

This is an author produced version of a paper published in Theriogenology.

This paper has been peer-reviewed and is proof-corrected, but does not include the journal pagination.

Citation for the published paper:

Karlsson, Iulia; Hagman, Ragnvi; Guo, Yongzhi; Humblot, Patrice; Wang, Liya; Wernersson, Sara. (2015) Pathogenic Escherichia coli and lipopolysaccharide enhance the expression of IL-8, CXCL5, and CXCL10 in canine endometrial stromal cells. *Theriogenology*. Volume: 84, Number: 1, pp 34–42. http://dx.doi.org/10.1016/j.theriogenology.2015.02.008.

Access to the published version may require journal subscription. Published with permission from: Elsevier Inc..

Epsilon Open Archive http://epsilon.slu.se

1	Pathogenic Escherichia coli and LPS enhance the expression of IL-8, CXCL5 and
2	CXCL10 in canine endometrial stromal cells
3	
4	Iulia Karlsson ¹ *, Ragnvi Hagman ² , Guo Yongzhi ² , Patrice Humblot ² , Liya Wang ¹ and
5	Sara Wernersson ¹ .
6	
7	¹ Department of Anatomy, Physiology and Biochemistry, Swedish University of
8	Agricultural Sciences, Uppsala, Sweden;
9	² Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala,
10	Sweden
11	
12	*Corresponding author: Iulia Karlsson, Department of Anatomy, Physiology and
13	Biochemistry, Section of Biochemistry, Swedish University of Agricultural Sciences,

14 Box 7011, SE-750 07 Uppsala. E-mail: <u>Iulia.Karlsson@slu.se; phone +46(0)18672149.</u>

15 SUMMARY

16 Chemokines play a central role in cellular communication in response to bacterial 17 infection. However, the knowledge of the chemokine responses to bacterial infections in 18 dogs remains limited. Uterine bacterial infection (pyometra) is one of the most common 19 bacterial diseases in dogs and causes sepsis in most of the cases. We have shown 20 previously that dogs with pyometra have higher mRNA levels of chemokines in uterus. 21 To assess whether the stromal part of endometrium express chemokines in response to 22 bacterial infection, we cultured endometrial stromal cells isolated from healthy dogs and 23 exposed them to either live pathogenic Escherichia coli (E. coli) isolated from uterus of a 24 dog with pyometra, or to lipopolysaccharide (LPS). Changes in the mRNA expression of 25 ELR⁺CXC chemokines IL-8, CXCL5, CXCL7, and ELR⁻CXC chemokine CXCL10 26 were measured after 24 h using quantitative real-time PCR. Levels of IL-8, CXCL5 and 27 CXCL10 were upregulated in endometrial stromal cells exposed to E. coli and to LPS 28 whereas the level of CXCL7 was decreased or unaffected. In addition, levels of IL-8 and 29 CXCL5, but not CXCL7 or CXCL10, were significantly higher in dogs with pyometra as 30 compared to healthy dogs. Our findings show that pathogenic uterine-derived E. coli 31 induces a CXC chemokine response both in cultured endometrial stromal cells within 24 32 h and in pyometra-affected uteri from dogs. Stromal cells could therefore play an 33 important role in early neutrophil and T cell recruitment to the site of inflammation 34 during Gram negative bacterial infection of the uterus. Further study is needed to clarify 35 the role of chemokines in host response to bacterial infection in dogs and the possibility 36 of using chemokines as diagnostic parameters for bacterial infection in this species.

37

38 Keywords: infection, chemokines, endometrium, dog/canine, pyometra.

39 1. INTRODUCTION

40	Chemokines belong to an ancient system of cellular communication [1] and [2] and play
41	a central role in virtually every aspect of host-pathogen interaction [3]. Based on the
42	arrangement of the first two cysteins, the chemokines are divided into C, CC, CXC and
43	CX ₃ C families [4]. Members of the CXC family, such as IL-8 (CXCL8) and CXCL10,
44	are important in recruiting leukocytes to the site of inflammation and they are expressed
45	in different cell types in response to bacterial infection in humans [5], [6], [7], [8] and [9],
46	mice [10] and [11], pigs [12], and [13] and cattle [14]. However, the CXC chemokine
47	response in bacterial infections in dogs remains largely unexplored.
48	
49	Uterine infection (pyometra) is one of the most common bacterial diseases in dogs,
50	resulting in life-threatening conditions such as systemic inflammatory response syndrome
51	in most of the cases [15] and [16]. Pyometra is caused mainly by Gram negative bacteria,
52	particularly Escherichia coli (E. coli) strains [17] and [18] that originate from the normal
53	vaginal flora of the bitch [19]. Lipopolysaccharide (LPS), the main component of
54	bacterial cell wall, acts as endotoxin once released and elicits a strong inflammatory
55	response in animals as well as in humans. It has been shown that bovine, human and
56	murine endometria respond to LPS and E. coli by expressing higher levels of chemokines
57	[20], [14] and [21]. In canine uteri affected by pyometra the expression of CXC
58	chemokines such as IL-8 and CXCL10 is upregulated [22], but the role of the
59	endometrium in chemokine response to pathogenic bacteria in the canine uteri is
60	unknown.
61	

62	IL-8, CXCL5 and CXCL7 are ELR ⁺ CXC chemokines because their N-terminal
63	sequences contain glutamic acid-leucine-arginine (ELR) motif before the first cysteine,
64	and are potent neutrophil chemoattractants [23] and [24]. Despite their similar sequences
65	and identical monomeric 3-D structures [25], these chemokines may exert different
66	functions during an inflammatory response [26]. IL-8 is one of the most clinically
67	evaluated chemokines of the CXC chemokine family [27]. Although IL-8 is known as a
68	potent neutrophil chemoattractant, blocking with IL-8 antibodies does not abrogate the
69	neutrophil migration towards LPS-treated bovine endometrial cells [14], suggesting that
70	other chemokines are involved in neutrophil recruitment to the uterus during a bacterial
71	infection.
72	
73	CXCL5, also known as epithelial cell-derived neutrophil-activating peptide-78 (ENA 78)
74	in humans, is preformed and stored in platelet granules. Under homeostatic conditions
75	platelets are thought to be the main source of this chemokine [28]. During inflammation,
76	however, tissue-resident cells have been shown to produce increased levels of CXCL5 in
77	vivo, as shown in epithelium samples from cows with endometritis [29] and in cultured
78	human stromal endometrial cells stimulated with LPS [30].

CXCL7, known also as neutrophil-activating protein (NAP-2) or platelet basic protein
(PBP), is stored and secreted by platelets both in homeostatic conditions and during
inflammation in humans [31] and [32]. CXCL7 was shown to bind neutrophils with
higher affinity than CXCL5 and to be more suitable for infection imaging in rabbit
muscle infected with *E. coli* [33]. CXCL7 was recently shown to improve innate

85	immunity to bacterial infection in <i>K. pneumoniae</i> pneumonia in mice [34], but its role in
86	canine bacterial infection remains unknown.

88	CXCL10, or IFN- γ -inducible protein (IP-10), is an ELR ⁻ CXC chemokine that does not
89	appear to have chemotactic activity for neutrophils [35], and is one of the few
90	chemokines of this group studied in dogs [36]. CXCL10 has been suggested to have
91	antimicrobial effect both for Gram positive and Gram negative bacteria [37], [38] and
92	[39], and we have previously shown that CXCL10 was upregulated in uteri from dogs
93	with pyometra [22].
94	
95	Bacterial infection of the uterus causes disruption of the endometrial epithelium, leaving
96	the stroma exposed to live bacteria and bacterial products [40]. Our hypothesis is that
97	endometrial stromal cells may contribute substantially to the production of CXC
98	chemokines in response to bacterial infection of the canine uterus. In this study we
99	investigated the expression levels of CXC chemokines IL-8, CXCL7, CXCL10 and a
100	canine homolog to CXCL5 in canine endometrial cells exposed to pathogenic E. coli and
101	to the main proinflammatory factor in Gram negative bacterial infection, LPS.
102	Knowledge of the endometrial cell chemokine response to bacterial infection can provide
103	a better understanding of the pathology that leads to organ-damaging inflammatory
104	conditions in dogs. This knowledge may contribute to the development of novel means of
105	detecting and tempering severe inflammatory conditions in dogs and possibly also other
106	animal species and humans.

107 2. MATERIALS AND METHODS

108 **2.1 Isolation and culture of stromal endometrial cells**

109 For isolation of endometrial cells, uteri were obtained from five healthy bitches of 110 different breeds (two Beagles, one German shepherd and two Rottweilers) between 1.8 111 and 3 years old presented for routine spay (ovariohysterectomy) at the University Animal 112 Hospital, Swedish University of Agricultural Sciences or at the Rembackens Animal 113 Clinic, Uppsala, Sweden. Dogs were clinically healthy as examined by the veterinary 114 surgeon in charge prior to surgery, and showed no signs of systemic or localized 115 inflammation at the time of surgery. The study was approved by Uppsala local ethical 116 committee, permission number C242/7, and performed with the permission of the dog 117 owners.

118

119 All the following procedures were performed using sterile technique, equipment and 120 solutions. Immediately after surgical removal, the uterus was placed in ice-cold 121 phosphate buffered saline (PBS) containing 2 µg/mL gentamicin, 6 U/mL nystatin 122 (Sigma-Aldrich, St. Louis, MO, USA), 6 mg/mL penicillin, 5 mg/mL streptomycin 123 (VWR, Stockholm, Sweden), and used within 1 h. Adhering fat and ligaments were 124 removed from the uterus with a scalpel, thereafter the uterine surface was rinsed with 125 PBS solution containing antibiotics as described above to remove blood cells and tissue 126 debris. Both of the uterine horns were cut open, and the endometrial layer was separated 127 from the myometrium with a pair of scissors and/or a scalpel. The endometrium was 128 mashed using a scalpel on a dry petri dish and transferred into a 50-mL Falcon tube 129 containing 250 U/mL collagenase from *Clostridium histolyticum* and 250 U/mL bovine

hyaluronidase (C5138 and H3506, respectively; Sigma-Aldrich, St. Louis, MO, USA) in
25 mL PBS with antibiotics. The resuspended tissue was homogenized with a 10-mL
syringe with an 18G×2" needle and incubated with vigorous shaking for 2.5 h at 39°C
[41]. The homogenisation step was repeated every 10 min during the enzymatic
digestion.

135

136 The solution with digested endometrium was centrifuged at 200×g for 6 min and the 137 resulting pellet was resuspended in PBS with antibiotics. The suspension was filtered first 138 through a 40 mesh screen (CD1, Sigma-Aldrich) and then through a 40-um nylon sieve 139 (Falcon, Becton Dickinson & Company, Franklin Lakes, NJ) to remove mucus and 140 undigested tissue. The filtrate was subsequently centrifuged at 200×g for 6 min and the 141 cell pellet resuspended in Dulbecco's Modified Eagle's Medium/Nutrient Mixture 142 (DMEM) F12 (D6434; Sigma-Aldrich) supplemented with 10% heat-inactivated fetal 143 bovine serum (FBS), 2.4 mM L-glutamine, insulin-, transferrin- and sodium selenite 144 (ITS) liquid media supplement $(0.5\times; I3146, Sigma-Aldrich)$, and antibiotics as described above. Cells were counted using Bürker chamber, plated in 25-cm² tissue culture flasks 145 (Sarstedt, Wiener Neudorf, Austria) at a concentration of 1 to 2×10^6 cells/mL, and 146 147 cultured at 37°C, in 5% CO₂. The medium was renewed within the first 24 h to remove 148 nonattached cells and changed every fourth day thereafter. Passages were performed at 80 149 to 100% cell confluence using trypsin-EDTA (VWR, Stockholm, Sweden). One 150 independent experiment was performed with each of the five endometrial cell cultures of 151 passage two or three, and cell cultures used for the experiment were > 99%152 morphologically homogenous as determined using light microscopy.

154 **2.2 Immunocytochemistry**

155 Endometrial stromal cells of passage two or three were allowed to attach in a chamber slide (cat. 177429; NuncInc, Naperville, IL, USA) at a density of 0.3 to 0.5×10⁶ cells/mL 156 157 in DMEM F12 medium for 48 h at 37°C with 5% CO₂, washed twice with PBS and fixed 158 using ice-cold methanol for 10 min. Cells were then washed with Tris-buffered saline 159 (TBS), dried at room temperature for 15 to 30 min and kept at -20°C prior to staining. 160 Cells were subjected to peroxidase blocking (Dako, Glostrup, Denmark) for 5 min, 161 washed with TBS and then blocked with goat serum (diluted 1:50) for 1 h at room 162 temperature prior to addition of primary antibodies. The primary antibodies (0.4 mg/L 163 mouse cytokeratin clones AE1/AE3, 0.3 mg/L mouse anti-vimentin clone V9, 0.3 mg/L 164 mouse smooth muscle actin clone 1A4, or 0.7 mg/L mouse IgG1 antibody as control; 165 Dako, Glostrup, Denmark) were incubated with cells overnight at 4°C in a sealed humid 166 container, thereafter washed 3 times with 0.05% Tween-20 in TBS. The Envision 167 polymer system (Dako) together with 3,3'-diaminobenzidine (DAB; Dako) was used for 168 detection, and hematoxylin staining was used for nuclei visualisation. Paraffin cross-169 sections (4 µm thin) of dog uteri obtained after OHE of one healthy dog were 170 deparaffinised, subjected to heat-induced antigen retrieval with PT Module buffer 171 (Labvision [Thermo Fisher Scientific], Fremont, CA) in a Pascal decloaking chamber 172 (DakoCytomation, Glostrup, Denmark), washed with TBS and stained as described 173 above.

174

175 2.3 Escherichia coli bacterial strain

176 The bacterial strain, E. coli P170 was earlier isolated from a female dog with severe 177 uterine infection (pyometra) [42] and serotyped at Statens Serum Institut (Division of 178 Diagnostics, Danish Ministry of Health, Copenhagen, Denmark) as O6:K14:H31 with P-179 and/or S-fimbria and α hemolysin. The strain was stored in PBS containing 15% glycerol 180 at -70°C. Prior to use in experiments, the bacterial cells were first plated onto an LB-agar 181 plate and incubated at 37°C overnight, then they were inoculated in liquid LB broth and 182 incubated for 12 to 16 h at 37°C with shaking. The culture was washed twice with PBS. 183 To determine bacterial concentration, a series of dilutions were plated on LB-agar plates 184 and incubated overnight at 37°C. The number of colonies was counted and the colony 185 forming units (cfu) were calculated.

186

187 2.4 In vitro exposure of stromal endometrial cells to Escherichia coli and LPS

188 Endometrial cells were detached from the culture flask using trypsin-EDTA, and then

pelleted and resuspended in antibiotic-free DMEM F12 medium to a density of 0.3 to 0.5

190 x 10^6 cells/mL in 24-well flat bottom tissue plates (Sarstedt Inc., Newton, NC 28658,

191 USA). The cells were then allowed to attach for 24 h prior to addition of bacteria (E. coli

192 P170) or LPS from E. coli 055:B5 (L2880; Sigma-Aldrich, St. Louis, MO, USA). The E.

193 coli P170 bacteria were added at the multiplicity of infection (MOI) of 3 to 5 (Bact Low)

194 or 30 to 50 (Bact Hi). After 1 h incubation, 120 µg/mL penicillin and 100 µg/mL

streptomycin were added to the cell culture to kill the bacteria. Alternatively, endometrial

- 196 cells were incubated with 100 ng/mL (LPS Low) or 1 μ g/mL (LPS Hi) of LPS [46, 53].
- 197 Nontreated endometrial cells were used as controls. After 24 h [14], [46] and [53] the
- 198 cells were detached by trypsination, pelleted by centrifugation and stored at -20° C. All

treatments were performed in triplicates, and data shown are mean values from fiveindependent experiments.

201

202 **2.5 Dogs with pyometra**

203 Cross-sections of frozen uterine tissue samples obtained from four female dogs with

204 pyometra and four healthy female dogs were obtained as described previously [22].

205 Briefly, the dogs diagnosed with pyometra according to criteria and method described

206 [43] and [44] were subjected to surgical treatment (ovariohysterectomy, OHE) of

207 pyometra, and the removed uterus was sectioned and snap-frozen in liquid nitrogen

208 whereby stored at -80°C. The control samples from healthy female dogs admitted for

209 elective spay (OHE) were obtained and treated identically to samples from dogs with

210 pyometra.

211

212 RNA preparation and cDNA synthesis

Total RNA of cultured endometrial cells was isolated using NucleoSpin kit (Macherey-Nagel, Düren, Germany) according to the manufacturer's instructions. First-strand cDNA was synthesized with Super-Script II reverse transcriptase (Invitrogen) according to the manufacturer's instructions with 10 μ L of RNA and a final concentration of 7.5 ng/ μ L random hexameres (Invitrogen) in a total volume of 20 μ l. cDNA from cross-sections of frozen uterine tissue samples obtained from four female dogs with pyometra and four healthy dogs was prepared as previously described [22].

220

221 Quantitative real-time RT-PCR

222	Quantitative real-time RT-PCR was performed on an ABI Prism 7900 HT using iQ
223	SYBR Green Supermix (Bio-Rad) in a final volume of 10 μ L as described previously
224	[45]. All samples were assayed in duplicate and non-template wells were used as negative
225	control. The target transcript levels were calculated by the comparative CT method (user
226	bulletin no. 2 for ABI Prism 770 sequence detection system; P7N 4303859; Applied
227	Biosystems) and normalized to the corresponding levels of a housekeeping gene
228	glucuronidase beta (GusB). Primer efficiency was validated by performing qPCR with
229	cDNA dilutions of 1:1, 1:10, and 1:100. The primer sequences are summarized in Table
230	1.
231	
232	Statistical analyses
233	Data were analyzed for normality using Kolmogorov-Smirnov, D'Agostino and Pearson

omnibus, and Shapiro-Wilk tests and were found to be nonnormally distributed which is 234

why Mann-Whitney's *u*-test for two-tailed distributions was used to analyze the 235

236 differences between the groups. All statistical analyses were performed using Graph Pad

Prism 4.0c, and a *P*-value < 0.05 was considered significant. 237

238 3. RESULTS

239 **3.1 Canine endometrial stromal cells**

240 Evaluation of uterine tissue sections after the isolation of stromal endometrial cells 241 confirmed that the endometrium was removed from the uterus leaving the muscle layer 242 (myometrium) intact (Fig 1A and B). Freshly isolated endometrial cells contained a 243 mixed population of cells including high numbers of red blood cells. The number of cells 244 decreased dramatically at the day of first passage, followed by the expansion of a > 99%245 morphologically homologous cell population with every further passage (Figure 1C). 246 The isolated stromal endometrial cells were positively stained with antibodies to smooth 247 muscle α -actin (Fig. 2A and B) and to the mesenchymal cell marker vimentin (Fig. 2B) 248 and D), but were negatively stained with antibodies to the epithelial cell marker 249 cytokeratin (Figure 2E and F) or with the isotype control (Figure 2G and H). This 250 confirms that the cell population surviving the culture conditions were endometrial 251 stromal cells.

252

3.2 Elevated expression levels of IL-8, CXCL5 and CXCL10 in canine endometrial stromal cells in response to LPS or *Escherichia coli* P170.

255 Our earlier study has shown that mRNA levels of IL-8 and CXCL10 were upregulated in

256 uterine tissue from dogs with severe bacterial infection [22]. To investigate the effect of a

257 clinically relevant pathogenic bacterial strain on chemokine expression in canine

endometrium, we incubated cultured canine endometrial cells with high and low doses of

E. coli P170 and measured mRNA levels of IL-8, CXCL5, CXCL7 and CXCL10. Both

low and high doses of *E. coli* P170 caused an increased expression of IL-8 ($P \le 0.001$),

261	CXCL5 ($P < 0.001$) and CXCL10 ($P < 0.001$ and $P < 0.01$, respectively) in endometrial		
262	cells from different dogs (Figure 3A, B and C). The levels of CXCL7 were, however,		
263	unaffected (Figure 3D).		
264			
265	To compare the difference between cell response to live bacteria and purified bacterial		
266	endotoxin, we incubated cultured endometrial cells with different doses of LPS for 24 h.		
267	Endometrial cells incubated with a high dose of LPS (1 μ g/mL, LPS Hi) had higher		
268	expression of IL-8 ($P < 0.001$), CXCL5 ($P < 0.001$) and CXCL10 ($P < 0.001$) compared		
269	to untreated control cells (Figure 3A, B and C). The cells incubated with a lower dose of		
270	LPS (100 ng/mL, LPS Low) had a lower expression of CXCL7 ($P < 0.001$; Figure 3D)		
271	when compared to control.		
272			
273	3.3 Enhanced expression of IL-8 and CXCL5 in endometrial tissue from dogs with		
274	pyometra		
275	To compare the <i>in vitro</i> data with a natural bacterial infection <i>in vivo</i> , uterine mRNAs		
276	from dogs with pyometra and healthy dogs were used to measure the expression levels of		
277	IL-8, CXCL5, CXCL7 and CXCL10. Levels of IL-8 and CXCL5 were upregulated 28-		
278	fold (range 1.5 to 205; $P < 0.05$) and 176-fold (range 4 to 740; $P < 0.05$) respectively in		
279	the uterus from dogs with pyometra compared to those of healthy dogs (Figure 4A and		
280	B). In contrast, the CXCL10 and CXCL7 expression levels were not different in uteri		
281	from dogs with pyometra and healthy controls (Figure 4C and D).		

282 4. DISCUSSION

283 This study shows that canine endometrial stromal cells express significantly increased 284 elevated levels of the CXC chemokines IL-8, CXCL5 and CXCL10, but not CXCL7, in 285 response to stimulation with *E. coli* or LPS *in vitro*. These findings are in agreement with 286 previous reports showing that human, bovine and canine endometrial stromal cells 287 express Toll-like receptor 4 (TLR4) [46], [47], [48] and [49], a receptor which is utilized 288 by LPS [50]. Our results are also in agreement with those of Silva and collaborators [49] 289 showing an upregulation of TLR4 expression in uteri from dogs with pyometra. 290 291 We showed that canine endometrial stromal cells increase IL-8 mRNA synthesis by 292 nearly 30-fold in response to LPS, and by nearly 60-fold in response to a pathogenic E. 293 *coli* strain within 24 h. We showed also that in uteri from dogs with pyometra the 294 expression of IL-8 is highly upregulated, which in line with our earlier study [22]. LPS 295 and E. coli were reported to upregulate IL-8 production in murine, bovine and human 296 epithelial and stromal endometrial cells [21], [51], [52] and [53]. IL-8 is known as an 297 early marker of bacterial infection in humans because the expression of IL-8 mRNA is 298 detected within minutes after LPS exposure in peripheral blood mononuclear cells [54]. 299 Increased serum concentration of IL-8 preceded the onset of fever and increased blood 300 concentrations of C-reactive protein in humans with sepsis [54]. Serum concentrations of 301 IL-8 were higher in dogs with sepsis secondary to pyometra compared to dogs without 302 sepsis [55]. Our data suggest that stromal cells may be an important early source of IL-8 303 for neutrophil recruitment during a bacterial infection of the uterus when the epithelial

layer of the endometrium is disrupted. Moreover, IL-8 can be a useful early biomarker ofuterine infection and possibly also sepsis in dogs.

306

307 We showed that the mRNA expression of CXCL5, but not CXCL7, is significantly 308 potentiated in canine pyometra and in cultured canine stromal endometrial cells exposed 309 to LPS and E. coli. This is in agreement with another report showing that human stromal 310 endometrial cells, but not epithelial endometrial cells, produce and secrete increased 311 amounts of CXCL5 (ENA-78) in a dose-dependent response to LPS stimulation in vitro 312 [30]. Human endometrial stromal cells, in contrast to epithelial endometrial cells, do not 313 express CXCL5 constitutively, but the CXCL5 mRNA production is increased when 314 stimulated with a potent inflammatory trigger IL-1 β [56]. It has been shown that tissue-315 resident cells, such as lung epithelial cells, are the main source of both local and systemic 316 CXCL5 during a bacterial infection, as shown in E. coli-induced lung inflammation and 317 in tuberculosis model in mice, and that CXCL5 expression by these cells is harmful for 318 bacterial clearance and inflammation regulation [57] and [58]. In bovine endometrial 319 epithelium samples, CXCL5 mRNA levels were higher in cows with subclinical and 320 clinical endometritis compared to healthy cows [29], supporting a role for CXCL5 in 321 endometrial response to bacterial infection. Several other cell types have been shown to 322 produce CXCL5 during inflammation, such as murine enterocytes [59], human 323 eosinophils [60] and monocytes [61], suggesting that CXCL5 may have an important role 324 in inflammation. To our knowledge, this study is the first to show that the CXCL5 gene is 325 expressed at the mRNA level in canine endometrial stromal cells. Further studies are 326 needed to clarify the specific roles of CXCL5 in canine bacterial infection.

328	In the current study, we show that canine endometrial cells express CXCL7, and that the
329	level of expression is not affected by co-culture with bacteria. Similarly, in uterus from
330	dogs with pyometra the CXCL7 mRNAs are at the same levels as those of healthy dogs.
331	However, the mRNA expression of CXCL7 was downregulated in cells stimulated with a
332	lower dose of LPS. Our results indicate that the role of CXCL7 differs from that of IL-8
333	and CXCL5 in response to Gram negative bacterial infection in canine uterus, suggesting
334	that CXCL7 may be not a part of early chemokine response to Gram negative bacterial
335	infection in endometrial stromal cells in dogs.
336	
337	In our study both LPS and <i>E. coli</i> caused a significant upregulation of CXCL10 in
338	stromal endometrial cells. CXCL10 is known to facilitate T effector cell generation and
339	trafficking in response to LPS stimulation both in mice and in humans [62] and [63].
340	Human connective tissue fibroblasts were reported to release high concentrations of
341	CXCL10 in response to LPS stimulation in vitro [64]. The present data show that
342	endometrial stromal cells produced up to 27-fold more CXCL10 mRNA in response to
343	LPS, suggesting that the stromal cells may have an important role in T cell recruitment
344	during Gram negative bacterial infection. In uteri from dogs with pyometra the CXCL10
345	mRNA levels were similar to those of healthy dogs, in contrast to an earlier observation
346	that CXCL10 expression was increased in uterus from dogs with pyometra, obtained by
347	using a less quantitative method and involved a larger, and more diverse group of animals
348	with pyometra [22]. Collectively, our data suggests that the expression of CXCL10 is
349	highly variable between individuals with uterine infection. Because the phase of the

350 estrus cycle and other cofactors of uterine infection, e.g. closed or opened cervix, affect

the degree of leukocyte proliferation and migration to the infected uterus [65], [66] and

352 [67], the expression of CXCL10 may also be influenced by these factors.

353

354 5. CONCLUSIONS

355 In this study, we investigated the expression of both ELR⁺ and ELR⁻ CXC chemokines in

356 canine bacterial infection both in vivo and in vitro and showed that pathogenic uterine-

357 derived E. coli induces a CXC chemokine response both in pyometra-affected uteri and in

358 cultured endometrial stromal cells from dogs. These findings suggest that stromal cells

are important players in the early neutrophil and T cell recruitment to the site of

360 inflammation during bacterial infection of the uterus. Further study is needed to clarify

361 the role of chemokines in host response to bacterial infection in dogs and the possibility

362 of using chemokines as diagnostic parameters for bacterial infection in this species.

363

364 ACKNOWLEDGMENTS

365 This work was financially supported by The Companion Animals Research Foundation at

the Swedish University of Agricultural Sciences (SLU), The Thure F. and Karin

367 Forsberg's Research Foundation, The Agria Insurance Co and Swedish Kennel Club's

368 Research Foundation. We thank Rembackens Animal Clinic (Uppsala, Sweden), and the

369 University Animal Hospital, Swedish University of Agricultural Sciences (Uppsala,

370 Sweden) for providing the tissues. We are especially grateful to Prof. Gunnar Pejler and

371 Dr. Elin Rönnberg for providing mRNA from the cross-sections of uterine tissues from

- 372 dogs with pyometra and healthy control dogs, and Drs. Helena Wensman, Malgorzata
- 373 Madej and Supranee Jitpean for technical assistance.
- 374

375 DISCLOSURES

- 376 All authors have materially participated in the research and/or article preparation and
- 377 have approved the final version of the article. The authors declare no financial or
- 378 commercial conflicts of interest.

379 REFERENCES

- Hughes AL, Yeager M. Coevolution of the mammalian chemokines and their
 receptors. Immunogenetics 1999;49:115-24.
- 382 2. Najakshin AM, Mechetina LV, Alabyev BY, Taranin AV. Identification of an
- 383 IL 8 homolog in lamprey (Lampetra fluviatilis): early evolutionary divergence
- 384 of chemokines. European journal of immunology 1999;29:375-82.
- 385 3. Chensue SW. Molecular machinations: Chemokine signals in host-pathogen
 386 interactions. Clin Microbiol Rev 2001;14:821-35.
- Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in
 immunity. Immunity 2000;12:121-7.
- 389 5. Lin Y, Zhang M, Barnes PF. Chemokine production by a human alveolar
- epithelial cell line in response to Mycobacterium tuberculosis. Infection and
 immunity 1998;66:1121-6.
- 392 6. Wang Z-M, Liu C, Dziarski R. Chemokines are the main proinflammatory
- 393 mediators in human monocytes activated by Staphylococcus aureus,
- 394 peptidoglycan, and endotoxin. Journal of Biological Chemistry 2000;275:20260395 7.
- 396 7. Epelman S, Bruno TF, Neely GG, Woods DE, Mody CH. Pseudomonas
- 397 aeruginosa exoenzyme S induces transcriptional expression of proinflammatory
- 398 cytokines and chemokines. Infection and immunity 2000;68:4811-4.
- 399 8. Innocenti M, Svennerholm A-M, Quiding-Järbrink M. Helicobacter
- 400 pyloriLipopolysaccharides Preferentially Induce CXC Chemokine Production in
- 401 Human Monocytes. Infection and immunity 2001;69:3800-8.

- 402 9. Jansky L, Reymanova P, Kopecky J. Dynamics of cytokine production in human
 403 peripheral blood mononuclear cells stimulated by LPS, or infected by Borrelia.
 404 Physiological research 2003;52:593-8.
- 405 10. Kopydlowski KM, Salkowski CA, Cody MJ, van Rooijen N, Major J, Hamilton
- 406 TA *et al.* Regulation of macrophage chemokine expression by lipopolysaccharide
 407 *in vitro* and *in vivo*. The Journal of Immunology 1999;163:1537-44.
- 408 11. Elizur A, Adair-Kirk TL, Kelley DG, Griffin GL, Senior RM. Clara cells impact
- 409 the pulmonary innate immune response to LPS. American Journal of Physiology-
- 410 Lung Cellular and Molecular Physiology 2007;293:L383-L92.
- 411 12. Gordon JR, Zhang X, Li F, Nayyar A, Town J, Zhao X. Amelioration of
- 412 pathology by ELR-CXC chemokine antagonism in a swine model of airway
 413 endotoxin exposure. Journal of agromedicine 2009;14:235-41.
- 414 13. Uddin MJ, Nuro-Gyina PK, Islam MA, Tesfaye D, Tholen E, Looft C et al.
- 415 Expression dynamics of Toll-like receptors mRNA and cytokines in porcine
- 416 peripheral blood mononuclear cells stimulated by bacterial lipopolysaccharide.
- 417 Veterinary immunology and immunopathology 2012;147:211-22.
- 418 14. MacKintosh SB, Schuberth H-J, Healy LL, Sheldon IM. Polarised bovine
- 419 endometrial epithelial cells vectorially secrete prostaglandins and chemotactic
- 420 factors under physiological and pathological conditions. Reproduction
- 421 2013;145:57-72.
- Hagman R, Kindahl H, Lagerstedt A-S. Pyometra in Bitches Induces Elevated
 Plasma Endotoxin and Prostaglandin F2alpha Metabolite Levels. Acta Veterinaria
- 424 Scandinavica 2006;47:55 68.

425	16.	Fransson BA, Lagerstedt A-S, Bergstrom A, Hagman R, Park JS, Chew BP et al.
426		C-reactive protein, tumor necrosis factor α , and interleukin-6 in dogs with
427		pyometra and SIRS. Journal of Veterinary Emergency and Critical Care
428		2007;17:373-81.
429	17.	Fransson B, Lagerstedt AS, Hellmen E, Jonsson P. Bacteriological findings, blood
430		chemistry profile and plasma endotoxin levels in bitches with pyometra or other
431		uterine diseases. Journal of Veterinary Medicine Series A 1997;44:417-26.
432	18.	Hagman R, Greko C. Antimicrobial resistance in Escherichia coli isolated from
433		bitches with pyometra and from urine samples from other dogs. Veterinary record
434		2005;157:193-7.
435	19.	Wadås B, Kühn I, Lagerstedt A-S, Jonsson P. Biochemical phenotypes of
436		Escherichia coli in dogs: Comparison of isolates isolated from bitches suffering
437		from pyometra and urinary tract infection with isolates from faeces of healthy
438		dogs. Veterinary microbiology 1996;52:293-300.
439	20.	Fahey J, Schaefer T, Channon J, Wira C. Secretion of cytokines and chemokines
440		by polarized human epithelial cells from the female reproductive tract. Human
441		Reproduction 2005;20:1439-46.
442	21.	Sheldon IM, Roberts MH. Toll-like receptor 4 mediates the response of epithelial
443		and stromal cells to lipopolysaccharide in the endometrium. PloS one
444		2010;5:e12906.
445	22.	Hagman R, Rönnberg E, Pejler G. Canine uterine bacterial infection induces
446		upregulation of proteolysis-related genes and downregulation of homeobox and
447		zinc finger factors. PloS one 2009;4:e8039.

448	23.	Baggiolini M, Imboden P, Detmers P. Neutrophil activation and the effects of
449		interleukin-8/neutrophil-activating peptide 1 (IL-8/NAP-1). Cytokines 1991;4:1-
450		17.
451	24.	Huber AR, Kunkel SL, Todd RF, Weiss SJ. Regulation of transendothelial
452		neutrophil migration by endogenous interleukin-8. Science 1991;254:99-102.
453	25.	Fernandez EJ, Lolis E. Structure, function, and inhibition of chemokines. Annual
454		review of pharmacology and toxicology 2002;42:469-99.
455	26.	Walz A, Schmutz P, Mueller C, Schnyder-Candrian S. Regulation and function of
456		the CXC chemokine ENA-78 in monocytes and its role in disease. Journal of
457		leukocyte biology 1997;62:604-11.
458	27.	Groves D, Jiang Y. Chemokines, a family of chemotactic cytokines. Critical
459		Reviews in Oral Biology & Medicine 1995;6:109-18.
460	28.	Semple JW, Italiano JE, Freedman J. Platelets and the immune continuum. Nature
461		Reviews Immunology 2011;11:264-74.
462	29.	Fischer C, Drillich M, Odau S, Heuwieser W, Einspanier R, Gabler C. Selected
463		pro-inflammatory factor transcripts in bovine endometrial epithelial cells are
464		regulated during the oestrous cycle and elevated in case of subclinical or clinical
465		endometritis. Reproduction, fertility, and development 2010;22:818-29.
466	30.	Nasu K, Arima K, Kai K, Fujisawa K, Nishida M, Miyakawa I. Expression of
467		epithelial neutrophil-activating peptide 78 in cultured human endometrial stromal
468		cells. Molecular Human Reproduction 2001;7:453-8.
469	31.	Brandt E, Petersen F, Ludwig A, Ehlert JE, Bock L, Flad H-D. The beta-
470		thromboglobulins and platelet factor 4: blood platelet-derived CXC chemokines

- with divergent roles in early neutrophil regulation. Journal of leukocyte biology2000;67:471-8.
- 473 32. Hundelshausen PV, Koenen RR, Weber C. Platelet-Mediated Enhancement of
 474 Leukocyte Adhesion. Microcirculation 2009;16:84-96.
- 475 33. Rennen HJ, Frielink C, Brandt E, Zaat SA, Boerman OC, Oyen WJ et al.
- 476 Relationship Between Neutrophil-Binding Affinity and Suitability for Infection
- 477 Imaging: Comparison of 99mTc-Labeled NAP-2 (CXCL-7) and 3 C-Terminally
- 478 Truncated Isoforms. Journal of Nuclear Medicine 2004;45:1217-23.
- 479 34. Kowalska M, Dai N, Liu Y, Liu P, Hudock K, Jeyaseelan S et al. Platelet Cxcl7
- 480 And Cxcl4 Inhibit Chemokine Scavenging And Improve Innate Immunity To
- 481 Bacterial Infection. Am J Respir Crit Care Med 2013;187:A1323.
- 482 35. Laing KJ, Secombes CJ. Chemokines. Developmental & Comparative
 483 Immunology 2004;28:443-60.
- 484 36. Gangur V, Birmingham NP, Thanesvorakul S. Chemokines in health and disease.
 485 Veterinary immunology and immunopathology 2002;86:127-36.
- 486 37. Yang D, Chen Q, Hoover DM, Staley P, Tucker KD, Lubkowski J et al. Many
- 487 chemokines including CCL20/MIP-3α display antimicrobial activity. Journal of
 488 leukocyte biology 2003;74:448-55.
- 489 38. Egesten A, Eliasson M, Johansson HM, Olin AI, Mörgelin M, Mueller A et al.
- 490 The CXC chemokine MIG/CXCL9 is important in innate immunity against
- 491 Streptococcus pyogenes. Journal of Infectious Diseases 2007;195:684-93.

492	39.	Cole AM, Ganz T, Liese AM, Burdick MD, Liu L, Strieter RM. Cutting edge:
493		IFN-inducible ELR- CXC chemokines display defensin-like antimicrobial
494		activity. J Immunol 2001;167:623-7.
495	40.	Sheldon IM, Cronin J, Goetze L, Donofrio G, Schuberth HJ. Defining postpartum
496		uterine disease and the mechanisms of infection and immunity in the female
497		reproductive tract in cattle. Biology of reproduction 2009;81:1025-32.
498	41.	Charpigny G, Reinaud P, Creminon C, Tamby JP. Correlation of increased
499		concentration of ovine endometrial cyclooxygenase 2 with the increase in PGE(2)
500		and PGD(2) in the late luteal phase. J Reprod Fertil 1999;117:315-24.
501	42.	Hagman R, Kühn I. Escherichia coli strains isolated from the uterus and urinary
502		bladder of bitches suffering from pyometra: comparison by restriction enzyme
503		digestion and pulsed-field gel electrophoresis. Veterinary microbiology
504		2002;84:143-53.
505	43.	Hagman R, Kindahl H, Fransson BA, Bergstrom A, Holst BS, Lagerstedt AS.
506		Differentiation between pyometra and cystic endometrial hyperplasia/mucometra
507		in bitches by prostaglandin F-2 alpha metabolite analysis. Theriogenology
508		2006;66:198-206.
509	44.	Karlsson I, Wernersson S, Ambrosen A, Kindahl H, Sodersten F, Wang L et al.
510		Increased concentrations of C-reactive protein but not high-mobility group box 1
511		in dogs with naturally occurring sepsis. Veterinary Immunology and
512		Immunopathology 2013;156:64-72.
513	45.	Duelli A, Rönnberg E, Waern I, Ringvall M, Kolset SO, Pejler G. Mast cell
514		differentiation and activation is closely linked to expression of genes coding for

515		the serglycin proteoglycan core protein and a distinct set of chondroitin sulfate
516		and heparin sulfotransferases. The Journal of Immunology 2009;183:7073-83.
517	46.	Herath S, Fischer DP, Werling D, Williams EJ, Lilly ST, Dobson H et al.
518		Expression and function of Toll-like receptor 4 in the endometrial cells of the
519		uterus. Endocrinology 2006;147:562-70.
520	47.	Horne AW, Stock SJ, King AE. Innate immunity and disorders of the female
521		reproductive tract. Reproduction 2008;135:739-49.
522	48.	Davies D, Meade KG, Herath S, Eckersall PD, Gonzalez D, White JO et al. Toll-
523		like receptor and antimicrobial peptide expression in the bovine endometrium.
524		Reprod Biol Endocrinol 2008;6:53.
525	49.	Silva E, Leitão S, Henriques S, Kowalewski M, Hoffmann B, Ferreira-Dias G et
526		al. Gene transcription of TLR2, TLR4, LPS ligands and prostaglandin synthesis
527		enzymes are up-regulated in canine uteri with cystic endometrial hyperplasia-
528		pyometra complex. Journal of reproductive immunology 2010;84:66-74.
529	50.	Pioli PA, Amiel E, Schaefer TM, Connolly JE, Wira CR, Guyre PM. Differential
530		expression of Toll-like receptors 2 and 4 in tissues of the human female
531		reproductive tract. Infect Immun 2004;72:5799-806.
532	51.	Sheldon IM, Rycroft AN, Dogan B, Craven M, Bromfield JJ, Chandler A et al.
533		Specific strains of Escherichia coli are pathogenic for the endometrium of cattle
534		and cause pelvic inflammatory disease in cattle and mice. PLoS One
535		2010;5:e9192.
536	52.	Kitaya K, Yasuo T. Aberrant expression of selectin E, CXCL1, and CXCL13 in
537		chronic endometritis. Modern Pathology 2010;23:1136-46.

538	53.	Turner ML, Cronin JG, Healey GD, Sheldon IM. Epithelial and stromal cells of
539		bovine endometrium have roles in innate immunity and initiate inflammatory
540		responses to bacterial lipopeptides in vitro via Toll-like receptors TLR2, TLR1,
541		and TLR6. Endocrinology 2014;155:1453-65.
542	54.	Hirao Y, Kanda T, Aso Y, Mitsuhashi M, Kobayashi I. Interleukin-8 - an early
543		marker for bacterial infection. Lab Medicine 2000;31:39-44.
544	55.	Karlsson I, Hagman R, Johannisson A, Wang L, Karlstam E, Wernersson S.
545		Cytokines as immunological markers for systemic inflammation in dogs with
546		pyometra. Reproduction in Domestic Animals 2012;47:337-41.
547	56.	Bersinger NA, Frischknecht F, Taylor RN, Mueller MD. Basal and cytokine-
548		stimulated production of epithelial neutrophil activating peptide-78 (ENA-78) and
549		interleukin-8 (IL-8) by cultured human endometrial epithelial and stromal cells.
550		Fertility and sterility 2008;89:1530-6.
551	57.	Mei J, Liu Y, Dai N, Favara M, Greene T, Jeyaseelan S et al. CXCL5 regulates
552		chemokine scavenging and pulmonary host defense to bacterial infection.
553		Immunity 2010;33:106-17.
554	58.	Nouailles G, Dorhoi A, Koch M, Zerrahn J, Weiner J, Faé KC et al. CXCL5-
555		secreting pulmonary epithelial cells drive destructive neutrophilic inflammation in
556		tuberculosis. The Journal of clinical investigation 2014;124:1268-82.
557	59.	Mei J, Liu Y, Dai N, Hoffmann C, Hudock KM, Zhang P et al. Cxcr2 and Cxcl5
558		regulate the IL-17/G-CSF axis and neutrophil homeostasis in mice. The Journal of
559		clinical investigation 2012;122:974-86.

560	60.	Persson T, Monsef N, Andersson P, Bjartell A, Malm J, Calafat J et al.
561		Expression of the neutrophil - activating CXC chemokine ENA-78/CXCL5 by
562		human eosinophils. Clinical & Experimental Allergy 2003;33:531-7.
563	61.	Schnyder-Candrian S, Strieter R, Kunkel S, Walz A. Interferon-alpha and
564		interferon-gamma down-regulate the production of interleukin-8 and ENA-78 in
565		human monocytes. Journal of leukocyte biology 1995;57:929-35.
566	62.	Dufour JH, Dziejman M, Liu MT, Leung JH, Lane TE, Luster AD. IFN-γ-
567		inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in
568		effector T cell generation and trafficking. The Journal of Immunology
569		2002;168:3195-204.
570	63.	Padovan E, Spagnoli GC, Ferrantini M, Heberer M. IFN-α2a induces IP-
571		10/CXCL10 and MIG/CXCL9 production in monocyte-derived dendritic cells and
572		enhances their capacity to attract and stimulate CD8+ effector T cells. Journal of
573		Leukocyte Biology 2002;71:669-76.
574	64.	Proost P, Vynckier AK, Mahieu F, Put W, Grillet B, Struyf S et al. Microbial
575		Toll - like receptor ligands differentially regulate CXCL10/IP-10 expression in
576		fibroblasts and mononuclear leukocytes in synergy with IFN- γ and provide a
577		mechanism for enhanced synovial chemokine levels in septic arthritis. European
578		journal of immunology 2003;33:3146-53.
579	65.	Carson R, Wolfe D, Klesius P, Kemppainen R, Scanlan C. The effects of ovarian
580		hormones and ACTH on uterine defense to Corynebacteriumpyogenes in cows.
581		Theriogenology 1988;30:91-7.

582	66.	Ramadan A, Johnson G, Lewis G. Regulation of uterine immune function during
583		the estrous cycle and in response to infectious bacteria in sheep. Journal of animal
584		science 1997;75:1621-32.
585	67.	Kunkitti P, Srisuwatanasagul S, Chatdarong K. Distribution of estrogen receptor
586		alpha and progesterone receptor, and leukocyte infiltration in the cervix of cyclic

587 bitches and those with pyometra. Theriogenology 2011;75:979-87.

588 Figure legends

Figure 1. Endometrial cell isolation and culture. (A, B) Tissue sections after removal of the endometrium stained with hematoxylin and eosin, magnification ×40. The endometrium is partially (A) or completely (B) separated from muscle tissue. (C) Cell survival dynamics in culture. Viable cells were staining with trypan blue and counted using a Bürker chamber on the day of isolation and during each passage. The graph is

showing the representative data for five independent experiments.

595

597 immunostaining with smooth muscle actin (SMA) (A, B), vimentin (C, D), cytokeratin

598 (E, F) and negative control IgG1 (G, H) antibodies was performed to identify the type of

599 isolated cells. The tissue sections of healthy canine uterus (B, D, F, H; magnification

600 ×40) were used as staining control. The positive staining of the cytoskeleton with anti-

601 SMA and anti-vimentin in combination with a negative staining with anti-cytokeratin

602 indicated stromal origin of the isolated canine endometrial cells (magnification ×200).

603

604 Figure 3. E. coli- or LPS-induced CXC chemokine expression in cultured canine

endometrial stromal cells. Levels of mRNA expression of IL-8 (A), CXCL5 (B),

606 CXCL10 (C) and CXCL7 (D) in cultured canine endometrial stromal cells in response to

607 treatment with 100 ng/mL PLS (LPS Low), 1 μg/mL LPS (LPS Hi), co-culture with MOI

608 3 to 5 or 30 to 50 of *E. coli* P170 (Bact Low and Bact Hi, respectively). Canine

609 endometrial stromal cells incubated with saline were used as control (Control). All

610 treatments were performed in triplicates. Data shown are mean values ± SEM from five

611 independent experiments normalized to the LPS Lo treatment for each experiment. ** P612 < 0.01; *** P < 0.001; compared to Control.

614 Figure 4. CXC chemokine expression in uterine tissue from dogs with pyometra and

- 615 healthy dogs. Levels of mRNA expression of IL-8 (A), CXCL5 (B), CXCL10 (C) and
- 616 CXCL7 (D) in uterine tissue from healthy dogs (Control, n = 4) and dogs diagnosed with
- 617 uterine bacterial infection pyometra (Pyometra, n = 4). Data shown are median values
- 618 with 25 and 75% percentile (box) and range of values (whiskers). * P < 0.05, compared
- 619 to Control.

- 620 **Table 1.** Primers used for quantitative real-time RT-PCR
- 621

Target	Sequence		
canine			
CXCL5*, fw ^a	5'-CCG CGG GTG GAA GTC ATA GCC-3'		
CXCL5*, rev ^b	5'-CCG CGG GTG GAA GTC ATA GCC-3'		
CXCL7, fw	5'-ACC TCA GAC CTA AGG CCA CCT CC-3'		
CXCL7, rev	5'-CAG CAG CAG CCC CCG TAG GA-3'		
IL-8, fv	5'-TCT GTG AAG CTG CAG TTC TGT CAA G-3'		
IL-8, rev	5'-TTG GGG TCC AGG CAC ACC TC-3'		
CXCL10, fw	5'-CTT GAA TGA ACC AAA GTG CTG TTC-3'		
CXCL10, rev	5'-ACA GCG TAT AGT TCT AGA GAG AGG-3'		
GusB, fw	5'-GCC CCT GTC CTC CTG CCG TA-3'		
GusB, rev	5'-GGG CCA CGA CCT TGC CTT CC-3'		
^a for forward minor			

- 622 ^a fw, forward primer
- 623 ^b rev, reverse primer
- ⁶²⁴ * The primers for canine CXCL5 were designed using predicted mRNA sequence of the
- 625 gene (ID 611927) in NCBI database and available on March 15, 2012: XM_849650,
- 626 length 375 bp.

Cultured cells Tissue control В SMA D Vimentin G Η lgG1

Cytokeratin

