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Understanding virulence of Heterobasidion annosum s.l., a root 
rot pathogen of conifers 

Abstract 
Heterobasidion annosum sensu lato (s.l.) species are destructive pathogens causing root 
and butt rot in conifers. The species complex consists of five species: H. annosum 
sensu stricto (s.s.), H. abietinum, H. parviporum, H. irregulare and H. occidentale. The 
aim of this thesis was to improve the understanding of fungal virulence in this species 
complex. The comparison of H. irregulare and H. occidentale transcriptomes revealed 
differences in the consistently significant up-regulated genes (CUGs) in Norway spruce 
(Picea abies) bark. It appears that more CUGs involved in detoxification and in the 
production of secondary metabolites are activated in H. irregulare. By contrast, H. 
occidentale emphasizes carbohydrate degradation. This enrichment of CUGs in 
particular gene ontology terms may be driven by their host preferences and by their 
evolutionary history.  

In H. irregulare, an endo-rhamnogalacturonase gene (HIRHG) from a virulence QTL 
was up-regulated during infection and the protein was mainly produced during growth 
on complex carbon sources. Although the HIRHG gene had been lost in most of the 
biotrophic and hemibiotrophic plant pathogens investigated, it was common in the 
necrotrophic pathogens and saprotrophs. Expression of HIRHG in Magnaporthe oryzae 
increased its capacity to grow on pectin, but did not significantly affect its virulence in 
our experimental set up. 

In parallel, the evolution of RNA interference (RNAi) was investigated to lay a 
foundation for the establishment of reverse genetics study tools. Dicer and argonaute 
are central to the functioning of the RNAi machinery required for gene silencing 
applications. The evolution of argonaute- and dicer-encoding genes in 43 fungal 
genomes indicated an ancient duplication of dicer and argonaute genes concurrent with 
the early diversification of the Basidiomycota, followed by additional species-specific 
duplications and losses of a more recent origin. The quelling pathway possibly exists in 
most Basidiomycota; however, to date, no evidence for the meiotic silencing (MSUD) 
pathway has been found. Given that both argonaute and dicer are present, it should be 
possible to apply RNAi to study virulence genes in H. annosum s.l. 
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1 Introduction 

1.1 The annosus root and butt rot 

1.1.1 Economic and ecological impact of annosus root and butt rot 

Heterobasidion annosum sensu lato (s.l.), which causes root and butt rot in 
conifers, is one of the most devastating pathogens in the boreal and temperate 
coniferous forests of the northern hemisphere (Woodward et al., 1998). In 
modern forestry, the forests are usually established by plantation and 
intensively managed, and site productivity can be severely affected by H. 
annosum s.l. The overall effects of H. annosum s.l. infection include host 
mortality, losses due to decay as well as an overall reduction in the diameter 
growth of infected trees, wind-throw and a reduction in the resistance of stands 
to storm damage, which may be significant in certain places (Garbelotto & 
Gonthier, 2013). The estimated financial losses caused by annosus root and 
butt rot in the European Union were estimated in 1998 to be about 790 million 
euro per year (Woodward et al., 1998). In the Southeast USA, up to 30% of 
trees can be killed by H. annosum s.l. in severely infected stands. In the United 
Kingdom, the incidence of decay has been reported to be as high as 68% in 
some Sitka spruce (Picea sitchensis) stands, with a loss in value of 43% (Pratt, 
1979). In Alpine Norway spruce forests, financial losses derived from H. 
annosum s.l. infection have been estimated to be between 18% and 34%, and 
the local disease incidence could be as high as 71% (Gonthier et al., 2012). In 
Sweden, up to 15% of Norway spruce [Picea abies (L.) Karst.] trees have been 
found to be decayed at harvest, mostly by H. annosum s.l., and an increase over 
time has been observed (Thor et al., 2005; Stenlid & Wasterlund, 1986). 
Losses due to decayed wood cost the Swedish forestry industry about 250 
million SEK annually, together with growth losses and increased management 
costs of the same order of magnitude (Bendz-Hellgren & Stenlid, 1998). 

In addition to being a necrotrophic plant pathogen, H. annosum s.l. also 
plays a role in the ecosystem as a saprotrophic wood decayer. The fungus 
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contributes substantially to nutrient recycling by returning nutrients locked up 
in woody tissues back to the soil (Woodward et al., 1998). H. annosum s.l. also 
influences species composition, ecosystem diversity, stand structure, stand 
density, and the direction and rate of forest succession. Annosus root rot has 
been reported to affect succession patterns of forest development by selectively 
killing certain tree species (Woodward et al., 1998). Furthermore, mortality 
caused by root rot creates gaps in the forest canopy, which change the light 
conditions, moisture and temperature in the forest and, thus, increases the 
biodiversity range of the forest ecosystem.  

1.1.2 Distribution and evolution of Heterobasidion annosum s.l. species  

Until the occurrence of intersterile groups (ISGs) was dicovered, H. annosum 
s.l. had long been regarded as a single species (Capretti et al., 1990; Korhonen, 
1978). Currently, three European and two North American ISGs are formally 
described as five species: H. annosum sensu stricto (s.s.), H. abietinum, H. 
parviporum, H. irregulare and H. occidentale. The species were defined on the 
basis of partial reproductive isolation and morphology, and were further 
supported by phylogenetic analyses (Otrosina & Garbelotto, 2010; Niemelä & 
Korhonen, 1998; Dalman et al., 2010). The species in the complex have an 
overlapping geographic distribution and are found in the coniferous forests of 
the Northern Hemisphere. The species H. annosum s.s. occurs all over Europe 
(except in the very northern regions) and extends east to the Altai region in 
southern Siberia. H. parviporum is found from northern Europe to the southern 
Alps and from western Europe to east Asia (Dalman et al., 2010; Otrosina & 
Garbelotto, 2010; Dai et al., 2006; Korhonen et al., 1998; Korhonen & Stenlid, 
1998). H. abietinum is restricted to central and southern Europe and the 
Mediterranean Basin (Luchi et al., 2011; Sanchez et al., 2007; Dogmus-
Lehtijarvi et al., 2006; Korhonen et al., 1998). The North American H. 
occidentale has only been reported from the western parts (Garbelotto & 
Chapela, 2000), whereas H. irregulare can be found from the western to the 
eastern North American forests (Otrosina & Garbelotto, 2010). In addition, H. 
irregulare was introduced into central Italy during World War II and has 
become established in Italian stone pine (Pinus pinea L.) stands (Gonthier et 
al., 2007; Gonthier et al., 2004). 

In general, the H. annosum s.l. species show different host preferences. The 
European H. annosum s.s. mostly attacks pines (Pinus spp.), especially Scots 
pine (Pinus sylvestris L.), but can be associated with several other conifers, 
including Norway spruce, and even some broad-leaved tree species. H. 
parviporum is mostly associated with Norway spruce but has also been found 
on Abies siberica. H. abietinum is commonly associated with silver fir (Abies 
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alba Mill.) and other species of the genus Abies (Hüttermann & Woodward, 
1998). In North America, H. irregulare generally attacks pines, junipers 
(Juniperus spp.), and incense cedar [Calocedrus decurrens (Torr.) Florin], 
whereas H. occidentale shows a broader host range and can be found on 
species in the genera Abies, Picea, Tsuga, Pseudotsuga and Sequoiadendron 
(Otrosina & Garbelotto, 2010). In general, the host preference of H. annosum 
s.l. species can be separated into two groups: the pine-infecting species, which 
include H. annosum s.s. and H. irregulare, and the non-pine-infecting species, 
which include H. parviporum, H. abietinum and H. occidentale (Dalman et al., 
2010). 

1.1.3 Epidemiology 

The infection cycle of H. annosum s.l. in nature involves a primary and 
secondary infection phase. Primary infection is mediated by basidiospores that 
land on freshly exposed stump surfaces or on wounds on the roots or stem 
(Redfern & Stenlid, 1998). Spore production in H. annosum s.l. is affected by 
temperature and humidity, and once released into the air, spores can travel 
hundreds of kilometres; however, effective dispersal has been estimated to be 
between 98 and 1,255 m (Redfern & Stenlid, 1998; Moykkynen et al., 1997; 
Stenlid et al., 1994; Kallio, 1970). The fungus establishes much less frequently 
when the temperature drops below +5 °C, (Meredith, 1959) or exceeds +35 °C 
(Ross, 1973). The role of conidiospores in the spread of the fungus in nature is 
unclear but might be important for transmission in substrates or when being 
vectored by insects (Korhonen & Stenlid, 1998). Once established, H. annosum 
s.l. spreads and infects uninjured trees by vegetative growth of the mycelium 
through root contacts or grafts (secondary infection).   

1.1.4 Management 

In H. annosum s.l. can remain active in dead stumps and in root systems for 
decades. It is virtually impossible to eradicate the fungus completely after it 
has become established in a stand (Greig & Pratt, 1976). Stump removal could 
be a strategy for controlling H. annosum s.l. root and butt rots (Cleary et al., 
2013; Vasaitis et al., 2008; Asiegbu et al., 2005; Stenlid, 1987) but it is time 
consuming and costly and, therefore, unsuitable for most forest stands 
(Walmsley & Godbold, 2010). Treating the stump surface with sodium 
tetraborate decahydrate (borax), disodium octaborate tetrahydrate (DOT), urea, 
or the biological control fungus Phlebiopsis gigantea (Fr.) Jülich at the time of 
logging have all proved to be effective methods of restricting the establishment 
of H. annosum s.l. that can be used in practical forestry (Oliva et al., 2010; 
Vasaitis et al., 2008; Nicolotti & Gonthier, 2005; Pratt et al., 1998; Thor & 
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Stenlid, 1998). Borates have a direct effect on fungal metabolism; urea inhibits 
spore germination (Johansson et al., 2002); and Phlebiopsis gigantea competes 
for the substrate and causes hyphal interference (Holdenrieder & Greig, 1998). 
Integrated disease management combining different approaches is generally 
more effective and even cheaper than the use of a single control method 
(Gonthier & Thor, 2013).  

However, to find more efficient ways of controlling this disease, it is 
important to understand the processes that determine the outcome of the 
interactions between the pathogen and the host tree. Understanding the 
virulence of the fungus could enable the design of tailored control measures 
against the pathogen. 

1.2 Host–pathogen interaction  

The epidemiology of a plant disease is affected by the host, the environment 
and the pathogen; all three factors are often jointly referred to as the disease 
triangle. Changes in one or more will influence the outcome of the interaction. 
Plants protect themselves from disease with the aid of pre-existing structural 
defences, anti-microbial chemicals and pathogen inhibitors. They are also able 
to induce defence reactions resulting in structural and biochemical responses 
such as callose formation, thickened cell walls, the hypersensitive cell death 
response (HR) and by phytoalexin production (Franceschi et al., 2005). To be 
successful, a pathogen needs virulence factors to prevent activation of, or 
interaction with, host defences in order to enter the host tissue and acquire 
nutrients for its development and reproduction. 

1.2.1 Models for plant immunity to their pathogens 

The theory of plant–microbe interaction has to a large extent been driven by its 
development in the agricultural system, with some similarities and differences 
dependent of the trophic strategy of the pathogen. Pathogens can be divided 
into: biotrophs, which live and acquire nutrients from the living cells of their 
hosts; necrotrophs, which kill the host cells and feed on the dead tissue; and 
hemibiotrophs, which begin with a biotrophic phase at the start of the infection 
but then continue their parasitic life in a similar way to necrotrophs. Acquiring 
information about the inheritance patterns of the flax rust pathosystem, and the 
pathogen avirulence (avr) and host resistant (R) genes, lead Flor (1942) to 
propose the gene-for-gene hypothesis, which has been widely applied both in 
plant pathology and ecology (Gassmann & Bhattacharjee, 2012; Flor, 1942). 
This idea was developed further by Jones and Dangl (2006) who proposed a 
“zigzag” model to describe a simplified scheme for the molecular interaction 



15 

between the pathogen and the plant host immune system. In the “zigzag” 
model, small secreted proteins that could modulate the host cells/or induce host 
programmed cell death (PCD) were defined as effectors. Effector molecules 
are important virulence factors of biotrophic or hemibiotrophic plant 
pathogenic bacteria, oomycetes and fungi. When the pathogen enters the plant 
apoplast, the microbial/pathogen-associated molecular patterns (M/PAMPs) are 
recognized by host pattern recognition receptors (PRRs), resulting in patterns-
triggered immunity (PTI) in the host. Successful pathogens deploy effectors 
that interfere with PTI, resulting in effector-triggered susceptibility (ETS), 
which enables pathogen development. A given effector may be specifically 
recognized by one of the host’s R proteins (nucleotide-binding site leucine-rich 
repeat (NBS-LRR) proteins), subsequently triggering effector-triggered 
immunity (ETI). ETI is essentially an accelerated and amplified PTI response, 
resulting in disease resistance and, usually, a HR at the infection site. Natural 
selection results in pathogens either discarding or diversifying the recognized 
effector gene to avoid recognition, or acquiring additional effectors that 
suppress ETI. In the host, new resistance specificities develop so that ETI can 
be triggered again (Jones & Dangl, 2006). However, this elegant model has its 
limitations in that it cannot fully explain the interaction between necrotrophic 
pathogens and their hosts. Also, the model does not include virulence aspects 
outside of the interaction with the plant immune system. 

Necrotrophic pathogens acquire nutrients for growth and reproduction from 
dead cells. Therefore, necrotrophs might tolerate the HR response or even 
benefit from host PCD, which is considered a very important feature of the 
host resistant response to biotrophs and hemibiotrophs (Mengiste, 2012). The 
necrotrophic pathogens can be further divided into host-specific necrotrophs 
and broad-host-range necrotrophs. In host-specific necrotrophic fungi, such as 
Pyrenophora tritici-repentis, Stagonospora nodorum and Cochliobolus 
carbonum, host-specific toxin Ptr(Sn)Tox (proteinaceous) and HC-toxin have 
been demonstrated as effectors that induce toxicity, killing host cells, thereby 
enhancing virulence (Friesen et al., 2006; Kuo et al., 1970). This type of 
interaction has also been described as an inverse gene-for-gene model. A 
successful infection by host-specific necrotrophs will only occur when 
effectors recognize their sensitivity receptor; no disease occurs when the host 
sensitivity receptor or fungal effector is absent or altered (Ciuffetti et al., 2010; 
Tan et al., 2010). The broad-host-range necrotrophs have also been shown to 
have a complex interaction with their hosts (Kabbage et al., 2013; Shlezinger 
et al., 2011; Williams et al., 2011). Some of the broad-host-range necrotrophs 
have been shown to produce diverse MAMPs, such as cerato-platanin from 
Botrytis, or damage-associated molecular pattern molecules (DAMPs), that 
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activate the plant immune response (Frias et al., 2011). Unlike biotrophs and 
hemibiotrophs, some necrotrophs are able to hijack part of the immune 
signalling (Rahman et al., 2012; El Oirdi et al., 2011) to induce host PCD 
which benefit to pathogens but to suppress other defence responses such as 
callose formation and host oxidative burst, which might be harmful to the 
pathogens. The necrotrophs suppress these defence responses by secreting 
toxins from secondary metabolism instead of effector proteins (Kabbage et al., 
2013; Mengiste, 2012; Williams et al., 2011; Bartz et al., 2013). The broad-
host-range necrotrophic plant pathogen Sclerotinia sclerotiorum is an example 
of such an interaction. During infection, it triggers a HR-like response in host 
plants, typified by the oxidative burst that should restrict pathogen growth 
(Williams et al., 2011). The pathogen produces the non-specific phytotoxin 
oxalic acid, which suppresses the host defence responses, including callose 
deposition and modulation of the host redox environment. Furthermore, once 
infection is established, this necrotrophic pathogen is able to promote and 
spread PCD of host tissue, the result of which is of direct benefit to the 
pathogen (Mengiste, 2012; Williams et al., 2011).  

1.2.2 The virulence factors beside the interaction with the host immune system 

Virulence factors can be much more than just mechanisms to overcome the 
host immune system. One example of virulence factors not manipulating the 
host immune system is the capability of pathogens to macerate tissue and 
acquire nutrients to grow, develop and reproduce. As more and more fungal 
plant pathogen genomes have been sequenced, the number of gene families 
encoding carbohydrate active enzymes (CAZys) in necrotrophs has expanded. 
Enzymes that are capable of hydrolytically cleaving glycosidic bonds in oligo- 
or polysaccharides are generally summarized under the term glycoside 
hydrolases (GHs). Fungal species with individual GH genes deleted might not 
directly show reduced virulence owing to the redundancy of function provided 
by another enzyme or suite of enzymes. However, some GHs have been shown 
to impair virulence, such as GH11s, GH12s and GH28s (Ma et al., 2015; Brito 
et al., 2006; Oeser et al., 2002).  

How well the pathogen tolerates the host response is another key virulence 
factor for many necrotrophs. The mechanism of a given pathogen’s tolerance 
of the host response could be based on detoxification of phytoalexins or 
avoidance of PCD. Production of antimicrobial compounds is induced in plants 
following infection by pathogens (Bednarek et al., 2009; Kliebenstein et al., 
2005). Such compounds have been shown to kill fungal pathogens by inducing 
fungal PCD (Lazniewska et al., 2010). Pathogens can employ enzymes to 
metabolize the plant defence compounds or drug transporters to pump the 
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compounds out of their cells to avoid harm. Detoxing by xenobiotic 
metabolism is important for necrotrophic pathogens such as Fusarium 
verticillioides (Glenn et al., 2002) and S. sclerotiorum (Sexton et al., 2009). 
The pea (Pisum sativum) pathogen Nectria haematococca utilizes a 
cytochrome P-450 monooxygenase to detoxify the phytoalexin pisatin. 
Expression of this cytochrome P-450 monooxygenase from N. haematococca 
can make the maize pathogen Cochliobolus heterostrophus adapt to pea as a 
new host (Schafer et al., 1989). The bark beetle-associated Norway spruce 
pathogen Ceratocystis polonica can circumvent the antifungal activity of 
stilbenes, which are synthesized by Norway spruce as part of its chemical 
defence during bark infection (Hammerbacher et al., 2013). The rapid 
biotransformation of stilbenes resulting in the formation of ring-opened 
lactones in Norway spruce bark is associated with greater levels of fungal 
virulence (Hammerbacher et al., 2013). The transporters contribute to pathogen 
virulence by both secretion of pathogen toxin and efflux of the molecules 
produced by the host. ATP-binding cassette transporters and other drug 
transporters have been shown to provide B. cinerea, Gibberella pulicaris, N. 
haematococca and the biocontrol fungus Clonostachys rosea with xenobiotic 
tolerance (Dubey et al., 2014; Fleissner et al., 2002; Han et al., 2001; 
Schoonbeek et al., 2001). During the early stage of B. cinerea infection, 
massive pathogen cell death occurs because of the anti-fungal compounds 
produced as part of the host defence. This is followed by recovery of the 
fungus from the surviving cells, which were protected by fungal anti-apoptotic 
machinery. This might be a common strategy in many necrotrophic pathogens 
because many pathogens in this class have been shown to tolerate host 
defences (Shlezinger et al., 2011). These phenomena suggest that during the 
battle between broad-host-range necrotrophic fungal plant pathogens and their 
hosts, avoiding being killed might be as important as killing host cells (Figure 
1). 
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Figure 1. A model showing the contribution of detoxification and anti-apoptotic machinery to 
fungal pathogen virulence (adapted from a model of B. cinerea infection) (Shlezinger et al., 
2011). First phase: the fungal pathogen reaches the host tissue secreting necrosis-inducing factors. 
Second phase: anti-fungal plant products attack the fungal cells. Fungal detoxification and anti-
apoptotic machinery prevents the complete elimination of the fungus at this stage. Third phase: 
viable fungal cells retained within the necrotized plant tissue are protected from the host toxic 
molecules. These fungal cells give rise to new hyphae, which secrete molecules that induce and 
promote the spread of the lesion into the surrounding plant tissue. 
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1.2.3 Studies of plant–pathogen interactions in the -omics era  

Making a successful broad-host-range necrotrophic pathogen requires multiple 
genetic factors, especially in polygenic genetic control of the interaction 
(Lindhout, 2002). With the development of sequencing technology, more and 
more pathogen genomes have been sequenced in recent years, allowing us to 
look at the bigger picture of pathogen virulence during plant–pathogen 
interactions in addition to single gene molecular genetics. The first global 
analyses of pathogen transcriptomes were provided by microarray-based 
studies. Today, high-throughput RNA-seq has rapidly developed to become an 
important tool and is widely applied. RNA-seq provides several advantages 
over the microarray-based approach (Westermann et al., 2012). Firstly, RNA-
seq is a digital quantification method and, therefore, has a higher (and 
theoretically infinite) dynamic range and is much more sensitive compared 
with the array-based analogue quantification method. The linear dynamic range 
for RNA-seq can already approach the upper limit of changes in gene 
expression in eukaryotic cells. Secondly, RNA-seq does not require a 
sequenced genome and can help to identify novel transcripts. Furthermore, 
RNA-seq has allowed the refinement of gene structure through the accurate 
determination of transcript borders, alternative splicing and processing events. 
Elucidation of the transcriptome changes of the pathogen in planta using the 
RNA-seq approach has been carried out on a number of fungal plant 
pathogens, such as Colletotrichum graminicola, Colletotrichum higginsianum, 
Fusarium graminearum, Magnaporthe oryzae and powdery mildews (Wicker 
et al., 2013; Kawahara et al., 2012; O'Connell et al., 2012; Zhang et al., 2012). 
A comparison of F. graminearum transcriptomes showed that hundreds of 
genes are differentially expressed during infection (Zhang et al., 2012); with 
deeper sequencing, more differentially expressed genes might be identified. 
However, to date, relatively few studies have been carried out on necrotrophic 
fungal pathogens interacting with their hosts. Furthermore, the intraspecific 
variation affecting virulence-related traits are less clear compared with the 
well-studied common intraspecific variation in biotrophic and hemibiotrophic 
pathogens. The transcriptomes of different H. annosum s.l. species during 
saprotrophic and necrotrophic life stages should contribute to our general 
understanding of the interaction between necrotrophic plant pathogens and 
their hosts. 
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1.3 Understanding the virulence of Heterobasidion annosum s.l. 

1.3.1 Lifestyle of Heterobasidion annosum s.l. 

The Both saprotrophic wood decay and a necrotrophic interaction with the host 
are necessary for the H. annosum s.l. to complete its infection cycle (Olson et 
al., 2012). When H. annosum s.l. initially infects the host, it establishes as a 
saprotroph on a stump or on exposed woody tissue, beginning the infection 
cycle with saprotrophic wood decay. During the development of the disease, 
the fungus attacks host bark in root contacts like a typical necrotroph. When 
the phelloderm of four-year-old Norway spruce seedlings was inoculated with 
H. annosum s.l., the fungi initially induced extensive necrosis of about 50 cell 
layers in depth, involving brown staining and thickening of cell walls and the 
death of ray cells (Asiegbu et al., 1998). Hyphal growth then followed the 
expansion of necrosis, and the hyphae were always one or two cell layers 
behind the contact with the living cells (Asiegbu et al., 1998). It has also been 
shown that H. annosum s.l. have the capacity to tolerate HR (Asiegbu et al., 
1994). Both H. annosum s.l. and Fusarium spp. hyphal material induced death 
in 20–50 cell layers in living bark of spruce without lignin formation (Asiegbu 
et al., 1998). By contrast, the saprotrophs Phlebiopsis gigantea and Resinicium 
bicolor induced lignified necrosis in only two to five cell layers (Asiegbu et al., 
1998). This type of interaction was very similar to the wild-type S. 
sclerotiorum interaction with its host, in which the pathogen induced and 
spread cell death of the host tissue, whereas an oxalic acid (toxin)-deficient 
mutant induced restricted programmed cell death and callose formation 
(Williams et al., 2011). A similar mechanism might be operating in the H. 
annosum s.l.–conifer pathosystems. 

1.3.2 Previous approaches used to study Heterobasidion annosum s.l. 
virulence 

To understand the genetic background of the virulence in H. annosum s.l, 
Olson and Stenlid (Olson & Stenlid, 2001) created heterokaryon hybrids by 
mating homokaryon strains of H. irregulare and H. occidentale. The virulence 
of the parental homokaryons and hybrid heterokaryons was analysed in vitro 
by visually scoring the proportion of infected pine seedlings that suffered 
mortality. Fungal virulence was observed to correlate significantly with the 
mitochondrial type acquired by the hybrids. The exact reason for the 
correlation between mitochondrial origin and virulence is not clear. The 
genome sequencing of H. irregulare mitochondria indicated that factors that 
might influence H. annosum s.l. virulence are likely to be the exchangeable 
parts of the mitochondrial genome containing the homing endonuclease in the 
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intron or the plasmid-integrated genes rather than the core genes of the 
mitochondrial genome (Himmelstrand et al., 2014). 

As well as the mitochondrial factor, nuclear factors have also been shown to 
contribute to virulence. (Olson et al., 2005) showed that the hybrid progeny 
isolates from the AO8 heterokaryon, which is a cross between the 
homokaryons H. irregulare TC32-1 and H. occidentale TC122-12, showed a 
wide range of virulence on pine and spruce and segregated with a continuous 
variation that indicated a polygenetic control of virulence (Olson et al., 2005). 
Therefore, a quantitative trait loci (QTL) mapping study was performed to 
identify the loci for virulence factors and for future map-based cloning of 
virulence factors by measuring lesion length and fungal growth in sapwood 
using 102 progeny isolates from a previous virulence experiment (Olson et al., 
2005), and to associate the traits with 358 AFLP markers. Three major loci for 
virulence on Norway spruce and Scots pine were identified and assigned to 
specific regions in the fungus. The virulence towards Norway spruce was 
controlled by either a few or closely situated regions (Lind et al., 2007). After 
the whole genome of H. irregulare TC32-1 had been sequenced, three major 
QTL regions important for pathogenic interactions with Norway spruce and 
Scots pine were placed on the physical genome by re-mapping virulence data 
from (Lind et al., 2007). One QTL region was located on chromosome 1 and 
two QTL regions were located on chromosome 12 (Olson et al., 2012). The 
pathogenicity QTLs were located in parts of the genome that had a higher 
density of transposable elements (TEs) than average, which is similar to the 
findings reported for many other pathogen genomes (Haas et al., 2009; Cuomo 
et al., 2007). The sequence of the QTL regions has low sequence similarity 
with other Basidiomycota genomes, and a higher frequency of orphan genes 
than other parts of the genome (53% relative to 34%). These QTL regions 
included 178, 142 and 299 predicted gene models (Olson et al., 2012). Gene 
models such as a sugar transporter, putative flavin-containing Baeyer-Villiger 
monooxygenase and pectinase were identified and were shown to be 
significantly up-regulated during interactions with pine, making them very 
strong pathogenicity candidates. In addition, two overlapping secondary 
metabolite clusters harbouring 43 gene models in total were located in the QTL 
region of scaffold 12. The clusters included three non-ribosomal peptide 
synthetase-like (NRPS-like) enzymes, several oxidative enzymes and transport 
proteins (Olson et al., 2012).  

Genome-wide association (GWA) is another genetic approach to link a 
phenotypic trait to the genotype. By finding single nucleotide polymorphisms 
(SNPs), markers that are linked to the phenotype of interest, it is possible to 
identify the genes associated with the traits. A GWA study was conducted in a 
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H. annosum s.s. population with the objective of identifying the H. annosum 
s.s. virulence factors (Dalman et al., 2013). To this end, a set of 33,018 SNPs 
was generated by sequencing the genomes of the population, which comprised 
23 haploid isolates. Twelve SNP markers distributed on seven contigs were 
associated with virulence, some of which were found very close to or directly 
overlapping with previous known virulence QTLs (Dalman et al., 2013). 

1.3.3 Secondary metabolism 

A wide range of toxins secreted by H. annosum s.l. are produced by secondary 
metabolism pathways, including fomannoxin, fomannosin, fomannoxin acid, 
oosponol and oospoglycol, which are believed to be important during the 
infection process (Asiegbu et al., 2005; Sonnenbichler et al., 1989; Donnelly et 
al., 1988; Holdenrieder, 1982). Recently, a total of 33 compounds have been 
identified from H. annosum s.l. (Hansson et al., 2014). Among them, six new 
sesquiterpenes belonging to the fomannosin class of compounds; seven 
fomannoxin-like compounds that were previously unknown or that had not 
been described from nature; and also fomajorins, drimanes, tryptophan and an 
indole-containing compound were identified (Hansson et al., 2014; Hansson et 
al., 2012). The secondary metabolite profile of the five species of H. annosum 
s.l. was not identical (Hansson et al., 2014). The five species could be 
separated according to their host preference, pine infecting and non-pine 
infecting, and by their phylogeny (Hansson et al., 2014). One of the 
compounds, fomannoxin, has been isolated from the uninfected zone in front of 
the invading hyphae, which indicated that it might be released into host tissue 
preceding infection (Heslin et al., 1983), and it has been shown to be 
biosynthesized by a combination of the mevalonic acid (MVA) pathway and 
the shikimic acid pathway (Hansson et al., 2014; Hansson et al., 2012). 
Fomannosin is one of the toxins that shows both antifungal and antibacterial 
activity, and has been shown to cause decolouration and cell death of Chlorella 
pyrenoidosa (Heslin et al., 1983), as well as inducing local necrosis and 
systemic killing of loblolly pine (Pinus taeda) (Sonnenbichler et al., 1989). 

1.3.4 Enzymes for host material degradation 

To penetrate host tissue and to access and obtain nutrients locked up in the 
polysaccharides and lignified tree tissue, H. annosum s.l. secretes a wide range 
of extracellular enzymes for degrading sugars, polysaccharides and lignin, and 
for detoxifying the phenolic compounds (Woodward et al., 1998). In earlier 
studies, laccase has received special attention. Laccases are copper-containing 
enzymes that presumably contribute to lignin degradation and detoxification of 
the host’s defence chemicals and structure (ten Have & Teunissen, 2001). 
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Eighteen laccases have been found in the genome of H. irregulare (Olson et 
al., 2012), orthologues to eight of the laccases were found to be up-regulated in 
H. annosum s.s during interactions with scots pine seedlings, which suggests 
that they may be involved in virulence (Kuo et al., 2015). Very few of the 
enzymes related to cell wall degradation have been thoroughly studied in H. 
annosum s.l. (Asiegbu et al., 2005). The genome and transcriptomes of H. 
irregulare provide a primary view of these enzymes. When comparing the 
CAZyme profile of H. irregulare with eight other fungi, including seven 
basidiomycetes (Ustilago maydis, Postia placenta, Phanerochaete 
chrysosporium, Laccaria bicolor, Coprinopsis cinerea, Schizophyllum 
commune, Cryptococcus neoformans) and the ascomycete plant pathogen M. 
oryzae, H. irregulare appears to have all the enzymatic equipment to digest 
cellulose (enzymes from families GH5, GH6, GH7 and GH45), xyloglucan and 
its side chains (GH27, GH29, GH12 and GH74), and pectin and its side chains 
(GH28, GH43, GH51, GH53, GH78, GH88, GH105, PL1, PL4, CE8 and 
CE12) (Olson et al., 2012). In particular, H. irregulare has more than twice as 
many enzymes that are active in pectin degradation as those found in the other 
basidiomycetes and the pathogenic M. oryzae (Olson et al., 2012). Earlier 
studies of H. annosum s.l. showed that the isozyme pattern of proteins encoded 
by the GH28 family differed between the different species previously known as 
intersterility groups. Intersterility group P (H. annosum s.s.) showed stronger 
and more diverse GH28 activity than H. parviporum (Comparini et al., 2000; 
Karlsson & Stenlid, 1991; Johansson, 1988). 

1.3.5 Previous gene expression studies 

Karlsson et al. (2003) studied the transcriptome of H. irregulare during the 
early stage of infection of Scots pine seedlings by constructing a library of 
expressed sequence tags (ESTs). From ESTs, the genes encoding 
hydrophobins, cytochrome P450 monooxygenase, arabinose, farnesyl-
pyrophosphate synthetase and genes involved in handling oxidative stress, such 
as superoxide dismutase were found to be up-regulated. A SOD1 gene, which 
encodes a manganese-type superoxide dismutase, has been further investigated 
from the early infection stage between H. irregulare and Scots pine (Karlsson 
et al., 2005). Karlsson et al. (2007) also found that the H. parviporum genes 
encoding putative glutathione-S-transferases, laccase, cellulase, cytochrome 
P450 and superoxide dismutase were expressed during infection of Norway 
spruce tissue cultures. The sequenced genome of H. irregulare allowed the 
global gene expression patterns of H. irregulare to be profiled under different 
conditions in a microarray study. Comparison of the global transcript profiles 
of H. irregulare growing in different cultures, wood and the cambial zone of 
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pine revealed that the genes induced during saprotrophic wood degradation, but 
not during interaction with living host tissue, represented a trade-off between 
the two trophic strategies (Olson et al., 2012). Gene expression patterns during 
saprotrophic growth on wood showed high correlations with gene expression 
patterns during growth on cellulose and lignin, but lower correlations with 
gene expression during growth in the cambial zone of pine. The distinct pattern 
of gene expression during growth in the cambial zone of pine indicated that 
interaction with living tissue is very different from the other growth conditions 
analysed. The genes with a higher level of expression during growth in the 
cambial zone of pine included genes encoding pectinolytic enzymes (Olson et 
al., 2012). Transcriptome analyses combined with the QTL approach are a 
powerful way of reducing the number of candidate virulence genes in the QTL 
regions for virulence. Strong candidate genes are significantly up-regulated 
during pathogenic interaction with the host and are present in the QTL regions 
for virulence (Olson et al., 2012). The same H. irregulare microarray was used 
to investigate the transcriptomic response of H. annosum s.s. exposed to 
several environmental stresses (high and low temperature, osmotic stress, 
oxidative stress and nutrient starvation) and during growth on specific pine 
wood compartments (bark, sapwood and heartwood). (Raffaello et al., 2014) 
The global gene expression changes provide a picture of H. annosum s.s. 
balanced between sensing and survival when under abiotic stress; nutrient 
uptake during saprotrophic growth might be associated with the induction of a 
variety of different gene sets and pathways. Dual transcriptomes for 
H. annosum s.s. and Norway spruce showed similar gene induction patterns as 
those seen in H. irregulare (Lunden et al., 2015). 

1.4 RNA interference (RNAi) in fungi and its potential 
application 

1.4.1 RNAi in fungi 

RNA interference (RNAi) originally referred to the phenomenon in the 
nematode Caenorhabditis elegans were exogenously introduced double-
stranded RNA (dsRNA) molecules can silence the expression of homologous 
genes (Fire et al. 1998). It is mechanistically related to a number of conserved 
pathways mediated by small noncoding RNAs (snRNAs or sRNAs) (Carthew 
& Sontheimer, 2009; Ghildiyal & Zamore, 2009; Moazed, 2009). The main 
pathway of RNAi relies on the dicer and argonaute proteins: dicers generate 
the small RNA duplexes from dsRNA precursors, and then load the dsRNA 
duplexes onto the RNA-induced silencing complex (RISC) in which argonaute 
functions as the core catalytic component. The RISC actively removes the 
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passenger strand of the dsRNA duplex and uses the remaining single-stranded 
molecule as a guide to silence the target homologue messenger RNAs 
(mRNAs) (Jinek & Doudna, 2009; Maiti et al., 2007; Tomari & Zamore, 2005; 
Meister & Tuschl, 2004; Bernstein et al., 2001). In filamentous fungi, RNAi 
pathways have been most extensively studied in Neurospora crassa (Li et al., 
2010). Quelling and meiotic silencing of unpaired DNA (MSUD) are the two 
best-understood RNAi pathways. Either the quelling or the MSUD pathways 
synthesize the dsRNAs by dicers, which then go through the argonaute protein 
qde-2 (quelling) or sms-2 (MSUD), respectively (Li et al., 2010). Quelling is a 
potent mechanism that represses the expression and expansion of transposons. 
It silences the transgenes by detecting and targeting the transgenic DNA 
(Chicas et al., 2005; Nolan et al., 2005). MSUD may function as a mechanism 
for silencing transposon expansion and generating unpaired DNA during 
meiosis (Dang et al., 2011).   

1.4.2 RNAi contribution to fungal virulence  

Small RNAs perform important functions in the host–pathogen interaction. The 
sRNAs contribution to virulence could be direct or indirect. Many sRNAs are 
associated with TEs and are generated from the TE-rich region in the genome, 
which is also often the location of pathogen effectors (Weiberg et al., 2014; 
Haas et al., 2009; Cuomo et al., 2007). Long terminal repeat (LTR) 
retrotransposons have been shown to regulate the expression of fungal and 
oomycete effectors (Weiberg et al., 2014; Raman et al., 2013). For example, in 
M. oryzae, LTR-associated sRNA levels are increased during invasive growth, 
and regulate the effector gene ACE1 (Fudal et al., 2007). In Phytophthora 
infestans, numerous sRNAs can be mapped to the TEs and RxLRs or crinkler 
(CRN) (Vetukuri et al., 2012). RxLRs and crinkler (CRN) are two major 
classes of effectors that are well-known virulence factors of Oomycetes. The 
RxLR effector gene PiAvr3a, which suppresses plant programmed cell death 
for virulence, has been shown to be under the regulation of sRNAs (Vetukuri et 
al., 2012). Evidence for the direct contribution of pathogen sRNAs to virulence 
has been found in B. cinerea (Weiberg et al., 2013). RNA sequencing of B. 
cinerea sRNAs showed that a number of them could be mapped to the host 
defence genes, including genes encoding targeted Arabidopsis mitogen-
activated protein kinase MPK1 and MPK2, a cell wall-associated kinase 
(WAK), a peroxiredoxin (PRXIIF) and the tomato MPK-kinase 4 
(MAPKKK4). The B. cinerea sRNAs were able to suppress these host defence 
genes during infection by loading into a host argonaute protein and hijacking 
the host RNAi pathway (Weiberg et al., 2013). 
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1.4.3 Potential of applying RNAi as a biotechnological tool in Heterobasidion 
annosum s.l.  

RNAi has been applied in several fungi as a reverse genetics tool, but there are 
relatively few examples from the Basidiomycota. Insight into the 
diversification of RNA silencing pathways during the evolution of 
Basidiomycota offers a deeper understanding of the mechanism of RNAi and 
could eventually lead to its application in research. Specifically, investigating 
whether orthologues to genes involved in quelling and MSUD are present in 
Basidiomycota would indicate the existence of similar pathways in 
Basidiomycota as has previously been described in other organisms. An 
established transformation system is required for applying RNAi in H. 
annosum s.l. to study the function of virulence genes. The first time that H. 
annosum s.l. was successfully transformed was by particle bombardment 
(Asiegbu, 2000). The selective marker hygromycin B resistance gene (hph) 
was successfully introduced into H. annosum s.l. (FSE-7). However, the 
frequencies of transformation were lower than those reported from other 
transformed fungi and the resistance phenotype of transformants were lost after 
a growth period on non-selective medium (Asiegbu, 2000). Samils et al. (2006) 
developed a rapid and simple Agrobacterium tumefaciens-mediated method to 
improve the transformation system for H. annosum s.l. The hph gene and green 
fluorescence protein (GFP) were successfully introduced into H. irregulare 
conidia; however, the transformants were not stable over time. One possible 
explanation for the instability is that the H. annosum s.l. conidia generally 
contain multiple nuclei (Korhonen & Stenlid, 1998). The introduced DNA 
might be integrated into only one of the nuclei in the germinating conidia and 
the isolate would then represent a chimera, with both nuclei that carry the 
integrated DNA and nuclei that do not (Samils et al., 2006). 
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2 Aims and hypotheses 

2.1 Main aim 

The aim of this thesis was to better understand the virulence of H. annosum s.l. 
by acquiring knowledge of the gene expression changes associated with 
infection; and to develop a system for functional studies of candidate virulence 
genes. Such knowledge could provide a way of designing tailored control 
measures against the pathogen in the future.  

2.2 Main hypotheses  
 
 Pathogenicity in the H. annosum s.l. complex is associated with common 

gene expression modules during host infection 
 The speciation in the H. annosum s.l. complex is associated with the 

differentiation of gene expression patterns during host infection. 
 H. annosum s.l. possesses all the necessary components of functional RNAi 

machinery.  
 HIRHG is one of the virulence factors of H. annosum s.l., and endo-

rhamnogalacturonase is associated with the necrotrophic lifestyle of the 
fungal pathogen. 
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3 Materials and methods 

3.1 Biological material 

The H. irregulare strain TC32-1 and H. occidentale strain TC122-12 were used 
in this study and maintained on Hagem agar (HA) medium (Stenlid, 1985) at 
25 °C in darkness. The M. oryzae wild-type strain KJ201 was obtained from 
the Center for Fungal Genetic Resources (Korea) and was maintained on 
oatmeal agar medium or V8 juice agar medium at 25 °C under constant 
fluorescent light.  

One-year-old Norway spruce plants were grown in the greenhouse at 20 °C 
for one month before inoculation. For study I, eight-year-old ramets were used, 
each ramet was from two progenies in the Norway spruce family 
S21H9820005 (Arnerup et al., 2010). Rice seedlings (Oryza sativa cv. 
Nakdongbyeo) were grown in a growth chamber with a temperature of 25 °C, 
80% humidity, fluorescent lights and a photoperiod of 16 h. 

3.2 Phylogenetic studies 

The protein and transcript sequences of argonaute and dicer were obtained by 
searching selected fungal genome databases at the Joint Genome Institute, US 
Department of Energy, and the Candida Database at the Broad Institute using 
default BLASTp searching with filtered proteins database. For argonautes and 
dicers, the conserved domains of all the sequences were examined using the 
online programme SMART (Letunic et al., 2012); proteins containing both 
PAZ and PIWI domains were identified as argonaute and proteins containing at 
least two entire RNaseIII domains were identified as dicer. The fungal endo-
rhamnogalacturonases were identified based on sequence features described by 
Markovič and Janeček (2001). For the phylogenetic study, the PAZ and PIWI 
domains of argonaute, two entire RNaseIII domains of dicer and whole protein 
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sequences of fungal endo-rhamnogalacturonases were aligned with MUSCLE 
(Edgar, 2004). Manual editing and the software Gblocks were used to remove 
amino acid columns of uncertain parts of the alignment (Talavera & 
Castresana, 2007). For Bayesian analysis, the protein alignment was converted 
to DNA alignment by the RevTrans 1.4 Server according to the predicted 
transcript sequences and further processed by Gblocks. ProtTest 3.2 was used 
to select best-fit models of amino acid replacement for the data. Maximum 
likelihood (ML) phylogenetic trees of protein sequences were generated by 
PhyML (Guindon et al., 2010) using the models selected by ProtTest 3.2 
(Darriba et al., 2011). For Bayesian analysis, the evolutionary model was set to 
the GTR substitution model with gamma-distributed rate variation across sites 
and a proportion of invariable sites. The sample and print frequency was set to 
500, the diagnostic frequency to 5000, and the run length to 1,000,000. To 
summarize the trees, the same burn-in was used as the mcmc command when 
the final standard deviation of split frequencies was less than 0.01.  

NOTUNG and COUNT were used to analyse gene loss and duplication 
events. NOTUNG employs a parsimony approach to reconcile the gene tree 
with the species tree (Chen et al., 2000). The weakly supported branches in the 
gene tree (edges weighted below the user-specified Edge Weight Threshold, 
EWT) were rearranged by the programme to minimize penalty scores for gene 
duplications and losses. COUNT was used to analyse the gain and loss of 
endo-rhamnogalacturonase genes using Dollo and Wagner parsimony 
(Csuroes, 2010). A phylogenetic tree of fungal species was synthesized with 
information from several publications and used in this study (Hu et al., 2013; 
Floudas et al., 2012; Binder et al., 2010; Hibbett, 2006). 

3.3 RNAseq and data analysis 

The two isolates TC32-1 and TC122-12 were grown in liquid Hagem medium 
for two and four weeks, and spruce barks infected with the two isolates were 
harvested for RNA isolation after two, four or six weeks. Total RNA was 
isolated as described by (Chang et al., 1993) and stored at −80 °C. The RNA 
6000 Nano Kit (Agilent Technologies) was used to evaluate the quantity and 
integrity of the total RNA using the Bio-analyzer 2001. Total RNA was treated 
with DNase I (Sigma-Aldrich) to eliminate contamination of genomic DNA. 
Library construction and cDNA synthesis were performed at the SNP&SEQ 
Technology Platform of Uppsala University Hospital. High-throughput 
sequencing was performed using the Illumina Hiseq (Illumina, San Diego, CA, 
USA) according to standard protocols. The samples were sequenced for 
‘paired-end’ reads. The software Nesoni v1.0 was used to filter the Illumina 
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reads and all the filtered reads were mapped to H. irregulare and H. 
occidentale genomes (Lind et al., 2012; Olson et al., 2012) by Tophat v2.0 
with a setting to disallow any mismatch, and the software MAKER was used to 
re-annotate gene models. Differential expression analysis was processed by the 
software package Cufflinks v2.0 and visualized by CummeRbund (Trapnell et 
al., 2012). BLAST2GO v3.10 (Conesa et al., 2005) was used to annotate H. 
irregulare and H. occidentale transcripts as well as assessing Gene Ontology 
(GO) term enrichment. Reciprocal BLAST analysis was used to search for 
One-to-one orthologous genes between H. irregulare and H. occidentale. 

3.4 qPCR 

For qPCR, an iScript™ cDNA synthesis kit (Bio-Rad) was used to reverse 
transcribe RNA. Transcript levels were quantified by RT-qPCR using the iQ5 
qPCR System (Bio-Rad, Hercules, CA). PCR was performed using a 
SsoFast™ EvaGreen® Supermix kit (Bio-Rad). Primers were designed using 
the Primer3 software (Untergrasser et al., 2000) with a melting temperature 
(Tm) between 58 and 62 °C. Amplification of a single product was confirmed 
by melt curve analysis, and the PCR efficiency was measured using a linear 
plasmid standard curve. Transcript abundance was normalized to the 
constitutively expressed genes encoding actin, L-kynurenine hydrolase (Tryp 
metab) and RNA polymerase III transcription factor (RNA Pol3 TF) (Raffaello 
& Asiegbu, 2013), which all showed low variation among samples by best-ref. 
The relative expression was calculated using the Pfaffl method (Pfaffl et al., 
2002). Transcript levels were determined in at least three biological replicates, 
each based on three technical replicates. 

3.5 Western blot 

The antibody targeting HIRHG was produced by GenScript HK Limited based 
on the synthetic peptides mixture with sequences of GTVGPTTKLSAKGHTC, 
LDYGGKVGSTDIGP and NWDGEVVDGVQRAP, which specifically 
targeted the HIRHG protein in H. irregulare. Total protein extraction and 
western blot were carried out according to (Elfstrand et al., 2002). 30 g protein 
samples were loaded for SDS-PAGE. After gel electrophoresis, protein was 
transferred to a polyvinylidene difluoride (PVDF) membrane using the trans-
blot turbo transfer system (Bio-Rad). HIRHG protein was detected using one 
μg/mL primary antibody and an anti-rabbit horseradish peroxidase-conjugated 
secondary antibody from donkey (GE Healthcare). The membranes were 
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developed using an ECL Prime kit (Amersham, GE Healthcare) and detected in 
an LAS-3000 luminescent image analyser (Fujifilm, Fuji Photo Film). 

3.6 Heterologous gene expression in Magnaporthe oryzae 

HIRHG coding sequence was PCR-amplified from TC32-1 cDNA used in RT-
qPCR and inserted into the pCB1004 vector downstream of the Ptrpc promoter 
to generate pCB1004-Ptrpc::HIRHG and pCB1004-Ptrpc::HIRHG-mcherry 
fusion. Polyethylene glycol (PEG)-mediated transformation was performed 
using M. oryzae wild-type strain KJ201 protoplasts and hygromycin-resistant 
transformants were selected. A quick and accurate PCR-based screening 
method was used to screen the mutants to confirm that the target genes were 
inserted into the M. oryzae wild-type strain KJ201 genome (Park et al., 2014). 
Reverse transcription PCR was used to confirm the expression of the target 
gene in the mutants. Mycelial growth was quantified according to Jeon et al. 
(2014) and a pathogenicity assay was performed according to Kim et al. 
(2009).  

3.7 Statistical analysis 

Data were analysed using Minitab 16 (Minitab Inc.) by performing analysis of 
variance (one way ANOVA) using a general linear model; pairwise 
comparisons were made using Tukey’s test at the 95% significance level.  
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4 Results 

4.1 Virulence of H .irregulare and H. occidentale on Norway 
spruce  

Both H. occidentale and H. irregulare were able to induce necrosis and 
colonise the sapwood of the four-year-old branches of Norway spruce. The 
success rate of infections was slightly higher for H. occidentale (87%) than for 
H. irregulare inoculations (73%). There was no significant difference in the 
growth of H. occidentale and H. irregulare in the sapwood or in the expansion 
of lesions in the inner bark (Table 1). However, both species showed 
significantly more growth in the sapwood and greater lesion expansion in the 
inner bark at 4 and 6 weeks compared with at two weeks (Tukey’s test, 
P<0.05). 

Table 1. Virulence of H. irregulare and H. occidentale measured as fungal growth in the spruce 
sapwood, and lesion expansion in the inner bark. (Growth = Growth in the sapwood, lesion = 
lesion length in the inner bark, 2w, 4w and 6w = 2, 4 and 6 weeks after inoculation) 

 Growth (mm) Lesion (mm) 

2w 4w 6w 2w 4w 6w 
H. occidentale 16.7±12.6 42.0±28.4 41.0±36.0 7.7±4.2 21.2±16.6 28.2±11.0 
H. irregulare 23.8±11.1 58.3±7.6 62.5±20.6 9.5±7.6 11.0±5.0 20.5±7.2 
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4.2 H .irregulare and H. occidentale have different gene 
expression patterns in planta 

4.2.1 Genome annotation and orthologous gene identification showed the 
similarity between H. irregulare and H. occidentale genomes 

The genome sequences of H. irregulare and H. occidentale were acquired from 
previous published data (Lind et al., 2012; Olson et al., 2012) and were re-
assembled and re-annotated using MAKER so that they could be used as 
reference genomes for RNA sequencing. In total, we identified 9462 gene 
models in H. irregulare and 10,295 in H. occidentale. Our annotation of the H. 
irregulare genome and the published annotation of the H. irregulare genome 
available at the Joint Genome Institute website (http://genome.jgi.doe.gov/ 
Hetan2/Hetan2.home.html) shared 8412 (89%) gene models. The two species, 
H. irregulare and H. occidentale, shared 7545 one-to-one orthologous genes. 
To further identify similar genes, the gene models from both two genomes 
were grouped together by orthoMCL into 8306 groups. 

4.2.2 Numbers of H. irregulare and H. occidentale genes are consistently 
induced during infection 

After filtering the pure fungal (liquid culture) samples, we obtained around 10 
million–14 million reads per sample. The fungal tree interaction samples, 
which were sequenced much deeper, yielded between 30.5 million and 154.8 
million reads per sample. From the fungal tree interaction samples we achieved 
more than 500,000 mapped aligned pairs except from one of three replicates of 
one sample for which we obtained 229,570 mapped aligned pairs (Table 2). In 
H. irregulare, 2081 genes were significantly differentially expressed between 
any two treatments [grown in liquid culture (L), 2-weeks in bark (2w), 4-weeks 
in bark (4w) and 6-weeks in bark (6w)] compared with 2360 genes in H. 
occidentale. PCA analysis of the expression of the four samples of each species 
suggested that the L sample was very different from the samples of fungal 
growth in bark (Fig. 2). By comparing the significant differentially expressed 
genes (DEGs) of the 2w, 4w and 6w treatments versus the L treatment, 385 H. 
irregulare genes and 407 H. occidentale genes were shown to be consistently 
up-regulated (CUGs) and 222 H. irregulare genes and 310 H. occidentale 
genes were consistently down-regulated (CDGs) (Figure 2). 
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Figure 2. PCA analysis of the gene expression of (A) H. irregulare and (B) H. occidentale when 
grown in liquid culture (yellow), 2-weeks in bark (green), 4-weeks in bark (purple) and 6-weeks 
in bark (blue). 

Table 2. Summary of RNA sequencing data. The numbers of Total reads were obtained after 
filtering with Nesoni. The aligned pairs were mapped by Tophat2 based on no base pair 
mismatch. (L = liquid culture, 2w, 4w and 6w = 2 weeks, 4 weeks and 6 weeks after inoculating 
Norway spruce bark with the fungus) 

Sample names Total reads  Aligned pairs Mapped pairs(%) 

TC32-1-L-rep1 11809378 9114879 77.2% 
TC32-1-L-rep2 10555531 8764947 83.0% 
TC32-1-L-rep3 13240830 11124807 84.0% 
TC32-1-2w-rep1 39748040 1148233 2.9% 
TC32-1-2w-rep2 43180655 1637664 3.8% 
TC32-1-2w-rep3 40750502 1282462 3.1% 
TC32-1-4w-rep1 121996688 583954 0.5% 
TC32-1-4w-rep2 49434129 1241663 2.5% 
TC32-1-4w-rep3 95247997 3219921 3.4% 
TC32-1-6w-rep1 58357874 229570 0.4% 
TC32-1-6w-rep2 53266103 681649 1.3% 
TC32-1-6w-rep3 55675183 975852 1.8% 
TC122-12-L-rep1 13661132 11135225 81.5% 
TC122-12-L-rep2 12389419 10207752 82.4% 
TC122-12-L-rep3 11098200 9092986 81.9% 
TC122-12-2w-rep1 30863928 6764247 21.9% 
TC122-12-2w-rep2 39222132 1928245 4.9% 
TC122-12-2w-rep3 33431531 2346657 7.0% 
TC122-12-4w-rep1 154786107 1519679 1.0% 

A B
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TC122-12-4w-rep2 78321161 1714337 2.2% 
TC122-12-4w-rep3 32287019 4234747 13.1% 
TC122-12-6w-rep1 30472557 5817262 19.1% 
TC122-12-6w-rep2 73805957 3078694 4.2% 
TC122-12-6w-rep3 142671388 3277956 2.3% 

4.2.3 H .irregulare and H. occidentale have both common and different 
enriched GO terms for in planta growth 

In total, 60% of the gene models of the H. irregulare genome and 56% of the 
H. occidentale gene models were assigned to the GO terms. CUGs were 
enriched in 17 GO terms in H. irregulare and H. occidentale, but the GO terms 
were different between the species. The alpha-amino acid catabolic process 
(GO:1901606), drug transport (GO:0015893), benzoate metabolic process 
(GO:0018874) and xenobiotic catabolic process (GO:1901606) were uniquely 
enriched in H. irregulare; whereas carbohydrate transport (GO:0008643), 
polysaccharide metabolic process (GO:0005976), cellular carbohydrate 
metabolic process (GO:0044262) and cell wall organization (GO:0071555) 
were specifically enriched in H. occidentale. Far fewer GO categories were 
enriched among the consistently down-regulated genes in the samples of fungal 
growth in bark. The expression patterns of genes assigned to the enriched GO 
terms compared with their orthologues further confirmed the specificity of the 
expression of those genes to the species (Figure 3). 

 
 

HI HO
JGI-proteins-ID L-2w L-4w L-6w L-2w L-4w L-6w SeqDesc

305989 1.56 1.48 1.86 0.60 0.52 0.63 glycine dehydrogenase
471015 2.63 3.18 2.21 -1.23 -0.08 0.25 3-oxoacid -transferase
380456 1.18 1.40 0.95 -1.03 -0.18 -0.39 arginase
157104 3.07 3.21 2.72 2.33 4.33 3.57 homogentisate -dioxygenase
384796 2.08 2.42 1.50 2.23 2.14 1.63 flavocytochrome c
103954 1.32 1.10 1.35 1.19 1.54 1.13 glycine cleavage system t protein
126494 5.44 5.18 5.63 0.86 2.89 1.95 mop flippase
429046 2.61 2.89 1.98 -1.09 0.71 0.19 aromatic compound dioxygenase
454399 2.33 3.39 1.69 -0.12 0.29 0.92 aldehyde dehydrogenase

66124 4.47 5.96 4.34 3.11 3.90 3.73 abc transporter
330547 1.84 2.07 1.89 0.32 0.95 0.61 3-hydroxyanthranilic acid dioxygenase
456302 1.95 1.89 1.53 0.86 0.52 0.51 3-hydroxyacyl-CoA dehydrogenase
423519 2.20 2.85 2.01 -1.59 -1.56 -1.01 phenylalanine ammonia-lyase

A
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Figure 3. Detailed expression patterns of genes assigned to the enriched GO terms, which are 
specific in H. irregulare (A) and H. occidentale (B) compare to their orthologues. The number 
and colour indicate the log2 fold change. (L-2w, -4w and –w = liquid culture compared with 2 
weeks, 4 weeks and 6 weeks fungal growth in spruce bark)   

4.2.4 Common and different CUGs from H .irregulare and H. occidentale  

Of the CUGs, 369 genes in H. irregulare and 380 in H. occidentale had an 
orthologous gene in the other genome; however, only 143 gene models with 
orthologues were consistently up-regulated in bark in both species (Figure 4A). 
Among the consistently down-regulated genes in bark there were 70 
orthologous gene pairs (Figure 4B). In addition, there were nine H. irregulare 
genes that corresponded to 11 H. occidentale genes that did not have reciprocal 
orthologues but were in the same gene families and were also among the 
shared up-regulated genes. The 143 CUGs in both species included a number 
of genes encoding host material degradation enzymes, transmembrane 
transporters, and genes involved in metabolism. 

HI HO
JGI-proteins-ID L-2w L-4w L-6w L-2w L-4w L-6w SeqDesc

42076 5.04 2.38 4.02 3.28 2.28 2.16 glycoside hydrolase family 28 protein
121313 1.35 -0.38 1.01 4.58 1.92 1.69 glycoside hydrolase family 28 protein
407618 0.43 0.23 0.27 1.55 1.09 1.51 3-hydroxyisobutyrate dehydrogenase

60203 0.52 -0.08 0.42 1.55 1.11 1.25 udp-galactose transporter
471495 0.82 0.56 0.74 1.43 1.30 1.23 myo-inositol-1-phosphate synthase
122126 0.37 -1.41 1.06 4.85 3.43 3.35 dak1-domain-containing protein
123490 0.92 0.24 0.64 2.09 0.96 1.20 glycoside hydrolase family 3 protein

62767 2.04 1.49 2.09 3.03 3.57 2.77 mfs general substrate transporter
46597 0.93 0.00 0.82 3.32 1.41 1.78 glycoside hydrolase family 3 protein

157934 1.00 -0.47 1.08 3.48 1.88 2.34 sugar transporter
172978 3.38 -0.44 2.64 7.36 1.84 1.69 glycoside hydrolase family 43 protein

45732 5.24 -0.48 4.60 6.98 2.46 2.56 carbohydrate esterase family 8 protein
61998 1.51 0.96 1.03 3.82 3.75 2.81 mfs sugar transporter
48830 4.52 3.12 4.69 4.85 3.45 3.49 general substrate transporter
67107 5.34 1.19 4.92 8.25 6.39 6.81 general substrate transporter

325916 0.41 0.72 0.69 1.64 1.96 1.54 duf706-domain-containing protein
12581 0.09 0.19 0.44 1.57 1.70 0.98 mfs sugar partial

Not available -0.25 -0.87 -0.22 2.11 1.21 1.62 pin domain-like protein
157457 2.86 1.94 1.59 1.00 1.78 1.20 hexose transporter
152014 4.68 -0.19 4.34 7.00 2.43 2.84 glycoside hydrolase family 28 protein-PG1

53076 1.86 -0.90 1.24 2.76 1.64 1.82 glycoside hydrolase family 5 protein
37838 1.75 -0.01 1.61 5.30 3.00 3.22 general substrate transporter

148374 -2.88 -3.36 -1.13 4.11 1.23 1.96 general substrate transporter
106809 4.10 3.35 3.60 3.07 3.80 2.17 general substrate transporter
164687 2.50 1.99 1.56 3.98 2.29 1.96 glycoside hydrolase family 12 protein
331340 3.97 1.09 2.41 4.55 1.21 1.66 endo-beta-xylanase

12392 3.64 -1.43 2.97 8.70 4.42 4.59 glycoside hydrolase family 28 protein

B
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Among the CUGs identified specifically in H. irregulare or H. occidentale, 
226 and 237, respectively, had a reciprocal BLAST hit in the other species 
were the gene was not significantly up-regulated. In addition, 15 H. irregulare 
and 22 H. occidentale CUGs were specifically induced in their respective 
species that did not have a reciprocal BLAST hit (Figure 4). A set of 241 H. 
irregulare genes and 259 H. occidentale genes, corresponding to two thirds of 
the CUGs, were species specific induced. The Kyoto Encyclopedia of Genes 
and Genomes (KEGG) Automatic Annotation Server (KAAS) BLAST 
assigned 91 of the 241 H. irregulare genes with KEGG orthology (KO) terms 
and were mapped to 102 KEGG pathways, and 87 of the 259 H. occidentale 
genes were assigned with KO terms and were mapped to 85 KEGG pathways. 
Approximately half of the KEGG pathways identified in H. irregulare and H. 
occidentale were the same. 

 
Figure 4. The reciprocal BLAST revealed large differences in the amount of H. irregulare and H. 
occidentale CUGs (A) and CDGs (B). (The numbers indicate the number of gene models, HI = H. 
irregulare, HO = H. occidentale). 

4.3 Evolution of argonaute and dicer in Basidiomycota 

4.3.1 Argonaute and dicer are widely represented and relatively conserved in 
Basidiomycota 

In total, 194 argonaute- and 104 dicer-encoding genes were identified from 43 
fungal genomes. The copy number of both argonaute and dicer genes differed 
substantially between species. Generally, the copy numbers of argonaute and 
dicer were significantly greater in Agaricomycetes (6 ± 1.3 and 3 ± 0.7, 
respectively) than in other Basidiomycota species (1.6 ± 1.4 and 1.2 ± 0.7), or 
in the Ascomycota (1.8 ±1.2 and 1.2 ± 0.8). All the fungal argonaute proteins 
had a conserved structure containing a PAZ domain and a PIWI domain. 
Fungal dicers were composed of a DExH box, a RNA helicase domain 
(HELICc), a dsRNA binding domain, a PAZ domain, two RNaseIII domains 

BA
HI HO HI HO
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and another dsRNA binding domain, organized from N-terminal to C-terminal. 
However, a number of dicer proteins did not contain all domains. 

4.3.2 Phylogenetic analysis of argonaute and dicer  

The Basidiomycota argonaute proteins, excluding the Tremellales, were 
divided into two groups with weak support that from now on will be referred to 
as ago-A and -B. The ago-B was a Basidiomycota-specific group whereas the 
ago-A group contained proteins from both Ascomycota and Basidiomycota 
species. The Basidiomycota dicer proteins were divided into three groups, 
referred to as dcl-A, -B, and -C. The dcl-C group only contained proteins from 
Basidiomycota species whereas dcl-B also included one group of Ascomycota 
dicer. Although the phylogeny of both dcl-B and dcl-C subgroups followed the 
taxonomic diversification of fungal groups, dcl-A did not. The Tremellales 
argonautes and dicers were a diversified group that was separate from the other 
Basidiomycota dicers, and seemed to be related to the Ascomycota dicers. 

Gene duplication of argonaute and dicer happened in parallel in the 
Zygomycota and Dikarya. In Dikarya, gene duplication of dicers essentially 
happened in two steps: first it occurred during early diversification of the 
Dikarya and Basidiomycota, which resulted in the three dicer groups; and then 
it occurred much more recently and in parallel in several genera. Frequent 
duplications and losses of argonautes were found in different groups within the 
Agaricomycotina, except in the Tremellales where reduced copies of argonaute 
were found. 

4.4 The endo-rhamnogalacturonase of H. irregulare (HIRHG) 

4.4.1 Expression of the HIRHG gene and production of the HIRHG protein 

There was only one copy of the endo-rhamnogalacturonase gene (RHG) in the 
H. irregulare genome, and it was located in the pathogenicity QTL region. 
Transcript levels of HIRHG were significantly elevated during infection in 
bark. This finding had been indicated by a previous microarray experiment 
(Olson et al., 2012) and was confirmed by the RNAseq data. The RNAseq data 
showed that both HIRHG and its orthologous gene in H. occidentale were up-
regulated in spruce bark; however the HIRHG showed a higher fold change at 
two weeks and six weeks in bark (Figure 5A). The expression of HIRHG was 
validated by Q-PCR, which showed that it increased 25- and 19-fold in spruce 
bark after 2- and 4-weeks growth, respectively (Figure 5B). H. irregulare grew 
faster on pectin culture medium than on the media containing other sugar 
sources, which was manifested as a larger colony radius, and the protein 
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extracted from the mycelia gave the strongest signal using western blot (Figure 
5 C and D). 

 
Figure 5. H. annosum s.l. RHG gene regulation during infection of Picea abies and H. irregulare 
growth rate and HIRHG protein production on different carbon sources. (A) Gene expression of 
HIRHG and its orthologue in H. occidentale measured by RNA sequencing compared by fold 
change. (B) HIRHG gene expression was profiled using quantitative reverse transcription-
polymerase chain reaction (qRT-PCR) throughout 2 and 4 weeks in liquid culture and after 
infection. Expression of the H. irregulare actin, RNA polymerase II transcription factor, and 
tryptophan catabolism genes were used as constitutively expressed endogenous gene controls, and 
the level of HIRHG expression was determined relative to these three endogenous gene controls. 
Three to five biological replicates, each containing three technical replicates for each sample, 
were performed. Statistical significance was analysed using one-way ANOVA followed by 
Tukey’s test. (C) The mean radius of H. irregulare colonies after one week of growth on plates. 
(D) Western blot of H. irregulare HIRHG in extracts from mycelium grown on different carbon 
sources. 

4.4.2 Distribution of fungal endo-rhamnogalacturonase 

Maximum likelihood analysis of the amino acid sequences revealed that the 
fungal endo-rhamnogalacturonase genes have a very similar phylogenetic 
relationship (Figure 6). The phylogeny of endo-rhamnogalacturonases in 59 
published fungal genomes representing fungal pathogens and fungi with other 
trophic modes was investigated. Most of the 22 biotrophic and hemibiotrophic 
plant pathogens did not have any endo-rhamnogalacturonase genes, the 
exceptions being the hemibiotrophic plant pathogen Mycosphaerella 
graminicola, the biotrophic plant pathogens Puccinia graminis and 
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Melampsora laricis-populina and the mycorrhizal Tuber melanosporum. Most 
of the necrotrophic plant pathogens and saprotrophs had between one and six 
gene copies of the RHG gene in their genomes. The gene families were 
expanded in some Aspergillus spp. The main group of identified endo-
rhamnogalacturonase genes (52 of the 58) were genes from necrotrophic plant 
pathogens and saprotrophs. In this cluster, the phylogeny of the genes basically 
followed the species phylogeny; the only exception was the Armillaria mellea 
gene (Armme1/425), which clustered together with the Ascomycota instead of 
the Basidiomycota.   

 
Figure 6. Diversity and distribution of fungal RHG is associated with the fungal life style. (A) 
The species phylogeny of 59 fungi with published genome sequences: the green squares indicate 
biotrophs and hemibiotrophs, the brown oblique squares indicate necrotrophs and saprotrophs. 
The columns under the phylogenetic tree indicate the number of gene copies. (B) The maximum 
likelihood tree of fungal RHG protein sequences. Green squares indicate genes from biotrophs 
and hemibiotrophs, and brown oblique squares indicate necrotrophs and saprotrophs. 

BA



42 

4.4.3 Expressing HIRHG in M. oryzae improves growth on pectin  

A M. oryzae wild-type strain (KJ201) was transformed by PEG-mediated 
fungal transformation with HIRHG and HIRHG::mcherry. The two HIRHG 
expression strains C7 and C8 and two HIRHG::mcherry fusion expression 
strains 1-6 and 2-20 showed no significant difference in conidiation, conidial 
morphology, conidial germination and appressorium formation. The growth 
rates of transformants on pectin agarose medium were found to be significantly 
greater than that of the wild type (P<0.05, Tukey’s test): the mean radius of the 
colonies of transformants increased by between 3.08 mm and 3.22 mm per day, 
whereas the radius of the wild type increased by 2.44 mm/day (Figure 7). The 
transformants were also inoculated on rice and showed no significant change in 
virulence compared with the wild type. 

 
Figure 7. Growth rate of the rice blast fungus M. oryzae expressing HIRHG and 
HIRHG::mCherry fusion on apple pectin media. Strains 1-6 and 2-20 were M. oryzae-expressed 
HIRHG::mCherry fusion, C7 and C8 were M. oryzae-expressed HIRHG. The different letters (A 
and B) indicate a significant difference in growth rate. 
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5 Discussion 
As one of the most devastating forest pathogens, H. annosum s.l. has been 
studied intensively. Genetic mappings, combined with genomic and 
transcriptomic studies, have accumulated information on potential virulence 
factors. However, the differences in global gene expression between the 
species within the H. annosum s.l. species complex, and how that relates to 
their evolutionary history and host preference is poorly understood. 
Furthermore, the molecular functions of identified candidate virulence genes 
need to be investigated for a deeper understanding of virulence. In this thesis, 
deep RNA sequencing was used to explore the common and different 
transcriptomes as well as to generate more candidate virulence genes for future 
molecular characterization (Paper I). In parallel, the evolution of RNA 
interference was investigated to establish the RNAi-based gene-silencing tool 
for studying virulence candidates in basidiomycetes in general and H. annosum 
s.l. in particular (Paper II). Finally, one of the previously identified candidate 
virulence genes, an endo-rhamnogalacturonase (RHG) gene from the GH28 
family, was chosen for further characterization (Paper III). 

Despite being closely related conifer pathogens, H. irregulare and H. 
occidentale apparently with different infection strategies (Paper I). The pine 
specialist H. irregulare induced more genes active in detoxification when 
growing within Norway spruce tissue than H. occidentale. To colonize their 
host successfully, pathogens have to overcome the antimicrobial effects of 
chemicals such as terpenes, phenolic and nitrogen-containing compounds 
(Franceschi et al., 2005) by employing their xenobiotic metabolizing enzymes 
(Lah et al., 2011; Sexton et al., 2009). Dioxygenase, an aromatic compound, 
was up-regulated during the interaction of H. irregulare with spruce. 
Dioxygenase catalyses the oxidative ring cleavage of catechol, which might be 
involved in the detoxification of phenolic compounds produced by the host. In 
H. annosum s.s.-infected tissues, stilbenes that have been converted to ring-
opened, deglycosylated, and dimeric products have been found (Danielsson et 
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al., 2011). Analyses of Ceratocystis polonica protein and metabolite extracts 
have shown that these stilbene metabolites arise from fungal enzyme activities 
(Hammerbacher et al., 2013). Possibly, H. irregulare uses the aromatic 
compound dioxygenase to generate linearized stilbene metabolites for 
nutrition. The efflux of antimicrobial compounds out of cells is another 
important detoxification mechanism. One Multidrug/Oligosaccharidyl-
lipid/Polysaccharide (MOP) flippase is induced in H. irregulare significantly. 
Several members of the MOP flippases have been functionally characterized 
and have been shown to export diverse drugs out of Escherichia coli (Mortier-
Barriere et al., 1998). Perhaps MOP flippases have the same function in H. 
irregulare, exporting the Norway spruce defence compounds.    

Another key finding of the differences between H. irregulare and H. 
occidentale during infection was that H. irregulare induced more biosynthetic 
genes. Production of low-molecular weight toxins is proposed to be an 
important virulence factor of many necrotrophic plant pathogens (Bartz et al., 
2013). H. annosum s.l. is known to produce toxins such as oosponol, 
fomannosin, fomannoxin, and the fomajorins (Asiegbu et al., 2005). The CUGs 
of H. irregulare and H. occidentale mapped to very diverse KEGG pathways, 
which indicates that diverse toxin production is induced during pathogen-
growth in spruce bark. The secondary metabolite profile of the pine-infecting 
species is very different from that of the non-pine-infecting species of H. 
annosum s.l. (Hansson et al., 2014). Here, the patterns of gene expression 
mapped to different KEGG pathways in H. irregulare and H. occidentale, 
suggesting that the secondary metabolites produced in spruce bark also differed 
between the two species. In particular, the relatively large number of 
biosynthetic genes up-regulated in H. irregulare should reflect a better capacity 
to produce a wider arsenal of toxins in spruce bark.  

Interestingly, we also found that the glyoxylate cycle was only induced 
during in planta growth in H. irregulare, which is reminiscent of the induction 
of the glyoxylate cycle in Fusarium graminearum growing in wheat (Zhang et 
al., 2012). The glyoxylate cycle requires mitochondrial inner membrane 
carriers to transport isocitrate to cytosol. Three mitochondrial carriers and one 
mitochondrial inner membrane carrier were up-regulated in H. irregulare. 
When one of the mitochondrial carrier genes (CIC1 or FOW1) was knocked 
out in F. graminearum or Fusarium oxysporum to disrupt the glyoxylate cycle, 
the mutants showed normal growth in vitro; however, the size of the lesions in 
infected coleoptiles were reduced to approximately one third, whereas the 
lesion size induced by the complemented strain were similar to that of the wild 
type (Zhang et al., 2012; Inoue et al., 2002). The glyoxylate cycle has also 
been shown to be important for virulence in Candida albicans (Lorenz & Fink, 



45 

2001). Furthermore, the importance of the glyoxylate cycle for H. irregulare 
growing in the host tree could be correlated to a previous observation of 
mitochondrial inference of H. annosum s.l. virulence (Olson & Stenlid, 2001). 
Perhaps, the activation of the glyoxylate cycle relies on the interaction of the 
tricarboxylic acid cycle (TCA cycle) within mitochondria, reflecting the 
observation that mitochondria control virulence.   

Genes in different GH families are often found to be up-regulated in 
saprotrophic wood decay (Floudas et al., 2012). Although there were genes of 
GH families that were significantly up-regulated in both H. irregulare and H. 
occidentale, far more of these genes were highly expressed in H. occidentale, 
especially at two weeks after the infection. This indicates that H. occidentale is 
likely to employ these enzymes for the destruction of the host cell structure and 
at an earlier infection stage than H. irregulare does. It also suggests that H. 
occidentale uses degraded plant material as a carbon source during this phase 
of the interaction. This type of virulence has also been shown in other 
necrotrophic pathogens. The GH28s are cell wall-degrading enzymes, for 
which there is some evidence that they function as virulence factors in B. 
cinerea (ten Have et al., 1998), Alternaria citri (Isshiki et al., 2001) and 
Aspergillus flavus (Shieh et al., 1997) by causing cell wall decomposition and 
tissue maceration. Importantly, a Claviceps purpurea strain carrying a deletion 
of two GH28 genes is nearly non-pathogenic on rye without affecting its 
vegetative properties (Oeser et al., 2002). Here, one GH28 was found to be up-
regulated in both H. irregulare and H. occidentale when growing in the host, 
and three other GH28s and a number of additional GHs for cellulose- and 
hemi-cellulose degradation were highly induced in H. occidentale, which 
indicates that GH28 might play a more important role in H. occidentale 
survival and spread throughout woody tissues than it does in H. irregulare. 

Being closely related species in a species complex, H. irregulare and H. 
occidentale share the majority of their gene models. However, when inoculated 
on the same host species (which is not the natural host for either species) they 
showed divergent gene expression patterns. Approximately two thirds of the 
CUGs during growth in bark are specifically induced in that species. The 
evolutionary history of H. annosum s.l. shows that the separation of H. 
irregulare and H. occidentale from the last common ancestor to modern 
species is associated with the host preference for pine infection and non-pine 
infection (Dalman et al., 2010). If the difference in gene expression between 
the two species were a consequence of their separate evolutionary history the 
genes that are differentially expressed would be random. However, the 
differences between the differentially expressed genes in the two species are 
not random, which is reflected by the difference between H. irregulare and H. 
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occidentale in enriched GO terms. This indicates that the differences found are 
likely to be as a result of adaptive selection to their respective host tree. 

Even though H. irregulare and H. occidentale showed a large difference in 
their gene expression pattern during infection, they appear to share some 
common features needed for virulence. There are a number of transporters that 
were up-regulated in both species. These transporters might be important for 
the pathogen to acquire nutrients from the host tissue as well as for transporting 
out molecules that may be harmful for the pathogen. Another common feature 
was the induction of degrading enzymes. Laccases, which have traditionally 
been considered as virulence factors of tree pathogens (Kuo et al., 2015; 
Asiegbu et al., 2005), were induced in both species and expressed at high 
levels. Laccases are multi-copper-containing enzymes that catalyse the 
oxidation of phenolic compounds, including the bioconversion of lignin and 
degrading phenolic compounds (Mayer & Staples, 2002; Pezet et al., 1992). In 
addition, clavaminate synthase-like proteins, which belong to the alpha-
ketoglutarate-dependent oxygenases, were highly expressed and induced. 
Clavaminate synthase-like proteins have been observed in the interaction 
between H. annosum s.s and Norway spruce, and have been predicted to be 
involved in secondary metabolism for fungal toxin production (Lunden et al., 
2015). One of the GH28 genes that were commonly up-regulated in both 
species was an RHG gene. RHG is located in one of the virulence QTLs, and it 
is considered to be an important virulence factor for both H. irregulare (Olson 
et al., 2012) and H. occidentale. HIRHG, the H. irregulare endo-
rhamnogalacturonase gene was selected for functional characterization (Paper 
III). 

The RNAseq study (Paper I) together with earlier genetic mapping using 
QTLs (Olson et al., 2012; Lind et al., 2007) and a GWA study (Dalman et al., 
2013) identified a number of candidate virulence genes. To investigate the 
function of a particular candidate gene will be the next step to understanding 
the virulence of H. annosum s.l. Reverse genetics such as targeted gene 
disruption and gene silencing by RNAi are appreciated as seminal tools for 
investigating gene products. Gene silencing by RNAi has been used to reduce 
the expression of a target gene in several other organisms to analyse their loss-
of-function phenotype. Compared with the complete deletion or disruption of a 
target gene, RNAi allows analysis of genes involved in a conserved biological 
process, without which the organisms might not survive after deletion or 
disruption. Many of the candidate virulence genes of H. annosum s.l. encode 
enzymes involved in metabolic processes (Olson et al., 2012); RNAi could be 
a suitable technique to further investigate their function. 



47 

Phylogenetic analysis of argonaute and dicer proteins gives insights into the 
diversification of RNA silencing pathways during the evolution of the 
Basidiomycota. It also offers the potential for a deeper understanding of the 
mechanism of RNAi in the Basidiomycota and might eventually lead to its 
application in research. Specifically, we investigated whether orthologues to 
genes involved in quelling and MSUD are present in the Basidiomycota, which 
would indicate the existence of similar pathways in the Basidiomycota as those 
that have previously been described in other organisms. N. crassa harbours two 
dicer-encoding genes (dcl-1 and dcl-2) and the argonaute-encoding gene qde-2, 
which is involved in the quelling pathway (Li et al., 2010). Both N. crassa dcl-
1 and dcl-2 are able to process dsRNA in the quelling pathway; however, dcl-2 
is the major dsRNA processing enzyme (Li et al., 2010; Catalanotto et al., 
2004). In our phylogeny, N. crassa dcl-2 clustered together with the 
Basidiomycota-specific clade dcl-B, and qde-2 clustered together with the ago-
A clade. Dacryopinax, Tremellales and M. laricis-populina all lack members 
of both dcl-B and ago-A, which might indicate that the quelling pathway does 
not exist in these fungi. The species Botryobasidium botryosum, Auricularia 
delicata and Fomitiporia mediterranea lack the dcl-B protein but they have 
proteins represented in both the ago-A and -B clades. Perhaps their quelling 
pathway could be maintained by dcl-A proteins given that dcl-1 and dcl-2 have 
been shown to be partially functionally redundant in N. crassa (Chang et al., 
2012). MSUD, which only functions during meiosis, relies on N. crassa dcl-1 
and not dcl-2 for processing the RNA; the small RNAs are then loaded onto a 
sms-2-based RISC complex. Neither dcl-1 nor sms-2 cluster together with any 
of the dicer or argonaute groups containing proteins from the Basidiomycota. 
This may indicate that the MSUD pathway is missing in Basidiomycota, 
although other as yet unidentified pathways might operate during the sexual 
cycle. There are some additional RNAi pathways found in N. crassa that all 
share a core component, the qde-2-associated RISC (Li et al., 2010). Given 
that the Basidiomycota ago-1 clustered with the N. crassa qde-2 and is present 
in all Basidiomycota except Dacryopinax, Tremellales and Melampsora 
laricis-populina, similar pathways might also exist in the Basidiomycota. Very 
interestingly, one unique dicer (dcl-C) cluster and one unique argonaute (ago-
B) cluster were found in the Basidiomycota. The presence of these unique 
clusters may indicate that the Basidiomycota could possess as yet undiscovered 
RNAi pathways. The RNAi proteins in Tremellales seem to be distinctively 
diversified from other Basidiomycota. An RNAi mechanism was discovered in 
C. neoformans that is specifically activated during sexual reproduction and, 
hence, was named sex-induced silencing (SIS) (Wang et al., 2010). 
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RNAi gene silencing has been developed as a biotechnological tool for 
modifying gene expression and functional studies in many Ascomycota species 
(Salame et al., 2011). To date, RNAi gene silencing has only been successfully 
applied to six species of Basidiomycota: Phanerochaete chrysosporium, 
Agaricus bisporus, Laccaria bicolor, C. neoformans, Coprinopsis cinereus and 
M. lini (Kemppainen & Pardo, 2010; Costa et al., 2009; Kemppainen et al., 
2009; Panepinto et al., 2009; Costa et al., 2008; Matityahu et al., 2008; 
Namekawa et al., 2005; Liu et al., 2002). Given that both argonaute and dicer 
are present in almost all Basidiomycota; our results indicate that it should be 
possible to develop RNAi as a tool for the functional study of genes in most 
Basidiomycota species, including H. annosum s.l. However, the RNAi gene 
silencing technology is relaying on the fungal transformation and a well-
established transformation system is required for using RNAi gene silencing to 
study the function of candidate virulence genes by reverse genetics. 

Based on the RNA sequencing data (Paper I), and virulence QTLs, the H. 
irregulare HIRHG gene was selected as the candidate virulence gene for 
further characterization. Although, more GH28s proteins were up-regulated in 
H. occidentale, HIRHG was found to be up-regulated in both H. irregulare and 
H. occidentale. Therefore, it could be considered to be a common virulence 
factor for H. annosum s.l. However, in some host–pathogen systems, 
polygalacturonases been shown to act as MAMPs (Zhang et al., 2014), 
underlining their importance for the colonization ability of the pathogen. A 
distinct group of GH28s, the RHG proteins, have not been studied in the 
pathogen–host interaction. In order to get an overview of fungal RHG, we 
investigated RHG genes in 59 published fungal genomes. The results suggested 
that loss of RHG was associated with adaption to biotrophy and 
hemibiotrophy, and expansion of the gene family was associated with 
necrotrophy and saprotrophy. However, a few RHG-like genes are present in 
the rust fungi M. laricis-populina and P. graminis; however, they have very 
divergent sequence features, thus indicating divergent functions. The loss of 
RHG in biotrophs and hemibiotrophs is possibly as a result of purifying 
selection to avoid recognition by the plant innate immune system. The Botrytis 
PG BcPG3 is recognized by the Arabidopsis receptor RBPG1 resulting in a HR 
response (Zhang et al., 2014). Oligoglucans (OGs) generated by PGs have also 
been shown to act as elicitors (DAMPs) inducing a wide range of defence 
responses in several plant species. The host PCD response has been reported to 
be harmful to biotrophs and hemibiotrophs, but tolerable for necrotrophs such 
as H. annosum s.l. (Asiegbu et al., 1994; Asiegbu et al., 1993). Therefore, we 
hypothesize that the loss of the RHG genes in biotrophs and hemibiotrophs 
may be due to the potential of the proteins to induce PTI in the host, which 
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might be better tolerated by certain necrotrophic pathogens. We investigated 
the effect of expressing HIRHG in the hemibiotroph M. oryzae, anticipating 
that HIRHG-transformed M. oryzae would show reduced virulence if HIRHG 
activated PTI in rice. An alternative outcome of the experiment might have 
been an increase in the virulence of M. oryzae as a result of enhanced 
degradation of pectin in rice. However, we did not observe any significant 
change in the virulence of M. oryzae in the strain expressing the HIRHG gene, 
indicating either that HIRHG does not activate PTI in rice, perhaps because of 
the lack of an appropriate receptor (Zhang et al., 2014) to detect HIRHG as a 
MAMP or the potential OGs produced as DAMPs, or that M. oryzae has 
effectors that are able to suppress the PTI induced by HIRHG. In the 
hemibiotrophic oomycete pathogen Phytophthora sojae, another GH12 protein, 
XEG1, which also acts as a cell wall-degrading enzyme, can activate PTI in 
different plants and many P. sojae effectors can also suppress defence 
responses induced by XEG1 (Ma et al., 2015). Moreover, the faster growth rate 
found on pectin medium in HIRHG-expressing M. oryzae transformants was 
not reflected in the virulence of the transgenic strains. It is possible that the 
trophic strategy of M. oryzae in planta would not benefit from RHG activity, 
whereas H. irregulare, which uses both necrotrophism and saprotrophism in its 
interaction with the host, would benefit. Unlike biotrophs, necrotrophs rely on 
the degradation of host material for the acquisition of energy and nutrients. 
This strategy appears to be reflected in their genome because necrotrophs 
generally have a more diverse arsenal of plant cell wall-degrading enzymes 
than pathogens with other trophic strategies, and many biotrophic plant 
pathogens show a strong reduction of genome size and total number of gene 
models (Schirawski et al., 2010; Spanu et al., 2010). 

HIRHG and other RHGs can contribute to carbon acquisition by degrading 
pectin. Heterologous expression of the HIRHG gene in M. oryzae resulted in a 
faster growth rate than the wild type on pectin medium, which provides 
indirect evidence that HIRHG has pectinase activity and that the activity of 
RHGs contribute to fungal growth. The Botrytis RHGs have also been 
identified in pectin liquid culture, but not when grown on sucrose, suggesting 
that RHGs play an active role in pectin-degradation and fungal carbon 
acquisition (Shah et al., 2009). Western blot of HIRHG from H. irregulare 
grown on different carbon sources supports a similar role for HIRHG; the level 
of HIRHG protein was much higher when H. irregulare was grown on pectin 
medium compared with on other carbon sources. The expression levels of 
HIRHG and its orthologues were also higher in planta compared with in vitro. 
The plant cell walls, which are composed of pectin and cellulose, are the main 
carbon sources for necrotrophic pathogens. Degradation of host cell walls to 
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provide carbon is important for H. annosum s.l. growing in planta. The 
relatively higher induced levels of HIRHG compared with that of its 
orthologues in H. occidentale could be because there are more GH28s and 
plant cell wall-degrading enzymes induced during the interaction, which might 
complement the function of HIRHG. 
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6   Conclusions and future prospects 

6.1 Conclusions 

Transcriptome studies showed that the virulence of H. annosum s.l. is 
controlled by multitude of genetic factors. There were large differences found 
between different species within the complex. Most likely H. irregulare and H. 
occidentale have different strategies to infect Norway spruce. Together with 
previous studies, a number of candidate virulence factors were identified. 
Further study is required to exploit the details of virulence of H. annosum s.l. 
However, it was shown that most likely RNAi is present in H. irregulare and 
could be developed for functional characterization of candidate virulence 
genes. Such a reverse-genetic tool would still relays on a well-established 
genetic transformation system. The H. irregulare endo-rhamnogalacturonase 
gene (HIRHG) was selected to be characterization in this study. The results 
suggest that it important for H. annosum s.l. growing in planta due to its 
contribution to decomposition of pectin of host cell wall. 

6.2 Future prospects 

The genetic differences between H. annosum s.l. species have been intensively 
studied; however, further investigation is needed to determine virulence factor 
differences between H. annosum s.l. species and to understand the mechanisms 
involved in virulence. The genomic comparison of H. annosum s.l. species is 
still ongoing. In addition to genomic comparison studies, a comparison of the 
gene expression pattern of the heterokaryon hybrid AO8 with that of H. 
irregulare and H. occidentale, and an investigation of how the homokaryon 
parents effect heterokaryon hybrid gene expression could be used as an 
approach to understand the evolution of gene expression and virulence in the 
pathogen. 
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The genetic transformation of H. annosum s.l. is rather difficult compared 
with the transformation of many other plant pathogens. However, the 
development of new technologies, such as the CRISPR system (Ran et al., 
2013), might prove valuable for transforming H. annosum s.l. In addition, 
using a well-established model system to avoid complicated difficult work 
might be a good strategy. Many of the virulence candidates such as 
transporters, secondary metabolism enzymes and secreted proteins could be 
characterized in a heterologous model system.  

The development of theory about the necrotrophic pathogen–host 
interaction that is relatable to the H. annosum s.l.–conifer system would be an 
important approach for us to understand the molecular mechanism, evolution 
and ecology of H. annosum s.l. and the virulence of fungal pathogens in 
general.  
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