

environment (Singh, 1991). In AH these effects do not change appreciably with 

dose, perhaps due to the mechanism being saturated at the initial dose and AH 

not being a strong enough base to result in degradation at high doses. 

Table 1. Additives for modifying hot compression molded crambe and carinata oilseed meal with 

their proposed action. 

 

In aqueous protein extracts from crambe the modification of pH to 10.5 

(NaOH) in solution after extraction (C2, Paper IV) resulted an increase in the 

high MW fraction compared with the unmodified extract (C1, Paper IV). 

Despite this shift of MW in the concentrate with increased pH, the outcome 

after thermal processing was not affected by the pH modification (hot pressed 

C1 vs. hot pressed C2, Paper IV). This indicates that the starting composition, 

which is identical in C1 and C2, plays a larger part than aggregation before 

pressing induced in C2. This may also be due to a lower level of alkali present 

during pressing of C2 compared to the oilseed meals of Paper II. 

Combinations of CA and NaOH were added to the oilseed meals in order to 

examine the possibility of CA cross linking as observed in other protein 

systems (Xu et al., 2015; Reddy et al., 2009). At a constant level of CA (3 pph) 

and varying NaOH (1.5, 3, 4.5 pph) the lowest level of NaOH addition resulted 

in high solubility for crambe, as in the case of CA alone (Paper II supplemental 

data). Higher levels of NaOH resulted in small changes in solubility and MW 

profile, indicating a simple pH effect (no CA cross linking) (Figure 7). A 

constant CA/NaOH ratio (2:1) resulted in only slight changes in solubility and 

Type Additive Abbreviation Proposed Action 

Base NaOH NaOH Promote protein-protein interactions 

 NH4OH AH Promote protein-protein interactions 

Acid/Base Citric acid/NaOH CA/NaOH Cross linking 

Acid Salicylic acid SA Retard protein-protein interactions 

 Citric acid CA Cross linking 

 Ascorbic acid As Improve protein behaviour 

Reactive Jeffamine EDR 176™ JF Provide reactive amine sites 

 Benzoyl peroxide BP Thermally decomposing oxidant 

Denaturant Sodium dodecyl sulphate SDS Allow protein rearrangement 

 Urea U Allow protein rearrangement 

Reductant Sodium bisulphite SB Allow protein rearrangement 
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MW profile, with the exception of the highest level in crambe (9/4.5 pph) 

where the extractable high MW fraction was reduced (Figure 7). In the case of 

CA cross linking one would expect a dose dependant response and a marked 

departure from the control, which was absent in our case. 

Recent work has highlighted the importance of deprotonating the CA for 

successful protein cross linking (Xu et al., 2015) and it is unknown if this 

condition has been met during pressing oilseed meals as a plasticized solid. 

The use of CA alone has been shown to fail in cross linking of zein protein 

(Selling & Sessa, 2007) and did not result in any improvement in the MW 

profile at any level used, showing higher protein solubility than the raw 

unprocessed meal in both MW fractions (Paper II supplemental information). 

The additives surveyed not represented in Figure 7 were found to have only a 

small effect on the protein behaviour (As, SDS, SA) or resulted in an increase 

in protein solubility (U, SB, CA) (Paper II supplemental information). 

In examining the samples with reduced solubility due to the series of 

additives, the bulk of the decreases come from the high MW end of the MW 

Figure 7. Protein solubility of hot compression moulded crambe and carinata oilseed meals 

(30% glycerol, 130 
o
C, 10 minutes), divided into high MW and low MW fractions by SE-

HPLC. Solubility is expressed as a % of the total solubility of unpressed raw meal. Error bars 

denote one standard deviation. Adapted with permission from Paper II, Copyright 2014 

American Chemical Society. 
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range demonstrating a higher tendency of the high MW protein fraction to 

form aggregates compared to the low MW fraction (Figure 7). A similar trend 

was seen for purified proteins when small molecules were not removed by 

dialysis (section 4.1). 

Previous work has shown that extrusion of crambe and carinata oilseed 

meals is difficult to achieve (Johansson, 2010) but processability is improved 

for crambe by the incorporation of WG and U (Henne, 2011). As an additive 

for modifying extrusion processing U levels of 15% were required for the 

production of acceptable films, 10% U could be extruded but not at acceptable 

quality for further testing (60:40 crambe:WG, 25.5% glycerol, Paper III). 

Under extrusion conditions U is likely to dissociate into ammonium and 

cyanate reacting with lysine and cystine groups of the proteins (Rombouts et 

al., 2013). This effectively blocks cross linking reactions with these groups in 

addition to contributing to denaturing the proteins (Türe et al., 2011). The 

effectiveness of this approach in the 60% crambe, 40% WG + 15% U system is 

in contrast to compression moulding of crambe meal without WG where 7.5 

pph U resulted in films that were of poor quality (Paper II supplementary data). 

4.3 Functional property relationships between processing and 
protein profile 

4.3.1 Mechanical properties: strength stiffness and elongation 

In crambe and carinata meals compression moulded with plasticizer, the 

combination of plasticizer level (10, 20 and 30% glycerol) and temperature 

(100, 130, 160 
o
C) results in a broad range of mechanical properties (Figure 8) 

(Paper I). The general change in properties at each temperature is as expected 

from plasticized protein systems in the literature; higher plasticizer levels lead 

to lower Young’s modulus (E) and maximum stress values with a higher strain 

at maximum stress (Johansson et al., 2012; Cho et al., 2010; Rouilly et al., 

2006a; Zhang et al., 2001). Similar systematic changes are not seen in the MW 

distribution (Figure 4), where changes do not follow glycerol level. This 

suggests that plasticization is responsible for the mechanical property changes 

with glycerol level, not changes in MW profile. 
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At a constant glycerol level (30%) the effect of temperature on mechanical 

properties of hot compression moulded crambe and carinata meals showed 2 

regimes, with a change between 130 and 140 
o
C (Figure 9). Young’s modulus 

and maximum stress initially increase with temperature to 130 
o
C, then 

decreasing or staying constant thereafter. Maximum stress peaks at 130 
o
C for 

both meals. Strain at maximum stress shows the opposite behaviour in carinata 

with an initial decrease then slight increase after 140 
o
C, while crambe 

demonstrated little effect of processing temperature on strain at maximum 

stress. This transition is mirrored in the changes in total protein solubility, with 

a minimum at approximately 140 
o
C for both meals (Figure 3a). 

The difference in response between the measured mechanical properties 

indicates their underlying relationship with the protein network. As E results 

from a rule of mixtures response of the phases present, an increase in protein 

aggregation increases E of the protein phase and thus the overall E. Maximum 

stress in our case appeared to coincide with the initiation of fracture (tearing), 

which is resisted by a more extensive network (Paper I). In the case of strain at 

maximum stress, carinata behaved in line with the changes in total protein 

solubility (Figure 3). Strain at maximum stress in crambe showed little change 

with temperature despite the changes in MW distribution, indicating that the 

failure mode was not dominated by the network in this case. It is suggested that 

failure in crambe is controlled by crack nucleation around seed pod particles 

(Paper I). 

Figure 8. Effect of glycerol and temperature on mechanical properties of compression moulded 

crambe and carinata meal (10 minutes). Error bars denote one standard deviation. Adapted from 

Paper I with kind permission from Springer Science and Business Media. 
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The inclusion of chemical additives 

(Table 1) with the de-oiled crambe and 

carinata seed meals resulted in changes 

in their tensile behaviour; with those that 

raise pH, AH and NaOH, making the 

greatest positive impact (Figure 10, 

Paper II supplemental data). The largest 

changes in mechanical properties with 

NaOH were observed in maximum 

stress and strain at maximum stress, and 

occurred at the lowest dose. This 

corresponds to the lowest solubility for 

NaOH treated proteins (Figure 7). The 

largest change from AH addition 

occurred with the initial dose, having 

relatively small changes thereafter, 

similar to the changes in protein 

solubility (Figure 7). Despite changes in 

protein solubility that indicate a more 

extensive network (Figure 7), E 

decreased with dose for both AH and 

NaOH. This may reflect changes in 

secondary structure due to the increased 

pH. Even though the network is more 

extensive, changes in secondary 

structure may make the network more 

flexible resulting in a lower E value 

(Paper II). 

In the literature pH adjustment has 

been mainly applied to cast protein films 

where increased pH improves E for soy 

protein isolate and strength for both WG 

and soy protein isolate (Gennadios et al., 

1993). In compression molded wheat 

proteins, AH has been shown to improve 

E values of WG, gliadin and glutenin while tensile strength increased for 

gliadin and elongation at break decreased for all (Rasheed et al., 2015), 

contrary to our results here (Figure 10). Previous work has been done with 

relatively pure proteins such as WG (ca. 80% protein) and soy protein isolate 

(ca. 90% protein), while in our case there are non-protein components present 

Figure 9. Effect of processing temperature 

on mechanical properties of compression 

moulded crambe and carinata meal. Error 

bars denote one standard deviation. Adapted 

from Paper I with kind permission from 

Springer Science and Business Media. 
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that can interact with the proteins. For some of the non-protein components 

these reactions are promoted by a high pH environment, such as phenolics (Tan 

et al., 2011), sugars (Ajandouz et al., 2008) and phytic acid (Wanasundara, 

2011), leading to a different outcome compared to the relatively pure protein 

case. 

In the case of crambe meal/WG extrudates, the rheological demands of 

extrusion processing limit the process variables such as temperature, glycerol 

plasticizer or chemical additives to a small window (Türe et al., 2011; Ullsten 

et al., 2009; Pommet et al., 2003). As the ability to adjust the conditions is 

limited, so is the ability to use them for modifying the final mechanical 

properties or MW distribution. For extruded film A of Paper III (60:40 

crambe:WG, 25.5% glycerol, 15% U) the window for successful processing 

spanned die temperatures of 125 
o
C or 130 

o
C where the extrudates achieved 

similar tensile properties at either temperature (Table 2). By pre-pelleting 

composition A for improved feeding (strand extrusion, die temperature 85 
o
C) 

little impact was seen on the mechanical properties of film extruded from these 

pellets, the additional thermal history did not adversely affect the mechanical 

properties (Paper III).  

A decrease of glycerol (composition C of Paper III, 60:40 crambe:WG, 

20% glycerol, 16.1% U) required 130 
o
C die temperatures to achieve similar 

properties to composition A at the 130 
o
C or 125 

o
C die temperature. Reduced 

plasticizer content may be expected to increase E and maximum stress while 
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Figure 10. Effect of NaOH and AH on tensile properties. Additive level is parts of additive per 

hundred parts of oilseed meal:glycerol (70:30) mixture. All samples pressed at 130 
o
C, 10 

minutes. Error bars denote one standard deviation. Adapted with permission from Paper II, 

Copyright 2014 American Chemical Society. 
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reducing strain at maximum stress. In this case these properties remained 

relatively constant. The additional temperature and lower plasticization may 

have resulted in protein degradation during extrusion, with the degradation 

products acting as plasticizers (Tuck et al., 2014), thus modifying the 

mechanical properties. Increases in crambe content (70:30 and 80:20 

crambe:WG, 25.5% glycerol, 15% U) resulted in decreases in mechanical 

properties compared to formula A, although they could be still extruded into 

films (Table 2, Paper III). 

Examination of the morphology of the extruded films by SEM revealed 

internal and surface voids that could affect mechanical properties (density 1220 

kg/m
3
) (Figure 11). Hot compression moulding of extruded films was used to 

reduce these defects, with the possible effect of improving properties through 

thermally modifying the protein MW distribution. A second process, 

compression moulding at 110 
o
C with an aluminium frame to control thickness, 

increased density (1310 kg/m
3
) and tensile properties with 2.7 times the E 

value, 2 times the maximum stress and little to no penalty in strain at maximum 

stress compared with the extruded film (Table 2). Re-pressing extruded films 

with no frame constraining the thickness resulted in higher densities (1330 

kg/m
3
) but inferior properties compared with those pressed with a constraining 

frame (Table 2). Deformation during re-pressing without a frame resulted in 

additional material flow compared to re-pressing with the frame that may have 

expanded the defects in the compression plane, leaving internal flaws that 

result in property degradation. 

Table 2. Tensile properties of selected crambe:WG extrudates and re-pressed extrudates (Paper 

III) 

WG- wheat gluten, T-temperature ( oC), press. – pressure (MPa), time in minutes, max. – maximum. () denote one 

standard deviation. 

In the case of concentrated crambe proteins (Paper IV), concentrates from 

dried supernatants (A1, A2 and A3, Figure 2) were not testable at high levels 

of glycerol, leading to 15% glycerol being used for all samples. In the high 

protein content precipitated proteins (B1, B2, B4 and C4, Figure 2) this low 

Crambe:WG Glycerol 

(%) 

Urea 

(%) 

Die T 

(oC) 

Re-press conditions  

T, press., time, 

constraint 

E (MPa) max. stress 

(MPa) 

strain @ max. 

stress (%) 

60:40 22.5 15 125 n/a 5.6(1.8) 0.5(0.1) 14(2) 

60:40 22.5 15 130 n/a 5.1(0.6) 0.6(0.1) 19(2) 

60:40 20 16.1 130 n/a 5.4(0.9) 0.7(0.1) 16(2) 

60:40 22.5 15 125 110, 40.8, 10, frame 15(0.6) 1.1(0.2) 16(4) 

60:40 22.5 15 125 120, 12.9, 5, no frame 8.6(1.5) 0.6(0.1) 10(1) 
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level of glycerol led to brittle, glassy behaviour; characterized by a high E and 

low strain at maximum stress. Although there were a variety of different MW 

distributions in the materials made from precipitates, their behaviour is not 

expected to vary due to MW profile changes. In the glassy state it has been 

shown in WG based plastics that the mechanical properties no longer depend 

on the protein network dynamics (Bruyninckx et al., 2015) and this behaviour 

is suggested in precipitates B1, B2, B4 and C4 as well. 

4.3.2 Aqueous swelling 

The effect of additives on the water absorption of crambe and carinata 

oilseed meals varied greatly, with NaOH having the greatest effect, with a 

water absorption of 73% for crambe and 126% for carinata (Figure 12, Paper 

II). Comparing results between the basic additives NaOH and AH, the 

differences may be a result of the evaporation losses of AH during pressing 

reducing the residual effect of AH on the pH of the immersed film. It has been 

shown that in cast cottonseed flour films, ammonia in the formulation does not 

affect the final pH (Marquie et al., 1995) while for NaOH a residual effect is 

expected. Of the CA/NaOH treatments, little effect of treatment level on water 

absorption was shown (Paper II), perhaps as the effect of NaOH was 

neutralized by the CA content, mirroring their low effect on the MW 

distribution compared to the controls. 

Figure 11. Cross sectional image of extruded film (60:40 crambe:WG, 25.5% glycerol, 15% U, 

left) and the same film re-pressed by compression moulding (110 
o
C, 20 min, right) 

demonstrating a reduction in voids. Bars represent 500 µm. Reproduced from Paper III with 

kind permission from Springer Science and Business Media. 



42 

Swelling in cross linked systems is expected to be controlled by cross link 

density, in which the macromolecular network responds to swelling with an 

equilibrium force stopping further solvent absorption (Van der Sman, 2012). In 

our case the water absorption increases with NaOH (Paper II) as the protein 

solubility initially decreases compared with the control, then increases (Figure 

7). A reduced solubility implies a more compact network that should swell less 

(NaOH level 1.5 pph), but this is not the case. In expanding the network of a 

protein during swelling, the state of the segments between cross links play a 

role as well as the cross link density, local interactions such as secondary 

structure can prevent the segment from fully extending reducing swelling. 

In samples of both meals pressed at 100 
o
C to 170 

o
C (30% glycerol) there 

was little change in swelling across the entire range (data not shown) although 

there was a large change in the protein profile (Figure 3). This indicates that 

the effect of NaOH on protein denaturation may be responsible for the 

increased water absorption, not MW profile or protein network changes. 

Chemically denatured protein segments between cross links will be able to 

more fully extend resulting in a higher degree of swelling. A similar effect of U 

denaturation in protein gel networks results in increased swelling than without 

denaturation (Van Kleef et al., 1978). 

4.3.3 Oxygen permeability 

Low oxygen permeability has been put forward as a useful functional 

property in protein-based materials (Miller & Krochta, 1997). In WG/crambe 

meal composites SEM investigation revealed the presence of voids in the film 

surface and interior (Figure 11). Despite these voids, an oxygen permeability of 

36.1 cm
3
·mm/(day·m

2
·atm) was obtained (60:40 crambe:WG, 25.5% glycerol, 
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Figure 12. Effect of NaOH and AH on swelling in water. Additive level is parts of additive per 

hundred parts of oilseed meal:glycerol (70:30) mixture (pph). All samples pressed at 130 
o
C, 10 

minutes. Error bars denote one standard deviation. Adapted with permission from Paper II, 

Copyright 2014 American Chemical Society. 
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15% U), considerably higher than extruded WG films of 0.26 

cm
3
·mm/(day·m

2
·atm) (26% glycerol, 15% U) (Türe et al., 2011). Increasing 

the crambe:WG ratio to 80:20 resulted in a minor change in permeability to 

38.7 cm
3
·mm/(day·m

2
·atm) indicating that the crambe content alone is not 

responsible for the poor oxygen permeability compared to a similarly 

processed WG/glycerol/U film. In order to decrease the oxygen permeability, 

hot re-pressing was used (Paper III). This decreased the void content, 

increasing the density from 1220 to 1310 kg/m
3
 thereby decreasing the oxygen 

permeability to 17.1 cm
3
·mm/(day·m

2
·atm), still far above similarly processed 

WG/glycerol/U film. Despite the repressing and density increase, many voids 

still exist in the film that may be responsible for the poor performance (Figure 

11). 
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5 Applied aspects 

In order to utilize de-oiled crambe or carinata meals directly, they have been 

plasticized with glycerol (Paper I-IV), hot compression moulded (Paper I, II, 

IV) extruded (Paper III) and treated with additives (Paper II). Of the additives 

investigated NaOH was most effective in improving the mechanical properties, 

and is also approved for food use (E524) reducing restrictions on the 

application of the final product in food contact. Compression moulding is a 

convenient laboratory process that can directly form parts such as packaging 

trays (Figure 13) and similar processes exist in current plastics production. The 

response of compression moulded oilseed meals to water immersion (Paper II) 

indicates their possible use in applications where some water permeability or 

absorption is desired in combination with resistance to dissolution and 

biodegradeability, such as in containers for plant propagation (Rouilly et al., 

2006b). 

Figure 13. Hot compression moulded tray from de-oiled crambe meal. 

In order to successfully implement the use of crambe oilseed meal/WG 

based materials, it is a great advantage these potential feedstocks can fit into 

the existing plastics production infrastructure. Pre-extruding 

crambe/WG/U/glycerol materials to form pellets that can be subsequently fed 
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into process equipment by dosing equipment has been demonstrated without a 

reduction in properties (Paper III). The possibility of using these materials in 

existing processing facilities is more likely without the need to purchase 

specialized equipment for extruder feeding. It has been demonstrated that post-

processing such as hot compression moulding of extruded 

crambe/WG/U/glycerol films improves their aesthetics and barrier properties 

(Paper III). Similar processing may be possible with the use of a heated multi-

roll calendar or a hot belt press to provide the same benefits in continuous film 

production. 

In order to improve the performance of protein-based materials derived 

from de-oiled crambe meals it will be necessary to extract proteins. In terms of 

process simplicity and cost, the process route of alkali dissolution followed by 

isoelectric precipitation is the most attractive (Paper IV, Scheme B) resulting in 

isolates of high purity (ca. 90%, Paper IV). Protein isolates manufactured by 

isoelectric precipitation showed extensive network formation that was resistant 

to disruption (Paper IV). This highly aggregated state is desired in applications 

such as food packaging where migration from packaging material into the 

contents is an issue. 
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6 Concluding remarks 

The industrial oilseed meals crambe and carinata are a new supply of 

materials for non feed or food uses. Their protein content makes it possible to 

process them with heat and plasticizers to make bio-based plastic films. The 

variation in the reactivity of proteins to heat in different environments allows 

the tailoring of film properties through modification of the protein MW profile. 

Protein profile is only part of the total material response not all properties 

correspond to changes in the protein component. The main conclusions and 

key findings are as follows: 

 

 Compression moulding of crambe and carinata meals resulted in a 

minimum solubility at 130 
o
C – 140 

o
C which corresponded with 

maxima in E and maximum stress (crambe and carinata) and 

minima in strain at maximum stress (carinata). Above this 140 
o
C 

solubility increased due to protein breakdown. 

 The addition of low levels of NaOH (1.5 pph) in hot compression 

moulding increased protein aggregation resulting in increased 

strain at maximum stress (crambe and carinata), and maximum 

stress (crambe only), and while E was reduced. The reduction of E 

at higher protein aggregation indicates that protein secondary 

structure could be modified by the high pH to form a more flexible 

network, despite the level of aggregation. An alternate explanation 

is that non-protein components were modified by pH, thus reducing 

the overall E. AH had a similar effect to NaOH, but to a lower 

degree, possibly due to AH evaporation at pressing temperatures. 

 Crambe meal/WG/U/glycerol blend films were successfully 

produced with co-rotating twin screw extrusion, but the processing 

and composition window was small. Internal porosity reduced OTR 
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performance, but it was improved with hot compression moulding 

as a post-process. 

 Protein extraction procedures had an effect on the MW profile of 

the proteins recovered and also on their response to subsequent 

thermal processing. High MW fraction of the concentrated proteins 

preferentially aggregated, in some cases. 

 Increasing protein solution pH before freeze drying shifted the MW 

profile of the proteins to higher MW’s. After thermal treatment 

there was no effect on MW profile of the increased pH. This 

contrasts with cast protein films in which initial solution pH plays a 

strong role. 

 Separation of non-protein components from proteins by isoelectric 

precipitation or dialysis increased protein aggregation on heating. 

This indicates that the fraction of protein in the concentrate is not 

the only important parameter for thermal aggregation - the 

exclusion of low MW components is also important. 

 In the cases of extensive protein concentrate aggregation on 

heating, extraction with reducing and denaturing agents was 

required for substantial protein extraction, indicating that some of 

the aggregation was due to disulphide bonding and secondary 

structural effects. In the presence of DTT-U solubility was still not 

high, indicating the presence of non-disulfide covalent cross links. 

 The insights into the behaviour of concentrated proteins point to 

procedures that produce highly aggregated films. With levels of 

plasticization customized for each concentrate these proteins 

promise to form interesting materials in the future. 
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7 Future directions 

In order to utilize crambe and carinata de-oiled meals directly their properties 

need to be improved. Although the use of NaOH improved the properties of 

pressed de-oiled crambe and carinata seed meals (Paper II) lower doses of 

NaOH need to be investigated to further optimize the system. Performance 

enhancing additives such as formaldehyde, glutaraldehyde and glyoxal that 

have been successful in seed meals (Yue et al., 2012) should be investigated 

with proper controls regarding their health and safety issues (Álvarez-Chávez 

et al., 2012). Polyaldehydes from oxidised sucrose hold some promise as a 

more sustainable alternative to conventional aldehydes (Liu et al., 2015) and 

may improve properties of these protein materials while maintaining ―green‖ 

credentials. 

There are further possibilities for composites using oilseed meals as 

components such as in crambe/WG extruded films (Paper III). The success in 

extruding these compounds under industrial-like conditions (screw extrusion 

with pre-compounded pellets) warrants further investigation of this method, 

mainly to expand the processing envelope. This could take the form of 

additional additives, such as SA (Ullsten et al., 2009), but equipment 

development to control early cross linking during processing is also of interest. 

Low level additions of NaOH (<1.5%) are suggested as they are known to 

improve the behaviour of both the oilseed components (Paper II) and WG 

(Ullsten et al., 2009). 

The glucosinolates in the seed meals of crambe and carinata that make them 

unattractive as food or feed (Pedroche et al., 2004; Carlson & Tookey, 1983) 

may be used to some advantage. The breakdown products of glucosinolates are 

known to be natural pesticides (Brown & Morra, 2005) and could be included 

in plastics for horticultural applications. For such functionality processing 

would have to be carried out in such a way as to preserve the function of the 

enzyme myrosinase, which is required for glucosinolate breakdown. This may 
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be carried out using the aliphatic polyester polycaprolactone in combination 

with oilseed meal as polycaprolactone has a melting point of about 60 
o
C 

(Anon., 2014a). The processing window will be small as myrosinase loses its 

activity at 75 
o
C as measured in the mustard S. Alba (Van Eylen et al., 2008). 

Myorsinases from other brassicas are expected to be similar, setting an upper 

temperature limit for processing. Such products could have self fertilizing 

properties as the protein degrades (Schrader et al., 2013) in addition to the 

pesticide effects of glucosinolate breakdown products. 

Extracted crambe proteins demonstrate improved protein-protein 

interactions for some fractions (Paper IV) and offer the possibility of selecting 

protein fractions that offer improved properties in the future. Once target 

proteins are identified, genetic modification is a possible route to increasing 

their concentration in the seed. As crambe is already a target for genetic 

modification of its lipid profile (Li et al., 2012), the same plants could have a 

modified protein profile, thus increasing their overall value. Another Brassica, 

Camelina sativa, has already been modified to greatly reduce the napin content 

in the seeds, replacing it with an increased level of cruciferin (Nguyen et al., 

2013). The genetic modification approach could be applied to suppress the 

production of certain storage proteins and replace them with proteins of 

interest, such as insect resilin for medical biomaterials (Qin et al., 2011) which 

has already been successfully expressed in genetically modified Camelina 

sativa
1
. 

The theoretical underpinnings of protein-based materials for practical 

applications require further study. If the macromolecular theories such as 

entropic elasticity (Van der Sman, 2012; Van Kleef et al., 1978) are to be 

applied to cross linked protein materials a better molecular/structural 

description of the system needs to be determined. Measurement of protein MW 

profile and overall solubility are not adequate to address this type of model as 

it provides no direct information on where cross links occur or on their 

chemical type. New methods need to be applied to examine the required 

parameters, such as distance between cross links and the position and extent of 

secondary structure along the protein chains within the network. Control over 

cross link position on the protein chain, avoiding dangling non-network chain 

ends, closed loops (intra-chain cross links), and the extent and position of intra 

and inter-chain secondary structure will need to be elucidated in order to 

maximize material performance. 

                                                        
 

1
 Personal communication, Prof. Edgar B. Cahoon (University of Nebraska, Lincoln), August 

21, 2015 
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By utilizing techniques from proteomics, the specifics of individual cross 

links can be established (Sinz, 2003) and using this data the reaction conditions 

may be tailored to control cross link type and position and thus protein-based 

material properties. Atomic force microscopy infra-red techniques now offer a 

lateral resolution of 10 nm with secondary structure identification and local E 

measurement (Ruggeri et al., 2015) which is reaching the scale of protein 

aggregates. This offers the possibility of probing the fine scale of structural 

development compared to conventional Fourier transform infrared bulk 

structural determination which may also provide insight into the phase 

structure of protein-based materials. These techniques will open up new 

opportunities to define the structures resulting from processing; allowing 

researchers to identify desired structures and tailor processing conditions to 

obtain them, thereby improving material properties. 
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