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Soil nitrogen fluxes and root uptake in the boreal forest: key 
processes to plant nitrogen nutrition 

Abstract 

Nitrogen (N) is essential for growth and net primary production of plants. 

However, N acquisition by plants is influenced by movement of soil N 

compounds from bulk soil to plant roots and uptake of N by roots. This thesis 

is aimed at deepening our knowledge on these key processes involved in plant 

N acquisition in the N-limited boreal forest. To address this aim, a novel, non-

invasive microdialysis technique was employed. Amino acids dominated N 

fluxes in the boreal forest soils. Further, plant roots were shown to have the 

capacity to absorb organic and inorganic N present in the measured soil fluxes, 

but these soil fluxes, rather than root uptake, may limit plant N acquisition. The 

microdialysis technique was further developed to enable simultaneous 

estimation of diffusion and mass flow of N in soil. Applying this refinement of 

the technique in the field showed that mass flow significantly increased flux 

rates of soil N in the boreal forest ecosystem, and that it also altered the 

chemical composition of the N fluxes. 

The results from the studies presented in this thesis highlight the potential 

of the microdialysis technique to improve our understanding of the intrinsic 

processes involved in N acquisition by plant roots. They also suggest that 

amino acids might comprise an important source of N for plants in the boreal 

forest ecosystem. The results suggest that mass flow plays an important role for 

plant N acquisition in the boreal forest, and mass flow might increase the share 

of nitrate, particularly in nutrient-rich ecosystems. This finding opens a 

discussion on the role of transpiration in plant N nutrition, with implications 

for our understanding of how plant N nutrition will be affected by, among 

other things, elevated CO2, increased temperatures, and N fertilization.  
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1 Introduction 

1.1 Background  

This thesis addresses the importance of processes involved in movement of soil 

Nitrogen (N) to plant roots. This is important for plant N acquisition and 

overall plant N nutrition. Nitrogen is an important component of all living 

organisms, because it is the building block for the essential macromolecules 

(protein and DNA) that sustain life. It is also an essential constituent of 

chlorophyll; the light capturing molecule in plant leaves that is important for 

the growth and net primary production of plants.  

 

Nitrogen gas (N2) is the most abundant compound in the atmosphere 

constituting about 78 % of the total volume, but plants lack the capacity to 

utilize atmospheric N directly. Atmospheric N becomes available for plant use 

through a range of processes. Nitrogen can be deposited into ecosystems in 

particulate, dissolved and gaseous forms during rainfall, lightning and wind-

blown particles. Biological fixation of N2 by N-fixing bacteria and chemical 

fixation of N through the Haber-Bosch process (industrial production of 

inorganic N fertilizers) also result in N addition to ecosystems. In addition, 

decomposition of dead plant biomass and other N contained in soil organic 

matter release organic and inorganic N compounds into soils. Inorganic N 

compounds include NH4
+
, NO2

-
 and NO3; while the organic ones include 

protein, peptides, nucleic acids, amino acids, amino sugar, nucleotides etc. 

These N compounds possess different chemical properties and can be 

converted from one form to another in the soil N cycle. 
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1.2 The soil N cycle 

A simplified depiction of the soil N cycle includes N addition to soil; 

transformation of one N compound to another; uptake of N compounds by 

plant and soil microbes; release of N compounds by plant roots and soil 

microbes; and loss of N compounds from ecosystems (Figure 1).  

1.2.1  Nitrogen addition to soils 

Biological N fixation plays a significant role in N addition to soil. N-fixation 

involves breakdown of the triple bond of N2 and its reduction into NH4
+
 by the 

enzyme nitrogenase produced by N-fixing microbes. Some examples of N-

fixing microbes include Rhizobium, Frankia and Azotobacter - which are in 

symbiotic association with plant roots; and free-living N-fixing Nostoc, 

Anabaena, and Rhodospirillium (Chapin et al. 2011). Atmospheric N can also 

be deposited in soils, e.g., during lightning and rainfall, and through 

anthropogenic activities. These anthropogenic activities include application of 

NH4
+
 fertilizer which can lead to volatilization of NH3, and subsequent 

production of NH4
+ 

in the atmosphere (which can be deposited into downwind 

ecosystems during rainfall). Another example is combustion of fossil fuel and 

biomass burning that may result in emission of NOx (which can be deposited as 

NO3
-
 during rainfall).  

1.2.2 Production of N compounds and processes involved in their production 

Soil microbes release N contained in dead organic matter by as complex 

organic N, e.g., proteins, nucleotides, or chitin. This thesis focuses on 

proteinaceous N compounds because they are the dominant N compounds in 

soils (Schulten and Schnitzer, 1998). Complex proteinaceous N compounds 

can be broken down into monomeric dissolved organic N (DON; e.g. amino 

acids) by exoenzymes through a depolymerization process. Depolymerization 

of complex organic N into monomeric DON is considered the rate-limiting step 

in the soil N cycle (Schimel and Bennett, 2004).  

 

Soil microbes require external carbon sources for their growth. Whenever 

microbes are carbon-limited, they utilize carbon from DON and in the process 

release NH4
+
 into soils. The process involved in the production of NH4

+
 from 

DON is known as ammonification. Ammonium can be oxidized by nitrifying 

bacteria to NO2
-
 and subsequently into NO3

-
 during the process of nitrification. 

In the boreal forest ecosystem, mineralization of DON to NH4
+
 and finally to 

NO3
-
 are considered slow processes (Vitousek and Howarth, 1991). 
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1.2.3 Fates of N compounds in soil 

The organic N, NH4
+
, and NO3

-
 produced during the above processes can be 

taken up and assimilated by plants (Näsholm et al. 1998; Lipson and Monson, 

1998; Kielland, 1994; Kronzucker et al. 1997; Kamminga-van Wijk and Prins, 

1993). Soil microbes can also absorb these N compounds and use them as N 

sources. Monomeric N compounds can also exchange with other ions on anion 

and cation exchange sites of soil particles. Nitrate and NH4
+
 can be exchanged 

at the anion and cation exchange sites of soil particles respectively, while 

amino acids can be exchanged at both exchange sites depending on pH of the 

soil solution. Exchange of N compounds to the charged surfaces of soil 

particles could reduce the concentration of available N compounds in soil 

solution.  

1.2.4 Loss of N compounds from ecosystems  

Dissolved organic N, NH4
+
, and NO3

- 
can be leached into groundwater and 

stream water. Leaching of N compounds could result in reduction in the 

concentration of available N compounds in the soil solution and available for 

plant uptake leading to soil acidification and eutrophication of water bodies 

(Tilman et al. 2002). Another major loss pathway is the release of gaseous N 

compounds (e.g. NH3, N2, N2O and NO) into atmosphere. Production of these 

gaseous N compounds occurs during volatilization of NH3, nitrification, and 

denitrification processes. Denitrification is the chemical or biological reduction 

of NO3
-
 to N2 and NOX by the denitrifying bacteria.  
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Figure 1. A simplified soil N cycle showing N inputs to soil; transformation of one N compound 

to another; fates of N compounds; and loss of N compounds from the ecosystem.  Rectangular 

boxes show various N compounds; the oval box represents microbes; solid lines depict the 

transformation processes; and broken lines represent N inputs and N losses from the soil.  

1.3 How plant roots encounter soil nitrogen  

Plant roots encounter soil nutrients through the contact between the root 

surfaces and the nutrients. The contact can occur by the movement of the 

nutrients from the bulk soil to the root surfaces through diffusion and mass 

flow; and by the root growth into the nutrients location in the rhizosphere 

through root interception (Nye, 1967; Lambers et al. 2008; Tinker and Nye, 

2000; Comerford, 2005; Marschner, 1995; Nye and Marriott, 1969; Chapin, 

1980; Jungk and Claassen, 1997). Diffusion and mass flow are considered the 

two main processes involved in the movement of nutrients e.g. N compounds 

from the bulk soil to the root surfaces (Nye and Tinker, 1977; Nye and Marriot, 

1969; Nye, 1979; Chapin, 1980; Tinker and Nye, 2000; Cramer et al. 2008, 

2009) (Figure 2). Soil nutrients captured through root interception have been 

considered negligible and is usually ignored in the calculation of total nutrient 

uptake (Jungk and Claassen, 1997; Chapin et al. 2011; Lambers et al. 2008). 
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Figure 2. Diffusion is the main process involved in net transport of nutrients from bulk soil to 

root surfaces for a tree that is not transpiring. For a transpiring tree, both diffusion and mass flow 

transport nutrients from bulk soil to root surfaces. Furthermore, these two processes interact so that 

diffusion may be stimulated by mass flow.  

 

 

Diffusion occurs as a consequence of concentration gradients arising from the 

active uptake of N (and other mineral nutrients) at the root surface. According 

to Fick’s law, diffusion of nutrients is a function of the concentration gradients 

and the diffusion coefficient (cf. Tinker and Nye, 2000; equation 1).  

 

FD = -D * (∂C / ∂χ)      (1) 

 

where FD is diffusion, D is the diffusion coefficient (cm
2
 s

-1
), C is the 

concentration of nutrient per volume of soil (g cm
-3

 of soil), χ is distance from 

the root (cm), and ∂C/∂χ thus describes the concentration gradient from the 

root surface into the surrounding soil. The minus sign indicates that movement 

of nutrients proceeds down the concentration gradient.  

  

The diffusion coefficient is an important determinant of soil N movement. It 

can be calculated from FD and ∂C/∂χ, which can be measured experimentally 

in the soil. The diffusion coefficient determines the concentration gradient 

caused by diffusion. The smaller the value of D the steeper the concentration 

gradient (Jungk and Claassen, 1997). According to Tinker and Nye (2000) and 
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Comerford (2005) D of soil N includes factors that affect N diffusibility in the 

bulk soil to the root surfaces (2). 

 

D = DL * θ * ƒ * (1 / b)      (2) 

 

DL is diffusion coefficient in water (cm
-2

 s
-1

), θ is the volumetric water content 

(cm
3
 water cm

-3
 of soil), ƒ is the impedance factor of the soil (defined below) 

and b is the soil buffer power (defined below).  

 

The volumetric water content is an important determinant in the soil nutrient 

movement to the plant roots. It regulates diffusion by determining the cross-

sectional area available for diffusion; determining the path length of diffusion 

by controlling f and contributing to the soil b (Comerford, 2005).  

 

The impedance factor is defined as the ratio of the length of the straight-line 

path of movement of mineral nutrients to the actual path (Comerford, 2005; 

Tinker and Nye, 2000). It includes all processes that decrease the mobility of 

the adsorbed solute from the mobility it would have in free solution (Tinker 

and Nye, 2000). A decrease in f reduces the diffusive flux by increasing the 

actual path of the nutrient, and also by decreasing the concentration gradient in 

the water-filled soil pores (Jungk and Claassen, 1997).  

 

Soil buffer power is the capacity of soil exchangeable pools to replenish the 

soil solution as nutrients are absorbed (Chapin, 1980). It is generally expressed 

as (3): 

 

b = (ΔC /ΔCL)       (3) 

 

C is concentration of the ions participating in diffusion (i.e. ions in solutions 

plus those bound to the solid phase that can be released into the ambient 

solution) (g cm
-3 

of solution), and CL is concentration of the ions in soil solution 

(g cm
-3 

of soil).  

 

Diffusion of N from the bulk soil to plant root surfaces is also affected by the 

soil temperature (Inselsbacher and Näsholm, 2012b). According to Einstein-

Stokes equation, diffusion is directly proportional to temperature (4). 

 

FD = (kB T) / (6πη r)      (4) 
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kB is the Boltzmann’s constant, T is the absolute temperature (K), η is the 

viscosity and r is the radius of the molecule (cm). 

 

Mass flow is mass transport of water and dissolved nutrients from the bulk soil 

to the root surfaces, driven by plant transpiration. It has been calculated as the 

product of the measured whole-plant transpiration and the soil N 

concentrations (5).  

 

F = w * c       (5) 

 

F is mass flow, w is transpiration rate (cm s
-1

) and c is concentration of the 

nutrients in the bulk soil solution (g cm
-3

 of soil).   

 

The relative importance of diffusion and mass flow processes to plant N 

nutrition depends on plant species characteristics, plant-soil interactions (Jungk 

and Claassen, 1997), and soil conditions (Barber, 1995; Comerford, 2005).  

1.4 Importance of diffusion and mass flow to plant N nutrition 

Diffusion is believed to be the main driver for N fluxes to the roots in nutrient-

poor soils, while mass flow is believed to dominate in nutrient-rich soils 

(Barber, 1995; Comerford, 2005; Smethurst, 2000), but the roles these two 

processes play in plant N nutrition is controversial.  For instance, some models 

that are based on theoretical assumptions (Yanai, 1994; BassiriRad et al. 2008) 

suggest that mass flow is not important in soil N fluxes to the roots, because 

the total N flux to the root would be similar either in presence or absence of 

mass flow. The models suggest that mass flow decreases diffusion of soil N to 

the root by flattening or reversing the concentration gradient between the soil 

solution and the root surfaces. In contrast, a model by Nye and Marriott (1969) 

suggests that mass flow may be important in nutrient movement to the roots, 

and that mass flow may facilitate diffusion.  Further, several experimental 

studies suggest that mass flow is an integral part of the total N fluxes to plant 

roots, and that mass flow plays a prominent role in plant N nutrition (Strebel 

and Duynisveld, 1989; Plhák, 2003; Cramer et al. 2008).  

 

Studies have also shown that soil N availability may affect water uptake by 

roots (Matimati et al. 2014; Cramer et al. 2009; Raven, 2008; Gorska et al. 

2008; Wilkinson et al. 2007; Kupper et al. 2012). This is because a change in 

NO3
-
 concentration around the root causes sudden change in the root hydraulic 

properties, resulting in increase in water uptake by the roots from the NO3
-
 rich 
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patches (Gorska et al. 2008; Gloser et al. 2007). Therefore, there is a need to 

understand the contribution of mass flow to the N flux to the roots; and also 

understand the effect(s) of mass flow on diffusion.  

 

Traditionally, the total flux of N to plant roots is measured as the sum of 

diffusion and mass flow:   

 

Nup = F + FD        (6) 

 

Nup is the total flux of N to plant roots, F is mass flow (g cm
2
 s

-1
 of soil), and 

FD is diffusion (cm
2
 s

-1
). 

 

The contribution of mass flow to total N flux is traditionally calculated as 

stated earlier (Equation 5). Therefore, diffusion is calculated as the difference 

between total N flux to the roots (over some period of time) and mass flow 

(Jungk and Claassen, 1997; Lambers et al. 2008): 

 

FD = Nup - F.        (7) 

 

 

This assessment of the relative contributions of diffusion and mass flow to 

plant N nutrition using the total N uptake measurement is indirect, and it is also 

difficult to separate diffusion from mass flow. Further, the total N uptake 

measurement approach fails to explain the possible interaction(s) between mass 

flow and diffusion (Nye and Marriott, 1969), and it does not account for the 

uncertainties in the assessment of transpiration and concentration of N in soil 

solution. In addition, diffusion of N to the roots could be estimated 

theoretically from the measurements of soil characteristics such as diffusion 

coefficient, volumetric water content, impedance factor and soil buffer power, 

as stated in equations 1 - 4. However, it is difficult to measure these soil 

characteristics, thereby complicating the calculation of soil N diffusion from 

soil characteristics. Hence, there is need for a technique that is relatively direct 

and more robust for the estimation of the contributions of the two processes to 

plant N nutrition. 

1.5 Assessing soil nitrogen availability  

Assessments of soil N availability have been based mostly on soil N 

concentrations and N turnover rates (Marschner, 1995; Leadley et al. 1997). 

However, soil N concentrations may not give a true reflection of N that is 
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available for plant uptake. This is because only a few of the N compounds in 

the bulk soil are available for plant use, while most of them are not accessible 

or available for plant nutrition e.g. high molecular-weight N compounds. 

Therefore, a plant growing in soil with high N concentration may suffer 

starvation; while another plant that is growing in soil with low N concentration 

may grow well (Schachtman et al. 1998; Öhlund, 2004). Soil N availability 

should take into account N concentration in bulk soil; release of N from solid 

phase (i.e. in the soil) to solution phase (through desorption); movement of soil 

N to roots and mycorrhizal hyphae; and N uptake by plant roots (Comerford, 

2005).  

   

Nitrogen compounds can exist in solid forms, and as solutes in the soil 

solution. In this thesis, the focus is on amino acids, NH4
+
 and NO3

-
. Amino 

acids that are present in the soil can exist in three pools: (a) free amino acid 

(FAA): dissolved in the soil solution where they are readily available for 

uptake by the plant; (b) exchangeable amino acids: bound to the charged 

surfaces of organic matter or clay particles; or (c) chemically bound as peptide- 

and protein-bound amino acid (BAA). FAA might account for a small fraction 

of the total amino acid pool, while a large fraction of amino acid might be 

present as BAA (Andersson and Berggren, 2005; Yu et al. 2002; Schulten and 

Schnitzer, 1998; Senwo and Tabatabai, 1998; Jämtgård et al. 2010; Farrell et 

al. 2011). Unlike FAA, BAA may either be accessible and used as a N source 

by plants (Paungfoo-Lonhienne et al. 2008, 2012) or it may not be easily 

accessible and available for plant uptake. Hence, BAA might serve as the 

largest reservoir and a possible replenishment source for FAA (Jämtgård et al. 

2010). 

1.6 Nitrogen uptake by plant roots 

Several studies have demonstrated that plants possess the capability to take up 

and use a wide variety of organic and inorganic N compounds (Näsholm et al. 

1998, 2000; Warren, 2013; Paungfoo-Lonhienne et al 2008, 2012; Farrell et al. 

2013; Harrison et al. 2007; Jones and Darrah, 1993; Kielland, 1994; Stoelken 

et al. 2010; Weigelt et al. 2005; Kronzucker et al. 1997; Kamminga-van Wijk 

and Prins, 1993; Streeter et al. 2000). Nitrogen uptake in plants is mediated by 

high-affinity transport systems (HATS) and low-affinity transport systems 

(LATS) (Näsholm et al. 2009; Nacry et al. 2013). High-affinity transport 

systems mediate N uptake at low soil N concentration, and LATS at high soil 

N concentration. Transporters present in the epidermal and cortex cells of 

roots, and mycorrhizal hyphae mediate the uptake of NH4
+
, NO3

- 
and amino 
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acids (Lehmann et al. 2011; Lee et al. 2007; Hirner et al. 2006; Svennerstam et 

al. 2007, 2008; Näsholm et al. 2009; Nacry et al. 2013).  

 

Plant species have different uptake capacities for organic and inorganic N 

compounds (Metcalfe et al. 2011; Pfautsch et al. 2009; Sauheitl et al. 2009; 

Thornton and Robinson, 2005; Öhlund and Näsholm, 2004; Jones and Darrah, 

1993; Gruffman et al. 2014). For instance in some conifer species, uptake of 

NH4
+
 was shown to be higher than uptake of NO3

-
 (Stoelken et al. 2010; 

Kronzucker et al. 1997; Kamminga-van Wijk and Prins, 1993), while the 

uptake of amino acids was found to be similar to NH4
+
 uptake (Gruffman et al. 

2014; Persson et al. 2006). These uptake capacities for different N compounds 

may be affected by the internal N status of the plant, for instance N uptake will 

be down-regulated at a high internal N status (Persson and Näsholm, 2002; 

Öhlund and Näsholm, 2004; Gruffman et al. 2014). Plant uptake capacities for 

N compounds may also be affected by the external soil N concentrations 

(Stoelken et al. 2010) and the presence of different N compounds. For 

example, NH4
+
 inhibits the uptake of NO3

-
 in some conifers (Kamminga-van 

Wijk and Prins, 1993).  

 

Despite the overwhelming evidence supporting the movement of soil N to the 

roots and the roots’ uptake capacities for these N compounds, our knowledge 

about the amount of soil N supplied to the roots in relation to the amount the 

roots actually take up is limited. Hence, a combination of both root uptake 

capacities measurements with soil N diffusive fluxes measurements will enable 

us to identify the limiting process for plant N acquisition in the boreal forest 

ecosystem.  
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2 Objectives  

This thesis is aimed at increasing our knowledge of plant N nutrition in the N-

limited boreal forest ecosystem. The studies presented in this thesis focus on 

soil N availability; fluxes of N from the bulk soil to plant roots; and N uptake 

by the roots.  

 

Recently, a novel technique has been used for in-situ monitoring of soil N 

fluxes (microdialysis; Inselsbacher et al. 2011). Paper I was aimed at using the 

microdialysis technique to monitor N fluxes in a fertilized and a non-fertilized 

boreal forest soil at the onset of the growing season. 

 

Previous studies have demonstrated that plant species have different uptake 

capacities for organic and inorganic N compounds, but there is a knowledge 

gap between N fluxes from the bulk soil to the roots and the root uptake 

capacities for these N compounds. In paper II, the aim was to compare the 

diffusive fluxes of soil N compounds in boreal forest soils with the root uptake 

capacities for these N compounds.  

 

The traditional approach for the estimation of diffusion and mass flow of N 

compounds is indirect and associated with some challenges. We speculated that 

the microdialysis technique may be further developed to include direct 

estimation of mass flow, and that the contributions of mass flow and diffusion 

to plant nutrition could be estimated simultaneously. Hence, paper III was 

aimed at using the microdialysis technique to estimate the contributions of 

diffusion and mass flow in the laboratory.  

 

Paper IV was aimed at using a modified microdialysis technique to estimate 

diffusion and mass flow of N, and also to give insights into the role of each 

process for plant N nutrition in two boreal forest soils with contrasting fertility. 
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3 Methodological considerations 

3.1 Choice of soil sampling technique  

Determination of N availability for plant acquisition involves the estimation of 

N concentration and chemical composition in soil. Traditionally, soil N 

concentration and chemical composition have been estimated using: soil 

extraction (Jones and Willett, 2006; Rousk and Jones, 2010; Chen et al. 2005); 

centrifugation (Yu et al. 2002; Chen and Xu, 2008; Giesler et al. 1996); and 

tension lysimeters (Andersson, 2003; Andersson and Berggren, 2005; Jämtgård 

et al. 2010). Soil extraction and centrifugation techniques cause disturbance to 

the in-situ soil structure. There could also be under- or over-estimation of soil 

N concentration and chemical composition when soil extraction or 

centrifugation techniques are employed. These arise from production or 

decomposition of N compounds in the samples prior to chemical analyses. 

Production or decomposition of N compounds in the samples can occur during 

sample preparation (e.g. soil sieving, soil homogenization and filtration); 

sample handling; temperature; and the time lags between soil sampling and 

chemical analyses (Jones et al. 2005; Chen and Xu, 2008; Rousk and Jones, 

2010; Inselsbacher, 2014; Lipson et al. 2001). 

  

Various types of lysimeters are available for soil sampling. A rhizon lysimeter 

with pore size of 0.1 µm diameter (Andersson, 2003; Andersson and Berggren, 

2005; Jämtgård et al. 2010) causes smaller disturbance to the in-situ soil 

structure when compared with soil extraction and centrifugation techniques. 

The small pore size of this lysimeter prevents microbial degradation of N 

compounds, in the process reducing possible production or decomposition of N 

compounds in the samples prior to chemical analyses (Andersson, 2003; 

Andersson and Berggren, 2005; Jämtgård et al. 2010). The major limitation to 

the lysimeter technique is the reliance on high soil moisture content. Further, 
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the results from this technique mainly represent N concentration from the 

largest water filled soil pores; and therefore it may not give a true reflection of 

N concentration in the bulk soil.  

 

In earlier studies (Jämtgård et al. 2010; Inselsbacher et al. 2011; Inselsbacher 

and Näsholm, 2012a), differences in the soil N pool composition were 

observed when soil extraction and lysimeter techniques were compared. For 

instance, NO3
-
 dominated the soil N pool when lysimeters were used (Jämtgård 

et al. 2010), while NH4
+
 was dominant when soil extraction was used 

(Inselsbacher et al. 2011; Inselsbacher and Näsholm, 2012a). Another major 

challenge is the inability to understand whether both free and exchangeable N 

compounds (from the water and salt extraction samples respectively) are 

available for plant N nutrition. Further, estimation of N flux rates in the soil to 

plant roots using the traditional approach could result in under- or over-

estimation of N availability for plant uptake. Hence, the need exists for a 

technique that causes minimal disturbance to soil structure; and limits over- 

and under-estimation of soil N concentration. Microdialysis (Figure 3), a 

technique originally developed in neuroscience, was recently introduced as a 

tool for monitoring soil N compounds (Inselsbacher et al. 2011, Inselsbacher 

and Näsholm, 2012a & b; Paper I). This technique allows for continuous 

sampling of soil N and it can also detect small changes in diffusion of soil N 

(Inselsbacher et al. 2011, Inselsbacher and Näsholm, 2012a & b). 

Microdialysis has the potential to give a better reflection of N flux rates in soils 

than soil N concentrations, because of the small size of the dialysis probe 

membrane (which causes minimal disturbance to the in-situ soil structure). 

This technique also minimizes the risk of decomposition and production of soil 

N compounds as an effect of sampling. This is because unlike the soil 

extraction technique, there is no sample preparation processes, such as soil 

sieving, soil homogenization and soil filtration. Therefore, microdialysis was 

adopted for monitoring soil N fluxes; and for direct estimation of induced 

diffusive and mass flow fluxes of soil N in the studies presented in this thesis.  
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Figure 3. A typical microdialysis setup consisting of (a) a syringe infusion pump (CMA 400) 

equipped with four syringes, (b) a fraction collector (CMA 470) and (c) microdialysis probes 

(CMA 20) with a 10 mm long polyarylethersulphone membrane (molecular cutoff, 20 kDa; 400 

µm inner and 500 µm outer diameters). 

 

In the studies presented in this thesis, microdialysis probes with a 10 mm long 

polyarylethersulphone membrane (molecular cutoff, 20 kDa; 400 µm inner and 

500 µm outer diameters) were used. The small size of this membrane would 

not result in large-scale disturbance to in-situ soil structure when inserted in 

soils. A larger probe would give higher recovery, which simplifies chemical 

analysis of N compounds, but I wished to minimize disturbance to soil 

structure, hence the use of this small probe. Further, the low molecular weight 

cut-off of the membrane prevents leakage of perfusate with higher molecular 

weight into soils. For instance, a perfusate containing solution of Dextran 40 

(molecular weight of 40 kDa) was kept inside the dialysis probes because it has 

bigger size than the molecular weight cut-off of the probe membranes (Paper 

III and IV). The molecular weight cut-off of the dialysis probe also allows N 

compounds with lower molecular weight (<20 kDa) and prevents those with 

higher molecular weight (>20 kDa) to pass across the membranes into the 

dialysates. Low microdialysis pump flow rates were used in this thesis in order 

to achieve higher relative recoveries (but also resulting in lower absolute 

recoveries: measured in nmol N cm
-2

 h
-1

) of N compounds in the dialysate 

(Figure 4; Inselsbacher et al. 2011).  In Papers I and II, a pump flow rate of 5 

µl min
-1

 was used, but in Papers III and IV a flow rate of 1 µl min
-1

 was used. 

This switch in the pump flow from 5 µl min
-1

 to 1 µl min
-1

 allows for 

measurable increase in dialysate volume due to mass flow. 
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Figure 4. The relationship between the pump flow rates and (A) the relative recoveries of NH4
+
, 

NO3
-
, arg and asp (mean of 7 concentrations (0.05 – 4 mmol N l

-1
) and n = 7 at each 

concentration) from standard solutions and (B) the absolute recoveries of NH4
+
, NO3

-
, arg and asp 

(each 100 µmol N l
-1

 n = 7) from standard solutions.  

 

Like other soil sampling techniques, microdialysis has limitations. For 

instance, roots can regulate water and nutrient uptake, but the dialysis probe 

membranes lack capacity to do this. Plant roots can grow through soil and 

encounter soil nutrients in the process, while dialysis probes are stationary in 

soil and are prone to the formation of depletion zones for soil N compounds 

around them. Unlike plant roots, microdialysis probes lack the capacity to 

exude nutrients; and also have no capacity for active uptake of soil nutrients. 

Mycorrhizal and non-mycorrhizal roots exude exoenzymes that affect the 

supply rate of N compounds in the soil (Hartmann et al. 2009). However, 

microdialysis probe membranes lack the capacity to mimic this function of the 

roots. Some studies (Inselsbacher et al. 2011; Inselsbacher and Näsholm, 

2012a; Papers I - III) have suggested that the microdialysis technique 

underestimates the availability of some amino acids (e.g. arginine and lysine) 

despite their availability in the boreal forest soil (Nordin et al. 2001). Further, a 

microdialysis set-up is costly; hence its use may be limited in large scale soil 

studies. The microdialysis technique is also less suitable for determining soil N 

concentrations. This is because it measures N flux rates in soils rather than 

concentrations. The concentrations of individual N compounds in soils could 

be calculated theoretically from their respective flux rates and their relative 

recovery rates in standard solutions. However, the estimated recovery rates in 

soil may be different from those established for solutions.  
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3.2 Measurements of nitrogen uptake by roots   

This thesis also aimed at understanding plant uptake capacities for different N 

compounds, in relation to soil N fluxes to the roots. We now know a lot about 

plant uptake of NH4
+
 and NO3

-
 but little is known about amino acids. In Paper 

II, NO3
-
, NH4

+
, gly and arg were chosen because their respective uptake has 

been found to be mediated by different N transporters (Hirner et al. 2006; 

Svennerstam et al. 2007, 2008; Lee et al. 2007; Frommer et al. 1993). In 

addition, gly and arg were used in previous studies (Gruffman et al. 2014; 

Öhlund and Näsholm, 2001, 2004; Persson et al. 2003), and arg is a prominent 

amino acid in boreal forest soil (Nordin et al. 2001).  

 

In the study present in this thesis, isotopic labeling was used to estimate root 

uptake of N compounds (Figure 5). Incubation solutions were prepared at low 

and high concentrations, in order to assess the activity of high-affinity and low-

affinity root transport systems respectively. The incubation solutions contained 

four combinations of one labelled and three unlabeled N compounds. This 

enabled studies of root uptake from complex mixtures of N sources, a situation 

that is relevant for roots growing in soil. The uptake of intact arg molecules by 

roots in incubation solution was determined by comparing the relationship 

between excess 
13

C and excess 
15

N in the root samples to that of dual labeled 

arg (1.5).  

 

 

Figure 5. Measurement of roots’ uptake capacities for dual labeled N compounds from 

incubation solution. 
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3.3 Choice of perfusate for inducing mass flow 

Based on an earlier study (Rosdahl et al. 2000), Dextran (a polysaccharide) 

was chosen for lowering the osmotic potential of the perfusate and thus  

inducing mass flow of water and solutes across the dialysis probe membranes 

(Papers III and IV). Following a series of experiments testing the suitability of 

Dextran 20, Dextran 40 and Dextran 70 (with molecular weight of 20 kDa, 40 

kDa and 70 kDa respectively); a solution containing Dextran 40 was chosen 

because it formed a clear solution when dissolved in MilliQ water, and was 

most effective in inducing mass flow without leaking into soil or standard 

solution.  

 

Dextran in the dialysates obtained from the mass flow experiments were found 

to interfere with the derivatisation of amino acids prior to analysis of these 

compounds. Hence, Dextran was precipitated with ethanol by adding 100 µl of 

98 % ethanol to 100 µl of the sample (cf. Behravan et al. 2003). The mixture 

was spun down with a centrifuge, and the supernatant was collected and 

processed for chemical analysis for NH4
+
, NO3

-
 and amino acids. In addition, 

tests were performed to determine the potential effects of dextran precipitation 

with ethanol on the relative recoveries of NH4
+
, NO3

-
 and amino acids. This 

was done by comparing concentrations of these compounds in standard 

solutions mixed with Dextran 40 and treated with ethanol to the original 

standard solutions. 
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4 Results and Discussion 

In recent studies (Inselsbacher et al. 2011; Inselsbacher and Näsholm, 2012a 

and b), a novel microdialysis technique was used to estimate induced diffusive 

fluxes of N compounds. In this thesis, this microdialysis technique was used to 

estimate induced diffusive fluxes of soil N compounds (Paper I and II). The 

technique was then further developed to include estimation of mass flow of soil 

N (Paper III) and this method was applied in a field study, comparing two 

forests of contrasting fertilities (Paper IV). Induced diffusive fluxes of soil N 

were also compared with root´s uptake capacities for soil N, in order to 

determine the limiting factor for plant N acquisition (Paper II). The main 

results from these studies are presented below. 

4.1 Paper I 

The aim of the study in Paper I was to monitor induced diffusive fluxes of N in 

a fertilized and a non-fertilized boreal forest soil at the onset of the growing 

season. Microdialysis probes were inserted into the organic soil layer of control 

and fertilized sites and the induced diffusive fluxes of N across probe 

membranes were estimated. Similar to Inselsbacher et al. (2011) and 

Inselsbacher and Näsholm (2012a), induced diffusive fluxes of N were 

dominated by amino acids, which represented 82 % and 67 % of total N flux in 

control and fertilized soils respectively. The remainder of the flux was almost 

entirely NH4
+
; fertilization increased the proportional NH4

+
 fluxes to 32 % 

from 17 % of total N. The induced diffusive flux of NO3
-
 was very low in both 

control and fertilized soils (1.3 % of total N fluxes in both soils). Higher fluxes 

of NH4
+
 in fertilized soil might have resulted from longer retention of NH4

+
 in 

the soil (due to its higher capacity to bind to soil particles), while low fluxes of 

NO3
-
 in the fertilized soil could have resulted from high mobility of NO3

-
 

(Chapin et al. 2011), or higher plant or microbial uptake. The contribution of 
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amino acids to plant N nutrition appeared to be especially high at the onset of 

growing season. 

 

Free and exchangeable N in both control and fertilized soils were also 

determined using water and KCl extraction techniques. In both extracts and 

both soils, NH4
+
 was the dominant N compound (94 % of total N pool), while 

NO3
-
 and amino acids were very low. The total N pool was higher in KCl 

extracts than in water extracts. Six amino acids were detected in the water 

extracts and all but three amino acids were detected in KCl extracts. The 

observed differences in soil N concentrations between microdialysis and soil 

extraction techniques might have resulted from disturbance of the soil structure 

and soil sample handling during soil extraction. Therefore, soil extraction 

techniques may not reflect N concentration in undisturbed soils (Thomsen and 

Schjonning, 2003; Johnson et al. 2005). 

 

Temporal shifts in soil N fluxes were studied over a short time-scale (100 

minutes). There were no temporal shifts in fluxes of NH4
+ 

and NO3
-
 and most 

amino acids in the soil of the control site during the short time study. In 

contrast, time-dependent temporal shifts in fluxes of NH4
+
 were detected in soil 

from the fertilized site. Since there was no increase in fluxes of NO3
-
, 

nitrification should not have been responsible for decline in NH4
+ 

fluxes. 

Microbial immobilization and root uptake were not responsible for decline in 

fluxes of NH4
+
, because these processes would have accounted for lower fluxes 

of NH4
+
 at the start of sampling. However, rapid decline in fluxes of NH4

+
 

could have resulted from the formation of a diffusion shell (i.e. insufficient 

replenishment of NH4
+
 after diffusion) in the soil surrounding the membrane 

surfaces (Tinker and Nye, 2000; Leitner et al. 2010; Inselsbacher et al. 2011). 

This result suggests that mineralization of amino acids to NH4
+
 could not 

replenish the pool of NH4
+
 in the fertilized soils. 

 

Temporal shift in NO3
-
 flux was also studied over a long time-scale (25 days) 

after pulse-addition of either water (10 l m
-2

) or NO3
-
 (10 l m

-2 
with a 

concentration of 1 g N l
-1

) to both soils. The addition of water had no effect on 

fluxes of NO3
-
 in either soil. In contrast, NO3

-
 addition resulted in a strong 

increase in NO3
-
 fluxes, but the effect was much stronger in the fertilized soil. 

The duration of the NO3
-
 pulse was also much longer in the soil of the fertilized 

plot. This could have resulted from lower immobilization rates of NO3
-
 in 

fertilized soil than control soil (Högberg et al. 2011). This result implies that 

NO3
-
 was available in the soil organic layer for plant uptake for less than three 

weeks after fertilizer application. 
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4.2 Paper II 

Plant roots have different uptake capacities for organic and inorganic N 

compounds (Öhlund and Näsholm, 2004; Metcalfe et al. 2011; Jones and 

Darrah, 1993; Kielland, 1994; Streeter et al. 2000; Pfautsch et al. 2009; 

Weigelt et al. 2005; Thornton and Robinson, 2005; Harrison et al. 2007; 

Gruffman et al. 2014; Sauheitl et al. 2009). With the traditional techniques it is 

difficult to compare instantaneous N fluxes to the roots with root uptake 

capacities. This is because the traditional techniques give estimates of soil N 

concentrations and not N fluxes to the roots. Microdialysis offers the 

possibility of comparing fluxes of N compounds to the roots with root uptake 

capacities for N compounds. Hence, Paper II was aimed at understanding the 

relationship between N fluxes to the roots and root uptake capacities for 

organic and inorganic N compounds in order to identify the limits for tree N 

acquisition. This study combined measurements of induced diffusive fluxes of 

N in control and fertilized boreal forest soils with the laboratory measurements 

of the detached root uptake capacities for N from 50 and 500 µM incubation 

solutions at the onset and end of a growing season. The solution concentrations 

were chosen in order to measure maximum root uptake rates, more particularly, 

to target high-affinity transport systems (HATS) and low-affinity transport 

systems (LATS) respectively.  

 

Amino acids dominated induced N fluxes in both control and fertilized soils at 

both the onset and the end of a growing season (47 – 80 % of total N flux). The 

contributions of gly, NH4
+
 and NO3

-
 to total N in both soils and seasons were 

similar. In detail, NH4
+
 had the largest contribution (15 - 41 %), followed by 

gly (5 - 12 %), NO3
-
 (1.5 - 6 %; except in fertilized soil at the end of growing 

season where NO3
-
 contributed 27 %), and arg was below detection limit at 

both soils and in both seasons. These results suggest that organic and inorganic 

N are available for plant uptake, but the shares of amino acids to plant N 

nutrition are higher at the onset of growing season than at the end of the 

growing season. Diffusive fluxes of soil N were higher at the onset than at the 

end of the growing season. This could have resulted from the predominant 

freeze-thaw cycle at the onset of the growing season, which affects turnover of 

soil N (Ivarson and Sowden, 1966; Lipson and Monson, 1998). However, 

fertilizer was applied only two weeks before the early-season sampling, which 

almost certainly modified the fluxes.  

 

Roots displayed highest uptake rates for arg followed by NH4
+
 and gly, while 

NO3
-
 uptake was very low from both 50 and 500 µM incubation solutions at 

both the onset and the end of the growing season. Roots from the fertilized plot 
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showed lower uptake of gly and NH4
+
 from both incubation solutions and 

lower uptake of NO3
-
 from the 50 µM incubation solution. High internal N 

status of roots from the fertilized soil might be responsible for this, resulting in 

down-regulation of high-affinity NH4
+
 and NO3

-
 transporters (Rawat et al. 

1999; Vidmar et al. 2000; Nazoa et al. 2003) and neutral/acidic amino acids 

transporters.  

 

The induced soil N fluxes were compared with measured root uptake capacities 

from 50 µM incubation solution. Although the concentration of 50 µM is most 

likely high compared to the concentrations of N compounds in the boreal forest 

soils, this concentration is still relevant for determining the root’s maximum 

uptake capacities for organic and inorganic N compounds. Root uptake rates of 

N compounds were higher (6 – 290 times) than diffusive fluxes at both seasons 

(except for NO3
-
 at the end of the growing season when its fluxes was higher 

than root uptake in fertilized soil). This implies that roots have excess capacity 

to acquire N compounds that arrive at their surfaces, and that diffusive flux of 

soil N probably is the limiting step to tree N acquisition.  This corroborates 

earlier studies that used indirect traditional techniques in nutrient poor 

ecosystems (Chapin, 1980); and results from a model study on plant nutrient 

uptake (Raynaud and Leadley, 2004). The results from the current study shows 

that in addition to depolymerisation of high molecular weight organic N 

(Schimel and Bennett, 2004), induced diffusive flux of soil N to plant roots 

could be the rate-limiting step. 

4.3 Paper III 

In Paper III, a method was developed for simultaneous estimation of diffusion 

and mass flow of N compounds in standard solution and soil solution. This was 

aimed at determining the contributions of diffusion and mass flow to plant N 

nutrition and possible interactions between the two processes. In the first 

experiment, various perfusates with different osmotic potentials and different 

pump rates were tested in order to determine their capabilities to induce mass 

flow of water across the dialysis probes from standard solution and soil 

solution. A perfusate of 20% (w/v) Dextran 40 with osmotic potential of -0.1 

MPa at the room temperature, and a pump flow rate of 1 µl min
-1

 induced a 

measureable mass flow of water from both standard solution and soil. 

Estimated rates of water flux towards roots have fallen between 0 – 10
-7

 m s
-1

 

(Tinker and Nye, 2000; BassiriRad et al. 2008). However, my results show that 

the velocity of radial flux of water across dialysis probe membrane was 3.0 x 
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10
-7

 m s
-1

 in standard solution and 1.8 x 10
-7

 m s
-1

 in soil. These values 

correspond to water velocities at high transpiration rates. 

 

Estimation of diffusive flux of N from standard solution and soil was thus 

achieved by using water as perfusate (Inselsbacher et al. 2011; Inselsbacher 

and Näsholm, 2012a, b; Paper II), while simultaneous estimation of mass flow 

and diffusive fluxes of N from both standard solution and soil was achieved 

using 20% Dextran 40 as perfusate. In standard solution, total fluxes of NH4
+
, 

NO3
-
 and total amino acids across probe membranes were respectively, 58 %, 

63 % and 34 % higher when Dextran 40 was used as perfusate than when water 

was used. In soil, total fluxes of NH4
+
 and total amino acids across probe 

membranes were 30 % and 72 % higher respectively, when Dextran 40 was the 

perfusate than when water was used. The flux rate of NO3
-
 was below the 

detection limit when water was the perfusate, while the flux rate of NO3
-
 was c. 

3.9 nmol m
-2

 s
-1

 when Dextran 40 was used as perfusate.  

 

Separating total fluxes of N into diffusive and mass flow flux, the contributions 

of mass flow to total fluxes of N were 19 % and 20 % for NH4
+
 and NO3

-
, 

respectively; and 25 % and 24 % for total amino acids and total N respectively 

in standard solution. In the soil, the contributions of mass flow to total fluxes 

of N were 6 %, 12 % and 14 % for NH4
+
, total amino acids and total N 

respectively. Mass movement of water (containing dissolved N compounds) 

across the dialysis membrane could be responsible for these results (i.e. direct 

effect of mass flow fluxes). The contributions of diffusive flux to total fluxes 

of N were significantly lower in soil than in standard solution. This might be 

due to chemical interactions between N compounds in soil solution and the 

solid phase of soils, biological interactions along the uptake path, or the 

tortuosity of soils. However, there was strong effect of mass flow on diffusive 

flux of N compounds in soil, but not in solution. I speculate that the indirect 

effect of mass flow on diffusion might be responsible for the observed increase 

in N diffusive fluxes in soil. This effect might have resulted in the formation of 

steeper concentration gradients between membrane surfaces and the soil, and in 

the process increased diffusive flux of N.  

4.4 Paper IV 

In Paper IV the method developed in paper III was used to estimate diffusion 

and mass flow of N and also to give insights into the role of each process for 

plant N nutrition in a nutrient-poor Scots pine and a nutrient-rich Spruce forest 

site. At the nutrient poor Scots pine site, the soil organic layer is 5 - 15 cm 
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deep, pH (H2O) is 3.8 and soil moisture content was 0.9 g g
-1

 DW. In contrast, 

at the nutrient-rich spruce site, the organic layer is approximately 5 cm deep, 

pH (H2O) is 5.4 and soil moisture content was 1.2 g g
-1

 DW. MilliQ water was 

used as perfusate for estimating induced diffusive flux of N compounds 

(Inselsbacher et al. 2011; Inselsbacher and Näsholm, 2012a, b; Papers I and II). 

A perfusate of 10 % (w/v) Dextran 40 was used to induce mass flow. Both 

perfusates were pumped through the microdialysis membranes at 1 µl min
-1

. 

The Dextran solution had osmotic potential of -0.04 MPa at room temperature. 

Ten % (w/v) Dextran 40 was chosen because we aimed at lowering the velocity 

of radial flux of water across probe membranes, which were at the higher end 

of a range suggested by Tinker and Nye (2000) and BassiriRad et al. (2008) 

when 20 % (w/v) Dextran 40 was used (Paper III). However, the velocities of 

radial flux of water across probe membranes were 2.33 * 10
-7

 ms
-1

 and 2.15 * 

10
-7

 ms
-1

 at the Scots pine and Norway spruce forest sites respectively, and 

were similar to results obtained in Paper III. These values correspond to values 

for water fluxes at high transpiration rates (Tinker and Nye, 2000; BassiriRad 

et al. 2008). 

 

In spite of the many signs of contrasting soil fertility between the two sites, no 

differences in diffusive fluxes of N were observed. In contrast, mass flow 

resulted in a strong increase in induced total fluxes in both soils, but the effect 

was stronger in the nutrient rich soil. Specifically, the Dextran perfusate 

induced 53, 3 and 5 times higher total flux of NO3
-
, total amino acids, and total 

N
 
than the water perfusate

 
in the nutrient poor Scots pine soil. Similarly, the 

Dextran perfusate induced 45, 4 and 11 times higher fluxes of NO3
-
, total 

amino acids, and total N
 
than the water prefusate in the nutrient-rich Norway 

spruce soil. These differences in induced total fluxes of N when water and 

Dextran 40 were used could be explained by NO3
-
, which in relative numbers 

increased similarly at both sites, but in absolute numbers increased much more 

in the nutrient rich site. The predominant effect of mass flow on NO3
- 
could be 

associated with its high mobility. It has been suggested in earlier studies that 

mass flow is a major process for movement of NO3
-
 to plant roots (Marschner, 

1995; Lambers et al. 2008; Chapin et al. 2011). Results from Paper IV thus 

corroborate results from Paper III and I speculate that mass flow had direct and 

indirect effects on induced fluxes of N compounds.  

 

In this study, depletion of N compounds in soils surrounding probe membranes 

was not investigated. However, possible depletion of N compounds in both 

forest soils was suspected, in particular when water was used as perfusate. This 

is because the flux rate of total N at the second sampling period was lower than 
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that observed during the first sampling period in both forest soils. This might 

have resulted from lack of replenishment of N in the bulk soil and subsequent 

formation of depletion zones around the probes. However, when Dextran 40 

was used there were no changes in the total flux rate of total N at the first and 

second sampling times. I speculate that the indirect effect of mass flow on 

diffusion might have been responsible for this. This indirect effect might have 

resulted in the formation of steeper concentration gradients between membrane 

surfaces and the soil.  

 



35 

5 Conclusions and future perspectives 

The results presented in this thesis focus on the processes involved in N 

acquisition by boreal forest plants. A novel, non-invasive, microdialysis 

technique was employed to estimate fluxes of organic and inorganic N in 

boreal forest soils. The microdialysis technique was further developed from a 

method that could only estimate diffusion of N compounds to one that can now 

also be used to estimate mass flow of N in soils. Further by comparing 

microdialysis measurements directly to root uptake studies, the relative 

importance of soil fluxes and root uptake capacities as limiting processes to 

plant N nutrition in the boreal forest ecosystem can be assessed.  

 

My results suggest that the microdialysis technique gives reproducible results 

with relatively low temporal and spatial variation in induced N flux rates 

during soil sampling. The technique is, however, less suitable for determining 

soil N concentrations, because it measures induced flux rates rather than 

concentrations. Concentrations of individual N compounds could theoretically 

be extrapolated from their respective flux rates and relative recovery rates, as 

measured in standard solutions. However, the relative recovery rates of N 

compounds in soils cannot be determined and may be different from those 

established for solutions. Hence, using microdialysis to estimate soil solution 

concentrations is more problematic than using it to estimate fluxes. 

Microdialysis technique could be further developed in several areas and 

applied in other ecosystems. For instance, the knowledge gained from using the 

microdialysis technique to study N fluxes in N-limited boreal forest soil could 

also be extended to studying the fluxes of other N compounds (cf. Warren, 

2013) and other major soil nutrients e.g. study of soil P fluxes in ecosystems of 

different P availabilities (Lambers et al. 2010; Oliveira et al. 2015).  
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The studies reported in this thesis revealed that amino acids are the dominant N 

compounds among the studied N forms in the studied boreal forest soils. The 

induced diffusive fluxes of soil N are responsive to fertilization: pulse-addition 

of NO3
-
 solution strongly increased flux rates of NO3

-
 across dialysis probe 

membranes. Using a solution containing Dextran 40 as perfusate, mass flow of 

water across the dialysis probe membranes was induced. Mass flow of water 

across the probe membranes was responsive to Dextran 40 concentration and 

reproducible effects on fluxes of soil N were achieved. These results support 

the claim that microdialysis can be used to simulate some of the crucial 

processes underpinning soil N turnover and plant N acquisition. Results from 

the studies presented in this thesis also showed that the maximum root uptake 

rates of N exceed induced diffusive fluxes of N to the roots. Further, it was 

shown that mass flow substantially increases N fluxes in soils and also alters 

the chemical composition of the N fluxes to a much greater contribution of 

NO3
-
. Considering both the significant increases in N fluxes due to mass flow 

and diffusion of soil N, future studies may investigate if flux rates for some N 

compounds may exceed their maximum root uptake rates.  

 

Given that the results achieved through the microdialysis measurements are 

valid for a growing plant it follows that mass flow and hence plant 

transpiration are crucial for plant N acquisition. This result is in stark contrast 

to predictions from models investigating the importance of mass flow for plant 

N nutrition (Yanai, 1994; BassiriRad et al. 2008), but it is in line with some 

recent experimental studies (Cramer et al. 2008, Matimati et al. 2014; Gorska 

et al. 2008). The results presented in this thesis suggest that a growing plant 

may experience vastly different N availabilities depending on the rate of 

transpiration. This implies that transpiration may not only be the unfortunate 

downside of photosynthesis but that it may have an important role in plant N 

nutrition. Hence, future studies should test whether results from these 

microdialysis measurements can be validated through experiments on plants.  

 

Knowledge gained through this study could assist us to optimize N use 

efficiency and enhance forest growth through the addition of sufficient 

inorganic N fertilizer without leaching of N compounds into groundwater. The 

possibility appearing through the use of microdialysis to compare soil N flux 

rates with root uptake capacities is relevant in this context. 

 

The results presented in the thesis are also relevant for our predictions of how 

increased atmospheric CO2 concentrations and how increased temperatures and 

altered precipitation may affect plant growth. Specifically, lowered 
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transpiration resulting from elevated CO2 may have negative effects on plant N 

acquisition (McDonald et al. 2002; Conroy, 1992; Conroy and Hocking, 1993) 

and hence on plant growth. Therefore, experiments testing the importance of 

mass flow on acquisition of different N forms are warranted. 

 

 

In summary, the microdialysis technique shows great promise. It has potential 

to give insights towards understanding the intrinsic processes involved in N 

acquisition by plant roots and overall plant N nutrition. These insights will be 

especially important in the boreal forest ecosystem, but they should be much 

more general.  
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