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Unveiling the Biological Role of Serglycin Proteoglycans - 
Studies on Serglycin Knock-Out Mice 

Abstract 
Serglycin (SG) proteoglycans (PG) are predominantly located intracellularly in 
secretory vesicles of hematopoietic cells such as macrophages, cytotoxic T 
lymphocytes (CTLs), monocytes, basophils, neutrophils and mast cells (MCs). These 
PGs are characterized by their protease-resistant serine and glycine-rich core and 
also by their covalently attached negatively charged glycosaminoglycans (GAG) 
chains.  

We showed that SG PGs are the dominant PGs species in CTLs where they 
contributed to proper sub-structural organization of the secretory vesicles. 
Furthermore, different granule-specific components exhibited distinct SG PG 
dependence for storage, where granzyme B levels were shown to be highly affected, 
while granzyme A or perforin levels were not. 

MCs are important immune cells that release preformed mediators upon 
activation. We confirmed that SG PGs are the major PG species in mucosal-like 
bone marrow-derived MCs (BMMCs) and their absence leads to defects in the 
granule organization and inability to store specific granule components (mMCP-5, 
CPA). However, mMCP-1 and mMCP-7 are not dependent on SG for storage. 

SG-dependent granule compounds exert many functions in homeostasis and 
interactions between immune cells. We noted that older SG-/- animals spontaneously 
developed enlarged peripheral lymphoid organs, namely the spleen and Peyer’s 
patches. Additionally, investigations of the spleen cell population from SG-/- revealed 
an increased population of CD45RC expressing cells but a reduction in CD4 
positive cells.  

Sorting of SG PGs into secretory vesicles is a poorly understood process. We 
showed that in the presence of a reducing agent, granules in SG+/+ BMMCs show a 
striking resemblance to those found in SG-/- cells lacking a defined granular 
organization. Moreover, CPA’s storage was shown to be affected by the presence of 
the reducing agent, possibly due to its interaction with intra-granular SG PGs. 
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BMMC Bone marrow-derived mast cell 
CPA Carboxypeptidase A 
CS Chondroitin sulfate 
CD Cluster of differentiation 
CTMC Connective tissue mast cell 
CTL Cytotoxic T-cell 
DS Dermatan sulfate 
ECM Extracellular matrix 
ES Embryonic stem 
FGF 
Gal 
GlcA 
GAG 
HS 
HexA 
IdoA 
KS 
MC 
MMP 
MMC 
mMCP 
GalNAc 
GlcNAc 
NDST 
NK 
PG 
SG 

Fibroblast growth factor 
Galactosamine 
Glucoronic Acid 
Glycosaminoglycans 
Heparan sulfate 
Hexuronic Acid 
Iduronic Acid 
Keratan sulphate 
Mast cell 
Matrix metalloprotease 
Mucosal mast cell 
Mouse mast cell protease 
N-acetylgalactosamine 
N-acetylglucosamine 
N-deacetylase/N-sulfotransferase 
Natural killer 
Proteoglycan 
Serglycin 

 



 8



 9

Introduction 

Genetically modified organisms 

The discovery that molecules of foreign DNA can exchange parts of its 
sequence with chromosomal DNA of mammalian cells through a process 
called homologous recombination (Smithies et al., 1985) opened new 
“doors” in the world of science, providing a new and useful tool to 
understand many biological processes Taking advantage of this natural 
phenomenon, site-specific modifications could be introduced into the 
mouse genome and give rise to genetically modified animals (“knockout” if 
specific gene(s) are deleted; “knockin” if a gene is added). 
 Embryonic stem (ES) cells are characterized by their pluripotency which 
means that they can virtually differentiate into any kind of cell. When in 
vitro modified ES cells are placed together with a normal wild-type (WT or 
+/+) embryo, they will give rise to a “chimera”, which is an embryo 
containing both modified and normal ES cells. This embryo is then 
implanted into the uterus of a breeding female and gives rise to genetically 
modified animals that will carry the genetic modification through 
subsequent generations. 

This technique has been used to address many important questions such 
as the characterization of regulatory sequences in gene expression, to study 
the function of specific genes in vivo, to characterize functional properties of 
gene products, and ultimately to produce animal models of human diseases. 

In the studies presented in this thesis, the role and characterization of the 
serglycin (SG) protein was addressed by taking advantage of the previously 
established SG knock-out (KO or -/-) mouse strain where the SG gene had 
been deleted in all cells in the whole organism. 
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The immune system 

 
Everyday we find ourselves permanently in contact with a wide variety of 
microbes, ranging from viruses to bacteria and parasites. Our first line of 
defense comprises the skin and mucosal surfaces, which are efficient barriers 
in keeping these organisms outside the body. However, when microbes 
overcome these physical barriers, specialized cells are activated, triggering an 
immune response. 

The immune system comprises two types of components, the innate and 
the acquired/adaptive response. Innate immunity is constituted of non-
specific physical (skin, mucus) and chemical barriers (saliva, hydrochloric 
acid in the stomach), which block the passage of foreign organisms into our 
body. The adaptive immune system is specifically directed towards a 
particular pathogen and its specificity and efficiency increases upon 
recurrent exposures to the pathogen. 
 

Leukocytes (leuko – white; kytos – cell) or white blood cells are key 
effector cells involved in the immune defense of the organism. All white 
blood cells derive from pluripotent hematopoietic cells in the bone marrow, 
and two main groups of leukocytes can be distinguished. One group is the 
lymphocytes, comprising T-cells, B-cells and natural killer (NK) cells. The 
T-cells are involved in the killing and elimination of degenerated or 
infected cells, whereas B-cells are mainly involved in the production of 
antigen-specific antibodies. In contrast to T- and B-cells, mediators of the 
adaptive immune response, NK cells mediate the killing and destruction of 
tumor and virus-infected cells as part of the innate immune system. The 
second group of leukocytes consists of phagocytic cells such as macrophages 
and monocytes, and the granulocytes (eosinophils, basophils, mast cells 
(MCs) and neutrophils). While the main function of the phagocytic cells is 
to ingest and eliminate pathogens, they also serve as antigen-presenting cells 
to T-cells, constituting a link between the innate and acquired immune 
response. 

Granulocytes designate all the cells that are characterized by the presence 
of cytoplasmatic granules which are known to serve as reservoirs of 
important mediators involved in inflammatory processes. Importantly, these 
vesicles display different staining properties towards specific dyes, reflecting 
dinstinc intra-granular contents.  
Eosinophils show preference for anionic (acidic) dyes indicating the 
presence of basic components in their granules, whereas MCs and basophils 
stain metachromatically with cationic (basic) dyes due to the presence of 



 11

intra-granular negatively charged molecules. Moreover, lymphocytes and 
macrophages are also known to possess such vesicles although these are 
often not regarded as granulocytes. The study of the underlying mechanisms 
of granule secretion and organization is therefore crucial in order to increase 
the knowledge of the immune response.  

Mast cells and cytotoxic T cells 

In general, mature T lymphocytes express either CD4 or CD8 molecules, 
hence allowing the identification of CD4+ T helper cells and CD8+ 
cytotoxic T lymphocytes (CTLs). CTLs are pivotal cells of the immune 
system where they monitor all the cells in the body, acting readily against 
any that is considered a threat to the host; for example, CTLs kill virally 
infected cells. Moreover, CTLs are known to act against tumor cells due to 
their ability of recognizing antigenic differences between transformed cells 
and healthy cells. After maturation in the thymus, CTLs express a unique 
cell-surface antigen-binding molecule called T cell receptor (TCR), that 
will recognize antigens bound to the major histocompatibility complex 
(MHC) I-derived molecules (Moss et al., 1992). It is this highly specific 
interaction that enables CTLs to recognize malignant cell alterations and 
target them to destruction (Castelli et al., 2000). 

Upon recognition of an MHC-I-peptide complex on a target cell by 
their TCR, CTLs are triggered to deliver secretory products stored in 
specialized cytoplasmatic vesicles. These organelles store both lysossomal 
hydrolases which act at acidic pH, as well as other secretory compounds 
such as perforin, which functions at neutral pH (Peters et al., 1991). CTLs 
may destroy target cells by one of three mechanisms. Two of these involve 
direct cell-cell contacts between effector and target cells. The third is 
mediated by cytokines such as interferon-γ and tumor necrosis factor-α. 
Cytolytic activity involving cell-cell interactions can be mediated by two 
distinct mechanisms. In one case, CTLs release the lytic protein perforin 
and granzymes into the intercellular space. Perforin is able to integrate 
within the lipid bilayer of target cells where it polymerizes and creates pores 
in the membrane. The formation of such pores is regarded as essential for 
the granzymes to enter the cytosol of target cells. However, it has been 
shown that granzymes may be internalized independently of perforin 
possibly via receptor-mediated endocytosis (Froelich et al., 1996; Shi et al., 
1997). The uptake of granular material by the target cell will cause cell 
death through a caspase-dependent or caspase-independent mechanism 
(Trapani & Smyth, 2002). Eleven granzymes have been identified in mice, 
and five in humans (Grossman et al., 2003; Revell et al., 2005), all with 
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different substrate specificities. The fact that granzymes may mediate 
apoptosis via alternative mechanisms targeting different substrates, 
contributes to the effectiveness of CTL-mediated killing.  

The regulatory mechanism of these lytic proteins is well elaborated in 
that they only target and elicit their function in target cells. Firstly, they are 
released only upon contact of the CTLs with the target cell, and secondly, 
many of these components are only activated upon release, as they are kept 
in the secretory organelles in an inactive form. For example, perforin is only 
active at a neutral pH (Bashford et al., 1988) and it is therefore kept inactive 
in the granules where the pH is acidic. Also, the presence of certain granule 
components that are able to entrap these molecules and release them upon 
activation has been documented. It has been demonstrated that after 
exocytosis, granzyme B was present as a complex with a proteoglycan (PG) 
and that this complex is able to induce apoptosis in target cells (Metkar et 
al., 2002). 

The other killing mechanism involves a protein called Fas ligand, which 
binds to its receptor Fas (or CD95) present in target cells, initiating a 
cascade of caspase cleaving events that quickly trigger apoptosis of the target 
cells. 

 
 
MCs are highly granulated cells of the immune system and are usually 

located in the interface between the interior and the exterior environment, 
including the skin, airways and gastrointestinal tract. MCs progenitors arise 
from the hematopoietic stem cells in the bone-marrow (Kitamura et al., 
1981) and migrate to tissues where different types of mature MCs arise due 
to the influence of local microenvironment factors. Based on their tissue 
location, granule content and PG content, murine MCs can be subdivided 
into two major subclasses: connective tissue MCs (CTMCs) and mucosal 
MCs (MMCs). CTMCs are located in connective tissues in the skin and in 
the peritoneal cavity and express tryptase, carboxypeptidase A (CPA), 
chymase, high levels of histamine and heparin PG. In contrast, MMCs are 
present in the lamina propria of the intestine and airways and are known to 
express chondroitin sulfate (CS) PGs, chymase, but lack tryptase and CPA. 
Human MCs can also be divided into two major subclasses according to 
their protease content. MCTs contain only tryptase and they are situated in 
the lamina propria of the airways and gastrointestinal tract, while MCTCs 
contain both tryptase and chymase and are found predominantly in the skin 
(Miller & Pemberton, 2002; Schwartz, 1994). 

 



 13

 

Table 1. Mast cell heterogeneity in human and mouse  

 Mouse 

   CTMC            MMC      

Human 

        MC
T
               MC

TC
 

Tryptase 
mMCP-6 

mMCP-7 
 + + 

Chymase 
mMCP-4 

mMCP-5 

mMCP-1 

mMCP-2 
- + 

Proteoglycan Heparin CS Heparin/CS Heparin/CS 

CPA + - - + 

 
Activation of MCs may occur by several mechanisms. The classical way 

of activating MCs is through their high affinity IgE receptor, FcεRI, present 
on the cell surface, leading to the release of a broad range of MC mediators 
stored in secretory granules. Furthemore, MCs can be activated by IgG 
receptors, complement proteins namely C3 and C5a (Johnson et al., 1975) 
and toll-like receptors (Kulka et al., 2004; Marshall et al., 2003; Supajatura et 
al., 2002). In addition, molecules such as substance P, neurotensin, 
compound 48/80, calcium ionophores can directly activate MCs (Metcalfe 
et al., 1997). 

MC granules contain an abundance of mediators that elicit several 
functions upon release from the secretory vesicles (histamine, PGs, neutral 
proteases, lipid mediators and preformed cytokines).  

 
Histamine is possibly the most well-known MC mediator. The 

physiological effects of histamine include vascular permeability, stimulation 
of smooth muscle contraction, bronchoconstriction and increased mucus 
secretion (Bachert, 2002). Moreover, studies using histidine decarboxylase 
(an enzyme involved in the formation of histamine)-deficient mice 
demonstrated the importance of histamine in other processes such as 
angiogenesis (Ghosh et al., 2002) and gastric acid secretion (Tanaka et al., 
2002). 

 
MCs also produce a multitude of cytokines. Preformed MC-derived 

cytokines include TNF-α, IL-3, IL-4, IL-5, IL-6, IL-8, IL-10, IL-13 and 
TGF-β (Ishizuka et al., 1999a; Ishizuka et al., 1999b; Kobayashi et al., 2000; 
Okayama et al., 1995; Razin et al., 1991). MCs cytokines may regulate 
several functions of other inflammatory cells, giving the MC a very 
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important role in interplay with other cells involved in the immune 
response. 

 
The lipid mediators, leukotrienes and prostaglandins, are products 

derived from arachinodic acid. MCs express predominantly prostaglandin 
D2 which can act as a vasodilator and bronchoconstrictor (Johnston et al., 
1995), and also promotes accumulation of inflammatory cells. Upon 
activation, MCs synthesize the cysteinyl leukotrienes LTC4, LTD4 and 
LTE4. These potent mediators are known to play important roles in several 
biological processes such as bronchoconstriction (Dahlen et al., 1980), 
leukocyte recruitment (Medeiros et al., 1999), vascular leakage (Beller et al., 
2004) and induction of cytokine production (Mellor et al., 2002; Mellor et 
al., 2003). 

 
Up to 35% of the total protein content in mast cells corresponds to 

neutral proteases (Schwartz et al., 1987). One of these proteases is CPA, 
which is a Zn2+-dependent exopeptidase that preferably cleaves substrates 
that possess C-terminal aromatic or aliphatic residues (Goldstein et al., 
1989). Due to its highly negative charge, CPA is found tightly bound to 
heparin PGs within the MC granule (Serafin et al., 1987) and its activation 
has been shown to be highly dependent on these PGs species (Henningsson 
et al., 2002). The biological effects of CPA are many, and include 
degradation of apolipoprotein B of low density lipoprotein (Kokkonen et 
al., 1986), degradation of endothelin-1 (Metsarinne et al., 2002) and 
formation and degradation of angiotensin II (Lundequist et al., 2004).  

Chymases are serine proteases with chymotrypsin-like substrate 
specificity, cleaving substrates at sites following aromatic residues (Powers et 
al., 1985). Chymases are stored as active proteins in the MCs granules but 
they are synthesized as inactive precursors. The activation of pro-chymase 
occurs by the removal of a dipeptide by dipeptidyl peptidase I (Wolters et 
al., 2001). Chymase has been implicated in a wide range of biological events 
that include attraction of neutrophils and eosinophils (He & Walls, 1998), 
extracellular coagulation and fibrinolysis (Tchougounova et al., 2001), 
fibronectin, plasmin and thrombin degradation (Tchougounova et al., 2003) 
and together with CPA, in the processing of angiotensin I to angiotensin II 
(Chandrasekharan et al., 1996; Lundequist et al., 2004).  

Tryptases constitute a family of serine proteases characterized by their 
trypsin-like substrate specificity. Similarly to chymases, tryptases are stored 
in MC granules as active enzymes. Tryptases described in mice MCs include 
mouse MC protease (mMCP)-6, mMCP-7, mMCP-11 and mouse 
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transmembrane tryptase. There are two main types of human MCs 
tryptases: α-tryptase and β-tryptases, where the latter is the main type 
expressed in human. Expression of tryptases differs between human and 
rodents in that all human MCs express tryptase, whereas in mice, tryptase is 
only found in CTMCs. Tryptase has been suggested to be involved in many 
biological processes. Bronchiodilating neuropeptides such as VIP (vasoactive 
intestinal peptide) and calcitonine gene-related peptide (Caughey et al., 
1988) have been shown to be degraded by tryptase leading to increase 
bronchial responsiveness and to other asthma-related events. Furthemore, 
tryptase has been suggested to play a role in atherosclerosis by degrading 
high-density lipoprotein (Lee et al., 2002). Tryptase also cleaves fibronectin 
(Lohi et al., 1992) and gelatin (Fajardo & Pejler, 2003), thus pointing to a 
role in tissue remodeling and angiogenesis.  

 

Glycobiology 

Carbohydrates are the most abundant biomolecules occurring in nature. 
Due to their structural diversity, they have numerous roles in living 
organisms, such as the storage of energy and as fundamental building blocks 
of structural components. Furthermore, important biomolecules such as 
lipids, nucleic acids and proteins contain sugar residues as an integral part of 
their composition in many living organisms, reflecting the biological 
importance of carbohydrates. Proteins carrying a carbohydrate portion are 
the most common glycoconjugates, termed glycoproteins, where the 
carbohydrate portion is linked to the protein by means of glycosyl linkages. 
 

Proteoglycans 

PGs comprise a wide range of macromolecules found distributed almost 
everywhere throughout the body. The structural diversity of PGs suggests 
that they are involved in a multitude of functions and several studies have 
demonstrated their importance in biological processes due to their ability to 
interact with a vast variety of biomolecules, namely proteins and 
components of the extracellular matrix (ECM) (Handel et al., 2005; Iozzo, 
2005; Kinsella et al., 2004). 

PGs are molecules containing long, unbranched polysaccharide chains 
(glycosaminoglycans or GAGs) covalently attached to a protein core. These 
GAG chains are composed of  repeated disaccharide units, where each unit 
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is composed of one alternating amino sugar [N-acetylgalactosamine 
(GalNAc) or N-acetylglucosamine (GlcNAc)] bound to either a hexuronic 
acid [HexA, either glucoronic acid (GlcA) or iduronic acid (IdoA)] or to 
galactosamine (Gal). Importantly, the sugar chains are found attached to the 
serine (Ser) or threonine residues of the core protein through an O-
glycosidic bond (Bernfield et al., 1999; Kjellen & Lindahl, 1991). There is 
an enormous diversity among PG species due to the variation of the core 
protein to which the GAG chains are attached, heterogeneity of GAG 
sulfation and length of the GAG chains. Furthermore, the number of GAG 
chains bound to the core protein may range from one to more than 100, 
varying between different types of PG species (Kjellen & Lindahl, 1991; 
Silbert & Sugumaran, 1995).  

In addition to carrying single or multiple GAG chains, several PGs can 
accommodate GAG chains of more than one type (hybrid PGs), which 
further accounts for the extreme diversity of these molecules (Rapraeger et 
al., 1985; Sugahara et al., 1992). Although the underlying mechanism 
behind this feature is still poorly understood, previous studies have 
suggested that the amino-acid sequences of the core protein located in 
defined patches adjacent to the GAG binding site may play an important 
role (Chen & Lander, 2001; Esko & Zhang, 1996).  

PGs can be defined by both their core protein as well as by the GAG side 
chains attached. According to the repeated disaccharide unit present, PGs 
can be divided into three main classes: heparan sulfate/heparin, keratan 
sulfate, and chondroitin sulfate/dermatan sulfate (fig.1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Repeating disaccharide units of various GAGs. Every unit is composed of 
uronic acid and an amino-sugar. Possible modifications of these basic units are represented 
by R (= H or SO3

-) and R’ (= H, COCH3 or SO3

-).  
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The GAG species CS and dermatan sulfate (DS) are termed 
galactosaminoglycans due to the presence of the N-acetyl-galactosamine 
residue in their composition. They are both derived from the same polymer 
–HexAβ1,3-GalNAcβ1,4-, where CS contains invariably GlcA while in DS 
some of the GlcA is epimerized to IdoA. They can accommodate sulfate 
groups in several positions of the disaccharide repeat unit, especially at 
positions 4 and 6 of GalNAc and position 2 of the hexuronic acid. Heparan 
sulfate (HS) and heparin both possess the same basic structure composed of 
repeating disaccharide units of HexAα/β1,4-GlcNAcα1,4. The uronic acid 
can be either GlcA or IdoA, and the GlcN is either free, N-acetylated 
(GlcNAc) or N-sulfated (GlcNS). As in CS/DS, both HexA and GlcN 
residues in HS/heparin can be modified with sulfate groups. The extent of 
epimerization of GlcA to IdoA and the degree of sulfation of the 
disaccharide units is used as the base to distinguish HS from heparin and CS 
from DS. 

Keratan sulfate (KS) lacks the HexA unit, where the two repeating sugars 
are GlcNAc and Gal (-Galβ1,4-GlcNAcβ1,4-), having variable carbohydrate 
lengths and sulfation patterns. Two patterns of KS can be distinguished: KS 
I, which binds through an N-glycosyl linkage  to the asparagine residues of 
the core protein, and KS II, which is found attached to a serine or 
threonine residue through an O-glycosyl linkage (Choi & Meyer, 1975). 
Hyaluronan is the only GAG that is synthesized in a free form, i.e, not 
covalently attached to a core protein. Its non-sulfated structure is made up 
of repeating disaccharide units of GlcA and GlcNAc (-GlcAβ1,3-
GlcNAcβ1,4-). 
 

Biosynthesis of proteoglycans 

 
The biosynthesis of GAG chains takes place in the Golgi apparatus and 

consists of a multi-step mechanism involving the combined action of an 
extensive enzymatic machinery (Esko & Lindahl, 2001; Lindahl et al., 1998; 
Prydz & Dalen, 2000). The first part of CS/DS and heparin/HS chain 
polymerization involves the formation of the linker tetrasaccharide (xylose-
galactose-galactose-GlcA). The formation of this linkage oligosaccharide 
starts with the transfer of a xylose from UDP-xylose onto the hydroxyl 
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group of a serine residue in the core protein and occurs during the transfer 
of the latter from the rough endoplamic reticulum to the cis-Golgi 
compartment (Lohmander et al., 1989; Vertel et al., 1993). Completion of 
the linkage tetrasaccharide involves the addition of two galactose units from 
UDP-galactose and the last member, GlcA is added by the enzyme 
glucoronosyltransferase I (Sugahara et al., 2003). Once the linker 
tetrasaccharide is completed, the addition of the fifth saccharide unit 
determines whether the GAG chain becomes CS/DS or heparin/HS. This 
involves the action of either of the two distinct transferases, GlcNAc 
transferase or GalNAc transferase, resulting in the initiation of either CS/DS 
sulfate or heparin/HS sulfate, respectively (Lander & Selleck, 2000; 
Sugahara et al., 2003), as shown in fig.2. 

 

 
 

Figure 2. A general scheme representing the key steps in the synthesis of chondroitin sulfate, 
dermatan sulfate, heparin and heparan sulfate GAGs. 
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In the case of heparin/HS, the chain is elongated through the action of 
GlcNAc and GlcA transferases (EXT1 and EXT2) and subsequently 
modified. The first modification reaction involves the enzyme N-
deacetylase/N-sulfotransferase (NDST) and replaces N-acetyl groups on 
GlcNAc units with N-sulfated groups. This modification is extremely 
important since subsequent modifications can only take place in the 
proximity of N-sulfate groups. Four isoforms of the enzyme family of 
NDSTs have been identified in mice (Aikawa et al., 2001; Eriksson et al., 
1994; Hashimoto et al., 1992) : NDST-1 and NDST-2, expressed in 
embryonic and adult tissue; and NDST-3 and NDST-4 predominantly 
expressed during embryogenesis. Previous studies have shown that NDST-2 
is involved in the generation of longer GAG chains with higher N-sulfate 
content when compared with NDST-1 (Pikas et al., 2000). Heparin is 
mainly expressed in rodent CTMCs and CTMCs from mice lacking 
NDST-2 showed impairment in the storage of MC-specific proteases, 
namely CPA, mMCP-4, mMCP-5 and mMCP-6. Moreover, it was shown 
that some of the proteases require the presence of heparin to exert their 
biological role. For example, tryptase is dependent on heparin in the 
activation of biologically important tetramers, while the chymase-heparin 
complex was shown to play an important role in extravascular coagulation 
(Hallgren et al., 2000; Tchougounova et al., 2001; Tchougounova & Pejler, 
2001). NDST-1 deficiency, on the other hand, was shown to lead to defects 
in lung and skull causing embryonic death, and also to a decrease in HS in 
basement membranes indicating that this enzyme is important in HS 
synthesis (Fan et al., 2000; Ringvall et al., 2000).   

 
Once the modification reactions are initiated by an NDST, the other 

enzymes are able to catalyze the subsequent steps of the GAG chain 
synthesis. Further modifications steps include the C5-epimerization of GlcA 
to IdoA, 2-O-sulfation of IdoA and GlcA and 6-O-sulfation of GlcNS and 
GlcNAc residues. Occasionally, other modifications can occur, such as the 
3-O-sulfation of GlcNSO3. Regions where the GlcNAc residues are not 
deacetylated remain almost unmodified while regions modified by NDSTs 
are extensively modified. The end result is that heparin is highly sulfated, 
whereas HS is sulfated to a less extent. However, HS can be  highly sulfated 
in defined blocks. 

 
 
Although both HS/heparin and CS/DS biosynthesis are initiated by the 

common linker tetrasaccharide, elongation and modification of CS/DS 
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involves different enzymes than those involved in HS/heparin synthesis. 
The addition of the initial GalNAc from UDP-GalNAc onto the linkage 
oligosaccharide is mediated by distinct enzymes (CS polymerases) 
(Rohrmann et al., 1985). Subsequent chain elongation then requires two 
glysosyltransferase enzymes to add the alternating residues of GlcA and 
GalNAc. In DS, like in HS, the generation of IdoA units occurs by 
epimerization at C5 of a portion of GlcA residues of the chain (Malmstrom, 
1984; Malmstrom & Fransson, 1975). Additionally, distinct sulfotransferases 
(STs) add sulfate groups to the chain backbone residues usually of either the 
4- and/or 6-hydroxyl of the GalNAc residues and at C2 of GlcA and IdoA. 
Eight CS/DS STs have been identified so far, one 2-O-ST, three 6-O-STs 
and four 4-O-ST (reviewed in (Kusche-Gullberg & Kjellen, 2003)). 

Cell surface proteoglycans 

 
Cells need to build barriers that allow them to separate from other cells and 
also from the surrounding environment. At cell surfaces, two major families 
of membrane-bound HSPGs are found: the syndecans and the glypicans 
(fig.3). 
 

 
 
Figure 3. Representative scheme of cell-surface associated PGs. Heparan sulfate (light blue) 
and chondroitin sulfate (red) are the most common glysoaminoglycan chains found in these 
PGs.  

 
Syndecans are type I transmembrane HSPGs forming a group of 

extracellular effector molecules harboring primarily, but not exclusively, HS 
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chains (Bernfield et al., 1992). They possess an extracellular domain with 
GAG attachment sites, a hydrophobic transmembrane domain and a short 
cytoplasmatic domain. So far, four mammalian syndecans (syndecan-1 to -4) 
have been identified and cloned (Mali et al., 1990; Pierce et al., 1992; 
Saunders et al., 1989). The extracellular domain contains several Ser-Gly 
sequences where GAG chains bind and an N-terminal signal peptide that 
targets the extracellular domain outside the cell. Syndecan-1 and -3 exhibit 
two clusters bearing GAG attachment sites while syndecan-2 and -4 only 
possess one located near the plasma membrane. Syndecan-1 and -4 can, in 
addition to HS, bear CS chains (Carey, 1997). Sequences of transmembrane 
and cytoplasmatic domains, as well as GAG attachment sites have been 
shown to be highly conserved between all the syndecan family members 
and species.  

Syndecans have been shown to be involved in many biological functions 
such as cell-cell and cell-matrix adhesion and signaling. A vast range of 
extracellular proteins can bind to syndecan-1, via its HS chains, thus serving 
as a matrix receptor. Among the ECM components that can bind to 
syndecan, we can find collagen types I and III (Koda et al., 1985), 
fibronectin (Saunders & Bernfield, 1988) and laminin (Elenius et al., 1990). 
Furthermore, the cytoplasmatic domain of syndecans are known to engage 
in interactions with intracellular components and are involved in processes 
such as cytoskeleton organization (Grootjans et al., 1997) or in signaling 
pathways in response to antibody ligation (Carey et al., 1996). Syndecans 
can also modulate the action of several growth factors. Growth factors such 
as fibroblast growth factor (FGF) family members, vascular endothelial 
growth factor (Gitay-Goren et al., 1992), hepatocyte growth factor 
(Ashikari et al., 1995) and others are known to bind to extracellular HS 
chains. Syndecan-1, -3 and -4 have been shown to bind specifically FGF-2 
(Kiefer et al., 1990) while syndecan-3 can bind to heparin-binding growth-
associated molecule (Kinnunen et al., 1996). Besides growth factors and cell 
adhesion molecules, syndecans are also found to bind other extracellular 
ligands which include low-density lipoprotein (Saxena et al., 1990) acting as 
a lipoprotein receptor, or serine proteases and their inhibitors (serpins) 
(Kainulainen et al., 1998). Moreover, tissue repair processes require 
regulated action of extracellular factors and proteases that can be modulated 
and activated by the presence of syndecans in the wound repair site. 
Virtually all tissues and cells express at least one syndecan, although some 
cells and tissues can express multiple family members (Kim et al., 1994).  
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Glypicans constitute a family of HSPGs that are linked to the 
exocytoplasmatic membrane through a glysosylphosphatidylinositol-anchor 
(David, 1993). Unlike syndecans, glypicans have their GAG attachment site 
located in close proximity to the cell surface. One striking feature of the 
glypican family is the presence of two to five consensus regions for insertion 
of GAG chains near the C-terminal and also the high degree of 
conservation of their primary polypeptide sequences. Six known glypicans 
have been identified (glypican-1 to -6) in mammals (David et al., 1990; 
Saunders et al., 1997; Stipp et al., 1994). HS is the only GAG chain type 
known to be bound to glypicans in vivo, although in vitro experiments 
indicated that the insertion of CS chains is also possible (Saunders et al., 
1997). With regard to their expression, glypican-1 and -4 are known to be 
expressed in a large number of embryonic and adult tissues (Litwack et al., 
1998; Veugelers et al., 1998), glypican-2 only in developing nervous system 
(Stipp et al., 1994), glypican-3 is widely expressed during development (Li 
et al., 1997) and glypican-5 expression is restricted to the nervous system, 
limb and kidney (Saunders et al., 1997). 

 
 
Glypicans, like syndecans, can also bind to FGF-2 and other heparin-

binding growth factors (Brunner et al., 1994; Steinfeld et al., 1996). 
Furthermore, glypicans can also interact with molecules involved in cell 
adhesion and migration as, for example, the glypican-1 interaction with 
laminin (Carey et al., 1993), and influence the extension process in 
Schwann cells. Although most of the reported interactions of glypicans with 
other components are associated with the GAG chains, it has been 
postulated that the core proteins could exert some GAG-independent 
functions (Stipp et al., 1994). The reason for such an assumption resides in 
the fact that the protein sequence of the core protein of glypicans is highly 
conserved within all members of the glypican family (Karthikeyan et al., 
1992; Veugelers et al., 1998) and that the insertion sites of GAG chains are 
only found near the C-terminus. 

 
Extracellular matrix proteoglycans 

 
Perlecan is one of the most studied and best-characterized PG and it is 
found in all basement membranes and many extracellular matrices (Hassell et 
al., 2002; Iozzo et al., 1994).  
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Figure 4. Schematic representation of perlecan and agrin, two well-characterized extracellular 
matrix-associated PGs. 

 
The perlecan core protein (fig.4) contains five domains: one unique domain 
located at the N-terminal region and four other domains that are also found 
in other proteins. Studies using recombinant domain I expressed in several 
cell types demonstrated that this N-terminal domain contains three potential 
sites that can support both HS and CS chains.  

Perlecan can be found in many extracellular matrices and it has been 
shown to interact with other ECM components. It has been reported that 
perlecan’s core protein as well as its HS chains bind to fibronectin and 
laminin (Isemura et al., 1987). Another ECM molecule shown to interact 
with perlecan is thrombospondin, which is localized at the cell surface of 
endothelial cells, and this interaction is dependent on perlecan’s HS chains 
(Vischer et al., 1997). Besides ECM components, perlecan is known to 
engage in interactions with several growth factors and cytokines. FGF 
family members were shown to require heparin or HS binding in order to 
be activated by their receptors. It appears that perlecan plays a very 
important role in the regulation of FGF stimulation not only through the 
binding of FGF directly to the HS chains, but also in being able to capture 
the growth factor in the basement membrane (Whitelock et al., 1996). 
Moreover, platelet-derived growth factor (Gohring et al., 1998), 
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transthyretin (Smeland et al., 1997) and interferon-γ (Lortat-Jacob et al., 
1991) display binding properties towards perlecan molecules. There has also 
been demonstrated a role for perlecan in cell-matrix adhesion interactions 
through its binding to integrin family members, particularly ß1 and ß3 
integrins, which are critical for the proper formation of the basement 
membrane structure. 

Agrin (fig.4) is a molecule that plays a key role in the aggregation of 
acetylcholine receptors during the development of the neuromuscular 
junction during embryogenesis (Nitkin et al., 1987). Agrin consists of a 225 
kD core protein containing two or possibly three HS side chains and the 
core protein possesses certain domains that are found in several other matrix 
proteins, such as laminin and perlecan (Bork & Patthy, 1995; Rupp et al., 
1991). Serine residues located at the N-terminal can serve as attachment 
sites for both HS and CS, although not all Ser-Gly sequences are substituted 
with GAG chains. One important feature in agrin is its splice variants and 
there are three alternate splicing sites, one located near the N-terminus, and 
the other two near the C-terminus of the core protein. Agrin is expressed 
in the basement membranes and extracellular matrices of a wide range of 
tissues which include neuronal, muscle and kidney (Bowe & Fallon, 1995). 
Agrin has been implicated in ionic filtration mechanisms in the kidney 
where it is the major HSPG found in the glomerular basement membrane 
(Groffen et al., 1998; Raats et al., 1998). Additionally, agrin has been shown 
to play an important role in cell-cell interactions and as a stabilizer of the 
basement membrane due to the ability of its HS chains to interact with 
components such as laminin and fibronectin. Furthermore, it has been 
implicated in the clustering of acetylcholine receptors in the synaptic 
basement membrane (Ma et al., 1993). 

Collagen XVIII is an ubiquitous basement membrane component, 
detected in all vascular and epithelial basement membranes. It belongs to the 
non-fibrillar group of collagens which are characterized by their heterogenic 
structure but share in common the presence of one or more non-
collagenous sequences that interrupt the collagenous sequence. Collagen 
XVIII, like collagens IX and XII, contain Ser-Gly sequences that are 
potential attachment sites for GAG side chains. Nevertheless, unlike 
collagens IX and XII, which are sensitive to chondroitinase ABC indicating 
the presence of CS or DS side chains, collagen XVIII is resistant to 
chondroitinase ABC digestion (Oh et al., 1994). Studies showed the 
presence of numerous acidic residues in the core protein flanking the Ser-
Gly attachment sites, characteristic of HSPG.  
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Like agrin and perlecan, collagen XVIII is involved in the ionic filtration 
in the kidney, where it is found in the glomerular basement membrane. It 
has also been suggested to play a role in the regulation of signaling between 
mesenchyme and epithelium during organ morphogenesis (Lin et al., 2001). 
Collagen XVIII is known to exist in three splice variant forms, which are 
expressed differently in different tissues. A short form is found mainly in 
basement membranes of blood vessels and in muscle while a long variant is 
primarily expressed in the liver sinusoids. Each variant contains a different 
signal peptide accounting for its tissue-specific expression (Rehn et al., 
1996). Endostatin, a 20 kD polypeptide known to inhibit endothelial cell 
proliferation, is a product of the proteolytic cleavage of the C-terminal of 
collagen XVIII, and it may act as a potential inhibitor of angiogenesis and 
cell growth (O'Reilly et al., 1997; Zatterstrom et al., 2000). 

Proteoglycans in other physiological contexts 

 
Aggrecan is the large aggregating PG present in the cartilage and it is the 
first PG to have been identified and extensively characterized. Each 
aggrecan molecule possesses sulfated GAG chains and N- and O-linked 
oligosaccharides that account for up 90% of its mass. The large aggrecan 
core protein is commonly modified by the covalent attachment of 
approximately 100 CS chains, 30 KS chains and 8-10 shorter N- and O-
linked oligosaccharides (Doege et al., 1987). Aggrecan exerts a very 
important role in skeletal development and it is essential for the function of 
cartilage. Aggrecan molecules form large link protein-stabilized aggregates 
with hyaluronan in the ECM resulting in a unique structure able to entrap 
water molecules in this space. Due to its structural properties, aggrecan 
promotes the concentration of negative charges, maintaining cartilage 
hydration and endowing its characteristic resilience and ability to expand 
tissue volume.  

 
Versican belongs to the family of large aggregating PGs named lecticans 

(Ruoslahti, 1996) and several versican core proteins have been identified 
due to the fact that it is expressed as several variants as a result of alternative 
splicing. The differences found in the isoforms reside in the middle portion 
of the core protein, where the GAG attachment sites are located. In 
versican V0, two CS-carrying portions are present, while the smaller V1 
and V2 isoforms lack the GAG-α and GAG-ß respectively. However, none 
of the GAG-binding sites are included in versican V3, and this isoform may 
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therefore not be a PG (Zako et al., 1995). As assessed by enzymatic 
digestion, the GAG chains present in versican family members were 
identified as being CS. Versican may interact with a number of different 
ligands either by specific core protein domains or by the GAG side chains. 
The most-well characterized interaction is between versican and 
hyaluronan, which involves the presence of link-protein, in analogy to the 
hyalorunan-aggrecan protein complex in cartilage (Morgelin et al., 1989). 
Data retrieved from several studies point to a role of versican PGs in a wide 
range of biological events, such as cell adhesion, proliferation and migration. 
It has been shown that versicans, more exactly isoforms V0 and V1 affect 
the binding of various types of cells to collagen I, fibronectin and laminin 
(Yamagata et al., 1989). This inhibition has been attributed to the 
interaction of the CS side chains with these ECM components, since 
chondroitinase ABC digestion abolished this effect. Furthermore, versican 
isoforms may also be involved in the control of cell proliferation specially in 
keratinocytes and dermal fibroblast proliferation (Zimmermann et al., 1994). 
In addition to their involvement in such processes, it has been demonstrated 
that an increased versican expression pattern is correlated with smooth 
muscle cell proliferation during the formation of atherosclerotic lesions 
(Matsuura et al., 1996).  

 
Nervous tissues express many PGs. Although HSPGs can also be 

detected in detergent extracts of the membrane fraction of rat brain, 16 out 
of 25 putative PG core protein were identified as CSPGs (Herndon & 
Lander, 1990). Neurocan and brevican belong to the lectican family of 
CSPGs which include other members such as aggrecan and versican and 
they are both expressed in the nervous system in a highly specific manner 
(Rauch et al., 1991; Seidenbecher et al., 1995). Both neurocan and brevican 
share structural homologies with other members of the lectican family but 
the central domains show little homology with each other. Brevican is also 
called a “part-time” PG since it can be found in brain tissue without CS 
chains attached to the core protein (Yamaguchi, 1996). The interaction of 
these two CSPGs with other components has been established and 
neurocan is known to interact with N-CAM (Grumet et al., 1993), Nr-
CAM and amphoterin (Milev et al., 1998) while brevican has been 
suggested to be a relevant ligand for tenascin-R (Hagihara et al., 1999). 
NG2 is another transmembrane CSPG expressed in the nervous system 
although it can be found in skeletal myoblasts, developing cartilage and 
aortic smooth muscle cells (Levine & Nishiyama, 1996) and is known to 
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interact with various ECM and cell surface molecules that include type V 
and type VI collagens (Stallcup et al., 1990).  

 
Decorin and biglycan are two highly homologous core proteins 

belonging to the superfamily of small leucine-rich PGs and can be present 
in non-glycosylated forms (Roughley et al., 1993). They have N-terminal 
domains which contain CS/DS GAG chains, but decorin can accommodate 
only one chain while biglycan has two GAG chains. Decorin is mainly 
found in many connective tissues and it has been suggested to be important 
in organogenesis (Scholzen et al., 1994) and regulation of cell division and 
differentiation (Yamaguchi et al., 1990). Biglycan is, in contrary to decorin, 
found on the surfaces of differentiating cells and it has been shown to 
interact with type I collagen and also to C1q, and can therefore play a role 
in inflammation events (Hocking et al., 1996).  

 
CD44 is a so-called “part-time” PG and it is a cell surface glycoprotein 

where it can act as an adhesion molecule and signal transducer in the 
immune system (Haynes et al., 1989; Lesley et al., 1993). The GAG chains, 
when present, can be either CS or HS. Ligands for CD44 include ECM 
components such as hyaluronan (Aruffo et al., 1990), fibronectin (Jalkanen 
& Jalkanen, 1992) and collagen types I and VI (Wayner & Carter, 1987).  

 

Intracellular proteoglycans – Serglycin 

 
PGs in intracellular cell compartments have been subject of increasing 
attention during the last years. The most important and the only known 
commited PG identified in intracellular locations so far is serglycin (SG). SG 
PGs are characterized by their unique protease-resistant, Ser and Gly rich 
protein cores, and by the covalently attached highly sulfated GAGs. 
 
 

The Serglycin gene 

 The SG PG was first discovered as a secretory and membrane-associated 
product  isolated from the rat L2 yolk sac carcinoma cell line (Oldberg et 
al., 1981), and it was the first PG gene to be cloned (Bourdon et al., 1985). 
Using a gene-specific probe of this cDNA, related transcripts were found to 
be expressed in a wide range of cells of hematopoietic origin containing 
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secretory granules (Tantravahi et al., 1986). The mouse SG gene, cloned 
and characterized from a mouse liver genomic library, consists of three 
exons separated by two introns (Avraham et al., 1989). The first exon 
consists of 41 base pairs and codes for the first 25 amino-acid residues, 
which comprise the signal peptide of the core protein. A large (~8 kb) 
intronic sequence follows before the second exon, which codes for the N-
terminal part of the protein (48 amino-acids). The third and last exon is 
preceeded by an intronic sequence around 4 kb and encodes for a 79 
amino-acid sequence that contains the GAG attachment site. The human 
SG gene consists of the same three exons as the mouse gene and both genes 
lack the classical TATA box. Also, the 5’-UTR of the human and mouse 
SG gene were found to share a high degree of similarity (96%) (Nicodemus 
et al., 1990) implying that the sequence contains numerous cis-acting 
regulatory elements that are essential for the expression of the gene in 
different cell types. These elements may, depending on the cell type, either 
induce or suppress the expression of the gene (Avraham et al., 1992). In 
fact, mouse MCs express at least three GATA factors (Zon et al., 1991) 
where GATA-2 was shown to be essential for the development of MCs 
from bone marrow progenitors (Tsai & Orkin, 1997) and other factors may 
be important for the transciption of some MC specific genes such as CPA 
(Zon et al., 1991) and the chymase gene (Caughey et al., 1997; Liao et al., 
1997). Furthermore, the discovery that GATA-1, GATA-2 and/or GATA-
3 are expressed in SG-containing cells (Martin et al., 1990) together with 
proved the existence of a conserved GATA motif within the SG gene 
(Nicodemus et al., 1990), suggests that DNA-binding proteins from the 
GATA family are involved in the transcription of the SG gene in 
hematopoietic cells. Interestingly, other cell types known not to express the 
SG gene do not express these transcription factors, but others such as 
GATA-4, GATA-5 and/or GATA-6. 

 
 
 

Modifications of Serglycin 

SG PGs examined to date show heterogeneity in molecular size due to 
variations in the number of chains per core and also the length and sulfation 
of each chain. The GAGs found attached to SG PGs are chondroitin 4-
sulfate, chondroitin 6-sulfate, chondroitin 4,6-sulfate, CS B, HS or heparin 
that display different negative sulfation patterns, where heparin is the most 
negatively charged GAG found in the body (Kolset & Gallagher, 1990).  
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Table 2. Main GAG chains found in serglycin in storage granule cells (adapted from (Kolset & Tveit, 
2008)) 

Type of GAG chain Cell type 

Chondroitin 4-sulfate 

(GlcA-GalNAc 4-sulfate) 

Platelets, monocytes, lymphocytes, NK cells 

Chondroitin 6-sulfate 

(GlcA-GalNAc 6-sulfate) 

Guinea pig platelets 

Chondroitin sulfate E 

(GlcA-GalNAc 4,6-sulfate) 

Mast cells, macrophages 

Chondroitin sulfate B 

(IdoA-2-sulfate-GalNAc 4 sulfate) 

Rat basophils 

Heparin/Heparan sulfate 

(GlcA/IdoA ± 2-O-sulfate-glucosamine ± 
N-sulfate and/or 3 and 6-O-sulfate 

Mast cells, macrophages 

 

 
 
Variations in the GAG composition may be due to a cytokine-controlled 
event that appears to be not entirely dependent on the protein core. In fact, 
c-kit ligand/SCF and other fibroblast-induced factors induce mouse MCs to 
incorporate heparin onto SG (Levi-Schaffer et al., 1986), whilst IL-3 leads 
to the incorporation of chondoritin 4,6-sulfate onto the same core protein 
(Razin et al., 1982). Other PGs are known to possess a specific amino-acid 
sequence that determines the type of chains that will be attached to the 
protein core (Esko & Zhang, 1996). Since SG has only one GAG-
attachment region and any type of GAG can be attached to it (table 2), it is 
unlikely that the primary structure of SG determines which type of GAG to 
be polymerized onto the protein core. Consequently, posttranslational 
modifications of specific amino-acid residues in the SG protein core may 
dictate which type of GAG chain that will be synthesized. Depending on 
the cell type, different disaccharide units can be assembled onto the SG 
protein core. Basophils and MCs are known to contain highly sulfated GAG 
chains whereas NK cells and CTLs possess less sulfated GAGs attached to 
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the protein core.  Interestingly, however, distinct subtypes of MCs present 
different GAG profiles, suggesting a role of the GAG structures as an 
indicator of cell differentiation. Despite these different MCs subtypes being 
involved in similar immunological events, CTMCs are known to express 
only heparin chains attached to the SG core and are the only cells able to do 
so, whilst MMCs contain GAGs of the CS type (Enerback et al., 1985). In 
contrast, human MCs can display both GAG types in the same MC subclass 
(Stevens et al., 1988). The use of gene-targeting approaches allowed a more 
thorough investigation regarding the mechanism and the enzymes involved 
in the GAG synthesis onto these PGs. Disruption of the NDST-2 gene led 
to severe defects in the storage of granule components in CTMCs, while 
CS-rich MMCs possessed normal granules. However, the levels of 
glycosyltransferases and sulfotransferases in MCs does not appear to be a 
determining factor when it comes to directing the synthesis of a particular 
GAG onto the protein core. Evidence for this fact came from studies where 
NDST-2 mRNA levels were found to be higher in MCs that 
predominantly express more CS on SG than heparin. Also, isolated rat 
peritoneal MCs were shown to possess all enzymes necessary for the 
synthesis of CS E even though they do not synthesize it onto SG protein 
cores (Stevens & Austen, 1982; Stevens et al., 1983).  

 

Serglycin as storage matrix of intragranular components 

The role of SG PGs as storage matrices for several cell components has been 
elucidated in recent years due to the generation of SG KO mice (Abrink et 
al., 2004) and MCs were the first cells to be used as a model to determine 
some of the functions of SG PGs. Because MC-derived SG PGs are the 
most negatively charged molecules in mammals, they are thought to be 
involved in the formation of macromolecular complexes with positively 
charged proteases in the granules. In this study, it was shown that CTMCs 
lacking SG had an abrogated ability to bind cationic dyes, indicating that SG 
PGs are the major PG species in the cytoplasmatic granules of CTMCs. 
Although mRNA expression of MC specific proteases was not affected by 
the absence of SG, defects were seen in the storage of these proteases, 
namely mMCP-4, mMCP-5, mMCP-6 and CPA. This is in accordance 
with the studies performed in the NDST-2-deficient MCs where, besides 
altered granule morphology and staining properties, protease storage was 
abrogated due to the lack of highly sulfated heparin chains. Further studies 
using SG KO mice revealed that elastase, a protease present in the azurophil 
granules of neutrophils, is dependent on SG PGs existing in the 
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cytoplasmatic granules of these cells to be properly stored. Interestingly, 
when injected with gram-negative bacteria (Klebsiella pneumoniae), the 
virulence was increased in SG KO mice when compared with wild-type 
mice indicating that also the immune response is affected by the absence of 
SG (Niemann et al., 2007).   

 

Serglycin and granule formation 

Dense-core secretory granules are specialized organelles of endocrine, 
neuroendrocrine and other secretory cells that are responsible for the 
regulated secretion of several cargo molecules. More specifically, 
hematopoietic cells are known to store a wide range of specific mediators 
that upon activation are released to the site of action where they exert their 
biological functions. Granule components such as hormones, peptides and 
other enzymes are packaged into secretory granules at the trans-Golgi 
network through a complex and well regulated mechanism. The correct 
targeting and packaging of such mediators is of crucial importance for the 
proper assembly of a functional secretory vesicle. Dense-core secretory 
vesicles share a distinct characteristic in that their core that appears dark or 
dense in electron micrographs.  

SG was seen to co-localize with the Golgi apparatus in immature human 
neutrophils (Niemann et al., 2004) but was absent in cells with a higher 
degree of maturation, suggesting that SG may play a role in early events of 
granule formation. Importantly, the packaging and segregation of particular 
granule components may require the presence of SG for the correct 
accommodation of these mediators into secretory vesicles. The role of SG 
in granule formation was also studied in bone-marrow derived CTMCs 
where it was seen that lack of SG did not interfere with the formation of 
secretory vesicles (Henningsson et al., 2006). Interesting, however, was the 
observation that SG mRNA levels could already be detected at day 0 of 
bone-marrow cultures suggesting that SG may play a role also in early 
events of hematopoietic cell development. Further studies on neutrophils 
revealed that lack of SG leads to defects only in one type of granules, the 
azurophil granules, whereas other secretory vesicles were not affected 
(Niemann et al., 2007). This indicates that within a cell type there seems to 
exist heterogeneity within secretory vesicles, where SG may or not play an 
important role in the aggregation of specific granule components. Further 
support of this notion came from studies on MCs, where SG KO bone-
marrow derived CTMCs displayed exclusively non-stainable empty-
appearing vesicles lacking electron dense cores as assessed by electron 
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microscopy (Henningsson et al., 2006), while these structures are present in 
lower numbers in SG wild-type MCs. Interestingly, previous reports have 
suggested that MC specific proteases may be located in different locations 
within the same granule pointing to a well-regulated and oriented granule 
organization of MCs mediators inside the secretory organelles (Whitaker-
Menezes et al., 1995).  

 
 

Serglycin and activation of granule components 

Many cell types exert their biological functions through the release of a 
wide range of mediators stored in secretory vesicles. Although being 
established as a storage matrix for such components in secretory vesicles, SG 
PGs are also thought to play an important role in the presentation and 
activation of some biologically active substances. As previously mentioned, 
the ability for bacteria clearance is severely affected by the absence of SG, 
which may indicate that stored components such as elastase cannot act 
against such pathogens, possibly because they require SG for storage or 
activity (Niemann et al., 2007). A recent study in macrophages revealed that 
SG plays a role in the regulation of macrophage tumor necrosis factor-α 
(TNF-α) where the secretion of this mediator in response to 
lipopolisaccharide stimulation is increased in SG KO macrophages 
(Zernichow et al., 2006). Furthermore, lysozyme is released and remains 
bound to PGs when exocytosed by macrophages (Lemansky & Hasilik, 
2001). Another well-characterized example of the importance of SG PGs in 
modulating biological functions of granule components involves certain 
MC specific proteases. Previous studies have demonstrated that MC 
proteases are released in macromolecular complexes with PGs during MC 
degranulation (Schwartz et al., 1981). Interestingly, MC-derived heparin 
PGs were shown to promote chymase cleavage of certain substrates by 
simultaneously interacting with both chymase and its positively charged 
substrates, facilitating the contact between both components and reducing 
electrostatic repulsions (Pejler & Sadler, 1999). Moreover, the presence of 
heparin PGs after release from MCs is thought to have a protective role 
against some protease inhibitors, preventing their binding to the proteases 
(Lindstedt et al., 2001; Pejler & Berg, 1995). Matrix metalloproteases 
(MMPs) are important mediators in tissue remodeling and inflammation 
processes. It has been shown that certain MCs proteases are involved in the 
processing and activation of these mediators, namely that the activation of 
proMMP-9 and proMMP-2 was abrogated in mice lacking the chymase 



 33

mMCP-4 (Tchougounova et al., 2005) which is known to be SG-
dependent, and that MC-dependent processing of proMMP-2 was shown 
to be affected in SG-deficient mice (Lundequist et al., 2006).  

SG has also been suggested to participate in cytotoxic events mediated by 
CTLs. CTL-mediated cytotoxicity of infected or tumor cells involves the 
action of perforin and granzyme B and it has been shown that both are 
exocytosed in a macromolecular complex with SG PGs (Metkar et al., 2002; 
Raja et al., 2002). Importantly, granzyme B was shown to enter target cells 
independently of perforin (Froelich et al., 1996) and upon release, granzyme 
B was still present as a complex with a PG (Metkar et al., 2002). 
Additionally, a complex formed by granzyme B and free chondroitin 4-
sulfate was shown to induce apoptosis in Jurkat cells (Galvin et al., 1999). 
Moreover, a protease-resistant PG thought to be SG was shown to be 
exocytosed by NK cells when incubated with target cells, suggesting that 
SG may also be involved in effector mechanisms of NK-induced killing 
(MacDermott et al., 1985; Schmidt et al., 1985).  

Furthermore, SG mRNA was shown to be present in endothelial cells 
and SG was seen to co-localize with tissue type plasminogen activator 
(Schick et al., 2001). Given that in endothelial cells, SG is constitutively 
secreted (Schick et al., 2001), it has been proposed that, similarly to MC 
MMPs, SG may play an important role in tissue remodeling and cell 
migration events involving this protease. Another cell migration molecule 
known to interact with SG is CD44, which is a cell surface adhesion 
molecule expressed in a wide range of cell types. Previous studies have 
demonstrated that SG interacts with CD44 present on the cell surface of 
cells, leading to degranulation events on CD44 positive CTL clones 
(Toyama-Sorimachi et al., 1995). These findings further suggest that 
extracellular SG may be involved in cell-cell interaction and activation of 
lymphoid cells. 
 

Turnover of exocytosed Serglycin 

Little is still known about the fate of SG after exocytosis from MCs, 
macrophages and other cell types. It has been shown that when SG is 
injected into the blood stream of rats, liver sinusoidal cells are able to 
capture it and degrade it, contributing to the reduced levels that are found 
in plasma (Oynebraten et al., 2000). 90% of the injected radiolabelled SG 
PGs were found in the liver, 5% in the blood and 5% in the kidney, spleen 
and urine, pointing for a major uptake by liver cells. This study also showed 
that it is mainly the hyaluronan receptor present on the surface of these cells 
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that is responsible for the elimination of SG from the bloodstream. 
Interestingly, a subsequent study showed that the core protein is degraded 
more rapidly than the GAG chains and that the final products of GAG 
degradation are lactate and sulfate, indicating that this process is anaerobic 
(Falkowska-Hansen et al., 2006). So far, this is the most-well documented 
mechanism for elimination of SG. However, due to the interaction of 
partner cells in processes such as inflammation, it does not  rule out other 
mechanisms through which SG is eliminated. In fact, MCs and 
macrophages are known to co-exist in inflammation sites and it has been 
suggested that macrophages may be involved in the uptake of SG PGs 
released in complex with MCs mediators (Lindahl et al., 1979). 
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Present Investigations 

Aim 

The aim of the current studies was to investigate and elucidate the 
functional aspects of SG PGs as components of secretory granules, and to 
provide further insights into their interactions with other intra-granular 
mediators, using a genetic SG-deficient mouse strain. 
 

Results and discussion 

Paper I: Serglycin-Deficient Cytotoxic T Lymphocytes Display Defective Secretory 
Granule Maturation And Granzyme B Storage 
CTLs play a pivotal role in the defense of the organism by attacking and 
eliminating degenerated harmful cells (e.g. tumor cells, virus infected cells). 
Fas-ligand and the granzyme B/perforin complex have long been 
recognized as the main components of the lymphocyte-mediated killing and 
have received particular attention in several studies. Nevertheless, the full 
understanding of the molecular mechanism behind their action still holds 
some questions that remain to be answered, namely the presence and role of 
“helper” molecules such as SG PGs. We thus investigated the importance of 
SG PGs in the granule organization as well as their interactions with other 
granular mediators in CTLs 
 

Deletion of the SG gene did not result in an inability of granule formation 
in concavanalin A -stimulated CTLs from either spleen or blood. However, 
striking differences were seen sub-structurally where SG-/- CTLs possessed 
exclusively spherical-shaped electron translucent granules filled with an 
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amorphous matrix. In contrast, SG+/- CTLs contained mostly 
heteromorphous cytotoxic granules with an electron-dense irregular core, 
but also spherical electron translucent granules filled with an amorphous 
matrix. Furthermore, SG-/-  CTLs incorporated low amounts of radiolabeled 
sulfate both in secreted and intracellular GAGs in contrast to GAGs 
recovered from SG+/- cells, indicating that in fact SG PGs are the 
dominating PGs species both intra and extracellularly. However, as assessed 
by RT-PCR, CTLs were shown to express other PGs species, namely 
glypican-1, glypican-4 and syndecan-4, which may account for the 
remaining cell associated sulfated GAG chains. 
 

Previous reports have shown that SG PGs interacted with granzymes and 
perforin (Masson et al., 1990; Metkar et al., 2002) and that granzyme B 
engages in tight interactions with SG PGs as well as with free CS chains 
(Galvin et al., 1999; Raja et al., 2002) forming a complex that withholds the 
capacity to induce apoptosis (Metkar et al., 2002). We therefore addressed 
the possible dependence of CTLs granule mediators on SG PGs. As 
demonstrated by means of Western-blotting, granzyme A, perforin and Fas-
L are not dependent on SG PGs for storage. However, granzyme B levels 
were shown to be dramatically reduced in SG-/- CTLs indicating that SG is 
essential for its storage, which is consistent with other previous findings 
(Galvin et al., 1999; Raja et al., 2002). Although both are basic proteins, 
granzyme A and B exhibit different affinities towards SG PGs possibly due 
to a distinct protein folding and/or special arrangement. 
 

In conclusion, this study shows for the first time that SG PGs are the 
dominating PG species synthesized by CTLs and are important for the 
storage of granzyme B, but not granzyme A or perforin. 
 
Paper II: Serglycin Proteoglycan is required for Secretory Granule Integrity in 
Mucosal Mast Cells 
MCs are specialized cells involved in the host defense against a variety of 
pathogens such as bacteria (Echtenacher et al., 1996; Malaviya et al., 1996) 
and parasites (Ha et al., 1983; Nawa et al., 1985). Upon activation, MCs 
degranulate and release a broad range of mediators found enclosed in 
cytoplasmatic granules which include histamine, cytokines, proteases and 
proteoglycans. Depending on their tissue localization and micro-
environmental stimuli, MCs may exhibit distinct phenotypical features and 
two major subtypes can be distinguished: CTMCs present in the skin and 
peritoneal cavity, and MMCs which are found in mucous membranes and 
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in the intestinal lamina propria (Galli, 1990; Metcalfe et al., 1997). The 
protease expression pattern of these MC subclasses is remarkably different 
where CTMCs are known to express MC CPA, mMCP-4, mMCP-5, 
mMCP-6 and mMCP-7 whereas MMCs contain mainly mMCP-1 and 
mMCP-2. Also, CTMCs and MMCs express different PGs species with 
heparin PGs being the most prominent PG species found in CTMCs (Yurt 
et al., 1977) whilst MMCs express predominantly CS PGs (Enerback et al., 
1985). Insights into the role of heparin PGs in CTMCs came from studies 
where bone marrow-derived MCs (BMMCs) from NDST-2 (an enzyme 
involved in the epimerization and sulfation of heparin) knock-out mice 
displayed severe defects in the storage of MC secretory granule proteases 
(Forsberg et al., 1999; Humphries et al., 1999). Furthermore, SG-/- BMMCs 
showed dramatic defects in granule morphology and also a compromised 
ability to store MC proteases, namely mMCP-4, -5, -6 and CPA 
demonstrating the importance of the highly sulfated heparin PGs as storage 
scaffolds in MC secretory granules (Abrink et al., 2004).  

In this study we assessed the role of SG PGs in mucosal-like BMMCs. 
BMMCs from both SG+/+ and SG-/- were differentiated into a MMC-like 
phenotype in the presence of IL-3, IL-9, SCF and TGF-β, specifically 
regarding the expression of MMC proteases mMCP-1 and -2. (Pemberton 
et al., 2003). 
 

Mature MCs are typically stained with cationic dyes due to the presence 
of negatively charged molecules in their secretory granules. SG+/+ in vitro-
derived MMC-like cells exhibited a strong metachromatic granular staining 
with May-Grunwald/Giemsa whereas SG-/- cells displayed “empty”-
appearing vesicles, indicating that lack of SG leads to dramatic defects in the 
staining properties of MC with cationic dyes. Moreover, transmission 
electron micrographs revealed striking differences regarding granule 
organization between both phenotypes. Granules in SG+/+ cells showed a 
well defined sub-structural organization mainly divided into distinct 
compartments of low electron density (electron translucent) and electron 
dense cores. SG-/- granules are completely filled with material of 
intermediate electron density displaying an amorphous-like arrangement 
lacking the subdivision into electro dense and translucent regions, clearly 
showing that SG is crucial in the intra-granular organization process. 

Analysis of the cell-associated PGs upon biosynthetic labeling revealed an 
~80% reduction of 35SO4

2- incorporation into PGs recovered from SG-/- cells 
when compared to SG+/+ counterparts, which indicated that SG accounts 
for most of the secretory granule PGs. In addition, enzymatic digestion by 
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chondroitinase ABC resulted in the depolymerization of most of the GAGs 
from both SG+/+ and SG-/- cells confirming that both SG- and non-SG 
species accommodate GAGs of CS type. As assessed by anion exchange 
chromatography, these GAGs in both phenotypes display a similar anionic 
charge density corresponding to a low degree of sulfation. 

We next analyzed how the MC specific proteases were affected by the 
lack of SG. Although no differences were seen in terms of expression of 
MC proteases at the mRNA level, at  protein level SG-/- cells were devoid 
of mMCP-4, mMCP-6 and CPA while mMCP-5 levels were dramatically 
reduced, suggesting that these proteases are strongly dependent on SG PGs 
for storage. However, mMCP-1 and mMCP-7 levels were present in 
similar amounts in both SG+/+ and SG-/- cells indicating that these are 
independent on SG for storage whereas mMCP-2 is only partially 
dependent. 
 

Taken together, these results clearly establish that SG is the major cell-
associated PG in in vitro-derived MMC-like cells and plays an important 
role in the granule maturation process where SG PGs act as a preferential 
storage matrix for selected mediators. However, the differential degree of 
dependence on SG PGs varies between individual granule compounds. A 
likely explanation may reside in the fact that MC proteases possess different 
cationic properties which will mediate their stronger or weaker binding to 
the negatively charged GAG chains. 
 
Paper III: Age-Related Enlargement of Lymphoid Tissue and Altered Leukocyte 
Composition in Serglycin-Deficient Mice 
In paper III, we noted that older SG-deficient mice commonly showed 
enlarged spleens and anomalies in other lymphoid organs, namely Peyer’s 
patches and bronchus-associated lymphoid tissue (BALT). 
 

In spleen, SG deficiency resulted in a reduction of CD4+ cells as compared 
with SG+/+ controls whereas the percentage of CD45RC expressing cells 
was higher in SG-/- animals. Nevertheless, these results occurred 
independently of spleen enlargement which indicates that SG is possibly 
involved in the maturation process of immune cells in the spleen. In 
agreement with previous studies (Abrink et al., 2004; Braga et al., 2007), the 
lack of SG affects the metachromatic staining properties of MCs. However, 
and as judged by FACS analysis of peritoneal MCs, CD117 (c-kit) 
intensities were much lower in SG-/- exudates indicating a role for SG in the 
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regulation of this surface marker. Moreover, the number of peritoneal 
macrophages was shown to be markedly decreased in older SG-/- animals.  
 

The results in this paper indicate that SG deficiency leads to multiple age-
related abnormalities in several lymphoid organs. This provides an 
indication that SG may be involved in the homeostasis of the leukocyte 
population, most likely by affecting growth and differentiation factors that 
are important for cell differentiation.  
 
Paper IV: Reduction with Dithiothreitol Causes Serglycin-Specific Defects in 
Secretory Granule Integrity of Bone Marrow Derived Mast Cells. 
Secretory granules are specialized cytoplasmatic organelles whose main 
function is to serve as storage pools for specific cell mediators such as 
hormones, proteases and signaling molecules that are generally released in 
response to stimulation. These structures are present in many cell types, 
including endocrine and neuroendocrine cells as well as in a variety of 
hematopoietic cell types such as macrophages, neutrophils, basophils, CTLs 
and MCs. Previous reports using SG-/- mice provided important insights 
into the role of SG PGs in the granule maturation process in MCs (Abrink 
et al., 2004; Braga et al., 2007), where SG-/- MCs displayed granules lacking 
a normal sub-structural organization accompanied by an absence of several 
MC-specific proteases. Also, a recent study showed that SG-dependent MC 
proteases were correctly targeted into the secretory vesicles in both SG+/+ 
and SG-/- MCs but, in the latter, these proteases were either targeted for 
degradation or secreted (Henningsson et al., 2006). However, the 
underlying mechanisms behind the sorting of SG PGs into secretory vesicles 
are yet to be disclosed. 
 

In the present study we addressed the possibility that a defined N-terminal 
motif involving a disulfide bridge may be involved in the correct sorting of 
SG PGs into secretory vesicles. It has been described that certain secretory 
proteins in neuroendocrine cells are known to possess an N-terminal 
bonded loop proven to be essential for their correct sorting into secretory 
granules (Benedum et al., 1987; Chanat et al., 1993; Tooze et al., 2001). 
Interestingly, alignment of SG sequences from several species showed a 
striking conservation of an N-terminal motif comprising two cysteine 
residues likely to form a disulfide bond similar to the one found in other 
secretory proteins. In order to investigate whether the disruption of this 
disulfide bond would lead to defects in the secretory granule organization, 
both SG+/+ and SG-/- BMMCs were cultured in the presence of 
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dithiothreitol (DTT). In fact, DTT caused to defects in the staining 
properties of SG+/+ cells with May-Grunwald/Giemsa, which was an 
indication that the intra-granular PGs were affected. Furthermore, ultra-
structural investigations using transmission electron microscopy revealed 
that the sub-structural organization of these granules was strikingly similar 
to that found in SG-/- BMMCs. Interestingly, however, SG-/- BMMC 
granule morphology was shown not to be affected by the presence of the 
reducing agent, suggesting that DTT interacts specifically with SG PGs 
within the granules. 

Biosynthetic radiolabelling experiments showed that in the presence of 
DTT, SG+/+ BMMCs incorporate low amounts of 35SO4

2- into the GAG 
chains when compared with non-treated cultures, and these levels are 
similar to the ones previously observed in PGs recovered from SG-/- 
BMMCs. Also, DTT did not lead to differences in incorporation of 35SO4

2- 
into GAG chains recovered from DTT-treated SG-/- BMMCs when 
compared with non-treated cultures. Together, these data clearly suggests 
that DTT interacts specifically with SG resulting in similar defects as seen in 
the SG-/- BMMCs. 

Since lack of SG leads to a compromised ability to store specific MC-
proteases (Abrink et al., 2004; Braga et al., 2007), we analyzed whether the 
effect of DTT would result in loss of function of SG as storage matrix of 
these proteases. However, immunoblot analysis of cell extracts showed that 
DTT did not affect the level of mMCP-6 protein. In contrast, incubation 
with 5mM DTT led to a considerable decrease in expression of the active 
form of CPA. Moreover, quantitative real-time PCR analysis revealed that 
the levels of both SG and CPA mRNA were not affected by DTT, 
indicating that these effects occur at the protein level. 
 

The results in this study suggest that this N-terminal motif comprising a 
disulfide bonded-loop present in the SG protein may be involved in the 
correct sorting of SG PGs into secretory granules and that the reductive 
cleavage of this bond leads to an impairment of function of SG PGs in 
BMMC secretory vesicles.  
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Concluding remarks 

PGs comprise a collection of biomolecules that are involved in many 
different biological processes such as cell adhesion, cell-cell and protein-cell 
interactions, and many others. Importantly, many immune cells of 
hematopoietic origin are known to possess cytoplasmatic vesicles where 
effector mediators are stored, which are released upon activation and 
stimulation. SG PGs have been shown to be the only known committed 
intracellular PG in hematopoietic cells.  Although considerable progress has 
been made in the SG PG field of research especially in the last five years due 
to the generation of a SG-deficient mouse strain, many aspects regarding SG 
biology and function still remain to be answered. More knowledge of SG 
interactions with other biological ligands, their dependence on SG for 
storage and activation would be of fundamental importance to understand 
more about the biology of many immune-related reactions and other 
physiological mechanisms. 

 
The work presented in this thesis focused on the role of SG PGs in 

secretory granule organization, their interaction with other granule 
components as well as their importance in other immune-related events. 
Moreover, the importance of the highly conserved amino-acid sequence 
present in the N-terminus of the SG protein has been addressed. We have 
demonstrated that SG PGs play a very important role in granule maturation 
and organization in CTLs and MMCs and further showed that specific 
granule components in these cells are SG-dependent for their correct 
storage. Our finding that the lack of SG may lead to defects in immune-
related organs in older animals, and that SG may be involved in the 
maturation and regulation of immune cells in lymphoid organs suggests that 
SG may not be only confined to intracellular compartments, but also play 
important roles extracellularly.  
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Even though the studies presented in this thesis have provided more 
insights about the importance of SG PGs, many questions still remain 
unanswered. It has yet to be determined how the expression of the SG gene 
is regulated and what are the trans-activating factors involved in cells where 
the expression of SG is undesired. From the studies presented here it is clear 
that SG PGs play a very important role in secretory granule maturation and 
organization but it remains to be elucidated why and by which mechanisms 
SG PGs are mainly secreted and released from other cell types such as 
macrophages. It seems likely that SG expression could be modulated 
through alternative splicing processes according to the stage of maturation 
and differentiation of the cell, but this aspect of SG biology remains to be 
addressed. Furthermore, it would be of fundamental interest to gain further 
insights into the role of the GAG chains and the determinants that drive the 
synthesis of either CS or heparin/HS into the SG core protein. Due to its 
role and interactions with many different biological ligands, it is therefore of 
interest to study in more detail the ligand interactions before and upon 
release and their biological effects as well as to learn more about the 
structural requirements involved in such interactions. Moreover studies 
should be conducted to address whether or not abnormal expression of SG 
or its absence leads to pathological conditions, especially in humans and if 
SG could be used as a biological marker of such conditions.  
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