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Abstract 
 
Persson, M. 2008. Cell Death and Defence Gene Responses in Plant-Fungal 
Interactions. Doctor’s dissertation. 
ISSN 1652-6880, ISBN 978-91-85913-84-8 
 
The molecular interaction between two fungal pathogens and their hosts barley 
(Hordeum vulgare) and Arabidopsis thaliana, are investigated in this thesis. 
Bipolaris sorokiniana causes spot blotch and common root rot in several cereals 
including barley. In order to study important defence mechanisms, a set of mutants 
were generated and studied. The barley lesion mimic mutant Bipolaris sorokiniana 
tolerant 1 (bst1) has an enhanced tolerance against spot blotch but not root rot. The 
role of H2O2 was found to be of importance and the gene expression of 
pathogenesis related (PR) genes were highly up regulated in bst1 after inoculation 
compared to wild-type. After a new round of mutagenesis and screening, additional 
germplasm for both root rot and spot blotch caused by B. sorokiniana were 
identified in bst1 background.  

Leptosphaeria maculans is the causal agent of blackleg in oilseed crops. In 
order to study the interaction between L. maculans and a plant host it is more 
convenient to work with Arabidopsis thaliana. To further investigate the effects of 
the resistance in Arabidopsis, detailed analyses of mutants in the two TIR-NB-LRR 
genes in the RLM1 locus and other R gene signalling mutants were made. A 
quantitative detection system of L. maculans on a genomic level with real time 
PCR was developed. The analyses showed that RLM1 function is gene dose-
dependent under environmental conditions. Analyses on mutants defective in 
hormone signaling in an rlm1Lerpad3 background revealed significant influence of 
JA and ET on symptom development as well as pathogen colonization. An 
important resistance gene, RLM3 was identified from a cross between the highly 
susceptible accession An-1 and the resistant Col-0 with the use of a microarray 
analysis. RLM3Col encodes for a TIR and NB protein and has been shown to be of 
importance for defence to three other necrotrophic fungi (Botryis cinerea, 
Alternaria brassicicola and A. brassicae). 

Taken together, this work contributes to enhanced knowledge of interactions 
between hemibiotrophic fungi and their hosts with a focus on cell death and 
defence gene responses. 

Keywords: Arabidopsis thaliana, barley, Bipolaris sorokiniana, Leptosphaeria 
maculans, R gene and signalling  
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Introduction  
 
Plants are part of a multifaceted community and in contact with many 
different organisms. Some of the organisms are beneficial, for instance 
mycorrhiza, whereas others are pathogenic, causing diseases, resulting in 
plant death or reduction in reproduction or yield (Pieterse and Dicke, 2007). 
Plants are not passive targets to pathogen attack. Constitutive physical 
mechanisms, such as waxy layers, may block the attack of pathogens. 
Otherwise, immediately after the presence of a pathogen has been detected 
defence mechanisms are initiated. The perception of pathogen by the host is 
the outcome of a highly coordinated and sophisticated network. Intense 
studies of plant defence mechanisms have taken place over the last decade 
and numerous reports and reviews are published. Here, recent work with 
relevance for the thesis work will be highlighted. 
 
Recognition and signalling 
To defend themselves against pathogens, plants have developed two classes 
of immune receptors in the innate (non adaptive) immunity system. The 
first line of defence consists of a set of defined receptors referred to as 
pattern recognition receptors (PRRs), these recognize conserved microbe-
associated molecular patterns (MAMPs), sometimes also called pathogen-
associated molecular patterns (PAMP) (Nürnberger et al., 2004; Zipfel and 
Felix, 2005; Jones and Dangl, 2006; Schwessinger and Zipfel, 2008). 
Numerous MAMPs from plant pathogens have been identified, of which 
flagellin, lipopolysaccharide and elongation factor Tu can be derived from 
Gram-negative bacteria and chitin, ergosterol and β-glucans from fungi and 
oomycetes (Nürnberger et al., 2004; Zipfel and Felix, 2005). Also 
important for the infected plant, is to establish a balance between fast and 
efficient response in contrast to the inappropriate expression of defence 
genes and uncontrolled cell death (Hofius et al., 2007). This can be 
compared to the overreaction of autoimmune diseases in animal innate 
immunity (Liew et al., 2005). Plants have developed mechanisms to sense 
infectious-self or modified-self molecules in addition to MAMPs/PAMPs. 
These molecules are either from the plant itself or direct from the invading 
pathogen, they are called danger-associated molecular patterns (DAMPS) 
(Matzinger, 2007). One example is the necrotic and ethylene- inducing 
peptide 1- (Nep1)- like peptide induced by several pathogens and 
recognized by plants (Qutob et al., 2006). The phytotoxic modification of 
the host is recognised and can therefore also be referred to as toxin-
mediated immunity.  

For a long time it was thought that communication between plant cells 
occurs through the cell-wall spanning plasmodesmata. However, since the 
identification of the first plant cell surface receptor (Walker and Zhang, 
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1990) many plasma membrane anchored receptors have been found to play 
key roles in diverse processes. The PRRs are composed of different protein 
domains. The surface receptors mainly detect MAMPs and include 
receptor-like kinases (RLK), receptor-like proteins (RLP), and extracellular 
binding proteins (He et al., 2007) (Fig. 1). In the Arabidopsis genome, 610 
RLKs and 57 RLPs are present. A recent global phenotyping of all RLP 
mutants revealed participation in a wide range of biological events (Wang 
et al., 2008). Interestingly, one RLK, the brassinosteroid-associated 
receptor kinase BAK1 shows multiple functions to different effectors 
secreted by the pathogenic bacteria Pseudomonas syringae (Shan et al., 
2008). Recognition of pathogens leads to PAMP-triggered immunity (PTI). 
Other noticeable responses are cell wall alterations, deposition of callose, 
hormone signalling and the accumulation of pathogenesis related proteins 
(PR) in order to prevent further colonization by the pathogen. In the 
interaction between Pseudomonas syringe pv. tomato and Arabidopsis, it 
was found that more than 800 genes were PAMP regulated and that 96 also 
were up regulated during a period of 12 hours post inoculation, indicating a 
core PTI response (Thilmony et al., 2006; Truman et al., 2006). 

A second class of immune receptors is the plant resistance (R) proteins. 
They are mainly intracellular and have the capability to directly or 
indirectly detect isolate specific pathogen effectors encoded by avirulence 
genes. To date numerous resistance (R) genes have been identified and 
cloned but despite the broad spectrum of pathogens they detect, they are 
composed of a combination of only a handful of protein domains (Dangl 
and Jones, 2001; Hammond-Kosack and Parker, 2003). The most common 
R protein class harbours the leucine-rich repeat (LRR) domain. LRRs are 
20 to 30 amino acids long and can also be found in animal innate immunity 
molecules (Nürnberger et al., 2004; Staal and Dixelius, 2007).  

 
 
 
 
 
 
 
Figure 1. Integrated overview visualising various receptor classes detecting microbe-associated 
molecular patterns (MAMPs), microbe-induced molecular patterns (MIMPs) and Avr proteins 
(effectors). Several of the pathways converge in a MAP kinase cascade and lead to the activation of 
various WRKY family members. The WRKY (and possible other) transcription factors interact in a 
very complex network to determine the appropriate response towards the pathogen detected. Some 
membrane-associated proteins do not have an extracellular domain and may interact with another 
extracellular receptor. The RLK receptors FLS2 and EFR form heteromers with brassinosteroid 
associated kinase 1 (BAK1), indicating that various combinations of RLKs, analogously to mammalian 
TLRs, could result in a wide recognition potential of various epitopes. Intracellular receptors, here 
represented by different R proteins, recognise Avr signals and transduce further defence signalling. In 
the case of the barley powdery mildew MLA gene, nuclear interactions have shown to link effector-
specific and MAMP-triggered immune responses. Illustration made by Fuad Bahram. 
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Members of the largest class of R proteins possess, in addition to the 

LRR, a central nucleotide binding site (NB) domain that is similar to the 
NB of the NODs (nucleotide binding-oligomerization domain) and the 
animal cell death effector proteins Apaf1 and CED4, denoted NB-ARC 
(Dangl and Jones, 2001). The NB-LRR class of R proteins is further sub-
divided according to the N-terminal domain of these proteins. Some 
proteins contain a Toll-interleukin 1 receptor homology region (TIR) 
domain, whereas others possess a coiled-coil (CC) domain, Fig. 1. Like the 
LRR and NB domains, the TIR domain is found in animal innate immunity 
proteins, specifically Toll and the Toll-like receptors, TLRs (Soosaar et al., 
2005).  

Surprisingly, a grass like rice lacks TIR-NB-LRRs entirely but instead 
261 X-NB-LRRs i.e. R- proteins with N-terminals with unknown function 
are distributed in the genome (Monosi et al., 2004). Unlike animal NB-
LRRs plant NB-LRR immune receptors have evolved the ability to 
specifically recognize effector proteins from pathogens, the effector 
triggered immunity (ETI) reviewed by Chisholm et al. (2006). A co-
evolutionary hypothesis was further put forward where plant defence 
responses and MAMPs and effectors by pathogens were illustrated as a four 
phased zig-zag model, where both members of the system evolve 
mechanisms to overcome each others defence or attack strategies over time 
(Jones and Dangl, 2006). Recent work has also revealed that plant NB-
LRRs are very adaptive in their ways of pathogen recognition and defence 
initiation (Caplan et al., 2008). After the recognition phase, transcriptional 
activation takes place in the nucleus to induce defence-related signalling 
(Shen et al., 2007). 

New data on indirectly recognized effectors have however emerged, that 
are inconsistent with the direct R-Avr protein binding and the guard model. 
For example, the AvrBs3 effector protein from Xanthomonas campestris is 
directly localised to the nucleus and binds to the promoter of the Bs3 
resistance gene, which leads to Bs3 transcript accumulation followed by 
HR induction (Römer et al., 2007). Based on this and additional findings, 
the decoy model has been proposed (van der Hoorn and Kamoun, 2008). 
This model takes into account the evolutionary aspects of opposing 
selection forces on guarded effector targets. Experimental evidence in order 
to distinguish between variants of the guard model and the new proposed 
decoy model are to be expected in near future. 
 
Hormones 
Hormones are signalling molecules that have a regulatory role important 
for the whole lifecycle of the plant. They are produced at specific sites and 
in low concentrations. Defence pathways are also dependent on plant 
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hormones. Numerous studies have demonstrated that salicylic acid (SA), 
jasmonic acid (JA) and ethylene (ET) are the main molecules activating 
defence genes (Thomma et al., 2001). However, we know that exceptions 
exist like defence to, Phytophthora porri (Roetchi et al., 2001), Erysiphe 
cichoracearum (Vogel et al., 2002) and Leptosphaeria maculans (Bohman 
et al., 2004) where these three hormones are of minor importance. The SA 
pathway is primarily linked to resistance to biotrophic pathogens i.e. 
organisms that feed and reproduce on living tissue. This is in contrast to JA 
and ET, which mediate resistance mostly to necrotrophic pathogens 
(organisms which kill their hosts and derive nutrients, live and multiply on 
dead tissue). This differentiation of defence signalling pathways suggests 
that plants detect differences between pathogen lifestyle and mode of 
infection. Genetic evidence for JA antagonism of SA signalling pathways is 
well documented, but emerging data suggest a more complex signalling 
network evoking both positive and negative regulatory interactions (Spoel 
et al., 2007; Lópes et al., 2008; Vlot et al., 2008). 

SA is a strong inducer of PR genes, and particularly PR-1 is used as a 
marker for SA-mediated defence (Gaffney et al., 1993). A different set of 
genes is activated by JA, such as VSP2 and PDF1.2 (Benedetti et al., 1995; 
Penninckx et al., 1998). The latter, PDF1.2, also responds to ET (Thomma 
et al., 2001).  

Lately, it has become apparent that plant growth hormones and 
modulation of developmental processes not earlier recognised as being of 
importance for plant defence play important roles. A model proposed by 
Robert-Seilaniantz et al. (2007) shows that auxin and cytokinins promote 
biotrophic susceptibility by inducing necrotrophic resistance pathways via 
JA/ET. Plants have evolved mechanisms to suppress auxin signalling as a 
component of basal defence in order to hinder the invading pathogens from 
using the hormone as a virulence factor (Navarro et al., 2006). In parallel, 
gibberellic acid (GA) induces necrotrophic susceptibility, by inducing the 
biotrophic SA resistance pathway (Robert-Seilaniantz et al., 2007). 
However, most of these interactions remain to be proved. 

The role of abscisic acid (ABA) in a plant stress context is complex. 
ABA is a well known component in abiotic stress responses, but has lately 
been shown to be important in defence to various pathogens (Asselbergh et 
al., 2008). For example, in the Arabidopsis – L. maculans interaction ABA 
is important for resistance, and both callose dependent and independent 
pathways are present (Kaliff et al., 2007). Data on the impact of 
brassionsteroids on defence responses is also emerging. The brassinosteroid 
signalling pathway receptor kinase protein (BAK1) has so far been shown 
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to be required for the control of cell death, production of ROS and the 
restriction of biotrophic and necrotrophic infections (Heese et al., 2007; 
Kemmerling et al., 2007). 

 
Pathogenesis-related (PR) proteins  
When the defence is initiated a wide range of proteins are induced in a 
plant. Among these a group of proteins named pathogenesis-related 
proteins are common (van Loon et al., 2006: Sels et al., 2008). PRs were 
first defined as host-specific proteins that are induced during pathological 
or related situations (van Loon and van Kammen, 1970) and a defined 
nomenclature was presented in 1994 by van Loon and co-workers (van 
Loon et al., 1994). Later it was discovered that the proteins could be 
present in uninfected tissues, depending on the species, and the 
“community” abandoned the definitions presented in 1994. Instead, all 
microbe-induced proteins were called PR proteins (van Loon and van 
Strien, 1999). Many PRs are also induced by various types of stress, such 
as senescence, cold and wounding or are present in certain tissues, such as 
pollen and fruits, and act as potential allergy inducers in humans. PRs 
accumulate after pathogen attack by virus, viroids, bacteria, fungi, 
nematodes, insects and herbivores and are activated by SA, JA, and ET. 
The specific function of many PRs is still unknown although several of 
them have chitinase-, peroxidase-, oxidase-, ribonuclease- and superoxidase 
activity (Sels et al., 2008). Not all PR types are present in all plant species 
and the composition is highly variable. Quantitative resistance against 
pathogens have in several cases been associated to the expression of PRs 
(Liu et al., 2004; Pflieger et al., 2001).  
 
Induced resistance 
Several kinds of plant-pathogen interactions result in the generation and 
emission of long-distance signals from the site of infection to healthy 
uninfected parts of the plant where subsequent resistance is induced. 
Systemic acquired resistance (SAR) is a form of inducible resistance that is 
triggered in systemic healthy tissues of locally infected plants. SAR is 
incited by avirulent pathogens (biotrophs) that attack plant aerial tissues 
resulting in systemic induction of a long-lasting and broad-spectrum 
disease resistance. SAR requires both local and systemic SA accumulation 
and the induction of a subset of PR genes, particularly PR-1. SA itself is 
not the mobile signal, but the recently discovered methyl salicylate may be 
the candidate (Park et al., 2007), although more data needs to be presented 
to finalise this conclusion (Vlot et al., 2008). 

Root-colonizing rhizobacteria have also potential to induce pathogen 
resistance in above-ground plant tissue (van Loon, 2007). This induced 
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systemic resistance (ISR), in contrast to SAR, is dependent on JA and ET 
signalling (Pieterse et al., 1998; van Wees et al., 1999). Generally there is 
not a substantial change in the gene expression of the plant induced by 
beneficial organisms under ISR conditions (Liu et al., 2007). Instead, 
priming usually occurs, leading to faster response upon pathogen attack 
resulting in an enhanced resistance (Conrath et al., 2006).  

Both in SAR and ISR, as well as in compatible pathogen interactions, it 
is the MAMPs that are detected and the subsequent signalling pathways 
activated (Bittel and Robatzek, 2007). The signalling networks that are 
activated by the beneficial organisms overlap the signalling pathways of the 
pathogens and finely tuned regulation and adaptive responses have to be 
balanced in order to get the proper response (van Wees et al., 2008). 

 
Cell death 
Programmed cell death (PCD) is an intrinsic mechanism that occurs in 
nearly all organisms. In plants endogenous stimuli induce developmental 
PCD processes during, for instance, embryogenesis (Bozhkov, 2005), leaf 
morphogenesis (Gunawardena, 2008), xylem development (Fukuda, 1996), 
floral development (Rogers, 2006) and organ senescence (Rogers, 2005). 
Exogenous stimuli elicited by abiotic and biotic factors include PCD 
processes exemplified by the hypersensitive response (HR) a defence 
reaction particularly to avirulent biotrophic pathogens. Diagnostic 
hallmarks of plant PCD are in analogy to animal apoptosis; chromatin 
condensation, DNA laddering and activation of proteases even though the 
occurrence of these processes is largely depending on the type of PCD. 
Typical for plant PCD seems to be a degradation of the cytoplasmic 
contents by autophagy, which involves formation of micro- and 
macrophagosomes that are targeted into the vacuole (Bassham, 2007). On 
the other hand, autophagy can also participate in processes that protect the 
plant from cell death (Liu et al., 2005). 

To incite local cell death is a quick and efficient defence response where 
the plant sacrifices a few cells to prevent further tissue colonisation by an 
invading pathogen (Lam, 2004). However, the process must be fine tuned 
and tightly controlled in order to not be detrimental for the plant. HR was 
first described approximately 100 years ago in observations of wheat and 
the responses to leaf rust (Ward, 1902) and black stem rust (Stakman 
1915). Thereafter, the HR phenomena have been studied in various aspects, 
but the entire mechanistic understanding is still elusive (Mur et al., 2008). 
Factors that take part in this process are R genes, signalling molecules like 
EDS1-PAD4-SAG101, SA and ET, ion fluxes e.g. Ca2+, reactive oxygen 
species (ROS) components (superoxide, hydrogen peroxide and hydroxyl 
radicals) resulting in e.g. lipid peroxidation, and interaction with nitric 
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oxide (NO). A range of cell death mutants exists in Arabidopsis but they do 
also occur in several crop species as shown in this thesis (I; II). These are 
valuable tools to further elucidate cell death functions. 
 
Secondary metabolites in plant defence 
Secondary metabolites (SM) are organic compounds present in all higher 
plants. Typical for a secondary metabolite is that they are not directly 
involved in the growth and development of the plant. It is common that one 
SM is dominant or unique within a plant family or genus. The pattern of 
SM in individual plants is complex, it changes in tissue and organ specific 
ways and depends on the age of the plant and on the environment since 
both biotic and abiotic stresses strongly influence the metabolic profiles. 
Most common secondary metabolites function as defence against 
pathogens, insect pest and competing plants or as signalling compounds, to 
attract pollinators or seed distributing animals (Wink, 2003). This makes 
these compounds important for plant survival and reproduction and they 
have hence been subjected to natural selection during evolution. SM can be 
present in the tissue in an active state or as a precursor that becomes 
activated upon wounding or infection. This is important since SMs 
involved in defence ward off, inhibit or kill the pathogen. Two secondary 
metabolites that are important in Arabidopsis and in a defence perspective 
are callose and camalexin (Tsuji et al., 1992; Pedras and Liu, 2004).  

After fungal penetration, a reinforcement of the plant cell wall is 
established by site directed deposition of callose and secretion of 
antimicrobial compounds at the site of attack. Callose is a β-1,3 glucan and 
deposition is a key component of defence to certain pathogens, for instance 
the oomycete Pythium irregulare (Adie et al., 2007). Synthesis and 
deposition of callose is triggered by both biotic and abiotic stresses.   

Low molecular weight antimicrobial compounds are called phytoalexins 
(Paxton, 1981). Phytoalexins show great molecular structural diversity. 
Camalexin is important in Arabidopsis defence against both necrotrophic 
and biotrophic pathogens and several regulatory genes of camalexin have 
been identified (Glawischnig, 2007). The induction of camalexin is part of 
a complicated defence mechanism, which involves SA, JA and ET 
signalling and unknown partners. 
 
Fungal pathogens 
One group of important plant pathogenic organisms is fungi. Fungi are 
small, usually filamentous, eukaryotic, lack chlorophyll and are spore-
bearing organisms. Of the 100,000 species known, more than 10,000 can 
cause disease in plants, this in contrast to 50 species that are pathogenic to 
humans (Agrios, 2004). All plants have at least one plant pathogenic 
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fungus that can cause disease, and several fungi have more than one plant 
host (Agrios, 2004). Fungi are sessile organisms that to be able to spread 
from infected tissues in one plant to another healthy plant, need assistance. 
The most common way to spread spores is probably assisted of the wind. 
Other alternatives are by water, insects, wild animals and humans.  

Fungi are divided into 7 phyla, Chytridiomycota, Blastocladiomycota, 
Neocallimastigomycota, Glomeromycota, Zygomycota, Ascomycota, and 
Basidiomycota. The two fungi studied in this theses (Bipolaris sorokiniana 
and Leptosphaeria maculans) belong to Ascomycota. Characteristic for 
Ascomycota is the presence of a sexual stage called telemorph and the 
formation of ascospores. Ascospores are sexual spores and eight asci are 
formed within each ascus, which is a sac-like zygote cell. Many fungi in 
this phylum produce asexual spores (conidia), formed by cutting off 
terminal or lateral cells from special hyphae called conidiephores. This is 
also the case for B. sorokiniana and L. maculans (Agrios 2004; Kumar et 
al., 2002; Howlett et al., 2001). 

 
Bipolaris sorokiniana 
Bipolaris sorokiniana (Sacc.) Shoemaker (teleomorph: Cochliobolus 
sativus) (Ito & Kuribayashi.) Drechs. Ex Dastur. is a hemibiotrophic 
phytopathogenic fungus that causes disease on small grains and infects a 
range of wild grass species (Bakonyi et al., 1997; Pratt, 2003; Schäfer et al., 
2004). Taxonomically, the fungus belongs to Ascomycotina, class 
Loculoascomycetes, order Pleosporales, family Pleosporaceae. It is 
characterised by thick wall elliptical conidia (60-120µm x 12-20µm) 
containing five to nine cells (Kumar et al., 2002), (Fig. 2, insert bottom 
left). Grown in the laboratory on a solid media the cultures form a dense 
mycelium with hyphae interwoven as a cottony mass with colours varying 
from white and pink to grey and black, with dark brown conidia forming at 
later stages. Barley and wheat are the most economically important plants 
that are infected. The infections usually appear as foliar spot blotch (Fig. 2 
insert top left), common root rot and as black point on the seeds (Kumar et 
al., 2002). Foliar spot blotch decreases the photosynthetic capacity of the 
leaf, leading to early senescence. Common root rot decreases the water and 
nutrition uptake, this is important because the disease has a high potential 
to spread via infested seed lots. Infected seeds may rot in the soil or emerge 
as weak seedlings which subsequently wither and die. Yield losses varying 
from 20% to 80% in wheat (Duveiller and Gilchrist, 2004) and 16% to 33 
% in barley (Clark, 1979) are reported. Yield losses due to this fungal 
pathogen are difficult to estimate in Sweden, due to co-infecting pathogens 
in the field. The indications are however, that in rare cases losses can be 
estimated to reach 20% (Waern, P. 2008, personal communication). 
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B. sorokiniana is present in all areas where cereals are grown, giving it a 
very wide distribution throughout the world. It is described that B. 
sorokiniana forms a continuous genetic pool of isolates varying in 
virulence and aggressiveness to various cereals and grasses (Duveiller and 
Garcia Altamirano, 2000; de Oliveira et al., 2002). The mechanism behind 
this variation is poorly understood. The sexual stage is very uncommon, 
thus the genetic variation may be attributed to heterokaryosis and 
parasexuality mechanisms (Tinline, 1962). A clear variation in virulence is 
usually present within a certain geographic area (I, de Oliveira et al., 2002; 
Meldrum et al., 2004; Arabi and Jawhar, 2004; Ghazvini and Tekauz, 
2007).  

The infection usually starts from seeds, infested soils or from host debris 
that transmits conidia via physical contact or rain splashes (Fig. 2). In a 
virulent B. sorokiniana strain, about 90% of the conidia have started to 
grow, forming germ tubes, germlings or hyphae already after 3h (Apoga 
and Jansson, 2000). The germ tubes and hyphae of B. sorokiniana are 
surrounded by extra cellular matrix (ECM) that provides a beneficial 
environment for the fungus. ECM contains fungal toxins, it is used for plant 
adhesion and as a protection from plant cuticle degrading enzymes 
(Åkesson et al., 1995; Apoga and Jansson, 2000). An abundant toxic 
compound produced by B. sorokiniana is prehelminthosporol (Carlson et 
al., 1991), which has a role in killing and weakening plant cells (Liljeroth et 
al., 1993). 

The infection process on the leaves usually occurs through natural 
wounding, stomata or with the use of an appresorium-like structure through 
the cell wall (Yadav, 1981; Schäfer et al., 2004), (Fig. 2, insert top right) 
attributed to a biotrophic life style. Plant responses are usually cell wall 
appositions and HR-like response. If plant responses are insufficient and 
fail to stop the invasive growth, the fungus starts its necrotrophic way of 
living. This causes more dead and collapsed tissue and further uncontrolled 
spread leading to visible necrotic spots (Schäfer et al., 2004). 

Fungicides can be used to reduce the severity of spot blotch and 
subsequent losses (Kiesling, 1985; Videma and Kohli, 1988). This is 
however costly and presents a potential threat to ecosystems and will most 
likely result in fungicide resistant B. sorokiniana isolates. The best way to 
avoid the fungal disease is proper agricultural practises and the use of 
resistant cultivars. Today no really good resistant cultivars are available 
against spot blotch. There are however genotypes that exhibit a lower level 
of susceptibility than others that are present in different breeding programs 
(I; Ghazvini and Tekuz, 2007). 
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Figure 2. Disease cycle of Bipolaris sorokiniana.  
B. sorokiniana causes leaf lesions (top left). The spread of conidia (bottom left) is usually via rain but 
the fungus also spreads via infected seeds. The fungal infection starts with the entering of the plant 
tissue via appressorium like structure or through stomata (top right). B. sorokiniana can stay on plant 
debris and in the soil, which also are sources of infection. 
 
 
Leptosphaeria maculans 
Leptosphaeria maculans (Desm.) Ces. & de Not. (anamorph: Phoma 
lingam) (Tode ex Fr.) is a hemibiotrophic pathogenic fungus that causes 
blackleg on cruciferous crops, mainly Brassica species (West et al., 2001; 
Fitt et al., 2006a, b). Taxonomically the fungus belongs to s Ascomycotina, 
class Loculoascomycetes, order Pleosporales, genus Leptosphaeria. The 
most economically important plants that are infected are Brassica oilseed 
crops, Brassica napus and B. rapa. L. maculans is a haploid out-crosser 
with a genome size of about 34Mb and predicted to encode 10,000 genes 
(Plummer and Howlett, 1995; Cozijnsen et al., 2000; Howlett, 2004). The 
genes are localised on 15-16 chromosomes, including a non-Mendalian-
transmitted mini chromosome. The sizes of the chromosomes vary between 
0.7 and 3.5 Mb (Plummer and Howlett, 1995; Leclair et al., 1996). The 
non-Mendalian-transmitted mini chromosome may play an important role 
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for the fungus to cope with selection pressure and provide the pathogen 
with new aggressive combinations.  

At Genoscope, in France, the whole genome of the isolate JN3 is 
undergoing sequencing. Some especially interesting genomic regions are 
also being sequenced in the isolates NZ-T and v29. They originate from 
New Zeeland and from a laboratory cross of Australian origin, respectively. 
This choice of isolates shows a big difference in virulence. After sequence 
assembly and further analysis, genes important for pathogenicity are hoped 
to be revealed. For more information on these matters, see 
www.genoscope.cns.fr/spip/Leptosphaeria-maculans-complex.html. 

The infections of L. maculans in B. napus (Fig. 3) appear as leaf lesions 
and as blackleg (Howlett et al., 2001) but can also induce root rot 
(Sparague et al., 2007). The exact mechanism of infection of the roots is 
not fully understood. It is presumed that L. maculans can grow upwards in 
the stem as well as downwards into the hypocotyls and root. Thus, the 
infection of roots can occur via fungus spreading from foliar infection as 
well as from infested soil (Sparague et al., 2007). Lodging caused by 
blackleg is the most serious effect of the disease, since no harvest is 
possible and no yield obtained. In particularly Eastern Europe, L. maculans 
co-infects plants together with L. biglobosa and the yield loss in an infected 
field may be up to 30-50% due to lodging of the plants. Globally, the 
Australian isolates are considered more virulent compared to the European 
and so far there are only small yield losses in India and China due to 
different culture practices, whereas the disease is widespread in Canada. L. 
maculans, is amenable for genetic transformation, which has been useful in 
several studies and revealed more data of the complex infection process 
(Sexton and Howlett, 2001; Elliott et al., 2007; III).   

In a Brassica field where the economic damage of L. maculans could be 
significant, ascospores produced in the pseudothecia on infested stubble are 
the main source of infection. However, infection could also start from seeds 
or infested soils (Fig. 3). The transmission of conidia occurs via physical 
contact or rain splashes. Seedlings are infected via cotyledons by 
ascospores that are spread through rain splash, whereas younger leaves are 
infected via stomata or wounds. In the initial colonisation, the fungus has a 
biotrophic life style. Behind the initial biotrophic hyphae front, the fungus 
becomes necrotrophic. It is in the necrotrophic phase in the dead plant 
tissue where L. maculans produces the asexual fruiting bodies (pycnidia) 
(Hammond et al., 1985; Hammond and Lewis, 1987). Pycnidiopores are 
thought to act as secondary inoculums, whilst the infection of neighbouring 
plants occurs via rain splash (Howlett et al., 2001). The spread of 
pycnidiospores can in rare cases reach a distance of 40 cm, even though a 
distance of 14 cm is more common (Travadon et al., 2007). After the initial 
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infection of the leaf, the fungus colonizes the intracellular spaces between 
mesophyll cells, growing down the petiole in the xylem vessels or between 
cells of xylem parenchyma and cortex. The initial stage is symptomless and 
biotrophic (Hammond et al., 1985), whereas later stages when the stem 
cortex is killed result in a blackened canker that is visible and may cause 
the plant to break and lodge (Fig. 3 bottom left). 

During the infection, the fungus produces several toxins and other active 
secondary metabolites. The most prominent studied is sirodesmin PL, 
which is non-host specific and has antibacterial and antiviral properties and 
causes chlorotic lesions on plant leaves (Rouxel et al., 1988; Elliott et al., 
2007). It has been shown by Elliott et al. (2007), that sirodesmin is the most 
important toxin produced by L. maculans. A fungal mutant knocked-out in 
sirodesmin PL coding genes was less viable in the natural host B. napus 
and performed less colonisation compared to wild type fungus. 
 

 
Figure 3. Life cycle of Leptosphaeria  maculans.  
L. maculans causes leaf lesions (top left), blackleg (top right), lodging (bottom left) in B. napus. The 
spread is usually via wind (ascospores) or rain splash (ascospores and pycnidiospores) and more seldom 
via infected seeds. The fungal grows is initially as a biotroph before switching to a necrotrophic phase 
later in the infection cycle to generate pycnidia (botton right). Printed with permission from Gunilla 
Berg, the Swedish Board of Agriculture. 
 

The host responses of B. napus after infection by L. maculans include 
necrosis of guard cells and adjacent cells, production of phytoalexin, 
callose and lignin, accumulation of pectin as vascular plugs and induction 
of pathogen-related proteins (Hammond et al., 1985; Rasmussen et al., 
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1992a,b; Chen and Howlett, 1996; Chen and Seguin-Swarts, 1997, 1999; 
Roussel et al., 1999; Brownfield and Howlett, 2001). To keep the pathogen 
under control the agricultural practices are important, for instance crop 
rotation. But there are also two types of plant resistance that can be used. 
The first is a qualitative that is valid through the whole lifecycles of the 
plants based on a gene-for-gene interaction (Ansan-Melayha et al., 1998; 
Delourme et al., 2004). The fungus has great possibilities to overcome this 
type of resistance due to its large population and high recombination 
frequency (Howlett et al., 2001; McDonald and Linde, 2002). The other 
type of resistance that could be used is quantitative based, which depends 
on several factors, for example callose, phytoalexin and PR-genes. Due to 
the involvement of several traits this is harder for the fungal population to 
overcome, since all factors should be overcome by one isolate.   

In Arabidopsis it has been established that the resistance towards L. 
maculans is independent of the defence pathways involving ethylene, 
jasmonic acid and salicylic acid (Bohman et al., 2004). It has also been 
found that some R-genes are important, for instance RLM1 and RLM3, 
together with both camalexin and callose are significant components in the 
interaction. (Staal et al., 2006; Kaliff et al., 2007; III, IV). Recently we (III) 
discovered that ET plays a major importance if both camalexin and RLM1 
are removed from the plant defence system. If ET is produced by L. 
maculans or if it is used as a signal molecule to facilitate fungal growth is 
not established yet. 
 
Barley 
Barley (Hordeum vulgare) is an important cereal crop worldwide. It was 
cultivated in the Fertile Crescent over 10,000 years ago (Salamini et al., 
2002) and has today spread to all temperate regions. Barley is particularly 
widely used and appreciated among farmers for the traits towards cold, 
drought and salinity (www.fao.org) and is preferentially used as animal 
feed and for malting i.e. beer production. 

Barley is a self-pollinating diploid with seven chromosome pairs 
represent the large genome of 5500 Mb of which 80% is composed of 
repetitive DNA (Sreenivasulu et al., 2008). Due to this complexity the 
genome is not presently appropriate for whole genome sequencing. Instead, 
large scale sequencing programs for the development of expressed 
sequence tags (ESTs) from various cDNA libraries have been initiated. So 
far this has resulted in more than 400,000 ESTs deriving from various 
developmental stages, treatments and tissues (Sreenivasulu et al., 2008). 
Alignment of these ESTs led to the identification of a representative set of 
50,453 unigenes with 27,094 singletons (http://compbio.dfci.harvard.edu 
/tgi/cgi-bin/tgi/gimain.pl?gudb=barley), representing possibly about 75% of 
all genes in the barley genome. There are also microarrays available for 
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expressional studies (Sreenivasulu et al., 2008) and transformation is 
feasible and has improved in recent years (Holm et al., 2000; Kumlehn et 
al., 2006; Hensel et al., 2008). Several mapping populations of barley have 
been published, for an overview see Varshney et al. (2007). Several 
markers can be used in comparative genomics, since markers are available 
in other species such as wheat, maize and the sequenced rice. Most data 
sets are available online at www.gramene.org and at Grain genes 
(http://wheat.pw.usda.gov/GG2/index.shtml). Unfortunately, different 
markers and different genetic backgrounds make it difficult to compare 
different sets. At present, the barley community has high hopes that the 
complex genome would be completely sequenced within five years. 

A good resource that exists today is the large collections of barley 
mutants available at different stock centres, for instance the Nordic Genetic 
Resource Center. With the use of well characterised mutants further good 
description of barley from a molecular/genetic perspective could be 
initiated. 
 
Arabidopsis thaliana 
Arabidopsis is a worldwide spread dicotyledonous weed. The only 
economic value of Arabidopsis is as a plant model organism. It belongs to 
the Cruciferae family or Brassicaceae and is closely related to Brassica 
species such as Brassica napus. Several gene and sequence homologies 
have been identified between Arabidopsis and economic important crops 
(Parkin et al., 2005; Snowdon, 2007). More resources are however 
allocated to Arabidopsis research than to worms, fruit flies and mice. There 
are several important factors that make Arabidopsis the plant model 
organism number one (Leonelli, 2007), easy genetics, many mutants 
available, five chromosome pairs and a relative small genome of 125 Mb. 
The whole genome was sequenced in 2000 (AGI, 2000). Other very 
important features are the small space needed by the plant and the 
possibilities to grow it in vitro together with the short generation time (from 
germination to seed within 6 to 8 weeks) and the seed capacity. One 
specimen is enough to produce thousands of seeds within the limited 
lifespan. In the beginning of Arabidopsis research it was not easy to 
transform, but after some years, a very efficient method by using the 
Agrobacterium tumifaciens-mediated procedure was discovered (Clough 
and Bent, 1998). Thanks to the floral dip technique it became possible to 
generate a tremendous amount of different Arabidopsis mutants. Today a 
huge number of mutants are available at different stock centres, for instance 
Nottingham Arabidopsis Stock Centre (NASC). Arabidopsis is also a 
widespread plant, harbours general natural variation attributes shared 
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between many other species for a lot of different traits and functions 
(Leonelli, 2007). Also, very important for a research community is the 
network. Within the Arabidopsis community, the network works well, with 
large databases (www.arabidopsis.org) organizing and exhibiting data and 
exchange of material and ideas between different research groups. 
 
Aims of the study 
 
The major goal with this study was to increase knowledge on the 
interaction between hemibiotrophic fungi and plants and to investigate the 
role that cell death may play in the interactions. The specific goals were: 

 
• Genetically characterise the barley lesion mimic mutant bst1 and 

identify the mechanisms linked to the decrease in susceptibility 
towards infection by Bipolaris sorokiniana. 

 
• Investigate important defence components in the Arabidopsis- 

Leptosphaeria maculans pathosystem. 
 
Results and Discussion 
 
Identification and characterization of bst1 and germplasm for  
B. sorokiniana resistance 
The Bipolaris sorokiniana tolerant 1 (bst1) mutant was identified in a M2 
population. It exhibited dark brown to black conspicuous dark lesions on all 
above ground tissues (II). The mutation was mapped and localized to 
chromosome 5HL. The flanking markers of the area in 5HL, Xcln.WG644 
and Xcln.BCD298 show synteny to the rice chromosome 3 (I). This 
chromosomal area in rice contains more than 78 genes. The putative 
CNGC2 mutation in barley is a lesion mimic mutant (Rostoks et al., 2006), 
and the CNGC2 gene is located in close vicinity to the mapped bst1 
mutation. The CNGC2 gene was sequenced in wild-type and bst1, but 
unfortunately a deletion of nucleotides that usually occurs from a fast 
neutron treatment could not be found. To generate more detailed genetic 
information, additional AFLP markers were screened. The two closest 
markers identified were located only 0.25 and 0.23 cM on either side of the 
bst1 mutation. The closest markers were sequenced (I), but the sequences 
did not reveal any data that could be linked to a candidate gene for the bst1 
mutation, which still remains to be identified.  

To find resistance sources towards B. sorokiniana adapted to Swedish 
conditions we used bst1 and an additional 29 barley genotypes to screen 
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eight different Swedish B. sorokiniana isolates (II). This was the first time 
a survey of Swedish isolates have been evaluated and classified. By the use 
of three barley differential lines (Bowman, ND 5883 and ND B112), two 
different virulence groups of B. sorokiniana were identified, namely isolate 
group 1 and 7 according to the classification system by Ghazvini and 
Tekauz (2007). From preliminary studies we had indications that bst1 
exhibited increased resistance compared to the wild-type. However, due to 
the mutagen treatment and the subsequent spontaneous forming lesions, a 
reduction in yield appeared. This information together with the fact that 
bst1 plants look like they have symptoms caused by B. sorokiniana, we 
induced a second mutation by sodium azide to reduce or find a complete 
loss of the spontaneous lesions. From this new M2 population seven 
additional mutants (bst1:1-7) were found (II). One mutant (bst1:5) 
exhibited wild-type phenotype whereas the other 6 showed various degrees 
of lesions.  

B. sorokiniana is also the causal agent of common root rot, thus 
susceptibility of the roots was investigated on a subset of mutant genotypes. 
No difference in the root susceptibility could be distinguished in the 
material except for the double mutant bst1:6 (II). The identification of 
sources for resistance against B. sorokiniana both towards root rot and spot 
blotch could become important. The most promising mutants to use for 
further studies and long-term breeding program would be bst1, bst1:3, 
bst1:4 and bst1:6. 
 
Plant mechanisms involved in the B. sorokiniana interaction 
The importance of hydrogen peroxide in the interaction between barley and 
B. sorokiniana was investigated by the use of DAB staining. The bst1 
genotype displayed a high background level of H2O2 but had a low increase 
at 48 hpi (4% stained leaf area) compared to the wild-type which at the 
same time point exhibited a total stained leaf area of 11.7%. One 
interpretation of this difference may be that the biotrophic phase of B. 
sorokiniana is negatively affected due to high overall H2O2 levels in bst1. 

Expression analysis at 48 hpi revealed a constitutively high expression 
of PR-genes PR-1a, PR-2, PR-5 and PR-10 in bst1 plants compared to 
wild- type. We also discovered an oxidoreductase gene (HCP1) to be up-
regulated in bst1. HCP1 have been found to have a regulatory role in the 
interaction between barley and brome mosaic virus (Okinaka et al., 2003). 
The function of the HCP1 protein is however still unknown. As a marker 
for the expression of the ROS system, a RBOHB gene was studied in our 
system. RBOHB was down regulated in bst1, suggesting that ROS is not a 
main part of a successful interaction (I).  

Since primer design of well characterised defence signal marker genes 
in Arabidopsis is severely hampered in barley due to incomplete sequence 
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information further data was generated by screening a selected set of 
Arabidopsis mutants (Table 1).  

 
Table 1. Response of Arabidopsis defence-signalling mutants upon challenge with Bipolaris 
sorokiniana 10 days post inoculation. Several genotypes can be included under more than one category 
but only presented once in the table. All genotypes are in Col-0 background if not stated otherwise. 
Genotype B.s 

response* 
Genotype B.s 

response
Genotype B.s 

response 
Accessions  ET  syp121-1syp122-1 eds5-3 S 
Col-0 R ein2-1 S syp121-1syp122-1 NahG S 
Ler-0 s ein2NahG S syp121-1syp122-1 npr1-1 S 
An-1 S ein3-1 R syp121-1syp122-1 sid2-1 S 
Ws-0 s ein4-1 R pen2-1 S 
  ein6-1 R pen2eds1 r 
ABA responses  eir1-1 R pen2sag101pad4 r 
aba1-31 R eto1-1 R pen2sag101 S 
aba2-1 S etr1-1 R   
abi1-11 S vad1 r Protein stability  
abi4 R vad1ein2 s AtHsp90.2 S 
  vad1ein3 s Sgt1 b R 
Callose    rar1-21 R 
pmr4-1 S JA  pad4sag101 R 
  eds8-1 S   
 Camalexin  coi1-16 S R-gene  
pad3-1 R esa1-1 r ald1 S 
  jar1-1 R eds1-22 s 
Cell death    fmo1 s 
dnd1 S Lignin  mos3 R 
lsd1 S irx4 R ndr1-1 S 
ran1-1 R   pad1-1 S 
  Oxidative stress  pad4-1 R 
Defence related  Atnos1 R rlm1Lerrlm2Col R 
bik1 S AtrbohD S rlm1Lerpad3 R 
bos1 S AtrbohF S rlm3-1 R 
bos2 S AtrbohDF S rlm3-2 R 
bos3 S nia1nia2 R   
lms11 S rcd1-1 R SA  
lms41 S   NahG R 
lms51 R Penetration  npr1-1 R 
mos5 S syp121-1 S  npr1-2 R 
mos5snc1npr1 S syp122-1 S  npr1-3 S 
pmr1-1 R syp121-1syp122-1 S sid2 R 
  syp121-1syp122-1  

eds1-2 
S snc1 

mos2 
S 
S 

      
*S = susceptible, s= moderately susceptibility, R = resistant, r = moderately resistant. 
1 = Ler background,  2= Ws background 
 
It is not certain that the responses between barley and B. sorokiniana are 

the same as between Arabidopsis and B. sorokiniana, but Arabidopsis gives 
us a more advanced tool to gain deeper understanding of plant defence 
mechanisms compared to B. sorokiniana. Out of mutants impaired in SA, 
JA and ET signalling pathways NahG, npr1-1, jar1-1, ein 3-1, ein4-1 and 
ein6-1 showed no disease symptoms whereas npr1-3, coi1-16 and ein2-1 
displayed clear susceptible phenotypes compared to the resistant wild-type 
Col-0. Seven additional mutants were screened to enhance the 
understanding of cell death related responses. dnd1, lsd1, AtrbohD and 
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AtrbohF but not Atnos1, ran1-1, rcd1-1 showed clear disease phenotype. In 
addition, the early penetration events monitored on the syp121, syp122 and 
pen2-1 mutants are important, as was earlier found concerning responses to 
powdery mildew fungi (Lipka et al., 2005; Zhang et al., 2008). The 
susceptible syp triple mutants, all impaired in SA signalling, revealed an 
importance of SA not obvious on the single mutant level. The phytoalexin, 
camalexin on the other hand does not seem to play any major role since 
pad3-1 was resistant. The same was true for the R-gene related pad 4-1, 
rlm1 and rlm3, whereas pad1-1, ald1 and ndr1-1 displayed a clearly 
susceptible interaction.  

 
Plant mechanisms involved in the L. maculans interaction 
Camalexin has been established to be a very important resistance 
mechanism in a compatible interaction between L. maculans and 
Arabidopsis. The resistance to L maculans 1 gene (RLM1) is highly 
important in defence in Arabidopsis. To further investigate the effects of 
the RLM1 locus, in depth analyses of mutants in the two TIR-NB-LRR 
genes RLM1ACol (At1g64070) and RLM1BCol (At1g63880) and other R gene 
signalling mutants were made. Based on the assessment of disease 
phenotypes on offspring from an F2 population deriving from a cross 
between ColRLM1 (resistant) and Lerrlm1 (susceptible), it was concluded that 
the RLM1 locus is dose dependent. In addition, a quantitative detection 
system of L. maculans at a genomic level with real time PCR was 
developed. The comparison between the two different methods revealed 
that the qPCR method was only valid at relative late time points. A 
decrease in fungal mass was observed during the first six days, where-after 
the fungal mass established on a rather constant level, followed by an 
increase ten days after inoculation on susceptible genotypes. Fungal DNA 
was also found to be present and survive for some time on non-hosts like 
pea and barley. Extensive washing of the leaves did not decrease the fungal 
DNA significantly on susceptible and resistant Arabidopsis genotypes. The 
latter observation might be caused due to the wound inoculation procedure 
which facilitates entrance to the vascular system and establishment of L. 
maculans as an endophyte. The visual disease phenotype method is widely 
used and enables discrimination of disease symptoms already at 7 dpi. 
Fungal detection with qPCR is more time consuming and more costly but 
more unbiased under the assumption that the sampling is done in an 
optimal way.  

Physiological barriers were identified to be important in plant defence. 
A hypersensitive response (HR) at the stomata and hydathodes, and 
vascular plugs was found to be R gene dependent. In order to investigate 
the involvement of the classical hormones involved in plant pathogen 
interactions, the rlm1Ler genotype was crossed to a camalexin deficient 
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mutant pad3-1 resulting in a hyper susceptible double mutant (Staal et al., 
2006). This mutant was crossed to different hormone genotypes mutated in 
JA (coi1-16), ET (ein2-1) and SA (NahG). In total these combinations 
generated eight different mutant lines. The susceptibility and the 
phenotypic response were evaluated by the assessment of a GUS tagged L. 
maculans isolate, with a quantitative GUS method. The results obtained 
showed that JA is a repressor of fungal growth whereas both ET and SA 
facilitate the fungal colonisation. In the mutants studied the genotype with 
the greatest fungal colonisation was in the rlm1Lerpad3 background in 
combination with NahG and coi1-16, which have low levels of SA and JA 
in a combination with a normal ET production. This genotype showed the 
most severe susceptibility symptoms with extensive necrosis and a purple 
coloured leaf. The second most susceptible genotype was coi1-16 with 
normal ET production. The findings resulted in an integrated model where 
physical barriers such as lignin, vascular plugs, callose and HR are 
integrated with camalexin, and hormone signalling.  
 
RLM3 a gene involved in broad range immunity in Arabidopsis 
The resistance to Leptosphaeria maculans 3 (RLM3) gene was identified 
by microarray comparisons on pools of individuals that had been classified 
as susceptible or resistant from a cross between Col-0 harbouring the gene 
of interest and An-1, a highly susceptible accession lacking the gene (IV). 
To keep the variance for the environmental dependent expression high, 
materials were sampled at different time points. Genes more highly 
expressed in the resistant samples had a bias towards a region on 
chromosome 4. By mapping, it was shown that the gene closest to marker 
SNP102, At4g16990 was the candidate gene for RLM3. The gene 
expression of At4g16990 was investigated 2 days after inoculation with L. 
maculans with real time PCR. The expression of Col-0 was set as a 
reference and the T-DNA insertion line gabi_491E04 (rlm3-2) had 
significantly lower transcript levels and expression could not be detected in 
An-1. In order to confirm that the gene candidate of RLM3 was At4g16990 
we complimented An-1 and rlm3-2 using the TAC clone JAtY64O13 
containing the complete genomic clone of RLM3 and its promoter. The 
fungal mass in the complemented genotypes was significantly lower 
compared to An-1 and rlm3-2. The quantification was measured as ration 
of pg fungal versus ng plant genomic DNA with real time PCR 10 days 
after inoculation. By analysing the susceptibility visually in several T-DNA 
insertion lines in At4g16990, it was evident that the RLM3 gene also is 
important in interactions between Arabidopsis and other pathogens for 
example Alternaria brassicicola, Botrytis cinerea and Alternaria brassicae. 
Alternative splicing of disease resistance genes has earlier been 
demonstrated to be of importance for R gene functions (Zhang and 
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Gassman, 2003; Zhang and Gassman, 2007). RLM3 has been annotated as a 
member of the TIR-NB family of truncated R genes, but with putative 
alternative splicing leading to a TIR-X transcript. However, the exact role 
and importance of the different RLM3 transcripts is currently not known. 
One transcript of RLM3 (encoded by the end of exon 1 and the exons 3 and 
4), however, exhibits similarity to the regulator of chromatin condensation 
(RCC1) family of proteins. This specific segment of 74 amino acids 
contains the plant- specific DZC (disease resistance, zink finger, 
chromosome condensation IPR013591 (DZC) domain (Staal and Dixelius, 
2008). Based on in silico analysis one intriguing hypothesis suggests that 
RLM3 could act as a TIR-DZC adaptor between specific TIR-NB-LRR 
receptors and downstream components harbouring the DZC domain. Future 
work will shed more light on this concept. 
 
 
Future perspectives 
 
Working with a system containing two participating living organism 
presents considerable challenges. Both the host and the pathogen need to be 
controlled. Since the systems of B. sorokiniana and L. maculans both are 
well established in our laboratory, a continuation of the work would gain 
further information about the interaction between plant host and 
hemibiotrophic fungi and what roles and effects cell death and deference 
gene responses have. There are several directions that I suggest to be 
followed. 

Identification of the bst1 mutation is highly prioritized. Furthermore to 
rule out the possibility that CNGC2 is not the candidate gene of bst1, the 
CNGC2 promoter sequence needs to be examined in the bst1 and wild-type 
Bowman(Rph3) genotypes. The CNGC2 promoter sequence, which is not 
found in any public databases, can be obtained with degenerated PCR and 
genome walking techniques.   

As our ultimate goal is to apply our knowledge on plant-pathogen 
interactions to actual crop breeding programmes, my findings of the present 
studies need to be examined under field conditions. In a preliminary field 
trial in Minnesota, USA, the bst1 line showed nearly complete resistance to 
B. sorokiniana, indicating its potential breeding value. This experiment 
needs to be repeated and evaluated more precisely with statistical analyses 
including the double mutants bst1:3, bst1:4, and bst1:6. 

High yield is another important trait for a crop plant. A cross should be 
made between the bst1 and high-yielding commercial lines to test if high-
yielding traits can be introduced to the bst1 background. It is also important 
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to examine if the bst1 disease resistance could be segregated from the 
lesion mimic phenotype. 

Establishment of the Arabidopsis-B. sorokiniana pathosystem provides 
an extraordinary opportunity to investigate different defence mechanisms. 
This would expand our understanding on the host defence mechanisms in 
barley, as well as the non-host resistance in Arabidopsis. As presented in 
my study, the fact that the Col-0 line, which is the background for most 
Arabidopsis mutants, is resistant to the isolate of B. sorokiniana makes it 
possible to screen for susceptible mutant lines. With the available genome 
sequence of rice, identification and characterization of the rice homologs of 
the genes mutated in the susceptible Arabidopsis lines might shed light on 
differences and similarities between monocot and dicot defence 
mechanisms.  

The collection of coi1-16 lines generated in my study also harbours the 
pen2-4 mutation (Westhpal et al., 2008). Since PEN2 play a role in 
Arabidopsis defence against L. maculans it is important to figure out how 
the pen2-4 mutation affects the phenotypes of my coi1-16 lines. The 
rlm1Lerpad3coi1-16 line should be identified among F2 progeny of a cross 
between the quadruple mutant rlm1Lerpad3coi1-16pen2-4 and rlm1Lerpad3. 
If any significant difference can be observed in disease susceptibility 
between the rlm1Lerpad3coi1-16 and rlm1Lerpad3coi1-16 pen2-4 lines, 
further crosses will be made to generate a collection of coi1-16 lines 
without pen2-4 (e.g. rlm1Lerpad3coi1-16 NahG etc.). Since coi1-16 is male 
sterile at temperatures above 20°C, this will have to be carried out in a 
controlled environment. 

An additional interesting objective to follow up is the role of ET in 
Arabidopsis- L. maculans interaction. First, the amount of ET is difficult to 
determine due to its chemical properties. Therefore I suggest investigating 
the expression of a few genes involved in the biosynthesis and compare 
between inoculated plants and mock treated. Comparison of the expression 
should also be performed between interaction of virulent isolates and 
avirulent isolates in a camalexin and RML1 free background. The whole 
genome of L. maculans will soon be public and new possibilities will arise. 
Of high interest would be to search for ET biosynthesis genes. If present, a 
knockout as well as an over expression of them would make an interesting 
start for further detailed studies. 

RLM3 has several putative alternative transcripts. Overexpression of the 
shortest transcript only partially restored disease resistance to the An-1 
accession, while complementation by a genomic clone of RLM3 was 
successful. It is interesting to examine if other transcripts can fully 
complement the disease susceptibility of the An-1 line. In order to evaluate 
the functional importance of the DZC (disease resistance, zink finger, 
chromosome condensation IPR013591 (DZC) domain, which has been 
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identified in silico as one of the alternative RLM3 transcripts, a construct 
with end of exon 1 and the exons 3 and 4 under native and constitutive 
promoter can be used.  

A recent study demonstrated that L. maculans infects roots of its natural 
host oilseed rape, in addition to the above ground parts. It is interesting to 
test if L. maculans is also able to infect roots of Arabidopsis. The rice 
pathogen, Magnaporthe oryzae is another example of fungal pathogens that 
can be both foliar and root pathogen. Studies on M. oryzae indicated that 
the R gene-dependent resistance effective in leaves does not work in the 
same way in roots, suggesting that different defence systems are 
operational to a single pathogen depending on which tissues are attacked. A 
problem with this, is that if the root infection is too slow, plants will start to 
die and become senesced, which would make visual scoring impossible. If 
the Arabidopsis-L. maculans root pathosystem is established, we could 
examine if RLM1-dependent resistance is as effective against root infection 
by L. maculans as observed for leaf infection. Furthermore, a collection of 
Arabidopsis mutants, including those generated in my studies would enable 
us to identify key components shared by the defence systems in roots and 
in leaves. 
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