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Optimal Calibration in Immunoassay and Inference on the 
Coefficient of Variation 

Abstract 
This thesis examines and develops statistical methods for design and analysis with 
applications in immunoassay and other analytical techniques. In immunoassay, 
concentrations of components in clinical samples are measured using antibodies. 
The responses obtained are related to the concentrations in the samples. The 
relationship between response and concentration is established by fitting a 
calibration curve to responses of samples with known concentrations, called 
calibrators or standards. The concentrations in the clinical samples are estimated, 
through the calibration curve, by inverse prediction. 

The optimal choice of calibrator concentrations is dependent on the true 
relationship between response and concentration. A locally optimal design is 
conditioned on a given true relationship. This thesis presents a novel method that 
accounts for the variation in the true relationships by considering unconditional 
variances and expected values. For immunoassay, it is suggested that the average 
coefficient of variation in inverse predictions be minimised. 

In immunoassay, the coefficient of variation is the most common measure of 
variability. Several clinical samples or calibrators may share the same coefficient of 
variation, although they have different expected values. It is shown here that this 
phenomenon can be a consequence of a random variation in the dispensed volumes, 
and that inverse regression is appropriate when the random variation is in 
concentration rather than in response. 

An estimator of a common coefficient of variation that is shared by several 
clinical samples is proposed, and inferential methods are developed for common 
coefficients of variation in normally distributed data. These methods are based on 
McKay’s chi-square approximation for the coefficient of variation. This study 
proves that McKay’s approximation is noncentral beta distributed, and that it is 
asymptotically normal with mean n - 1 and variance slightly smaller than 2(n - 1). 
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Dedication 

Till Jenny 

As our circle of knowledge expands, so does the circumference of darkness 
surrounding it. 

Albert Einstein 
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1 Introduction 

This thesis examines methods that are useful for statistical design and analysis 
of analytical procedures (i.e. analytical techniques), especially those with 
applications within immunoassay. Analytical procedures are techniques used 
in clinical chemistry for determining concentrations of chemical substances. 
Immunoassay is an analytical procedure that uses antibodies (Hage, 1999). In 
other words, the immunoassay is a laboratory test, based on antibodies, that 
measures the concentration of an analyte in a clinical sample obtained from a 
patient. Because immunoassay is a complex technique, sample 
concentrations are usually determined with significant errors, which can be 
regarded as systematic or random. The standard deviation of the 
measurements is often proportional to the average of the measurements. For 
this reason, the coefficient of variation, i.e. the standard deviation divided by 
the mean, is a common measure of variability in immunoassay. 

Section 2 clarifies some useful concepts in immunoassay and statistical 
modelling. As a background to the research, Section 3 includes a review of 
statistical methods for univariate calibration and for inference on the 
coefficient of variation. Section 4 presents the results of the thesis, based on 
Papers I-IV, which are included as appendices. Section 5 provides a list of 
conclusions, while Section 6 is a summary in Swedish. 

1.1 Objectives 

In statistical textbooks, variance is the central measure of dispersion and 
homogeneous variances is often assumed. Various methods are available for 
statistical inference on the variance. However, in many applications, relative 
deviations are more interesting than absolute deviations. In immunoassay, 
the coefficient of variation is the measure of variability most commonly used 
among researchers. The concern in diagnostic research about relative errors, 
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rather than absolute errors, was the starting point for this thesis and its theme 
throughout. 

The main aims of this thesis were to develop statistical methods based on 
the assumption of homogeneous coefficients of variation and with the focus 
on minimising relative errors, and to contribute to the methods for inference 
on the coefficient of variation. 

The specific objective was to develop statistical methods for calibration 
and for statistical inference on variation, with applications in immunoassay. 
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2 Basic Concepts 

Before entering into the main topics of the thesis, some important concepts 
in immunoassay and statistical modelling must be clarified. Section 2.1 
provides some basic knowledge about immunoassay. Section 2.2 considers 
some functions that are often used in immunoassay for modelling the 
relationship between response and concentration, while Section 2.3 discusses 
some common assumptions that are often made about the distribution of the 
random errors in immunoassay measurements. 

2.1 Immunoassay 

An analyte is the chemical component measured in an analytical procedure. 
In immunoassay, the analyte is either an antibody or an antigen. Antibodies 
are proteins in the blood that are produced by the immune system for 
protection against foreign bodies, while the foreign bodies are the antigens. 
The antibodies bind to the antigens. 

The antigenes or the antibodies are labelled before analysis, in order to 
give a measurable signal. This label can be an enzyme, a radioactive isotope, 
or fluorescein. The signals obtained from an immunoassay can be 
radioactivity or emission of light. These signals are commonly called 
responses. 

The immunoassay involves chemical reactions between clinical samples 
obtained from patients and reagents (i.e. chemical solutions) performed 
under standardised conditions. The result is a response that is related to the 
concentration of the analyte in the sample. In competitive immunoassay, the 
analyte is unlabelled and competes with labelled molecules. The response is 
then a decreasing function of the analyte concentration. In noncompetitive 
immunoassay the labelled molecules bind to the analyte, and the response is 
an increasing function (Figure 2.1). In either case, the exact relationship 
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between response and concentration needs to be estimated. This estimation 
is called calibration. 

(a)                                                       (b)

Concentration                                       Concentration
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Figure 2.1. a) Competitive immunoassay, b) noncompetitive immunoassay. 

For calibration, samples with known concentrations are required. These 
specific samples are called calibrators or standards, and are usually prepared in 
advance. For example, a single sample with a known high concentration can 
be dissolved in water or animal serum to produce calibrators with a few 
specified lower concentrations covering the range of measurement. When 
discussing statistical design for calibration, the specified calibrator 
concentrations are called design points. Because the calibrators are specially 
prepared, but the samples are not, the calibrators and the clinical samples 
may react in slightly differently ways. 

Usually, a set of clinical samples with unknown concentrations is assayed 
together with the calibrators in an assay run. A calibration curve is fitted to 
the responses of the calibrators. This curve can be a straight line or some 
other monotonic function. The responses of the clinical samples are 
transformed into estimates of concentration through the fitted calibration 
curve, as illustrated by the arrows in Figure 2.1. This method for estimation 
of sample concentrations is called inverse prediction. 

Because the relationship between response and concentration may change 
from one assay run to another, calibrators are often included in each assay 
run, so that each can be calibrated separately. However, in some systems it is 
assumed that the relationship is stable, so that calibration needs to be 
performed less often, for example only once a month or when new batches 
of reagents are taken into use. 
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There are many sources of variation in immunoassay results. Small 
variations in operation, for example in timing, incubation temperature, 
relative humidity or dispensed volume, can add up to a substantial random 
error. In controlled precision studies, such sources can be identified as 
variance components. Usually the variation is estimated between and within 
assay runs, giving estimates of inter-assay and intra-assay variation, 
respectively. However, more factors than assay runs can be included in a 
precision study. In well-performed precision studies it is possible to estimate 
variances between for example laboratories, instruments, batches of reagents 
and batches of calibrators. 

In a precision profile, the variation in the immunoassay is plotted versus 
concentration as points or as a continuous curve, as in Figure 2.2. The 
variation can be the intra-assay variation or the total variation. The standard 
deviation is usually presented as a percentage of the concentration level (i.e. 
as a coefficient of variation). 

Concentration

CV (%)

20

 
Figure 2.2. Precision profile with indicated working range as defined by Carroll (2003). 

The range of measurement of the immunoassay method should begin 
above the quantitation limit, where samples are ‘quantitatively determined 
with stated acceptable precision and trueness’ (Clinical and Laboratory 
Standards Institute, 2004). Similarly, it should end before the errors in the 
inverse predictions become too large (Gottschalk & Dunn 2005a). The 
working range is a related concept, defined for example as ‘the range of con-
centrations for which the coefficient of variation of the fitted concentrations 
is <0.2.’ (Carroll, 2003). In the precision profile, concentrations are often 
displayed on a logarithmic scale. 
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2.2 Dose-Response Curves for Calibration 

In immunoassay, the response y is usually considered to be the sum of a 
function f of the concentration x and a random error term e, that is, 
y = f(x) + e. 

The straight line, f(x) = β1 + β2 x, is often used as a calibration curve in 
analytical procedures. Polynomials, such as the second-order polynomial 
f(x) = β1 + β2 x + β2 x

2, could fit significantly better, but may not be 
appropriate, since they need not be monotonic in the range of 
measurement. 

The Michaelis-Menten function (e.g. Wagner, 1973), 
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is a simple monotonic function that is nonlinear in the parameters. This 
function can sometimes be used for describing the relationship between 
response and concentration in analytical procedures. It is mainly used in 
kinetics, and the asymptotic response β2 is then called Vmax , to denote the 
maximum velocity. The Michaelis constant β1, often denoted Km , is the 
concentration x that gives half the maximum response, i.e. f(x) = β2/2. 
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is commonly used for calibration in immunoassay (O’Connell, Belanger & 
Haaland, 1993). The parameter β1 is the response f(x) at concentration 
x = 0, and β2 is the limit of f(x) when x approaches infinity. The para-
meter β3 is often denoted ED50. At concentration ED50, the function takes 
the value (β1 + β2)/2. The slope of the curve is controlled by β4. 

The four-parameter logistic function can be extended to a five-parameter 
logistic function (Rodbard, Munson & De Lean, 1974), as 
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The parameters β1, β2 and β3 in (2.3) have the same interpretations as in 
(2.2). The parameters β4 and β5 in (2.3) control the slope of the curve. 
Parameter β4 affects the curve mainly below ED50, while β5 affects the 
curve mainly above ED50. There is no explicit expression for the inverse of 
the five-parameter logistic function. In other words, it is not possible to 
solve for x in (2.3). Consequently, numerical methods are needed for 
inverse predictions. For example, the secant method could be used. 

Another extension of (2.2) into a logistic function with five parameters is 
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Gottschalk & Dunn (2005b) studied this function and concluded that in 
immunoassay, it can substantially improve the accuracy of inverse pre-
diction, compared to the four-parameter logistic function (2.2). With (2.4), 
ED50 could be larger or smaller than β3, depending on the values of β4 
and β5. Inverse prediction is easy, because it is possible to solve for x in (2.4). 
A third extension of (2.2) into a logistic function with five parameters was 
proposed by Ricketts & Head (1999). 

The three-parameter logistic function is obtained as a special case of (2.2) 
when β1 = 0, and the Michaelis-Menten function (2.1) is obtained if, in 
addition, β4 = 1. 

2.3 Probability Distributions 

It is necessary to know the distribution of the error term, or to make 
assumptions about it, in order to apply parametric methods for statistical 
inference. Furthermore, if we want to fit the calibration curve by the 
method of maximum likelihood, it is necessary to know the distribution. 

The error term is commonly assumed to be normally distributed with 
expected value 0. Many standard statistical techniques, such as analysis of 
variance and general linear modelling, require normally distributed 
observations, although they may be robust for minor deviations from 
normality. Sometimes the central limit theorem, which assumes the sum of 
many distributed random variables to be approximately normally distributed, 
is used as a heuristic argument for normally distributed measurements. The 
responses obtained in immunoassay can indeed be regarded as sums of many 
random variables, but the conditions of the theorem (e.g. Gut, 2005) are 
hard to verify. In practice, it can be difficult to claim that all observations are 
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positively or negatively skewed if some samples are slightly skewed to the 
left and others to the right. In the absence of arguments for skewed 
distributions, the normal distribution is often chosen. 

When the magnitude of the random error terms is independent of the 
level of the observations, the data are said to be homoscedastic and the 
variance is constant. However in immunoassay, the data are often 
heteroscedastic. This may become apparent in a residual plot, with residuals 
increasing by predicted values. Assumptions are required about how the 
variance of the normal distribution is changing. For example, it could be 
assumed that the variance follows the power-of-the-mean model, 

var(y) = φ (E(y))θ,             (2.5) 

or the log-linear model, 
 

var(y) = φ exp(θx).             (2.6) 

The use of functional relationships such as (2.5) or (2.6), between the 
variance and the level of the measurements, is recommended, because using 
sample variances as weights is inefficient when the number of replicates is 
small (Carroll & Cline, 1988). Methods for estimation of the variance 
parameters φ and θ are briefly discussed in Section 3.2.1. 

When the standard deviation is proportional to the averages, i.e. when 
θ = 2 in (2.5), it is convenient to assume that the observations follow a 
lognormal distribution, rather than a normal distribution. According to this 
assumption, y is skewed to the right, and log y is normally distributed. We 
then assume that log y = log f(x) + log e, and that the observations follow a 
multiplicative model, i.e. y = f(x)e. By a Taylor series expansion of y about 
the expected value, 

))(E(
)(E

1)(Eloglog yy
y

yy −+≈  

so that var(log y) ≈ var(y)/(E(y))2. Thus, the logarithmic transformation is 
variance-stabilising when the coefficient of variation is constant on the 
original scale. 

The probability density function of the lognormal distribution can be 
written 
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The expected value of the lognormal distribution is exp(μ + σ 2/2), and the 
variance is exp(2μ + σ 2)(exp(σ 2) - 1). Consequently the squared coefficient 
of variation γ 2 is exp(σ 2) - 1. 

Sometimes the measurements of the immunoassay are assumed to be 
gamma distributed. The probability density function of the gamma 
distribution is usually parameterised in terms of a shape parameter κ and a 
scale parameter λ, as 

κ

κ

λκ
λ

)(
)/exp(1

Γ
−− yy

.           (2.8) 

In this parameterisation, the expected value is κλ, and the variance is κλ2. 
The squared coefficient of variation γ 2 equals 1/κ. The expected value and 
the coefficient of variation are orthogonal (i.e. their information matrix is 
diagonal), and their maximum likelihood estimators are asymptotically 
independent (Cox & Reid, 1987). Under the assumption of constant 
coefficients of variation, the measurements could be modelled by gamma 
distributions with equal shape parameters, but varying scale parameters. 

When the coefficient of variation is small, the differences between the 
normal distribution, the lognormal distribution and the gamma distribution 
are small. This is illustrated in Figure 2.3. 
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Figure 2.3. Probability density functions of normal distributions (solid), lognormal 
distributions (dashed) and gamma distributions (dotted). Expected value: 100, Coefficient of 
variation (CV): (a) 0.05, (b) 0.10, (c) 0.20, (d) 0.30. 
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3 Background 

This section reviews and discusses statistical methods for design of 
calibration, criteria for calibration, and inference on the coefficient of 
variation as a background to the research performed. 

Calibration design refers to the choice of calibrator concentrations. There 
are three main types of optimal design: locally optimal designs, Bayesian 
optimal designs and maximin optimal designs. In addition, many criteria for 
optimality have been proposed, as reviewed in Section 3.1. 

By calibration criteria are meant conditions for the optimal fits of 
calibration curves. According to the method of least squares, the calibration 
criterion that should be minimised is the sum of the squared deviations 
between the obtained and the predicted responses. This criterion is discussed 
in Section 3.2.1. A similar criterion is used when the curve is fitted by 
inverse regression. According to this method, the sum of squares is 
minimised as measured on the concentration axis, in preference to the 
response axis. This is described in Section 3.2.2. Calibration curves can also 
be fitted by maximum likelihood or, in presence of heteroscedasticity, by 
the transform-both-sides method, as described in Section 3.2.3. Numerical 
methods for fitting of calibration curves are not discussed in this thesis. Seber 
& Wild (1989) provide information about such techniques. 

Many statistical methods have been developed for inference on the 
coefficient of variation, but in immunoassay they are rarely used. 
Warren (1982) wrote: 

While workers in many fields recognize the imprecision in a sample mean, 
and will now routinely compute a standard error, or a confidence interval, 
for the mean, many of these same workers will treat the sample coefficient of 
variation as if it were an absolute quantity. Inferences based on this measure 
of variability may then be questionable. Nevertheless, it should be possible to 
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persuade such workers that, as with the sample mean, some measure of 
precision should be attached to the sample coefficient of variation. 

Although many years have passed since this reflection was first published, the 
situation has not improved, perhaps because methods for inference on the 
coefficient of variation are seldom discussed in statistical textbooks. 
Section 3.3 provides a review of methods for inference on the coefficient of 
variation. 

3.1 Calibration Design 

Consider the curve in Figure 3.1. Five calibrators, with concentrations 2, 
10, 50, 100 and 200 μg/l, were used for calibration. The calibrators were 
measured in an assay run, and a calibration curve was fitted to the responses. 
We may wonder whether ξ = (2, 10, 50 100, 200)' is an optimal design, or 
whether there exists some other set of design points (i.e. calibrator 
concentrations) that perform better with regard to some design criterion. 

A number of design criteria have been proposed. Many of these focus on 
the variation in the estimators of the curve parameters, as described by a 
variance-covariance matrix V that is exact in the linear case and asymptotic 
in the nonlinear case. Let D denote the variance-covariance matrix of the 
calibrators. This matrix includes the intra-assay variances in the responses of 
the calibrators, and is usually considered to be diagonal because of 
independent measurements. The diagonal elements of D are all equal in the 
case of homoscedasticity and unequal otherwise. When the calibration curve 
is linear in the parameters and X is the design matrix, the variance-
covariance matrix V of the parameter estimates equals (X'D-1X)-1. When the 
calibration curve is nonlinear, the asymptotic variance-covariance matrix V 
is (F'D-1F)-1, where F is a matrix of partial derivatives of the calibration 
function with respect to the parameters. Under the assumption of 
independent normally distributed observations, the inverse of V equals the 
expected information matrix (e.g. Seber & Wild, 1989, p. 34). In D-optimal 
deigns, the determinant of V is minimised. In A-optimal designs, the trace 
of V is minimised, and in E-optimal designs, the maximum eigenvalue of V 
is minimised. By these three design criteria, different measures of the 
variation in the parameter estimators are made as small as possible. 
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Figure 3.1. A four-parameter logistic calibration curve fitted to responses of five calibrators. 

Instead of focusing on the precision in the curve parameter estimates, the 
focus could be on the precision in the predictions that belong to a specified 
interval of interest. In G-and V-optimal designs, the maximum and average 
variance in the predictions is minimised, respectively. V-optimal designs are 
sometimes called I-optimal, because their integrated prediction variance is 
minimised (e.g. Hardin & Sloane, 1993). François, Govaerts & Boulanger 
(2004) proposed that G- or V-criteria be used, in the calibration context, for 
inverse predictions that belong to a range of measurement. Rocke & Jones 
(1997) similarly proposed maximisation of reciprocals of variances in inverse 
predictions.  

In nonlinear regression, the variance-covariance matrix V and the inverse 
predictions are dependent on the current curve parameter values. This is a 
problem when searching for an optimal design, because the parameter values 
change between assay runs, for example as a result of changes in temperature 
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or reagents. As a consequence, the design that is optimal in one assay run 
may not be optimal in another. 

A locally optimal design is a design that is optimal, according to some 
design criterion, for a given set of fixed parameter values. It could be argued 
that it is reasonable to search for a locally optimal design, because ‘the 
researcher often has some knowledge on the expected model parameters’ 
(François, Govaerts & Boulanger, 2004). On the other hand, it is logically 
apparent that locally optimal designs are not necessarily optimal when the 
parameter values change. 

Bayesian methods provide a solution to this problem. According to this 
approach the parameter values are modelled as random variables. Bayesian 
D- or A-optimality, which take into account the prior variation in the 
parameter values, can be derived (Chaloner & Verdinelli, 1995). Bayesian 
methods are computer intensive, because they require numerical integration 
or use of simulation based methods (Müller, 1999). Furthermore, in practice 
it can be difficult to define the prior distribution of the curve parameters, 
especially because the parameters may be correlated and have different 
ranges. 

Instead of using Bayesian methods, the researcher can try to find a 
maximin optimal design by specifying a subset of the parameter space, 
including all parameter values that should be considered, possibly all values 
that could occur. In the case of one parameter, the subset is usually an 
interval, and otherwise usually a product set of intervals. The researcher 
focuses on a design criterion that should be maximised, and maximises over 
the design space the minimum of this criterion over the parameter subset. 
Through this method, designs that perform less well for some possible 
parameter values are avoided. However, the method does not take into 
account the likelihood of the possible parameter values. The basic criterion 
that is maximised according to the maximin method is usually a function of 
the information matrix, thus giving maximin D-, A- or E-optimal designs. 
Such designs have been suggested for the Michaelis-Menten model by Dette 
& Biedermann (2003), Dette, Melas & Pepelyshev (2003) and Dette, Melas 
& Wong (2005). 

Errors-in-variables models (Carroll, Ruppert & Stefanski, 1995) can be 
considered when there are random errors in the calibrator concentrations. 
Zwanzig (2000) and Pronzato (2002) have studied design problems for such 
models. 
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3.2 Calibration Criteria 

By calibration is meant establishment of the current relationship between 
response and concentration. In practice the calibration is usually made by 
fitting the calibration curve to the responses of the calibrators. It is assumed 
that the dose-response function f is known, but the current parameter values 
are not. Under this assumption, the immunoassay calibration amounts to 
estimation of the curve parameters. This section discusses criteria for 
estimation of the vector β of curve parameters, in the presence of 
heteroscedasticity. The function f is regarded as a function of β and is 
written f(β). The vector of calibrator responses is denoted y. 

3.2.1 Weighted least squares 

With the method of least squares, the residual sum of squares is minimised. 
The parameter values that minimise e'e are taken as curve parameter 
estimates, where e denotes the vector of residuals. When the data are 
heteroscedastic, the method of weighted least squares can be applied. 
According to this method, the weighted sum of squares e'D-1e is minimised. 
As in Section 3.1, the matrix D denotes the variance-covariance matrix of 
the calibrators. It is well known that the solution to the weighed least 
squares problem, in other words the estimates that minimise the weighted 
sum of squares, can be found by methods for ordinary least squares. If C is 
such that D = CC' and the model y = f(β) + e is multiplied from the left by 
C-1, then the variance of C-1y is an identity matrix, and the solution to the 
transformed model, C-1y = C-1f(β) + C-1(e), is the solution to the weighted 
least squares problem (Seber & Wild, 1989, p. 28). 

In practice, the variance-covariance matrix D is not known. It could 
perhaps be assumed that the variance follows the power-of-the-mean 
model (2.5), or the log-linear model (2.6). In these models, the variance 
parameters, i.e. θ and φ, need to be estimated. In the power-of-the-mean 
model, the mean, i.e. E(y), also needs to be estimated. 

The calibration curve is usually fitted to a small number of calibrators, 
often measured in duplicate. Because calibration datasets are small, 
estimation of variance parameters based on single calibration datasets cannot 
be recommended. If single calibration datasets are to be used for estimation 
of variance parameters, the datasets should be large, and checks should be 
made for erroneous measurements and outliers that could influence the 
estimates. When the single calibration datasets are small, the variance 
parameters can be estimated based on a collection of datasets. This method 
requires stable variance parameters that do not change from one calibration 
dataset to another, an assumption that is not completely realistic. On the 
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other hand, minor changes in the values of the variance parameters can have 
small effects on the inverse predictions of the sample concentrations. Zeng & 
Davidian (1997a) provide a statistical test for the hypothesis of equal variance 
parameters in calibrator datasets. 

Regression analysis is the simplest method for estimation of the variance 
parameters θ and φ in (2.5) or (2.6). It requires replicate measurements of 
the calibrators. For each calibrator concentration, the average response is 
calculated and the intra-assay variance var(y) is estimated. In (2.5), regression 
of log var(y) on log-transformed averages gives estimates of the intercept, i.e. 
log φ, and the slope θ. This popular method was suggested by Rodbard et al. 
(1976). Similarly, in (2.6), regression of log var(y) on calibrator concentra-
tions x gives estimates of the intercept log φ and the slope θ. Weightings can 
be used in the regression to account for heterogeneity in the variance of 
log var(y) (Rodbard et al., 1976; Raab, 1981). 

Raab (1981) proposed estimation of variance parameters by a modified 
maximum likelihood method, since the estimators based on regression 
analysis (Rodbard et al., 1976) and the maximum likelihood estimators 
(Finney & Phillips, 1974) proved to be biased, especially in datasets with 
varying number of replicates. This iterative modified maximum likelihood 
method is more efficient than the regression method, but also more 
complicated. Sadler & Smith (1986) proposed that the modified maximum 
likelihood method be simplified by estimating expected responses by 
averages, making the method computationally faster. Sadler (2002) described 
an improved computer programme that makes use of this technique. These 
maximum likelihood methods are based on the normal distribution. 

More generally, the variance can be written 

var(y) = φ g(x, β, θ),            (3.1) 

where the form of the function g is usually assumed to be known (Davidian, 
1990). In (3.1), β denotes the curve parameters, and φ and θ the variance 
parameters. When the variance-covariance matrix D, or the estimate of D, 
depends on β, the weighted least squares method for estimation of β can be 
applied iteratively. A preliminary estimate of β makes it possible to estimate 
the variance parameters, producing a first estimate of D. Using this first 
estimate of D, an estimate of β  can be obtained by weighted least squares, 
and the process is repeated. 

The estimation of the variance parameters φ and θ in (3.1) can be based 
on sample variances or residuals. For example, the regression method 
proposed by Rodbard et al. (1976) is based on sample variances. Such 
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methods require replicates but do not need any specification of the mean 
function. Goos, Tack & Vandebroek (2001) discussed designs for estimation 
of variance parameters, based on sample variances. Methods based on 
residuals are more efficient than methods based on sample variances 
(Davidian & Carroll, 1987), especially when the numbers of replicates are 
small, as is often the case in datasets from analytical procedures. 
Pseudolikelihood maximisation is a common method for variance parameter 
estimation that is based on residuals. According to this method, the variance 
parameters are estimated by maximum likelihood, conditioned on the 
current estimates of the curve parameters. Davidian & Giltinan (1993) and 
Giltinan & Davidian (1994) discussed this and other methods for variance 
parameter estimation in datasets including many assay runs. Davidian (1990) 
considered estimation of variance parameters when the data are possibly 
nonnormal, with unequal numbers of replicates. 

Obviously, there are many possible variance functions, and many 
methods for estimating their parameters, producing different estimates. 
Fortunately, the choice of method usually has negligible effect on the 
estimates of the curve parameters. As explained by Carroll (2003) ‘as the 
level of simply fitting the mean structure, it does not matter what method is used 
to account for the variance structure.’ In order to model the mean structure 
correctly, however, it is necessary to account for the variance heterogeneity 
by some method. 

Estimated variance parameters can be used for assessing the precision of 
the calibration. Giltinan & Davidian (1994) suggested that estimates of 
variance parameters be used for making intra-assay precision profiles. 
Similarly, estimates of variance parameters can be used for construction of 
sample concentration confidence intervals. There are four basic approaches 
for making such confidence sets: 

i. Inversion of asymptotic prediction intervals (Fieller, 1954) 
ii. Symmetric Wald intervals, based on the asymptotic variance in 

the predicted sample concentration 
iii. Likelihood methods (Brown & Sundberg, 1987; Giltinan & 

Davidian, 1994; Bellio 2003) 
iv. Bootstrap methods (Zeng & Davidian, 1997b; Jones & Rocke, 

1999; Benton, Krishnamoorthy & Mathew, 2003). 

Approach i) gives unsymmetrical intervals and may for this reason be 
more appropriate than approach ii) when the nonlinear function has an 
asymptote (Schwenke & Milliken, 1991). Belanger, Davidian & Giltinan 
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(1996) studied approaches i) an ii) and found that the confidence intervals 
depend critically on the quality with which the variance parameters are 
estimated. They concluded that ‘the common practice of setting variance 
parameters to fixed values without adequate investigation may lead to 
erroneous calibration inference.’ Zeng and Davidian (1997c) considered 
construction of confidence intervals based on information from many assay 
runs. 

These methods for the construction of precision profiles for intra-assay 
variation and for the construction of confidence intervals generally presume 
that the variation in the samples is the same as the variation in the 
calibrators. In practice, this assumption is not always accurate. The 
calibrators are as a rule manufactured, and for this reason probably have 
smaller variance than genuine clinical samples. Furthermore, it is well 
known that predicted sample concentrations can differ considerably between 
e.g. laboratories, instruments and batches of reagents even if each assay is 
calibrated. This inter-assay variation is often larger than the intra-assay 
variation. For this reason, confidence intervals based solely on intra-assay 
precision, perhaps expressed by estimated variance parameters, are likely to 
be too narrow. 

An investigation of precision should include many variance components, 
for example several instruments and batches of reagents, and the assays 
should be performed under varying conditions, for example under different 
temperatures. All relevant sources of errors should be considered when 
making a statement about the precision in a predicted sample concentration. 
The results from a well performed precision study, including a number of 
samples covering the range of measurement, could be used for assessing the 
precision in subsequent determinations of concentrations in clinical samples. 

3.2.2 Inverse regression 

By the method of inverse regression, the curve is fitted to concentrations, as 
opposed to responses. The sum of squared deviations between the points 
and the curve is minimised, with deviations measured on the concentration 
axis. This method contrasts with the classical method of calibration, which is 
the ordinary method of least squares, minimising the sum of squares 
measured on the response axis. Krutchkoff (1967) initiated a discussion by 
reporting results from a simulation study indicating a smaller mean square 
error in predicted sample concentrations by inverse regression than by 
classical regression. Berkson (1969) objected that the inverse predictor of 
sample concentrations is consistent in classical regression, but inconsistent in 
inverse regression. Tellinghuisen (2000) pointed out that the inverse 
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predictor is biased in finite datasets, even in classical regression, and for small 
datasets (approx. 5 observations) the bias in classical regression is comparable 
to the bias in inverse regression. Krutchkoff (1969) showed that classical 
regression can give a smaller mean square error than inverse calibration 
outside the calibration range. It is now well accepted that inverse regression 
can produce a smaller mean square error than classical regression in a range 
around the average concentration (Chow & Liu, 1995, p. 39). Tellinghuisen 
(2000) observed that the range of concentrations over which inverse 
regression is more efficient than classical regression is greater for small data 
sets than for large. However, it should be noted that the differences between 
classical and inverse regression are very small unless the variation is large. 
Furthermore, the relative performance of one calibration estimator over the 
other is dependent on the distribution (Shalabh & Toutenburg, 2006). The 
research on inverse regression for calibration has been reviewed by 
Osborne (1991). 

3.2.3 Other criteria for calibration 

Calibration in terms of the method of weighted least squares was discussed 
above. Calibration can also be carried out by the method of maximum 
likelihood. When the responses are normally distributed, the method of least 
squares and the method of maximum likelihood give the same curve 
parameter estimates. 

In assays with lognormal distributed measurements, it is often assumed 
that the response vector y follows a multiplicative model y = f(β)e, where e 
is a vector of random errors that belong to the lognormal distribution (2.7) 
with μ = 1. In this case, the transform-both-sides method, introduced by 
Carroll & Ruppert (1984), can be used for calibration. If the logarithmic 
transformation is applied on the multiplicative model, the result is the 
additive model log y = log f(β) + log e, with random errors log e that are 
normally distributed with expected value 0. This model is easily fitted by 
standard software for nonlinear regression. The log transformation is a 
member of the family of power transformations suggested by Box & Cox 
(1964), 
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It is possible to estimate λ in (3.2), and transform the responses and the 
calibration model correspondingly. Bonate (2006) provides an introduction 
to the transform-both-sides method. 
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When the data are gamma distributed, the calibration curve f can easily 
be fitted using software for generalised linear models (McCullagh & Nelder, 
1989), provided that f, or a monotonic differentiable function of f, is linear 
in the parameters. Through this method, the likelihood is maximised. For 
example, if the expected response E(y) follows the Michaelis-Menten 
model (2.1), a generalised linear model with reciprocal link can be fitted to 
inverse calibrator concentrations, because then 
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which is linear in the parameters 1/β2 and β1/β2. 
Rocke and Lorenzato (1995) proposed fitting a calibration model that 

can be written 

y = f(x) exp(e1) + e2,            (3.3) 

where e1 is N(0, σ1

2) and e2 is N(0, σ2

2). This model include two variation 
components: e1 giving approximately constant coefficient of variation in 
response for high levels of concentration, and e2 giving approximately 
constant standard deviation in response for low levels of concentrations. 
Because this variance pattern is often observed in immunoassay, model (3.3) 
may have many applications. 

If there are random errors not only in response, but also in concentration, 
methods for errors-in-variables (e.g. Carroll, Ruppert & Stefanski, 1995) can 
be used for calibration. Concentration is a ‘controlled observation’ if its 
values are fixed in advance, while the unknown true values varies randomly 
around the fixed values. When the regressor is a controlled observation, the 
usual least-squares estimators of the parameters are unbiased in the linear case 
(Berkson, 1950), but biased in the nonlinear case (Cheng & Van Ness, 1999, 
p. 45). 

3.3 Inference on the Coefficient of Variation 

Observations from immunoassay are often distributed with a standard 
deviation that is approximately proportional to the level of the observations. 
The coefficient of variation is useful as a measure of the random variability. 
It is used for stating acceptance criteria for precision (DeSilva et al., 2003), 
and is often reported in directions for use and in precision studies (e.g. 
Brunnée et al., 1996). It is sometimes claimed that a method has 
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homogeneous precision, as measured by the coefficient of variation, in all 
parts of the range of measurement, while at other times it is reported that 
the precision is different in different parts of the range of measurement. 
When analysing data from immunoassay, coefficients of variation are often 
calculated and compared. This section reviews methods for making 
inference on the coefficient of variation. 

In a sample with observations yi , i = 1, 2, . . ., n, of a random variable Y, 
the coefficient of variation is defined as c = s/m, where 
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The sample coefficient of variation c is usually regarded as an estimator of 
the population coefficient of variation γ, defined as 
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In immunoassay, concentrations cannot be negative. Nevertheless, they 
can be approximately normally distributed, and the normal distribution can, 
and often is, used as a model. The modelling of nonnegative measurements 
by the normal distribution requires that the expected value be larger than 3 
standard deviations. Otherwise, negative observations are likely to occur 
according to the model. Provided that the nonnegative data follow an 
approximate normal distribution, the population coefficient of variation γ is, 
as a consequence, smaller than 1/3. When the sample coefficient of variation 
is larger than 1/3 in replicated observations of a positive variable, 
nonnormality is suggested and the lognormal distribution (2.7) or the 
gamma distribution (2.8) might describe the data better. 

3.3.1 Point estimators 

Because the density of the average m is positive in a neighbourhood of 0, the 
expected value of the sample coefficient of variation c does not exist. When 
analysing variables that can only take positive values this is seldom a 
problem, since the probability of an average close to 0 is usually negligible. 

As discussed in Section 2.3, if the observations are lognormal distributed, 
the variance calculated on log values approximately equals the squared 
coefficient of variation. The standard deviation, calculated on log values, is 
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for this reason a common estimator of the coefficient of variation when the 
data are lognormal. 

When the data are gamma distributed, inference on the coefficient of 
variation amounts to inference on the shape parameter κ in the probability 
density function (2.8). This parameter can be estimated by maximum 
likelihood (Cohen & Whitten, 1982; Bowman & Shenton, 1983). A 
numerical method has to be applied, because there is no explicit solution. 
Standard statistical software for fitting generalised linear models (McCullagh 
& Nelder, 1989) can be used for simultaneous estimation of the expected 
value and the shape parameter by fitting a model including only an 
intercept. The sample mean is the maximum likelihood estimator of the 
expected value κλ. Yanagimoto (1988) recommended estimation of κ by 
the conditional maximum likelihood estimator given the sample mean. The 
conditional maximum likelihood estimator of κ is consistent and less biased 
than the unconditional maximum likelihood estimator, but it requires more 
difficult calculations. 

3.3.2 Single sample tests and confidence intervals 

The test statistic  
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for the hypothesis that the expected value of a normally distributed random 
variable equals 0 is t distributed with n - 1 degrees of freedom, provided that 
the hypothesis is true. Generally t follows a noncentral t distribution with 
n - 1 degrees of freedom and noncentrality parameter τ = n1/2/γ. Owen 
(1968) discussed this and other applications of the noncentral t distribution. 
A confidence set for τ can be constructed from the acceptance region of a 
test of the hypothesis about τ. Thus, if Pr(t < n1/2/c | τ  = τ1) = α /2 and 
Pr(t > n1/2/c | τ  = τ2) = α /2 then [τ2 , τ1] is a 100(1 - α) % confidence 
interval for τ. An exact finite confidence interval for γ is easily obtained 
from the confidence interval for τ provided that the latter does not 
include 0. The exact finite confidence interval is 
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In practice, the percentiles of the noncentral t distribution might not be 
available, because computer programmes for statistics do not always include 
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the noncentral t distribution. The open source software R, version 7.2.2, 
produces incorrect results for noncentrality parameters smaller than 37.62 
(R Development Core Team, 2008, p. 1334). Fortunately, there are several 
ways to calculate approximate confidence intervals. Miller (1991a) showed 
that c is asymptotically normally distributed with expected value γ and 
variance 
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Based on (3.7), Miller & Feltz (1997) proposed the approximate 
100(1 - α) % confidence interval 
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where z is the 100(1 - α/2):th percentile of the standard normal distribution. 
This confidence interval is symmetrical around c. A similar single sample test 
of the null hypothesis γ = γ0 was proposed by Rao & Bhatta (1989), who 
also made an Edgeworth expansion of the null distribution of the sample 
coefficient of variation. An asymmetrical interval, more likely than (3.8) to 
perform well also for smaller sample sizes, is obtained if only the second γ 2 
in (3.7) is estimated by c 2. Thus 
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is approximately distributed as a standard normal distribution. The 
corresponding 100(1 - α) % confidence interval for γ is 
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which, according to Reh & Scheffler (1996), was suggested by Graf et al. 
(1987). Hald (1952) proposed another approximate confidence interval 
based on asymptotic normality. 

McKay (1932) showed that if γ < 1/3 and θ = (n - 1)/n, then 
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is approximately χ 2 distributed with n - 1 degrees of freedom. As explained 
in the introduction to Section 3.3, in applications the condition γ < 1/3 is 
usually reasonable, since it makes negative observations unlikely. Let u1 
denote the 100(1 - α/2):th percentile, and u2 denote the 100α/2:th 
percentile of a χ 2 distribution with n - 1 degrees of freedom. Because (3.10) 
is an approximate pivotal quantity, it can be used for calculating an 
approximate confidence interval, 
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Of course, as pointed out by David (1949), (3.10) could also be expected to 
be approximately χ 2 distributed with n - 1 degrees of freedom if θ =1. 
Vangel (1996) showed that 
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is optimal for calculating the 100α/2:th percentile of the sample coefficient 
of variation. The approximate confidence interval based on this result is 
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with u1 and u2 defined as in (3.11). 
Assuming that the data are lognormal, the coefficient of variation on the 

original scale can be estimated by the standard deviation on the log scale. 
The usual confidence interval for a standard deviation calculated on log 
values is thus an approximate confidence interval for the coefficient of 
variation in the original values. This confidence interval can be written 
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where sL denotes the standard deviation calculated on log values. 
The following example includes the ‘naive’ interval 
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This interval is obtained if the coefficient of variation is treated as if it were a 
proper standard deviation, i.e. if the limits of the usual confidence interval 
for σ 2 are divided by the average m. Vangel (1996) compared analytically 
the errors in this naive approximation with the error in McKay’s 
approximation and concluded that the naive approximation is ‘substantially 
less accurate’. 

In the example below approximate confidence intervals are calculated on 
tensile strength data given by Vangel (1996). The data set, presented in 
Table 3.1, consists of five measurements. 

Table 3.1. Measurements of tensile strength provided by Vangel (1996) 

Measurement Tensile strength (1000 psi) 
1 326 
2 302 
3 307 
4 299 
5 329 
Mean (1000 psi) 312.6 
Coefficient of variation 0.0446 

The calculated confidence intervals are given in Table 3.2. The exact 
confidence interval was obtained using the function tnonct in SAS 9.1 
(SAS Institute Inc., Cary, NC, USA). 

Table 3.2. 95% confidence intervals for the coefficient of variation in the tensile strength data 

Method (eq. no.) Confidence interval 
Exact (3.6) [0.0267 , 0.1287] 
Miller & Feltz (3.8) [0.0136 , 0.0756] 
Graf et al. (3.9) [0.0263 , 0.1459] 
McKay (3.11) [0.0267 , 0.1291] 
Vangel , (3.12) [0.0267 , 0.1287] 
Log (3.13) [0.0266 , 0.1274] 
Naive (3.14) [0.0267 , 0.1281] 

In this dataset the estimated coefficient of variation was small (4.46%). 
Most of the approximate confidence intervals were similar to the exact 
confidence interval. However, the symmetrical Miller & Feltz confidence 
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interval did not perform well (Table 3.2). The confidence interval suggested 
by Graf et al. (1987), which is based on the same normal approximation, was 
more adequate. The McKay approximation proved to be very accurate, and 
the modification due to Vangel (1996) was successful. The method of 
logarithmic transformation worked adequately in this example but not as 
good as McKay’s approximation. The good performance of McKay’s 
approximation (3.10) is not surprising. Fieller (1932), Pearson (1932), 
Iglewicz & Myers (1970) and Umphrey (1983) have confirmed that (3.10) is 
approximately χ 2 distributed. The naive method also performed well, but 
the interval was somewhat too small since the method ignores the variation 
in the estimate of the average. 

The robustness of inferential methods for the coefficient of variation 
based on McKay’s approximation has been little investigated. Bonett & Seier 
(2006) noted that the confidence interval suggested by Vangel (1996) 
performed poorly with nonnormal distributions. They proposed, as an 
alternative, an approximate confidence interval for the coefficient of 
dispersion (i.e. the mean absolute deviation from the median, divided by the 
median). 

The arithmetic and geometric sample means are the complete and 
sufficient statistics for the parameters of the gamma distribution (2.8). 
Confidence intervals for the shape parameter κ in (2.8) can be based on the 
ratio between these means (Engelhardt & Bain, 1978). Because this ratio 
does not depend on the scale parameter λ in (2.8), it is easy to simulate 
critical values for a test of the hypothesis that κ equals some specific value. 
Likelihood methods for constructing confidence intervals and calculating 
approximate tail probabilities in inference on the shape parameter were 
investigated by Wong (1992) and Wong & Wu (1998). Wong & Wu (2002) 
proposed an approximate method for calculating confidence intervals for the 
population coefficient of variation γ based on the modified signed log 
likelihood ratio statistic defined by Barndorff-Nielsen (1986, 1991). This 
method was reported to give accurate results even in the case of small sample 
sizes, and can be used for gamma as well as normally distributed data. Simple 
large-sample methods for construction of tests and confidence intervals for 
the inverse sample coefficient of variation 1/c in gamma and Weibull 
distributed data, based on asymptotic normality, were proposed by Sharma 
& Krishna (1994). 

Likelihood ratio based confidence intervals for the shape parameter κ in 
the gamma distribution (2.8) can easily be obtained using software for fitting 
generalised linear models (McCullagh & Nelder, 1989). When there is only 
one sample, a model including only an intercept is appropriate. In this 
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approach, approximate confidence intervals can either be constructed from 
the estimated covariance matrix at the final iteration, or, more advanced, 
from investigation of the profile likelihood (e.g. Pawitan, 2001). In either 
case, the inference is based on asymptotic distributions, and may for this 
reason perform well in large datasets. When the observations are gamma 
distributed, the generalised linear model approach is convenient for 
estimating a common coefficient of variation, i.e. a population coefficient of 
variation that many samples have in common. 

Bayesian theory provides methods for constructing posterior intervals (i.e. 
probability intervals) for the coefficient of variation. Pang et al. (2005) 
explained how this can be done when the observations are lognormal, 
gamma or Weibull distributed. They suggested the use of non-informative 
uniform prior distributions and the altering conditional sampling known as 
Gibbs sampler. This method is suitable when the distribution of the 
observations is known, but the probability density of the sample coefficient 
of variation is difficult to derive. 

Rao & Bhatt (1995) described jackknife and bootstrap single sample tests 
for the coefficient of variation. The jackknife test statistic is asymptotically 
normal. By the bootstrap technique, critical values of a test statistic are 
determined by resampling from a parametric distribution or from the sample 
itself. More research is needed on the performances of jackknife and 
bootstrap methods for the coefficient of variation when the sample is small. 

3.3.3 Tests for equality of coefficients of variation 

When studying precision in immunoassay, samples with varying levels of 
concentration are measured in replicate, and their coefficients of variation 
are calculated. The coefficients of variation are often compared, usually 
informally, without performing any statistical tests. However, many methods 
have been proposed for making appropriate comparisons. 

If it is possible to assume that the observations are lognormal distributed, 
variations could, with advantage, be compared on the log scale. After 
logarithmic transformation, the data are normally distributed, and the 
standard deviations equal the original coefficients of variation approximately 
(see Section 2.3). Standard methods for testing equality of variances can be 
applied. This approach can usually be recommended, because of ease and 
adequacy. 

When it is believed that the distribution is symmetrical, and when other 
statistical analyses performed on the data, such as regression and analysis of 
variance, are based on the normal distribution, there could be an interest in 
other approaches. However, when the coefficients of variation are small, the 
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lognormal distribution approximates normal distributions well (Figure 2.3), 
and the differences between analyses based on the lognormal distribution 
and analyses based on the normal distribution are small. 

Several authors have explored the likelihood ratio test for normally 
distributed data. Miller & Karson (1977) and Bhoj & Ahsanullah (1993) 
considered the special case of equal sample sizes. Lohrding (1975), Bennett 
(1977) and Doornbos & Dijkstra (1983) treated the general case of unequal 
sample sizes. The likelihood ratio test is computationally inconvenient, 
because there are usually no explicit expressions for the maximum likelihood 
estimates under the null hypothesis of equal coefficients of variation. 
Numerical procedures for the likelihood ratio test have been proposed by 
Gupta & Ma (1996) and Nairy & Rao (2003). When only two coefficients 
of variations are to be compared the likelihood ratio test can be written 
explicitly; because in this case exact expressions are available for the 
maximum likelihood estimates under the null hypothesis (Gerig & Sen, 
1980). The likelihood ratio test is known to be too liberal for small sample 
sizes (Doornbos & Dijkstra, 1983; Fung & Tsang, 1998; Nairy & Rao, 
2003). In order to improve the performance of the likelihood ratio test, 
Verrill & Johnson (2007) provided an internet based programme that 
simulates critical values. Gupta & Ma (1996) derived a score test, based on 
maximum likelihood estimates, and a Wald test for unequal sample sizes, 
build on the Wald test for equal sample sizes proposed by Rao & Vidya 
(1992). A similar test, for equal sample sizes, was proposed by Bhoj & 
Ahsanullah (1993). Doornbos & Dijkstra (1983), Singh (1993), Sharma & 
Krishna (1994) and Nairy & Rao (2003) proposed tests based on the 
distribution and the moments of the inverse sample coefficient of 
variation 1/c.  

Feltz and Miller (Miller, 1991a; Feltz & Miller, 1996; Miller & 
Feltz, 1997) have contributed a test, based on asymptotic normality, for 
equality of k coefficients of variation. Let ci be the sample coefficient of 
variation in population i, calculated on ni observations, i = 1, 2, . . ., k, and 
let c = Σi ci(ni – 1)/Σi (ni – 1), and N = Σi ni. The test statistic, 
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is approximately χ2 distributed with N – k degrees of freedom. 
Bennett (1976) utilised McKay’s approximation (3.10) for the coefficient 

of variation. Because (3.10) is approximately χ.2 distributed, and 
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consequently approximately gamma distributed, Bennett (1976) suggested 
that Pitman’s test (Pitman, 1939) for equality of scale parameters in gamma 
distributions be applied. Shafer & Sullivan (1986) noted that Bennett, when 
deriving the test statistic for the coefficient of variation, mistakenly used a 
sample variance with divisor n - 1 whereas McKay (1932) used a sample 
variance with divisor n. For this reason they modified Bennett’s test 
correspondingly. The modified Bennett’s test statistic for equality of 
coefficients of variation is 

i

k

i
i

k

i ii
un

kN

un
kNF log)1(

)1(
log)(

1

1 ∑∑
=

= −−
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

−
−= ,    (3.16) 

where ui = ci

2/(1 + ci

2(ni - 1)/ni ). The test statistic (3.16) is approximately 
χ 2 distributed with N - k degrees of freedom. 

Wilson & Payton (2002) utilised McKay’s approximation in a similar 
way. They noted that because McKay’s approximation is approximately 
gamma distributed, it can be used for modelling the coefficient of variation 
by application of iteratively weighted least squares in the framework of 
generalised linear models (McCullagh & Nelder, 1989). This makes it 
possible to investigate hypotheses about the coefficient of variation by use of 
asymptotically valid likelihood ratio tests. The method proposed by Wilson 
& Payton (2002) is useful, since the coefficient of variation can be modelled 
by categorical factors and regression terms as in ordinary linear models, but 
the statistical tests may require large datasets. 

Tests for equality of coefficients of variation in gamma distributed data 
can be based on the ratio between the arithmetic and the geometric sample 
means (Keating, Glaser & Ketchum, 1990; Yanagimoto & Yamamoto, 
1991). Alternatively, the generalised minimum chi-square procedure 
proposed by Tripathi, Gupta & Pair (1993) can be applied, with attention to 
the correction in Bhattacharya (2002). 

Miller (1991b) suggested a nonparametric test for equality of coefficients 
of variation. This nonparametric test was recommended for nonnormal 
distributions by Fung & Tsang (1998). 
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4 Results 

The main ideas and results of the thesis are summarised in this section with 
references to Papers I-IV, which are included as appendices. Paper I, which 
considers the problem of choosing calibrator concentrations, is discussed in 
Section 4.1. Paper II, on inverse regression for immunoassay, is reported in 
Section 4.2. Papers III and IV, which deal with inference on the coefficient 
of variation and with the distribution of McKay’s approximation, are 
considered together in Section 4.3. 

4.1 Calibration Design 

Paper I introduces a new method for determining optimal designs. It 
proposes that the existing methods for finding locally optimal designs 
(François, Govaerts & Boulanger, 2004) be extended by allowing for 
randomness in the curve parameters. As discussed, in Section 3.1, the 
Bayesian approach (Chaloner & Verdinelli, 1995) requires specification of 
the full multivariate distribution of the curve parameters. The new method, 
described in Paper I, only requires an assumption about the expected 
value β0 of the curve parameters and their variance-covariance matrix Σ. 
The matrix Σ includes inter-assay variances and covariances for the 
distribution of the parameter values. The parameter values vary, for example 
as a consequence of inter-assay changes in temperature, variation in assay 
execution or differences between assays in batches of reagents. The variance-
covariance matrix Σ should not be confused with the variance-covariance 
matrix V, which includes variances and covariances in the parameter 
estimators, caused by intra-assay variation. 

Paper I defines the design criterion as a function h of the variance var(x) 
and the expected value E(x) in the predicted concentrations x, integrated 
over the range of measurement. This function can be the variance or the 
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mean square error. For immunoassay, it is suggested that h be the coefficient 
of variation and that the area under the precision profile be minimised. This 
makes sense when the magnitude of the relative errors is more interesting 
than the magnitude of the absolute errors. 

The design criterion can be written 

ξπξξ dh∫ , 

where ξ denotes the true sample concentrations, and π is a probability 
density function of ξ. By choosing the probability density function π, the 
function h can be integrated over the range of measurement on the original 
scale or on a log scale. It is also possible to give larger weightings to some 
parts of the range of measurement than to others. For example, large 
weightings can be assigned to concentrations close to clinical cut-off values, 
and small weightings can be assigned to clinically less interesting parts of the 
range of measurement. 

Because in nonlinear regression the variance and the expected values in 
the inverse predictions are dependent on the parameter values, which are 
unknown, Paper I suggests that the design criterion be minimised as 
calculated by the equations for unconditional expected values and variances: 

E(x) =E(E(x|β )), 

var(x) = E(var(x|β )) + var(E(x|β )). 

These expressions can be calculated approximately by series expansion 
about β = β0, and by making use of the variance-covariance matrix Σ. In 
contrast, locally optimal designs are based on conditional expected values 
and variances. For this reason, the method proposed in Paper I can be 
regarded as an extension of the method for finding locally optimal designs. 

4.2 Calibration Criteria 

Inverse regression was discussed in Section 3.2.2. Paper II proposes 
weighted inverse regression for calibration in immunoassay with 
proportional errors. According to this method the calibration curve is fitted 
inversely, and with reciprocals of squared calibrator concentrations as 
weightings. The basis for this suggestion is the notion that the random 
variation in the dispensed volumes of the calibrators and the clinical samples 
could be the main source of error in advanced diagnostic measuring 
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instruments. Varying volumes give varying numbers of molecules included 
in the sample. This is illustrated in Figure 4.1, where the varying large 
circles indicate varying volumes, and the smaller filled circles symbolise 
molecules. The number of molecules included in the sample varies much 
more when the concentration is high than when the concentration is low. 
Paper II shows that the standard deviation in the number of molecules is 
proportional to the concentration, resulting in a constant coefficient of 
variation. The main contributions of Paper II are this plausible reason for the 
approximate homogeneity in coefficients of variation in immunoassay, and 
its consequences for curve fitting. 

(a)                                                            (b)

 
Figure 4.1. Varying sample concentrations. a) Low concentration b) High concentration. 

Provided there is a constant coefficient of variation on the concentration 
axis, rather than on the response axis, weighted inverse regression is 
suggested, because it minimises relative squared residuals in concentration. 
This criterion also agrees with the common use of the coefficient of 
variation for measuring variability in immunoassay. When the 
concentrations are normally distributed, the maximum likelihood method is 
equivalent to the method of inverse regression (Paper II). 

If the response is proportional to the number of molecules in the sample, 
a constant coefficient of variation in the number of molecules implies a 
constant coefficient of variation in response. Therefore, it is not surprising 
that often θ ≈ 2 in the power-of-the-mean model (2.5) for the variance. 
Paper II shows that if the response is not proportional to the concentration, 
but follows the four-parameter logistic function (2.2), then the standard 
deviation in response is approximately 
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where γ is the coefficient of variation in concentration and y denotes the 
response level. 

As mentioned in Section 3.2.1, Carroll (2003) noted that calibration 
curves are only slightly influenced by the choice of method for taking 
heteroscedasticity into account. This is illustrated by the example in 
Paper II, which includes a comparison between three methods for 
calibration. Two of the methods, weighted classical regression and weighted 
inverse regression, account for the heteroscedasticity and give similar results. 
The third method is an ordinary least squares fit of the calibration curve, 
without use of weightings. This method differs considerably from the other 
methods with regard to predicted sample concentrations. 

The main arguments for weighted inverse regression in immunoassay, 
compared with weighted classical regression, are that: 

i. It has a theoretical basis (Paper II). 
ii. It focuses on minimising errors in concentration rather than in 

response. 
iii. It does not require estimation of variance parameters. 

Argument iii) makes weighted inverse regression convenient, because, as 
discussed in Section 3.2.1, it may be difficult to decide upon a method for 
estimation and to determine how frequently the estimates should be 
updated. 

4.3 Inference on the Coefficient of Variation 

It is often appropriate to assume that immunoassay measurements are 
lognormal distributed, and this is convenient when investigating the 
variation, as noted in Section 3.3. However, in some applications, there 
could be reasons for believing that the observations are normally distributed. 
The theoretical argument given in Paper II to some extent supports the 
assumption of symmetrically distributed measurements in immunoassay. The 
random variation in the sample volumes could be the main source of 
variation in highly automated diagnostic systems, and the distribution of the 
sample volume might be normal. This thesis contributes to the research 
about inference on the coefficient of variation, conditioned on the normal 
distribution. 
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Paper III shows that, when the distribution is normal, the sample 
coefficient of variation c is an asymptotically unbiased estimator of the 
population coefficient of variation γ. It also shows, by Taylor series 
expansion, that if the population coefficient of variation γ is small, c can be 
anticipated to be close to γ (1 - 1/(4(n - 1))), where n is the number of 
observations. In immunoassay, γ  is usually smaller than 0.20, and for this 
case it is proposed that c divided by 1 - 1/(4(n - 1)) be used as a bias adjusted 
estimator of γ . 

In immunoassay datasets, the coefficient of variation is frequently 
calculated for many subsets of the data, for example for many samples. 
When these are similar, a method for summarising them into one estimate of 
a common coefficient of variation is required. Paper III proposes that the 
squared coefficients of variation be pooled by the degrees of freedom 
(i.e. the number of observations minus 1), and that the square root of this 
pooled average be used as an estimator of γ, after bias adjustment. This is a 
simple procedure that may have many applications. 

Furthermore, when there are samples from many populations that have 
the same population coefficient of variation but possibly different expected 
values, a confidence interval for the common population coefficient of 
variation may be required. Tian (2005) proposed a method for calculating 
confidence intervals, based on resampling. Verrill & Johnson (2007) 
provided a method based on the likelihood ratio test with critical values 
simulated in an application on the internet. Paper III proposes that McKay’s 
approximation be used for calculating confidence intervals for common 
coefficients of variation. Explicit equations that are easy to account for and 
that give the same result whenever applied, in contrast to resampling 
methods, are provided. 

Paper III suggests that McKay’s approximation (3.10) be employed 
straightforwardly for the comparison of two coefficients of variation c1 and c2, 
calculated on n1 and n2 observations, respectively. A test similar to the usual 
F-test for the comparison of two variances is proposed: 
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The test statistic (4.2) is approximately F distributed with n1 - 1 and n2 - 1 
degrees of freedom (Paper III). This approximate F-test performs well, 
according to the simulation study in Paper III, especially with regard to 
type I error, even when the sample sizes are very small. 
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If more than two coefficients of variation are to be compared, it is 
proposed that this be done by use of Hartley’s F-test (Hartley, 1950). Then 
c1 denotes the largest coefficient of variation and c2 the smallest, and the test 
statistic (4.2) is compared with the critical values listed by Nelson (1987). 
Paper II includes an example of this method. 

Unlike many other tests, the approximate F-test proposed in Paper III 
can be used when there are many estimates per population coefficient of 
variation. In other words, it can be used for comparisons of common 
coefficients of variation. When studying precision in immunoassay it is often 
interesting to compare coefficients of variation for different groups of 
samples. One group of samples could have one population coefficient of 
variation in common, and a second group of samples could have a second 
population coefficient of variation in common. With the methods in 
Paper III it is possible to statistically test the equality of the two common 
population coefficients of variation. 

Feltz & Miller’s test (3.15) and Bennett’s test (3.16) perform well with 
regard to type I and type II error, and have been recommended for this 
reason (Feltz & Miller, 1996; Gupta & Ma, 1996; Nairy & Rao, 2003). In 
the simulation study in Paper III, the approximate F-test (4.2) was compared 
with the likelihood ratio test, Feltz & Miller’s test (3.15) and Bennett’s test 
(3.16). The approximate F-test produced accurate frequencies of falsely 
rejected null hypotheses (approx. 5%), even in cases of small sample sizes, 
and the powers were comparable to those of Feltz & Miller’s test (3.15) and 
Bennett’s test (3.16). As expected (cf. Section 3.3.3), the likelihood ratio test 
proved to be too liberal.  

The assumption of the distribution is crucial when the coefficient of 
variation is large. The approximate F-test is appropriate for the comparison 
of two coefficients of variation, provided that the observations are normally 
distributed. If the observations are lognormal, an ordinary F-test should be 
applied after logarithmic transformation of the observations. This can be 
called a lognormal test. The importance of the assumption about the 
distribution is illustrated in Figures 4.2 a-c, which add results to the 
simulation study presented in Paper III. Three cases were investigated, with 
a common population coefficient of variation γ1 = γ2 = γ equal to 5%, 15% 
and 30%, respectively. Normally distributed samples of n1 and n2 obser-
vations, respectively, were generated in MATLAB, version 6.5 
(MathWorks, Natick, MA, USA), with n1 = n2 = n, n = 2, 3, . . ., 20 (i.e. 
the sample sizes were always equal and varied from 2 to 20). Thus 19 
simulations were made per case. In each simulation, 20,000 pairs of samples 
were generated. The results of the approximate F-test are presented in full in 
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Figures 1-3 in Paper III, and are included in Figures 4.2 a-c for comparison 
with the results of the lognormal test. 

 
 
 
 

 
Figure 4.2a. Comparison of the approximate F-test (4.2) and the lognormal test on simulated 
normally distributed observations. Probability of type I error when γ = 5% and n = n1 = n2. 

 
Figure 4.2b. Comparison of the approximate F-test (4.2) and the lognormal test on simulated 
normally distributed observations. Probability of type I error when γ = 15% and n = n1 = n2. 
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Figure 4.2c. Comparison of the approximate F-test (4.2) and the lognormal test in simulated 
normally distributed observations. Probability of type I error when γ = 30% and n = n1 = n2. 

Evidently, the lognormal test and the approximate F-test perform similar 
with regard to type I error when the coefficient of variation is small 
(Figure 4.2 a), but not otherwise (Figures 4.2 b and c). The frequency of 
falsely rejected hypotheses of equal coefficients of variation reached 20% 
when the common population coefficient of variation was 0.30, and the 
sample size was large (n = 20). Note that the upper limit of the y-axis is 20% 
in Figure 4.2 c, but 15% in Figures 4.2 a and b. 

It had been assumed that McKay’s approximation is ‘asymptotically exact’ 
(Vangel, 1996), but Paper IV shows it is asymptotically normal with mean 
n - 1 and variance 2(n - 1)(1 + 2γ 2 )/(1 + γ 2 )2. However, as Paper IV 
discusses, because γ is small, the asymptotic variance does not differ greatly 
from 2(n - 1), and for this reason McKay’s approximation should 
asymptotically perform sufficiently well in most applications. Paper IV also 
shows that McKay’s approximation is type II noncentral beta distributed. 
Paper III utilises this result for providing exact expressions for the first and 
second moments of the approximation. It is noticed, for some small sample 
sizes, that the first and second moments approximately equal the first and 
second moments of a χ 2 distributed random variable with n - 1 degrees of 
freedom. 
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5 Conclusions 

This concluding section lists the main contributions of this work 
(Section 5.1), contains some final remarks (Section 5.2), and discusses 
potential future work (Section 5.3). 

5.1 Main Contributions 

The main contributions of this thesis can be summarised in the following 
points: 

i. A new approach for designing nonlinear calibration was developed. 
This new approach can be regarded as an extension of the methods 
for finding locally optimal designs. Through this extension, inter-
assay variation in the curve parameters can be taken into account 
(Paper I). 

ii. Theoretical arguments were presented for a homogeneous 
coefficient of variation in concentration and for using weighted 
inverse regression for calibration in immunoassay (Paper II). 

iii. An approximate formula was provided for the standard deviation in 
response as a function of the level of the response, under 
assumptions of a four-parameter logistic function and a constant 
coefficient of variation in concentration (Paper II). 

iv. An estimator of a common coefficient of variation and its 
asymptotic distribution were derived, and a bias-adjustment for 
small sample sizes was proposed (Paper III). 

v. The use of McKay’s approximation for constructing confidence 
intervals and testing hypotheses about common coefficients of 
variation in normally distributed data was demonstrated (Paper III). 

vi. Exact expressions were given for the first two moments of McKay’s 
approximation (Paper III). 
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vii. The exact distribution of McKay’s approximation for the coefficient 
of variation was determined (Paper IV). 

viii. The asymptotic distribution of McKay’s approximation for the 
coefficient of variation was derived (Paper IV). 

5.2 Final Remarks 

The new method for design of calibration, introduced in Paper I, allows for 
inter-assay variation in the curve parameters. In this regard, the method is an 
extension of the method for determining locally optimal designs. 
Application of the new method often reveals that the expected values of the 
curve parameters are more important than the covariance matrix. Designs 
that are optimal according to the new method are often locally optimal at 
the expected values of the curve parameters. In other words, the optimal 
design is sensitive to the assumption about the expected values. This is a 
problem, because the expected values may be hard to determine. Bayesian 
methods for finding optimal designs share this problem. 

In immunoassay, the differences between classical regression and inverse 
regression are usually small. A weighted regression is needed when the 
standard deviation is increasing with the average of the measurements. The 
use of weighted inverse regression for calibration, as described in Paper II, is 
convenient because it does not involve estimation of variance parameters. 
However, knowledge about expected variances is important when assessing 
the residuals and the quality of the fit. Precision statements about inverse 
predictions of sample concentrations based on estimated variance parameters 
can be misleading, since they may not include all relevant variance 
components. 

When making inference on coefficients of variation, it is practical to 
assume that the observations are lognormal distributed. Methods for 
lognormal distributed observations are applicable on approximately normally 
distributed positive measurements provided that the coefficient of variation 
is small, which is often the case in immunoassay. When the observations are 
positive and the coefficient of variation is small, the lognormal and the 
normal distributions are similar. The assumption about the distribution is 
critical when the coefficient of variation is large. Nonparametric methods, 
for example based on resampling, are useful when the distribution is 
unknown. 



 49 

5.3 Future Research 

Paper I proposed a method for determining optimal designs by linear 
approximations of unconditional expected values and variances. This idea 
was tested for the problem of determining design points for calibration in 
immunoassay. The idea might be applicable to other problems as well, as an 
alternative to Bayesian methods. 

The model considered in Paper II was proposed under the assumption of 
negligible random variation in response. This assumption is often not 
realistic. The model needs to be extended to include substantial random 
errors in response. Methods for errors-in-variables, with concentration as a 
controlled variable, could be considered. Design issues for immunoassay 
calibration could be studied for errors-in-variables models. 

Many statistical issues in immunoassay were not considered in this thesis, 
for example limits of detection and quantitation, conformity between 
immunoassay techniques, problems with interference and carry over, quality 
control in production, and estimation of sensitivity and specificity. Methods 
for these problems also need to be developed and tested. 

The robustness of the methods proposed for inference on common 
coefficients of variation in Paper III remains to be examined. An extensive 
simulation study, comparing several tests for hypotheses about coefficients of 
variation under varying conditions, would be useful. Small sample properties 
of resampling methods for inference on the coefficient of variation could be 
investigated. 



 50 

 



 51 

6 Sammanfattning 

Statistiska metoder används bland annat för planering av vetenskapliga 
försök, modellering av samband och för att dra slutsatser av observationer. I 
den här avhandlingen utvecklas statistiska metoder för immunkemiska 
tekniker. I kemin används analytiska tekniker för att bestämma kon-
centrationer av kemiska föreningar. Immunkemiska tekniker är laborativa 
test, baserade på antikroppar, som mäter koncentrationerna av något ämne i 
patientprov. Flera patientprov brukar analyseras samtidigt i en så kallad 
körning 

Eftersom immunkemiska tekniker är komplicerade test bestäms provens 
koncentrationer aldrig exakt, utan med fel som delvis kan betraktas som 
slumpmässiga. Det är vanligt att felens standardavvikelse är approximativt 
proportionell mot medelvärdet. Av denna anledning är variations-
koefficienten, dvs. standardavvikelsen dividerad med medelvärdet, ett vanligt 
mått på spridning i immunkemi. 

Avhandlingens utgångspunkt är att variationskoefficienten är ett relevant 
mått på spridning i immunkemiska metoder. Genom hela avhandlingen 
ligger fokus på relativa fel snarare än absoluta, eftersom relativa fel oftast är 
kliniskt mer intressanta. Avhandlingen syftar till att utveckla statistiska 
metoder för immunkemiska tekniker under denna förutsättning. 

De immunkemiska testen ger en signal som är relaterad till provets kon-
centration. Signalen, som till exempel kan vara fluorescens, kallas vanligen 
respons. För att kunna översätta provets respons till koncentration är det 
nödvändigt att fastställa det aktuella sambandet mellan respons och kon-
centration. Detta kallas kalibrering.  

Vid kalibrering används så kallade kalibratorer, vilka är prov med kända 
koncentrationer. Kalibratorerna är oftast inte naturliga, utan de tillverkas så 
att de får de rätta koncentrationerna. Normalt används ett fåtal kalibratorer 
med koncentrationer valda så att de täcker hela mätområdet. En kali-
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breringskurva anpassas till kalibratorernas responser, normalt med minsta 
kvadratmetoden. Skattningen av ett patientprovs koncentration, via kali-
breringskurvan, kallas invers prediktion. Den logisiska funktionen med fyra 
parametrar (2.2) används ofta för kalibrering av immunkemiska tekniker. 

I följande avsnitt behandlas, med referenser till artiklarna I – IV, val av 
kalibratorkoncentrationer, kriterier för kalibrering samt statistisk inferens för 
variationskoefficienten. 

6.1 Val av kalibratorkoncentrationer 

Kalibratorernas koncentrationer bör väljas optimalt, enligt något kriterium. 
Många kriterier har föreslagits. Ofta minimeras något mått på variationen i 
skattningarna av kurvans parametrar. I artikel I föreslås att kriteriet istället 
baseras på felen i de inverst predikterade koncentrationerna. Generellt kan 
dessa fel uttryckas som en funktion av väntevärdet och variansen. 
Funktionen ska anta så litet värde som möjligt i hela mätområdet, vilket 
betyder att integralen av funktionen, från lägsta till högsta möjliga 
koncentration, ska minimeras. 

Dessvärre beror väntevärdet och variansen i den inversa prediktionen på 
det sanna sambandet mellan respons och koncentration. Det sanna 
sambandet är okänt, och det varierar från tillfälle till tillfälle. Denna svårighet 
kan hanteras med Bayesianska metoder. Med en multivariat sannolikhets-
fördelning beskrivs hur kurvans parametrar varierar slumpmässigt mellan 
tillfällen. Det är emellertid i praktiken svårt att veta vilken sannolikhets-
fördelning parametrarna följer, och dessutom kräver metoden komplicerade 
beräkningar. 

Alternativt kan kalibratorernas koncentrationer väljas så att de är optimala 
för ett enda fixerat samband mellan respons och koncentration, det vill säga 
för en enda given kalibreringskurva. Valet sägs i detta fall vara lokalt 
optimalt. Med denna metod bortses helt från det faktum att sambandet 
mellan respons och koncentration varierar mellan körningar. 

I artikel I föreslås ett nytt tillvägagångssätt. Metoden för att bestämma 
lokalt optimala kalibratorkoncentrationer generaliseras. Varianser och vänte-
värden för inversa prediktioner behöver enligt den nya metoden inte 
nödvändigt beräknas betingat på en given kalibreringskurva, utan kan 
approximativt beräknas obetingat. Detta möjliggörs genom antaganden om 
kurvparametrarnas förväntade värden och varianser mellan tillfällen och med 
hjälp av linjär approximation. 
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6.2 Kriterier för kalibrering 

Kalibreringskurvan anpassas vanligen till kalibratorernas responser med 
minsta kvadratmetoden. Eftersom variansen inte är konstant, utan ökar med 
responsens nivå, görs en vägd regression. Som vikter används inverterade 
skattningar av varianser. Vanligen skattas varianserna i förhand, i större 
datamaterial med mätvärden från många körningar. 

I artikel II ges en möjlig förklaring till fenomenet att standardavvikelsen i 
immunkemi ofta är ungefärligt proportionell mot medelvärdet. Det kan vara 
den slumpmässiga variationen i de dispenserade volymerna av proven och 
kalibratorerna som orsakar en approximativt homogen variationskoefficient. 
Om detta är fallet, och om responsen är en funktion av antalet molekyler i 
den dispenserade volymen, är invers regression mer lämplig än vanlig 
regression. 

Invers regression innebär att kalibreringskurvan anpassas, med minsta 
kvadratmetoden, till koncentrationer istället för till responser. Syftet är att 
minska medelkvadratfelen i de inversa prediktionerna. I artikel II föreslås att 
kalibreringskurvan anpassas med invers regression, och att inverterade 
kvadrerade kalibratorkoncentrationer används som vikter. Då minimeras 
kvadratsumman av alla relativa avvikelser i koncentration. 

I artikel II ges också ett approximativt uttryck (4.1) för variansen i 
respons när variationskoefficienten är konstant i koncentration och sam-
bandet mellan respons och koncentration beskrivs av en logistisk funktion 
med fyra parametrar (2.2). 

6.3 Inferens för variationskoefficienten 

Variationskoefficienten c är det vanligaste måttet på spridning i immun-
kemiska metoder. Den definieras som c = s/m, där s är standardavvikelsen 
och m medelvärdet (3.4), baserat på n observationer. Vanligen tas denna 
variationskoefficient c som skattning av populationsvariationskoefficienten γ, 
definierad enligt (3.5). 

Variationskoefficienten används för att jämföra olika immunkemiska 
metoders precision och för att uttrycka krav på spridning i immunkemi. 
Ibland antas att variationskoefficienten är konstant i hela mätområdet. Ofta 
undersöks om variationskoefficienten är större under någon specifik 
omständighet än under någon annan. Av dessa anledningar behövs, vid 
analys av immunkemiska tekniker, statistisk inferens för variations-
koefficienten. Det är särskilt vanligt att flera prov antas ha samma variations-
koefficient och att denna så kallade gemensamma variationskoefficient 
skattas. 
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I denna avhandling utvecklas statistiska metoder för gemensamma 
variationskoefficienter i normalfördelade data. En skattningsfunktion tas 
fram, samt dess asymptotiska fördelning. Skattningsfunktionen är helt enkelt 
kvadratroten ur ett vägt medelvärde av de enskilda provens kvadrerade 
variationskoefficienter. Som vikter används antalet observationer minus 1. 
För små variationskoefficienter (<0.20) rekommenderas dessutom en 
justering för systematiskt fel, genom multiplikation med en faktor som beror 
på totala antalet observationer. 

McKays approximation (3.10) för variationskoefficienten γ är approx-
imativt χ 2-fördelad med n - 1 frihetsgrader. Den kan användas för att 
beräkna approximativa konfidensintervall för variationskoefficienten. I 
artikel III föreslås ett nytt statistiskt test, baserat på McKays approximation, 
för hypotesen att två variationskoefficienter γ1 och γ2 är lika. Test-
statistikan (4.2) ska jämföras med en F-fördelning. Enligt en simulerings-
studie fungerar det nya testet väl, särskilt med avseende på sannolikheten för 
fel av första slaget, även vid små stickprov. I artikel III föreslås dessutom 
metoder för att beräkna konfidensintervall för gemensamma variations-
koefficienter, och pröva hypotesen att två eller flera gemensamma variations-
koefficienter är lika. Även dessa metoder grundar sig på McKays 
approximation. 

I artikel IV visas att McKays approximation är ickecentralt betafördelad, 
och att den dessutom är asymptotiskt normalfördelad med medelvärde n - 1 
och varians något mindre än 2(n - 1). Eftersom variansen i en χ 2-fördelad 
variabel med n - 1 frihetsgrader är 2(n - 1) är, i denna mening, McKays 
approximation inte asymptotiskt korrekt. Avvikelsen bör emellertid i de 
flesta fall vara av försumbar betydelse. Baserat på resultaten i artikel IV ges i 
artikel III explicita uttryck för de två första momenten för McKays 
approximation. 
 



 55 

References 

Barndorff-Nielsen, O. E. (1986) Inference on full or partial parameters based on the 
standardized signed log likelihood ratio. Biometrika 73, 307-322. 

Barndorff-Nielsen, O. E. (1991) Modified signed log likelihood ratio. Biometrika 78, 557-
563. 

Belanger, B. A., Davidian, M. & Giltinan, D. M. (1996) The effect of variance function 
estimation on nonlinear calibration inference in immunoassay data. Biometrics 52, 158-175. 

Bellio, R. (2003) Likelihood methods for controlled calibration. Scandinavian Journal of 
Statistics 30, 341-353. 

Bennett, B. M. (1976) On an approximate test for homogeneity of coefficients of variation. 
In: Ziegler, W. J. (Ed.) Contributions to applied statistics dedicated to A. Linder, 
Experientia Supplementum 22, 169-171. 

Bennett, B. M. (1977) LR tests for homogeneity of coefficients of variation in repeated 
samples. Sankhyā, Series B, 39, 400-405. 

Benton, D., Krishnamoorthy, K. & Mathew, T. (2003) Inferences in multivariate-univariate 
calibration problems. The Statistician 52, 15-39. 

Berkson, J. (1950) Are there two regressions? Journal of the American Statistical Association 45, 
164-180. 

Berkson, J. (1969) Estimation of a linear function for a calibration line: consideration of a 
recent proposal. Technometrics 11, 649-660. 

Bhattacharya B. (2002) Tests of parameters of several gamma distributions with inequality 
restrictions. Annals of the Institute of Mathematical Statistics 54, 565-576. 

Bhoj, D. S. & Ahsanullah, M. (1993) Testing equality of coefficients of variation of two 
populations. Biometrical Journal 35, 355-359. 

Bonate, P. L. (2006) Pharmacokinetic-pharmacodynamic modeling and simulation. New York: 
Springer. 

Bonett, D. G. & Seier, E. (2006) Confidence interval for a coefficient of dispersion in 
nonnormal distributions. Biometrical Journal 48, 144-148. 

Bowman, K. O. & Shenton, L. R. (1983) Maximum likelihood estimators for the gamma 
distribution revisited. Communications in Statistics – Simulation and Computation 12, 697-
710. 



 56 

Box, G. E. & Cox, D. R. (1964) An analysis of transformations. Journal of the Royal Statistical 
Society, Series B, 26, 211-252. 

Brown, P. J. & Sundberg, R. (1987) Confidence and conflict in multivariate calibration. 
Journal of the Royal Statistical Society, Series B, 49, 46-57. 

Brunnée, T., Seeberger, A, Kleine-Tebbe, J. & Kunkel, G. (1996) Comparison between two 
automated systems to determine specific IgE: CAP and ELItest. Clinical and Experimental 
Allergy 26, 1420-1427. 

Carroll, R. J. (2003) Variances are not always nuisance parameters. Biometrics 59, 211-220. 
Carroll, R. J. & Cline, D. B. H. (1988) An asymptotic theory for weighted least-squares with 

weights estimated by replication. Biometrika 75, 35-43. 
Carroll, R. J. & Ruppert, D. (1984) Power transformations when fitting theoretical models 

to data. Journal of the American Statistical Association 79, 321-328. 
Carroll, R. J., Ruppert, D., Stefanski, L. A. (1995) Measurement error in nonlinear models. 

London: Chapman & Hall. 
Chaloner, K. & Verdinelli, I. (1995) Bayesian experimental design: a review. Statistical Science 

10, 237-304. 
Cheng, C.-L. & Van Ness, J. W. (1999) Statistical regression with measurement error. London: 

Arnold. 
Chow, S. C. & Liu J. P. (1995) Statistical design and analysis in pharmaceutical science. Validation, 

process controls, and stability. New York: Marcel Dekker. 
Clinical and Laboratory Standards Institute (2004) Limits of detection and quantitation. 

Document EP17-A. Wayne, Pennsylvania: Clinical and Laboratory Standards Institute. 
Cohen, A. C. & Whitten, B. J. (1982) Modified moment and maximum likelihood 

estimators for parameters of the three parameter gamma distribution. Communications in 
Statistics – Simulation and Computation 11, 197-216. 

Cox, D. R. & Reid, N. (1987) Parameter orthogonality and approximate conditional 
inference. Journal of the Royal Statistical Society, Series B, 49, 1-39. 

David, F. N. (1949) Note on the application of Fisher's k-statistic. Biometrika 36, 383-393. 
Davidian, M. (1990) Estimation of variance functions in assays with possibly unequal 

replication and nonnormal data. Biometrics 77, 43-54. 
Davidian, M. & Carroll, R. J. (1987) Variance function estimation. Journal of the American 

Statistical Association 82, 1079-1091. 
Davidian, M. & Giltinan, D. M. (1993) Some simple methods for estimating intraindividual 

variability in nonlinear mixed effects models, Biometrics 49, 59-73. 
DeSilva, B., Smith, W., Weiner, R., Kelley, M., Smolec, J., Lee, B., Khan, M., Tacey, R., 

Hill, H. & Celniker, A. (2003) Recommendations for the bioanalytical method validation 
of ligand-binding assays to support pharmacokinetic assessments of macromolecules. 
Pharmaceutical Research 20, 1885-1900. 

Dette, H. & Biedermann, S. (2003) Robust and efficient designs for the Michaelis-Menten 
model. Journal of the American Statistical Association 98, 679-686. 

Dette, H., Melas, V. B. & Pepelyshev, A. (2003) Standardized maximin E-optimal designs for 
the Michaelis-Menten model. Statistica Sinica 13, 1147-1163. 



 57 

Dette, H., Melas, V. B., and Wong, K. W. (2005) Optimal design for goodness-of-fit of the 
Michaelis-Menten enzyme kinetic function. Journal of the American Statistical Association 
100, 1370-1381. 

Doornbos, R. & Dijkstra, J. B. (1983) A multi sample test for the equality of coefficients of 
variation in normal populations. Communications in Statistics - Simulation and Computation 
12, 147-158. 

Engelhardt, M. & Bain, L. J. (1978) Construction of optimal unbiased inference procedures 
for the parameters of the gamma distribution. Technometrics 20, 485-489. 

Feltz, C. J. & Miller G. E (1996) An asymptotic test for the equality of coefficients of 
variation from k populations. Statistics in Medicine 15, 647-658. 

Fieller, E. C. (1932) A numerical test of the adequacy of A. T. McKay’s approximation. 
Journal of the Royal Statistical Society 95, 699-702. 

Fieller, E. C. (1954) Some problems in interval estimation. Journal of the Royal Statistical 
Society, Series B, 16, 175-185. 

Finney, D. J. & Phillips, P. (1974) The form and estimation of a variance function, with 
particular reference to radioimmunoassay. Applied Statistics 26, 312-320. 

François, N., Govaerts, B. & Boulanger, B. (2004) Optimal designs for inverse prediction in 
univariate nonlinear calibration models. Chemometrics and Intelligent Laboratory Systems 74, 
283-292. 

Fung W. K. & Tsang T. S. (1998) A simulation study comparing tests for the equality of 
coefficients of variation. Statistics in Medicine 17, 2003-2014. 

Gerig, T. M. & Sen, A. R. (1980) MLE in two normal samples with equal but unknown 
population coefficients of variation. Journal of the American Statistical Association 75, 704-
708. 

Giltinan, D. M. & Davidian, M. (1994) Assays for recombinant proteins: a problem in non-
linear calibration. Statistics in Medicine 13, 1165-1179. 

Goos, P., Tack, L. & Vandebroek, M. (2001) Optimal designs for variance function 
estimation using sample variances. Journal of Statistical Planning and Inference 92, 233-252. 

Gottschalk, P. G. & Dunn, J. R. (2005a) Determining the error of dose estimates and 
minimum and maximum acceptable concentrations from assays with nonlinear dose-
response curves. Computer Methods and Programs in Biomedicine, 80, 204-215. 

Gottschalk, P. G & Dunn, J. R. (2005b) The five-parameter logistic: a characterization and 
comparison with the four-parameter logistic. Analytical Biochemistry 343, 54-65. 

Graf, U., Henning, H. J., Stange, K. & Wilrich, P. T. (1987) Formeln und tabellen der 
angewandten mathematischen statistik. Berlin: Springer. 

Gupta, R. C. & Ma, S. (1996) Testing the equality of coefficients of variation in k normal 
populations. Communications in Statistics - Theory and Methods 25, 115-132. 

Gut, A. (2005) Probability: a graduate course. New York: Springer. 
Hage, D. S. (1999) Immunoassays. Analytical Chemistry 71, 294R-304R. 
Hald, A. (1952) Statistical theory with engineering applications. New York: Wiley. 
Hardin, R. H. & Sloane, N. J. A. (1993) A new approach to the construction of optimal 

designs. Journal of Statistical Planning and Inference 37, 339-369. 
Hartley, H. O. (1950) The maximum F-ratio as a short cut test for heterogeneity of variance. 

Biometrika 37, 308-312. 



 58 

Iglewicz, B. & Myers, R. H. (1970) Comparison of approximations to the percentage points 
of the sample coefficient of variation. Technometrics 12, 166-169. 

Jones, G. & Rocke, D. M. (1999) Bootstrapping in controlled calibration experiments. 
Technometrics 41, 224-233. 

Keating J., Glaser, R. E. & Ketchum, N. S. (1990) Testing hypotheses about the shape 
parameter of a gamma distribution. Technometrics 32, 67-82. 

Krutchkoff, R. G. (1967) Classical and inverse regression methods of calibration. 
Technometrics 9, 425-439. 

Krutchkoff, R. G. (1969) Classical and inverse regression methods of calibration in 
extrapolation. Technometrics 11, 605-608. 

Lohrding, R. K. (1975) A two sample test of equality of coefficients of variation or relative 
errors. Journal of Statistical Computation and Simulation 4, 31-36. 

McCullagh, P. & Nelder, J. A. (1989) Generalized linear models. 2nd ed. London: Chapman 
and Hall. 

McKay, A. T. (1932) Distribution of the coefficient of variation and the extended 't' 
distribution. Journal of the Royal Statistical Society 95, 695-698. 

Miller, E. G. & Karson, M. J. (1977) Testing equality of two coefficients of variation. 
American Statistical Association: Proceedings of the Business and Economics Section, Part I, 278-
283. 

Miller, G. E. (1991a) Asymptotic test statistics for coefficients of variation. Communications in 
Statistics – Theory and Methods 20, 3351-3363. 

Miller, G. E. (1991b) Use of the squared ranks test to test for the equality of the coefficients 
of variation. Communications in Statistics – Simulation and Computation 20, 743-750. 

Miller, G. E. & Feltz, C. J. (1997) Asymptotic inference for coefficients of variation. 
Communications in Statistics - Theory and Methods 26, 715-726. 

Müller, P. (1999) Simulation-based optimal design. Bayesian Statistics 6, 459-474. 
Nairy, K. S. & Rao, K. A. (2003) Tests of coefficients of variation of normal population. 

Communications in Statistics - Simulation and Computation 32, 641-661. 
Nelson, L. S. (1987) Upper 10%, 5% and 1% points of the maximum F-ratio. Journal of 

Quality Technology 19, 165-167. 
O’Connell, M., Belanger, B. A. & Haaland, P. D. (1993) Calibration and assay development 

using the four-parameter logistic model. Chemometrics and Intelligent Laboratory Systems 20, 
97-114. 

Osborne, C. (1991) Statistical calibration: a review. International Statistical Review 59, 309-336. 
Owen, D. B. (1968) A survey of properties and applications of the noncentral t-distribution. 

Technometrics 10, 445-478. 
Pang, W. K., Leung, P. K., Huang, W. K. & Liu, W. (2005) On interval estimation of the 

coefficient of variation for the three-parameter Weibull, lognormal and gamma 
distribution: A simulation-based approach. European Journal of Operational Research 164, 
367-377. 

Pawitan, Y. (2001) In all likelihood: statistical modelling and inference using likelihood. New York: 
Oxford University Press. 

Pearson, E. S. (1932) Comparison of A. T. McKay’s approximation with experimental 
sampling results. Journal of the Royal Statistical Society 95, 703-704. 



 59 

Pitman, E. J. G. (1939) Tests of hypotheses concerning location and scale parameters. 
Biometrika 31, 200-215. 

Pronzato, L. (2002) Information matrices with random regressors. Application to 
experimental design. Journal of Statistical Planning and Inference 108, 189-200. 

Raab, G. M. (1981) Estimation of a variance function, with application to immunoassay. 
Applied Statistics 30, 32-40. 

Rao, K. A. & Bhatt, A. R. S. (1995) Tests for Coefficient of Variation. Journal of the Indian 
Society of Agricultural Statistics 47, 225-229. 

Rao, K. A. & Bhatta, A. R. S. (1989) A note on test for coefficient of variation. Calcutta 
Statistical Association Bulletin 38, 225-229. 

Rao, K. A. & Vidja, R. (1992) On the performance of a test for coefficient of variation. 
Calcutta Statistical Association Bulletin 42, 87-95. 

R Development Core Team (2008) R: a language and environment for statistical computing. 
Reference index. Version 2.7.2. 

Reh, W. & Scheffler, B. (1996) Significance tests and confidence intervals for coefficients of 
variation. Computational Statistics and Data Analysis 22, 449-452. 

Ricketts, J. H. & Head, G. A. (1999) A five-parameter logistic equation for investigating 
symmetry of curvature in baroreflex studies. American Journal of Physiology. Regulatory, 
Integrative and Comparative Physiology 277, R441-R454. 

Rocke, D. M. & Jones, G. (1997) Optimal design for ELISA and other forms of 
immunoassay. Technometrics 39, 162-170. 

Rocke, D. M. & Lorenzato, S. (1995) A two-component model for measurement error in 
analytical chemistry. Technometrics 37, 176-184. 

Rodbard, D., Lenox, R. H., Wray, H. L. & Ramseth, D. (1976) Statistical analysis of 
radioligand assay data. Methods of Enzymology 37, 3-22. 

Rodbard, D., Munson, P. J. & De Lean, A. (1974) Improved curve-fitting, parallelism 
testing, characterization of sensitivity and specificity, validation, and optimization for 
radioligand assays. In: Natelson, S., Pesce, A. J. & Dietz, A. (Eds.) Radioimmunoassay and 
related procedures in medicine. 469-504. Vienna: Int. Atomic Energy Agency. 

Sadler, W. A. (2002) A new WIN32 computer program for estimating immunoassay variance 
functions. Computer Methods and Programs in Biomedicine 67, 195-199. 

Sadler, W. A. & Smith, M. H. (1986) A reliable method of estimating the variance function 
in immunoassay. Computational Statistics and Data Analysis 3, 227–239. 

Schwenke, J. R. & Milliken, G. A. (1991) On the calibration problem extended to nonlinear 
models. Biometrics 47, 563-574. 

Seber, G. A. F. & Wild, C. J. (1989) Nonlinear regression. New York: Wiley. 
Shafer, N. J. & Sullivan, J. A. (1986) A simulation study of a test for the equality of the 

coefficients of variation. Communications in Statistics – Simulation and Computation 15, 681-
695. 

Shalabh & Toutenburg, H. (2006) Consequences of departure from normality on the 
properties of calibration estimators. Journal of Statistical Planning and Inference 136, 4385-
4396. 

Sharma, K. K. & Krishna, H. (1994) Asymptotic sampling distribution of inverse coefficient-
of-variation and its applications. IEEE Transactions on Reliability 43, 630-633. 



 60 

Singh, M. (1993) Behaviour of sample coefficients of variation drawn from several 
distributions. Sankhyã: The Indian Journal of Statistics, Series B, 55, 65-76. 

Tellinghuisen, J. (2000) Inverse vs. classical calibration for small data sets. Fresenius Journal of 
Analytical Chemistry 368, 585-588. 

Tian L. (2005) Inferences on the common coefficient of variation. Statistics in Medicine 24, 
2213-2220. 

Tripathi, R. C, Gupta, R. C & Pair, R. K. (1993) Statistical tests involving several 
independent gamma distributions. Annals of the Institute of Statistical Mathematics 45, 773-
786. 

Umphrey, G. J. (1983) A comment on McKay’s approximation for the coefficient of 
variation. Communications in Statistics – Simulation and Computation 12, 629-635. 

Vangel, M. G. (1996) Confidence intervals for a normal coefficient of variation. The American 
Statistician 15, 21-26. 

Verrill S. & Johnson R. A. (2007) Confidence bounds and hypothesis tests for normal 
distribution coefficients of variation. Communications in Statistics - Theory and Methods 36, 
2187-2206. 

Wagner, J. G. (1973) Properties of the Michaelis-Menten equation and its integrated form 
which are useful in pharmacokinetics. Journal of Pharmacokinetics and Biopharmaceutics 1, 
103-121. 

Warren, W. G. (1982) On the adequacy of the chi-squared approximation for the coefficient 
of variation. Communications in Statistics – Simulation and Computation 15, 21-26. 

Wilson, C. A. & Payton, M. E. (2002) Modelling the coefficient of variation in factorial 
experiments. Communications in Statistics – Theory and Methods 31, 463-476. 

Wong, A. C. M. (1992) Inferences on the shape parameter of a gamma distribution: a 
conditional approach. Technometrics 34, 348-351. 

Wong, A. C. M. & Wu, J. (1998) Comparisons of approximate tail probabilities for the shape 
parameter of the gamma distribution. Computational Statistics & Data Analysis 27, 333-344. 

Wong, A. C. M. & Wu, J. (2002) Small sample asymptotic inference for the coefficient of 
variation: normal and nonnormal models. Journal of Statistical Planning and Inference 104, 
73-82. 

Yanagimoto, T. (1988) The conditional maximum likelihood estimator of the shape 
parameter in the gamma distribution. Metrika 35, 161-175. 

Yanagimoto, T. & Yamamoto, E. (1991) Constructing elementary procedures for inference 
of the gamma distribution. Annals of the Institute of Statistical Mathematics 43, 539-550. 

Zeng, Q. & Davidian, M. (1997a) Testing homogeneity of intra-run variance parameters in 
immunoassay. Statistics in Medicine 16, 1765-1776. 

Zeng, Q. & Davidian, M. (1997b) Bootstrap-adjusted calibration confidence intervals for 
immunoassay. Journal of the American Statistical Association 92, 278-290. 

Zeng, Q. & Davidian, M. (1997c) Calibration inference based on multiple runs of an 
immunoassay. Biometrics 53, 1304-1317. 

Zwanzig, S. (2000) On the criteria for experimental design in nonlinear error-in-variables 
models. In: Balakrishnan, N., Melas & V. B, Ermakov, S. (Eds.) Advances in Stochastic 
Simulation Methods. 153-164. Boston: Birkhäuser. 

 



 61 

Acknowledgements 

I thank my supervisor Dietrich von Rosen for continuous support. You 
have believed in me, encouraged me and always been available. Over and 
over again you have read my manuscripts and suggested improvements. You 
have let me ‘learn by doing’. 

I thank my friends and colleagues at the Department of Energy and 
Technology. I thank especially my fellow PhD-students in statistics: Zhanna, 
Idah and Saeid, and also Razaw, Jemila, Kristi, Karin, Geir and Anna. We 
have had a great time as PhD-students. 

I thank all staff at the Unit of Applied Statistics and Mathematics for 
having kept in touch and for your interest in my work and research. And I 
thank all my new friends and co-workers at the Field Research Unit and the 
Department of Crop Production Ecology for providing a stimulating 
working environment and for motivating me to finish my studies. 

The research was supported by the Centre of Biostochastics, Swedish 
University of Agricultural Sciences. Pharmacia Diagnostics AB sponsored 
the first years of my postgraduate education, and I thank Katarina Hedman 
for this support. I also thank my former colleagues at Pharmacia 
Diagnostics AB and Statisticon AB for pleasant company during part-time 
work. 

My co-writers merit special thanks. I thank Steve Verrill for significant 
contributions and smooth cooperation, and Lars Söderström for valuable 
support and discussion. 

I thank Edward Miller for kind interest and encouraging discussions. 
Finally, I thank my beloved family. You give me, every day, the best 

recreation. Jenny, Viola and Vilhelm – I love you. 


