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ABSTRACT 16 

 17 

The objective of this study was to analyse the economic profitability of producing energy-18 

grass fuels on marginal agricultural land in Sweden. Small and irregular-shaped fields, fields 19 

with less fertile soils, headlands and border strips were included, all located in four different 20 

regions representing different cultivation conditions. The grasses studied were reed canary 21 

grass (RCG) and ley, which were to be used as a solid fuel and biogas substrate, respectively. 22 

The economic profitability of these grasses was compared with the profitability of fallow land 23 

and the cultivation of winter wheat and spring barley. The results showed that all the 24 

alternatives studied, except winter wheat in southern Sweden, had a negative economic net 25 
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gain (no subsidies included). Generally, the economic losses were greatest for small and 26 

irregular-shaped fields. Fallow had a higher economic competitiveness than RCG and ley for 27 

all marginal field categories and locations. RCG used as a solid fuel in boilers generally had a 28 

higher competitiveness than ley for biogas. However, when ley was used fresh without 29 

storage, its competitiveness improved considerably. Taking the direct payment subsidies and 30 

the economic value of reduced nutrient leakage into account, the economic net gain improved 31 

considerably. Nevertheless, fallow land still had a somewhat higher net gain than RCG for all 32 

field categories. Further cost reductions and higher revenues, including possible agro-33 

environmental economic compensation, are required if RCG and ley are to be able to compete 34 

with fallow land. 35 

 36 

Keywords: marginal land, energy grass, reed canary grass, ley, profitability, costs 37 

 38 

 39 

1. INTRODUCTION 40 

 41 

1.1. Background 42 

 43 

In Sweden, thousands of hectares of agricultural land are not being actively used for 44 

agricultural production. Of the total agricultural land area of 2.60 million hectares in 2013, 45 

0.16 million hectares were fallow land [1]. Hundreds of thousands of hectares of ley are also 46 

underutilised or cultivated at low intensity. In 2008, the excess cultivation area of this crop 47 

was estimated to be 0.2-0.3 million hectares [2]. Bearing in mind the ongoing rationalisation 48 

and closure of small farms, the current total acreage of such ‘marginal’ land in Sweden may 49 

be as high as half a million hectares.  50 



3 
 

 51 

The demand for renewable and carbon dioxide-neutral fuels for the production of heat, 52 

electricity and vehicle fuels is expected to increase. Therefore, instead of cultivating 53 

unprofitable ordinary crops or fallow or fields being abandoned and overgrown with 54 

brushwood, an alternative for ‘marginal’ land is the cultivation of dedicated energy crops [3]. 55 

Examples of suggested energy crops are poplar [4], short-rotation coppice willow [5] and 56 

herbaceous crops [6,7], e.g. perennial energy grasses. Some energy grasses, such as reed 57 

canary grass (RCG) (Phalaris arundinacea L.), can be used as a solid fuel for combustion in 58 

boilers [8,9], while ley grasses are suitable as substrates for the production of biogas [10-12]. 59 

Swedish studies have shown that the cultivation of ley on marginal land for the production of 60 

biogas may reduce greenhouse gas emissions by up to five tonnes of CO2-equivalents per ha if 61 

the gas replaces petrol [13]. Cultivated on conventional agricultural land, both RCG and ley 62 

are beneficial from an energy and global warming perspective when replacing fossil fuels, 63 

although the net energy return and reductions in CO2-emissions may differ considerably 64 

between different studies [8,14-17].  65 

 66 

Cultivation of energy grasses on ‘marginal’ land also has many other advantages. For 67 

example, a limited number of field work operations is required since the crop is perennial. In 68 

comparison to annual crops, the soil structure is improved, the release of NOx is reduced as 69 

annual ploughing is not required, and soil carbon is sequestered [8,10]. In contrast to growing 70 

poplar and short rotation coppice, the open landscape is preserved. A survey among Swedish 71 

farmers as regards their willingness to cultivate energy crops has shown that crops that can 72 

readily be terminated are preferred [18]. Furthermore, with regard to crop growth height, the 73 

crops should only have a small impact on the prevailing landscape image. The farmers also 74 

prefer to use conventional machines for cultivation and harvest instead of leasing specialist 75 
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machines, which is the case for short rotation coppice [18]. In addition, they prefer crops for 76 

which work in the fields does not coincide with other hectic periods of farm work. RCG can 77 

be harvested in the early spring or in late summer/autumn [19,20], whereas ley can be 78 

harvested after the harvest of fodder ley when the yield in terms of quantity, and not in terms 79 

of fodder quality, is highest [21].   80 

 81 

The term ‘marginal agricultural land’ is often used without being clearly defined [22]. Its 82 

meaning is vague in fact and it may be used in a “subjective sense for less-than-ideal lands 83 

without sufficient specificity” [23]. Generally, however, it is often used as an economic term 84 

for fields where it is difficult for economic revenues to balance the costs. Biophysical factors, 85 

such as field size, field shape, distantness, stoniness and wetness, as well as farm type have a 86 

significant impact on both costs and revenues. Therefore, the marginal land concept is relative 87 

with respect to location. As economic (and political) conditions may change considerably 88 

over time, marginality is also relative in time. The economic perspective of the term was used 89 

in this study, which also means that the land has the potential to contribute to future food and 90 

feed production. In this context, the marginal land concept did not include sub-marginal land, 91 

which is unsuitable for food production or has no possibility of being profitable in an agro-92 

economic sense [23].   93 

 94 

Existing small, outlying and irregular-shaped agricultural fields, as well as fields with less 95 

fertile soils, can be considered as marginal land from an agro-economic point of view [3,23]. 96 

For the former category of fields, cultivation costs are generally higher than in ‘normal’ cases 97 

as a result of lower in-field machine performance and higher transfer and transport costs [24-98 

26]. For the latter field category, the revenues from sold products are lower, resulting in a 99 

break-even or even negative economic profitability. As the meaning of ‘small’, ‘irregular-100 
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shaped’ and ‘less fertile’ is dependent on local cultivation conditions, it is important to 101 

consider geographical differences when calculating the profitability of energy grass 102 

production on marginal land.  103 

 104 

Headlands can also be considered as a marginal land category as the crop yield is normally 105 

lower in comparison with other parts of the field due to soil compaction, run-over damages 106 

and non-optimal doses of fertilisers and pesticides [27-29]. Furthermore, border strips usually 107 

have lower crop yields because of no (or little or uneven) fertilisation and other edge effects, 108 

for example. In many cases, the machinery performance is also reduced at field borders [24]. 109 

For both headlands and border strips, the economic profitability is often negative, although 110 

the profitability for the field as a whole may be positive.  111 

 112 

When annual crops are cultivated in the fields, cultivation of perennial energy grasses on 113 

headlands and border strips has positive environmental effects as it can significantly reduce 114 

the leakage of nitrogen, phosphorus and pesticides [30,31]. Fallon et al. [32] also point out 115 

that such field boundary management has other positive effects since it creates wildlife 116 

habitats, prevents and reduces soil erosion, creates new public access routes and sequesters 117 

considerable quantities of soil organic carbon (SOC). From a biodiversity point of view, 118 

cropping of perennial grasses on headlands and border strips, as well as in small and irregular-119 

shaped fields, is beneficial to butterflies [33], ground flora, small mammals and birds [34]. 120 

 121 

1.2. Objectives 122 

 123 

The objective of this study was to analyse economic profitability when energy-grass fuels 124 

were produced on marginal agricultural land. Small and irregular-shaped fields, fields with 125 
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less fertile soils, headlands and border strips were included, all located in the municipalities of 126 

Svalöv, Ronneby, Vingåker and Skellefteå, representing different cultivation conditions in 127 

Sweden. A field category with ‘normal’ conditions was also included in the evaluations.  128 

 129 

The grasses studied were RCG and ley, which were to be used as a solid fuel and biogas 130 

substrate, respectively. The economic profitability of these grasses was compared with the 131 

profitability of fallow land and of the cultivation of winter wheat and spring barley. Different 132 

calculation options were compared, e.g. taking into account different machinery sizes and the 133 

economic value of reduced nutrient leakage.  134 

 135 

 136 

2. METHODOLOGY 137 

 138 

2.1. Cost calculation options  139 

 140 

The calculations were carried out for the crops, field types, locations and machinery sizes 141 

shown in Table 1. The cost calculations included costs of seed, fertilisers, pesticides, machine 142 

operations, transport to storage, storage, transport to user, labour, depreciation and interest 143 

charge (4%). An example of a cost calculation path, according to Table 1, is the cost of fuel 144 

bales (at the boiler plant gate) of RCG cultivated (e.g. with no N-fertilisation) in a small and 145 

irregular-shaped field (with its specific field shape) at Vingåker (with its specific field area, 146 

crop yield and transport distances) using a machinery system based on ‘large’ machines. 147 

These calculation options are described in greater detail in sections 2.2-2.5.  148 

 149 

2.2. Crops and uses 150 
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 151 

RCG and ley are perennial grasses and it was assumed that they were re-sown after each crop 152 

rotation (ten and three years, respectively). The ley crop was assumed to consist of a mix of 153 

perennial grasses and clover. RCG and ley cultivated on headlands and border strips were not 154 

fertilised with N for environmental reasons, whereas there were two options in small and 155 

irregular-shaped fields and in fields with less fertile soils: with or without N-fertilisation. The 156 

RCG was used as a solid fuel in a boiler and the ley was used to produce biogas. Ley was 157 

harvested once or twice a year. 158 

 159 

The yield of agricultural crops is dependent on many factors, e.g. the type of soil, 160 

geographical location (and thus weather, day length, seasonal length etc.), cultivation 161 

intensity, organic or conventional cultivation etc. A literature study [35] was undertaken to 162 

estimate crop yields for the field categories at each location.  163 

 164 

The literature study showed that it was reasonable to assume that the crop yield in small and 165 

irregular-shaped fields was 10% lower than the average yields (i.e. for ‘normal’ fields) given 166 

in Table 2, for all crops at all locations. For less fertile soils, the yield was assumed to be 25% 167 

lower for ley and RCG, and 30% lower for cereals for all locations. For headlands, the 168 

corresponding values were 50% (no N-fertilisation) and 30%, respectively. With only one ley 169 

harvest per year, the yield was assumed to be 10 percentage points higher than the yield for 170 

the “1st harvest” in Table 2. For border strips, the yields were assumed to be 15% lower than 171 

the values in Table 2 for all crops and locations [35]. 172 

 173 

2.3. Type of fields 174 

 175 



8 
 

In the calculations, the results were related to a ‘normal’ field, which was assumed to have 176 

crop yields corresponding to average values for all locations (Table 2). The area of a ‘normal’ 177 

field was assumed to be 5.0 ha and rectangular in shape with a length:width-ratio of 2:1, 178 

irrespective of location. One reason for the area being the same was that the same machinery 179 

was assumed to be applicable for all locations.  180 

 181 

All fields with less fertile soils were assumed to be rectangular with a length:width ratio of 182 

2:1. The headlands and border strips were rectangular with a width of 16 m and 8 m, 183 

respectively. 184 

 185 

There is no unambiguous definition of what is meant by an ‘irregular-shaped’ field. Normally, 186 

it can be used to describe a field with several corners, narrow tips and ‘islands’ with 187 

uncultivable land. One way of describing the irregularity is to divide the total area A (m2) by 188 

the square of the total perimeter P (m) of the field. By relating this relationship to a circular 189 

area, a shape index SI = P/(2√(πA)) is obtained [36,37]. Thus, SI has its minimum value (=1) 190 

for a circular field. For a quadratic field, SI = 1.13, for a rectangular field with a length:width 191 

ratio of 4:1, SI = 1.41, and for a narrow rectangular field with a length:width ratio of 16:1, SI 192 

= 2.40. Note that for a given field shape, SI is independent of the size of the field. In this 193 

study, the field shape in Fig. 1 (SI = 1.75) was assumed to be representative for ‘small and 194 

irregular-shaped fields’ in all locations [38]. 195 

 196 

2.4. Locations studied 197 

 198 

The municipality of Svalöv is located in the plain districts in Skåne, in the south of Sweden. 199 

Ronneby is also located in southern Sweden, but the main part of the municipality belongs to 200 
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the agricultural production area “Central districts in Götaland”. Vingåker is located in the 201 

agricultural production area “Plain districts in Svealand”, whereas the municipality of 202 

Skellefteå is located in the north of Sweden.  203 

 204 

There is a wide variety of crops grown at Svalöv, such as winter wheat, spring barley, ley, 205 

rapeseed, sugar beet and processing pea. Ley crops and extensive grass culture dominate at 206 

Ronneby, whereas ley, fallow, spring barley and winter wheat are common crops at Vingåker. 207 

Ley and extensive grass culture dominate at Skellefteå, but spring barley is also common. 208 

 209 

There is quite a significant difference between the average parcel areas in the municipalities 210 

studied (Table 3). There is also a large number of small parcels in the municipalities, but their 211 

share of the total agricultural area is relatively small, especially at Svalöv. Investigations [38] 212 

have shown that Svalöv has the lowest SI values of the municipalities studied (Table 3) (a 213 

detailed description of the variations in SI for the different locations is described by Nilsson et 214 

al. [38]). 215 

 216 

The areas for small and irregular-shaped fields were calculated as the average area of arable 217 

blocks that satisfied A < 2.00 ha and SI > 1.75 (all block and parcel data were obtained from 218 

the Swedish Board of Agriculture) (Table 4). The area of fields with less fertile soils was 219 

calculated as the average area for all arable blocks greater than 0.2 ha and smaller than the 220 

largest 10% of the blocks. The areas used for headlands were calculated as the average 221 

headland area in all arable blocks greater than 10.00 ha, assuming rectangular fields with a 222 

length:width ratio of 2:1 and a headland width of 16.0 m. Finally, the areas used for border 223 

strips were calculated as the average of the farmers’ subsidy application areas in 2012 (in the 224 

so-called SAM 2012 application system) [38].   225 
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 226 

All arable blocks in Sweden are identified by an 11-digit block number, with the first four 227 

digits describing the latitudinal position of the block centre, and the next three the longitudinal 228 

position. These positions refer to the national geographical grid system RT90. By counting the 229 

number of blocks with marginal land parcels within each grid (1 x 1 km), a better 230 

understanding of the field concentration can be obtained. 231 

 232 

When all small and irregular-shaped blocks (A < 2.00 ha, SI > 1.75), all blocks with less 233 

fertile soils (parcels with A < 2.00 ha and fallow according to SAM 2012), headlands (in all 234 

blocks with A > 10.00 ha), border strips (in blocks according to the SAM 2012 applications) 235 

were counted, the results were as illustrated in Fig. 2.    236 

 237 

The location (i.e. grid) with the highest concentration of marginal land was determined by 238 

using [38]: 239 

 240 

∑
=

m

k
kjiji fA

1
,, )/(max  241 

 242 

where the k:th surrounding grid with coordinates i,j contains the marginal land area Ai,j, and 243 

where fi,j is a distance factor. The analyses showed, for example, that the best location for an 244 

energy conversion plant in the municipality of Svalöv, with a maximum transport distance of 245 

6.0 km, was in the grid 6201-332 (Fig. 2) (note that neighbouring municipalities were not 246 

considered in the calculations). A maximum distance of 6.0 km at Svalöv corresponds to a 247 

quantity of about 1,000 tonnes DM of RCG delivered to a heating plant, or an area of about 248 

180 ha. The resulting average distances, used in the cost calculations, for the transfer of 249 

machines and transportation of goods are presented in Table 5.  250 
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 251 

2.5. Machinery 252 

 253 

The shape of agricultural fields, as well as the areas, may have an important impact on 254 

machinery performance [24,25,40-42]. In small and irregular-shaped fields, for example, the 255 

share of non-productive time for machine preparation, turnings and double passes of soil 256 

preparation work may be considerable. Furthermore, slower operating speeds due to curves, 257 

field obstacles, frequent accelerations and retardations also reduce the work efficiency.  258 

 259 

To analyse the differences in machine performance between different field sizes and shapes, a 260 

dynamic discrete-event simulation model was developed. The model was built in the Arena 261 

software environment [43]. The model considered stochastic system properties, e.g. time 262 

between and duration of breakdowns/stoppages, as well as deterministic system properties, 263 

e.g. time for turnings, machine preparations and adjustments.  264 

 265 

In the model, the driving patterns for different machinery widths were laid out in fields with 266 

different sizes and shapes. The machines then followed these ‘tracks’ and carried out their 267 

work, according to data specifications about optimal (or maximum) operation speed 268 

(depending on the type of work and machine width), turning times, stochastic stoppages, 269 

acceleration/retardation, preparation/adjustment times etc. (a detailed description of the model 270 

and its input data is presented by Nilsson et al. [38]). The results for rectangular fields 271 

(length:width ratio 2:1) with areas of 1.0 ha and 5.0 ha are shown in Fig. 3. As can be seen, 272 

field size inevitably had an important influence on total in-field operation time per ha. This 273 

was especially valid the smaller the fields were. 274 

 275 
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Rectangular fields with different shapes (1:1, 2:1 and 4:1), areas (from 0.5 ha to 15.0 ha), 276 

machinery work widths (from 1.0 m to 24.0 m) and optimal work speeds (from 4.0 km/h to 277 

16.0 km/h) were simulated. Work in rectangular fields with a width of 8.0 m (border strips) 278 

and 16.0 m (headlands) were also simulated (note that ‘rectangular fields’ means fields with 279 

parallel but not necessarily straight sides). Furthermore, different irregular-shaped polygonal 280 

fields were compared in the simulations, including the field shape shown in Fig. 1. For 281 

example, the time for mowing grass in a polygonal field with an impediment (Fig. 1) was 66 282 

minutes, whereas it took about 57 minutes in a rectangular 2:1 field (the area of both fields 283 

was 1.0 ha, the working width was 2.25 m and the maximum driving speed was 10 km/h). For 284 

‘normal’ fields (5.0 ha, shape 2:1), machinery performance data were taken from Fig. 3. 285 

 286 

The simulation results, i.e. the performance data expressed as work hours per hectare, were 287 

multiplied by the hourly costs [44] in order to calculate total machinery costs. An increased 288 

annual use of machines, due to their use in harvesting and handling ley for both fodder and 289 

energy purposes, was considered in the calculations. Timeliness costs, i.e. increased costs due 290 

to harvest work being undertaken at non-optimal times, were not considered, as it was 291 

assumed that these costs can be neglected for energy grass.   292 

 293 

The RCG was harvested in the spring and handled as round bales in combination with self-294 

loading bale transporters. Ley was harvested and handled as ensiled round bales. Another 295 

alternative was harvest by a self-chopping wagon (SCW) and direct use or storage in bunker 296 

silos. As the fields investigated were relatively small, a cost comparison was carried out for 297 

both ‘small’ and ‘large’ machines. For mowing, for example, the working width was 2.4 m 298 

and 3.0 m for a ‘small’ and a ‘large’ machine, respectively [35]. 299 

 300 
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2.6. Revenues 301 

 302 

Regarding the revenues, the price level for 2012 was used, which means that the price for 303 

RCG was € 94.1 per tonne DM, for ley € 119.4 per tonne DM, for winter wheat € 197.3 per 304 

tonne (moisture content 14%), for barley € 171.3 per tonne (moisture content 14%), (an 305 

exchange rate of € 1.00 = 9.63 SEK (2014-08-21) was used).  306 

 307 

The direct payment to farmers in Sweden will change gradually up to the year 2020, 308 

according to the new EU support schemes within the framework of the Common Agricultural 309 

Policy (CAP) [45,46]. The current single payment scheme results in different payments 310 

depending on the values of the payment entitlements, which in turn are dependent on e.g. land 311 

uses and regions. In 2020, however, the payments will converge into a single value. This 312 

value will include payments from both the single payment scheme (€ 128.00 per hectare) and 313 

a new ‘greening’ support scheme (€ 70.40 per hectare), which will take both the CAP 314 

concepts of ‘crop diversification’ and ‘ecological focus areas’ (EFA) into account [46]. In this 315 

study, an optional subsidy income was included, amounting to € 200 per hectare.  316 

 317 

Cultivation of energy grasses instead of cereals implies reduced leakage of phosphorous and 318 

nitrogen to lakes and the sea. It may be difficult to quantify the leakage reduction as it 319 

depends on local circumstances such as soil type, cultivation intensity, possible use of catch 320 

crops, retention and distance to rivers, lakes or the sea etc. In the project, a literature study 321 

[35] was undertaken to estimate reasonable leakage reduction levels when cereals were 322 

replaced by energy grasses in different types of marginal fields. These approximations were 323 

based on Swedish investigations on nutrient leakage from agriculture (see e.g. [47-50]). 324 

Furthermore, the economic consequences of the reductions can be calculated in different 325 
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ways, e.g. as damage costs or abatement costs [51]. In this study, the economic benefits were 326 

mainly based on the costs of purification in wastewater treatment plants in Sweden: € 15.6 per 327 

kg N and € 105 per kg P, estimated from Swedish literature sources [35].  328 

 329 

2.7. Profitability analyses 330 

 331 

First, the costs and economic net gain were calculated for a system with basic options, i.e. 332 

with ‘large’ machines, ley harvested twice a year as ensiled round bales, fertilisation of N in 333 

small and irregular-shaped fields and in fields with less fertile soils where RCG and ley were 334 

cultivated, and with the income from sales as the only revenue. After that, the results for a 335 

sensitivity analysis regarding e.g. halved machinery and labour costs are presented, together 336 

with the results for alternative cost calculation options, including e.g. ‘small’ machines and 337 

harvesting of ley once a year. Thirdly, the profitability is presented when direct payment as a 338 

CAP subsidy and compensation for reduced nutrient leakage were taken into account. 339 

 340 

 341 

3. RESULTS AND DISCUSSION 342 

 343 

3.1. Basic calculation options 344 

 345 

For the basic options, the economic net gain was negative for all the alternatives studied, 346 

except for winter wheat at Svalöv and Ronneby (Fig. 4). Fallow had a much higher 347 

competitiveness in comparison to energy grasses for all locations. RCG used as a solid fuel in 348 

boilers generally had a better competitiveness than ley did for biogas. One important reason 349 

was the higher handling and storage costs of ley. RCG also had a higher profitability than 350 
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spring barley for all field categories at Vingåker and Skellefteå, for small and irregular-shaped 351 

fields, fields with less fertile soils and headlands at Ronneby, and for fields with less fertile 352 

soils at Svalöv. For ‘normal’ fields, the results were in accordance with calculation results 353 

presented by the Swedish Board of Agriculture [52]. 354 

 355 

Small and irregular-shaped fields, as defined in this study, generally resulted in the highest 356 

economic losses for all crops and locations. The only exceptions were winter wheat at Svalöv 357 

and Ronneby, where fields with less fertile soils had the lowest profitability.  358 

 359 

Size and shape also had an influence on machinery performance (section 2.5.), which is 360 

usually not considered in conventional cost calculations. It should be noted, however, that a 361 

low SI value, i.e. a more circular area, does not necessarily facilitate machine operations. 362 

Machine performance may be better in an elongated rectangular field (with a high SI value) 363 

than in a circular field [24,26]. For example, if the width of a border strip is consistently 364 

exactly twice the machine working width, the machine can drive back and forth turning only 365 

once. More extensive analyses have shown that the smaller the block area, the lower the SI 366 

value [38]. This indicates that cultivation in small and irregular-shaped agricultural blocks has 367 

already been abandoned in many cases, and that a prerequisite for farmers to continue using 368 

small fields is that the arable block at least has a more ‘regular’ shape. 369 

 370 

The net gain generally was highest at Svalöv and lowest at Skellefteå (Fig. 4). For a farmer at 371 

Svalöv, it was not profitable to cultivate RCG or ley on headlands or border strips when the 372 

field was cultivated with winter wheat or barley. At Vingåker and Skellefteå, however, the 373 

total profitability improved when RCG or ley was cultivated on headlands or border strips in 374 

fields with spring barley. This implies that yield level is an important factor in the choice of 375 
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crops on headlands and border strips. For such fields as a whole, rotational grass/clover for 376 

biogas production, integrated with grain cultivation, can be an interesting alternative [53].    377 

 378 

Marginal fields may comprise fields with crop yields from very low levels up to average 379 

levels. In this context, further insight may be provided by dividing the costs into area-related 380 

costs (€ ha-1, e.g. cost for ploughing) and yield-related costs (€ tonne-1 harvested material, e.g. 381 

costs for transport of the harvested material), where the total costs are the sum of the area-382 

related costs and the yield-related costs multiplied by the yield. If the product price is about 383 

the same as or lower than the yield-related costs, increased yields will not result in greater 384 

profitability. Analyses of costs at Svalöv and Ronneby showed that the area-related costs of 385 

RCG were about one-third of the area-related costs of winter wheat and barley, whereas the 386 

yield-related costs of RCG were somewhat higher than the yield-related costs of these cereals 387 

(Fig. 5). Furthermore, for RCG the price was somewhat higher than the yield-related costs, 388 

whereas the price was about 3.5 times higher than the yield-related costs of cereals. Ley had 389 

an intermediate position. Although the total costs of RCG were much higher than the price 390 

(Fig. 6), this cost analysis indicated that RCG, followed by ley, may generally have a higher 391 

competitiveness than cereals in fields with low soil fertility. 392 

 393 

3.2. Sensitivity analysis and alternative cost calculation options 394 

 395 

A sensitivity analysis of product prices (chapter 2.6) showed that the price of RCG should 396 

increase from its current level by between 25% (‘normal’ fields) and 42% (small and 397 

irregular-shaped fields) in order to have the same profitability as fallow land (Svalöv) [35]. 398 

For ley, the respective values were between 31% (‘normal’ fields) and 76% (headlands). 399 

 400 
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In some cases it may be argued that only variable costs should be considered, and that full 401 

labour costs are not applicable. This may be true when the alternative value of work time and 402 

machinery is low. Therefore, a sensitivity analysis with halved machinery and labour costs 403 

was performed [35]. For Svalöv, the results showed that winter wheat and barley were the 404 

most profitable crops for all field categories. In addition, RCG was more profitable than 405 

fallow land and ley for all field categories. At Skellefteå, RCG had the highest profitability for 406 

all field categories, followed by fallow land, barley and ley for biogas. As expected [24], 407 

lower machinery and labour costs primarily favoured labour/machinery-intensive crops (e.g. 408 

spring barley) and field categories (e.g. small and irregular-shaped fields).  409 

 410 

Fertilisation of N, in the cultivation of RCG and ley in small and irregular-shaped fields and 411 

in fields with less fertile soils, resulted in a similar or somewhat lower profitability at all 412 

locations in comparison to the omission of N fertilisation. The main reason was that the 413 

product price and yield-related costs were similar. Fertilisation of N in perennial grasses on 414 

marginal land may increase the yield [54] and the SOC sequestration rate [55], but the climate 415 

change mitigation potential may be outweighed by increased land-based emissions of N2O 416 

and by greenhouse gas emissions from the manufacture of mineral N fertilisers [56]. 417 

 418 

The calculations showed that harvesting ley with a SCW and direct use, i.e. without 419 

intermediate storage, generally resulted in a higher profitability than round ensiled bales and 420 

harvest with SCWs and storage in bunker silos (Fig. 7). When the material was stored, the 421 

costs were similar for systems with round ensiled bales and SCWs, and bunker silo storage.  422 

 423 

The net gain may be increased when ley is harvested later and only once a year, but with a 424 

higher yield (see section 2.5.). Calculations for Svalöv pointed out that the net gain was 425 
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indeed improved for all field categories and handling systems (round bales, SCW stored, 426 

SCW fresh), except for ‘normal’ fields when the material was harvested with SCWs and used 427 

fresh. Thus, for this latter case, two harvests and immediate use of the material (as also 428 

pointed out by Gissén et al. [12]) were more profitable than one harvest. The highest gain 429 

improvement with one harvest occurred for small and irregular-shaped fields.   430 

 431 

The comparison between ‘smaller’ and ‘larger’ machines showed that the latter were more 432 

profitable for all field categories, crops and locations. The largest difference occurred for 433 

crops with more frequent field operations, i.e. for winter wheat and barley, where the net gain 434 

was € 62-83 per ha higher for ‘larger’ machines. At Svalöv, for example, the increase in 435 

profitability for RCG varied from € 25 per ha (‘normal’ fields) to € 31 per ha (border strips), 436 

whereas it varied from € 35 per ha (‘normal’ fields) to € 46 per ha (border strips) for ley. 437 

Larger machines resulted in lower costs per hectare when they could benefit from their 438 

broader working widths, but when the time share of turnings, double passes etc. increased, 439 

their economic competitiveness was reduced. This is in accordance with the results presented 440 

by Søgaard and Sørensen [57] and de Toro [58] for example. A conclusion was drawn, that as 441 

long as the annual utilisation times were high (in most cases >100 hours) for larger machines, 442 

they were also more competitive in smaller fields. In contrast, for short annual utilisation 443 

times, smaller machines had a higher competitiveness than larger machines in smaller fields. 444 

 445 

3.3. Area-related and environmental-related subsidies 446 

 447 

As the direct payment is area-related and will converge into one value in 2020 (€ 200 per ha) 448 

for all crops and locations investigated, the net gain values (Fig. 4) will increase by € 200. In 449 

most cases, RCG and ley are still not profitable. If there were a special subsidy for energy 450 
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crops, at least RCG would be profitable for most marginal land categories. However, such a 451 

subsidy could have an impact on production intensity and on the fields in which the crop is 452 

cultivated [59], leading to a risk of indirect land use change (iLUC) [60,61]. 453 

 454 

As Ronneby is located by the Baltic Sea and Svalöv is near Öresund, the economic value of 455 

reduced nutrient leakage (Table 6) was also taken into account for these locations. For RCG 456 

and fallow, the net gain was now positive for all field categories (Fig. 8, cf. Fig. 4). The net 457 

gain was also improved considerably for ley. However, fallow land nevertheless had a 458 

somewhat higher net gain than RCG and ley for all field categories.  459 

 460 

The value of reduced nutrient leakage (Table 6) was an important factor in the net gain (Fig. 461 

8). Debnath et al. [51] present a brief review of abatement costs for N and P runoff. In their 462 

study, they use a cost of € 8.5 per kg for N and € 34 per kg for P when estimating the 463 

environmental benefits of switchgrass cultivation in USA. However, their estimated loss 464 

reductions for N and P, when wheat production is converted to switchgrass production, are 465 

about two times and three to four times higher, respectively, than the values used in this study 466 

(Table 6) [51].  467 

 468 

Cultivation of perennial energy grasses on marginal land may have considerable potential to 469 

sequester SOC when they replace annual crops [55,62-64]. However, as pointed out by 470 

Powlsen et al. [56], it is important to note that the quantity of carbon stored in the soil is finite 471 

and that the increase in SOC will cease when a new equilibrium is established. It often takes 472 

more than one hundred years to reach equilibrium, but the sequestration rate is much higher in 473 

the early years than in later years [56,65]. Furthermore, the process is reversible, as some of 474 

the SOC sequestered will be released when the field is ploughed again. In some situations, 475 
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energy grasses on marginal land may also increase the release of nitrous oxide (N2O) and 476 

methane [56], which counteracts the climate change mitigation potential of SOC 477 

sequestration.  478 

 479 

The annual sequestration rate of SOC, due to perennial grass cultivation, is dependent on 480 

many factors, e.g. initial SOC content (i.e. earlier land use and management), soil type, 481 

fertilisation of N, temperature, precipitation etc. Studies have shown that the SOC 482 

sequestration by grasses may amount to about 1 tonne C ha-1 year-1 in the early years [55,64]. 483 

For switchgrass produced in the USA, Debnath et al. [51] report an average SOC 484 

sequestration rate of 0.3 tonnes C ha-1 year-1. The economic value of such an environmental 485 

benefit can be related to the price of carbon emission allowances in the European Union 486 

Emissions Trading System (EU ETS). This price has dropped from about € 30 per tonne CO2 487 

in 2008 to about € 6 per tonne in 2014 [66] (a price of € 6 per tonne CO2 corresponds to about 488 

€ 22 per tonne C). Thus, such an environmental-related compensation from society to farmers 489 

would be much lower than e.g. the direct payments according to CAP, including if emission 490 

reductions when replacing fossil fuels are to be considered. However, it can be argued that the 491 

newly introduced greening support scheme is aimed at encouraging such climate change 492 

mitigation steps, as well as the reduction of nutrient leakage [46].    493 

 494 

Although it may be difficult to estimate ‘fair’ economic compensation for reduced nutrient 495 

leakage and a reduced climate change impact, there seems to be a common opinion that a 496 

certain proportion of the environmental and societal benefits should be passed on to the 497 

farmers [67]. From a societal perspective, it is advantageous in most cases if energy grass 498 

produced on marginal land, in contrast to fallow, can be used to replace fossil fuels. From a 499 

commercial point of view, however, Bryngelsson and Lindgren [61] claim that large-scale 500 
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production of bioenergy on marginal land is unlikely. If the economic incentives were strong 501 

enough, farmers would cultivate bioenergy on more productive land and out-compete the 502 

more costly production on marginal land. However, as pointed out by Glithero et al. [68], 503 

farm-level decisions on the use of marginal land are complex and dynamic, and depend on 504 

relative crop yields, machinery costs and farmers’ attitudes for example.  505 

 506 

 507 

4. CONCLUSIONS 508 

 509 

As marginal land often consists of small and irregular-shaped fields, it is important to take 510 

field size and shape into account in cost calculations. Therefore, a novel simulation model 511 

was developed to consider the time demand of different machine operations in fields with 512 

different sizes and shapes. Marginal fields are also often remote, and a simple method based 513 

on block identification numbers was developed to calculate transport distances. Furthermore, 514 

small fields and fields with less fertile soils are in most cases considered as marginal land. 515 

However, two possible field categories were added to this concept: headlands and border 516 

strips, which could contribute considerable arable land for energy grass production. At the 517 

same time, these field categories can contribute to the sequestration of SOC, reduced leakage 518 

of nutrients and pesticides, and the creation of wildlife habitats.   519 

 520 

The results showed that all studied crops, except for winter wheat for all field categories at 521 

Svalöv and winter wheat in ‘normal’ fields and border strips at Ronneby, have a negative 522 

economic gain. Generally, the economic losses are highest for small and irregular-shaped 523 

fields. Fallow has a higher economic competitiveness than RCG and ley for all marginal field 524 

categories and locations. RCG used as a solid fuel in boilers generally has a higher 525 
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competitiveness than ley for biogas. However, when the ley is used fresh without storage, its 526 

competitiveness improves considerably. Taking the direct payment subsidy and the economic 527 

value of reduced nutrient leakage into account, the economic net gain improves considerably. 528 

Nevertheless, fallow land has a somewhat higher net gain than RCG for all field categories.   529 

 530 

For cultivation of energy grasses on agricultural marginal lands under Swedish conditions, 531 

further cost reductions and higher revenues, including possible agro-environmental economic 532 

compensations, are required if RCG in the first instance is to be able to compete with fallow 533 

land. At the same time, sustainable demands or local markets have to be established. 534 

 535 

 536 

ACKNOWLEDGEMENTS 537 

 538 

The authors would like to thank the Swedish Farmers’ Foundation for Agricultural Research 539 

for its financial support. 540 

 541 

 542 

REFERENCES 543 

 544 

[1] Jordbruksverket (Swedish Board of Agriculture). Åkerarealens användning efter län/riket 545 

och gröda, hektar. År 1981-2013. Available from: 546 

http://statistik.sjv.se/PXWeb/Menu.aspx?px_db=Jordbruksverkets+statistikdatabas&px_langu547 

age=sv&rxid=5adf4929-f548-4f27-9bc9-78e127837625 [cited 1.9.2014]. 548 

[2] Jonsson B. Kartläggning av mark som tagits ur produktion. Rapport 2008:7. Jönköping: 549 

Jordbruksverket; 2008. 550 



23 
 

[3] Liu TT, McConkey BG, Ma ZY, Liu ZG, Cheng, LL. Strengths, weaknesses, opportunities 551 

and threats analysis of bioenergy production on marginal land. Energy Procedia 2011;5:2378-552 

86. 553 

[4] Schweier J, Becker G. Economics of poplar short rotation coppice plantations on marginal 554 

land in Germany. Biomass Bioenerg 2013;59:494-502. 555 

[5] McElroy GH, Dawson WM. Biomass from Short-rotation Coppice Willow on Marginal 556 

Land. Biomass 1986;10(3):225-40. 557 

[6] Vaughan DH, Cundiff JS, Parrish DJ. Herbaceous Crops on Marginal Sites – Erosion and 558 

Economics. Biomass 1989;20(3-4):199-208. 559 

[7] Wünsch K, Gruber S, Claupein W. Profitability analysis of cropping systems for biogas 560 

production on marginal sites in southwestern Germany. Renewable Energy 2012;45:213-20. 561 

[8] Wrobel C, Coulman BE, Smith DL. The potential use of reed canary grass (Phalaris 562 

arundinacea L.) as a biofuel crop. Acta Agr Scand B-S P 2009;59(1):1-18. 563 

[9] Prochnow A, Heiermann M, Plöchl M, Amon T, Hobbs PJ. Bioenergy from permanent 564 

grassland - a review: 2. Combustion. Bioresource Technol 2009;100:4945-54. 565 

[10] Murphy JD, Power NM. An argument for using biomethane generated from grass as a 566 

biofuel in Ireland. Biomass Bioenerg 2009;33(3):504-12. 567 

[11] Prochnow A, Heiermann M, Plöchl M, Linke B, Idler C, Amon T, Hobbs PJ. Bioenergy 568 

from permanent grassland - a review: 1. Biogas. Bioresource Technol 2009;100:4931-44. 569 

[12] Gissén C, Prade T, Kreuger E, Nges IA, Rosenqvist H, Svensson S-E, Lantz M, Mattsson 570 

JE, Börjesson P, Björnsson L. Comparing energy crops for biogas production – yields, energy 571 

input and costs in cultivation using digestate and mineral fertilization. Biomass Bioenerg 572 

2014;64:199-210. 573 

[13] Lundegrén (ed.). Evalueringsrapport marginale jorder och odlingssystem. BioM 574 

Bæredygtig bioenergi. Available from: 575 



24 
 

http://agrotech.dk/sites/agrotech.dk/files/public_files/agrotech-576 

dk/pdf/Evalueringsrapport_Marginale_light.pdf [cited 13.8.2014]. 577 

[14] Bullard MJ, Metcalfe P. Estimating the energy requirements and CO2 emissions from 578 

production of the perennial grasses mischanthus, switchgrass and reed canary grass. London: 579 

ADAS Consulting Ltd; 2001. 580 

[15] Berglund M, Börjesson P. Assessment of energy performance in the life-cycle of biogas 581 

production. Biomass Bioenerg 2006;30:254-66. 582 

[16] Kimming M, Sundberg C, Nordberg Å, Baky A, Bernesson S, Norén O, Hansson P-A. 583 

Biomass from agriculture in small-scale combined heat and power plants - A comparative life 584 

cycle assessment. Biomass Bioenerg 2011;35:1572-81. 585 

[17] Börjesson P, Tufvesson LM. Agricultural crop-based biofuels – resource efficiency and 586 

environmental performance including direct land use changes. J Clean Prod 2011;19:108-20. 587 

[18] Paulrud S, Laitila T. Farmers’ attitudes about growing energy crops: A choice 588 

experiment approach. Biomass Bioenerg 2010;34(12):1770-9.  589 

[19] Landström S, Lomakka L, Andersson S. Harvest in spring improves yield and quality of 590 

reed canary grass as a bioenergy crop. Biomass Bioenerg 1996;11:333-41. 591 

[20] Hadders G, Olsson R. Harvest of grass for combustion in late summer and in spring. 592 

Biomass Bioenerg 1997;12:171-5. 593 

[21] Gunnarsson C, Vågström L, Hansson P-A. Logistics for forage harvest to biogas 594 

production – timeliness, capacities and costs in a Swedish case study. Biomass Bioenerg 595 

2008;32:1263-73. 596 

[22] Shortall OK. “Marginal land” for energy crops: Exploring definitions and embedded 597 

assumptions. Energy Policy 2013;62:19-27. 598 

[23] Richards BK, Stoof CR, Cary IJ, Woodbury PB. Reporting on marginal lands for 599 

bioenergy feedstock production: a modest proposal. Bioenerg Res 2014;7:1060-2. 600 



25 
 

[24] Witney B. Choosing and using farm machines. Edinburgh: Land Technology Ltd; 1995. 601 

[25] Amiama C, Bueno J, Alvarez CJ. Influence of the physical parameters of fields and of 602 

crop yield on the effective field capacity of a self-propelled forage harvester. Biosyst Eng 603 

2008;100:198-205. 604 

[26] Gónzalez XP, Marey MF, Álvarez CJ. Evaluation of productive rural land patterns with 605 

joint regard to the size, shape and dispersion of plots. Agr Syst 2007;92:52-62. 606 

[27] Sparkes DL, Jaggard KW, Ramsden SJ, Scott RK. The effect of field margins on the 607 

yield of sugar beet and cereal crops. Ann Appl Biol 1998;132(1):129-42. 608 

[28] Sparkes DL, Ramsden SJ, Jaggard KW, Scott RK. The case for headland set-aside: 609 

consideration of whole-farm gross margins and grain production on two farms with 610 

contrasting rotations. Ann Appl Biol 1998;133(2):245-56. 611 

[29] Kautz T, Stumm C, Kösters R, Köpke U. Effects of perennial fodder crops on soil 612 

structure in agricultural headlands. J Plant Nutr Soil Sc 2010;173(4):490-501. 613 

[30] Mårtensson K, Johnsson H, Blombäck K. Läckage av kväve från svensk åkermark för år 614 

2007 och 2008 beräknat med PLC5-metodik. Teknisk rapport 138. Uppsala: Dept of Soil and 615 

Environment, Swedish University of Agricultural Sciences; 2010. 616 

[31] Jordbruksverket. Jordbruket och vattenkvalitén. Kunskapsunderlag om åtgärder. Rapport 617 

2012:22. Jönköping: Swedish Board of Agriculture (Jordbruksverket); 2012. 618 

[32] Falloon P, Powlson D, Smith P. Managing field margins for biodiversity and carbon 619 

sequestration: a Great Britain case study. Soil Use Manage 2004;20:240-7. 620 

[33] Schneider C, Fry G. 2005. Estimating the consequences of land-use changes on butterfly 621 

diversity in a marginal agricultural landscape in Sweden. J Nat Conserv 2005;13:247-56. 622 

[34] Semere T, Slater FM. Ground flora, small mammal and bird species diversity in 623 

miscanthus (Miscanthus giganteus) and reed canary-grass (Phalaris arundinacea) fields. 624 

Biomass Bioenerg 2007;31:20-9. 625 



26 
 

[35] Rosenqvist H, Nilsson D, Bernesson S. Kostnader och lönsamhet för odling av 626 

energigräs på marginell jordbruksmark. Rapport 073. Uppsala: Dept of Energy and 627 

Technology, Swedish University of Agricultural Sciences; 2014. 628 

[36] de Clercq EM, Vandemoortele F, de Wulf RR. A method for the selection of relevant 629 

pattern indices for monitoring of spatial forest cover pattern at a regional scale. Int J Appl 630 

Earth Observ Geoinform 2006;8(2):113-25. 631 

[37] Cousins SAO, Aggemyr E. The influence of field shape, area and surrounding landscape 632 

on plant species richness in grazed ex-fields. Biol Conservation 2008;141(1):126-35. 633 

[38] Nilsson D, Rosenqvist H, Bernesson S. Tidsåtgång för maskinarbeten på små fält 634 

- en simuleringsstudie. Rapport 072. Uppsala: Dept of Energy and Technology, Swedish 635 

University of Agricultural Sciences; 2014. 636 

[39] European Commission. COMMISSION REGULATION (EC) No 1122/2009. Available 637 

from: http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32009R1122 [cited 638 

17.4.2015]. 639 

[40] Palmer RJ, Wild D, Runtz K. Improving the Efficiency of Field Operations. Biosyst Eng 640 

2003;84:283-8. 641 

[41] Spekken M, de Bruin S. Optimized routing on agricultural fields by minimizing 642 

maneuvering and servicing time. Precis Agric 2013;14:224-44. 643 

[42] Rizzo D, Martin L, Wohlfahrt J. Miscanthus spatial location as seen by farmers: a 644 

machine learning approach to model real criteria. Biomass Bioenerg 2014;66:348-63. 645 

[43] Kelton WD, Sadowski RP, Sturrock DT. Simulation with Arena. New York: McGraw-646 

Hill; 2007. 647 

[44] Maskinkalkylgruppen. Maskinkostnader 2013. Linköping: Hushållningssällskapen; 2013. 648 

[45] European Commission. Direct payments. Available from: 649 

http://ec.europa.eu/agriculture/direct-support/direct-payments/index_en.htm [cited 17.4.2015]. 650 



27 
 

[46] Jordbruksverket (Swedish Board of Agriculture). Jordbrukarstöd. Available from: 651 

http://www.jordbruksverket.se/amnesomraden/stod/jordbrukarstod.4.53b6e8e714255ed1fcc71652 

bd.html [cited 17.4.2015]. 653 

[47] Naturvårdsverket. Åtgärder och kostnader för minskad fosforutlakning från 654 

jordbruksmark till sjön Glan, underlagsrapport (3) till Miljökvalitetsnormer för fosfor i sjöar - 655 

redovisning av ett regeringsuppdrag (NV rapport 5288). Rapport 5291. Stockholm: Swedish 656 

Environmental Protection Agency (Naturvårdsverket); 2003. 657 

[48] Naturvårdsverket. Vidareutveckling av förslag till avgiftssystem för kväve och fosfor. 658 

Rapport 6345. Stockholm: Swedish Environmental Protection Agency (Naturvårdsverket); 659 

2010. 660 

[49] Andersson R, Kaspersson E, Wissman J. Slututvärdering av Miljö- och 661 

landsbygdsprogrammet 2000-2006 – vad fick vi för pengarna? Uppsala: Swedish University 662 

of Agricultural Sciences; 2009. 663 

[50] Johnsson H, Larsson M, Lindsjö A, Mårtensson K, Persson K, Torstensson G. Läckage 664 

av näringsämnen från svensk åkermark – Beräkningar av normalläckage av kväve och fosfor 665 

för 1995 och 2005. Rapport 5823. Stockholm: Swedish Environmental Protection Agency 666 

(Naturvårdsverket); 2008. 667 

[51] Debnath D, Stoecker AL, Epplin FM. Impact of environmental values on the breakeven 668 

price of switchgrass. Biomass Bioenerg 2014;70:184-95.  669 

[52] Jordbruksverket (Swedish Board of Agriculture). Kalkyler för energigrödor. Available 670 

from: http://www2.jordbruksverket.se/webdav /files/SJV/trycksaker/Pdf_ovrigt/ovr304.pdf  671 

[cited 2.9.2014]. 672 

[53] Tidåker P, Sundberg C, Öborn I, Kätterer T, Bergkvist G. Rotational grass/clover for 673 

biogas integrated with grain production – a life cycle perspective. Agr Syst 2014;129:133-41.  674 

[54] Shield IF, Barraclough TJP, Riche AB, Yates NE. The yield response of the energy crops 675 



28 
 

switchgrass and reed canary grass to fertiliser applications when grown on a low productivity 676 

sandy soil. Biomass Bioenerg 2012;42:86-96. 677 

[55] Xiong S, Kätterer T. Carbon-allocating dynamics in reed canary grass as affected by soil 678 

type and fertilization rates in northern Sweden. Acta Agr Scand B–S P 2009;60:24-32.  679 

[56] Powlson DS, Whitmore AP, Goulding KWT. Soil carbon sequestration to mitigate 680 

climate change: a critical re-examination to identify the true and the false. Eur J Soil Sci 681 

2011;62:42-55. 682 

[57] Søgaard HT, Sørensen CG. A model for optimal selection of machinery sizes within the 683 

farm machinery system. Biosyst Eng 2004;89:13-28. 684 

[58] de Toro A. Influences on timeliness costs and their variability on arable farms. Biosyst 685 

Eng 2005;92:1-13. 686 

[59] Larsson S. Supply curves of reed canary grass (Phalaris arundinacea L.) in Västerbotten 687 

County, northern Sweden, under different EU subsidy schemes. Biomass Bioenerg 688 

2006;30:28-37. 689 

[60] Stürmer B, Schmidt J, Schmid E, Sinabell F. Implications of agricultural bioenergy crop 690 

production in a land constrained economy – the example of Austria. Land Use Policy 691 

2013;30:570-81. 692 

[61] Bryngelsson DK, Lindgren K. Why large-scale bioenergy production on marginal 693 

land is unfeasible: a conceptual partial equilibrium analysis. Energy Policy 2013;55:454-694 

66. 695 

[62] Anderson-Teixeira KJ, Davis SC, Masters MD, Delucia EH. Changes in soil organic 696 

carbon under biofuel crops. GCB Bioenergy 2009;1:75-96. 697 

[63] Ma Z, Wood CW, Bransby DI. Carbon dynamics subsequent to establishment of 698 

switchgrass. Biomass Bioenerg 2000;18:93-104. 699 

[64] Wang L, Qian Y, Brummer JE, Zheng J, Wilhelm S, Parton WJ. Simulated biomass, 700 



29 
 

environmental impacts and best management practices for long-term switchgrass 701 

systems in a semi-arid region. Biomass Bioenerg 2015;75:254-66. 702 

[65] Johnston AE, Poulton PR, Coleman K. Soil organic matter: its importance in 703 

sustainable agriculture and carbon dioxide fluxes. Adv Agron 2009;101:1-57. 704 

[66] Svensk energi (Swedenergy). Handel med utsläppsrätter. Available from: 705 

http://www.svenskenergi.se/Elfakta/Elpriser-och-skatter/Handel-med-utslappsratter/ [cited 706 

15.4.2015]. 707 

[67] Wissman J, Berg Å, Ahnström J, Wikström J, Hasund KP. How can the Rural 708 

Development Programme’s agri-environmental payments be improved? Experiences from 709 

other countries. Report 2013:21. Jönköping: The Swedish Board of Agriculture; 2013. 710 

[68] Glithero NJ, Wilson P, Ramsden SJ. Optimal combinable and dedicated energy crop 711 

scenarios for marginal land. Appl Energ 2015;147:82-91. 712 

 713 

 714 

 715 

 716 

 717 

 718 

 719 

 720 

 721 

 722 

 723 

 724 

 725 

 726 



30 
 

Table 1 – Options in the cost calculations. An example of a calculation path (marked by bold 727 
letters) is: RCG cultivated in small and irregular-shaped fields at Vingåker using ‘large’ 728 
machines.  729 

Crops and uses Type of fieldsa,b Locationsc Machineryd 

RCGe – solid fuelg ‘Normal’ fields Svalövk ‘Small’ 

Leye,f – biogash Small and irregular-shaped fields Ronnebyk ‘Large’ 

Winter wheati Fields with less fertile soils Vingåker  

Spring barleyi Headlands Skellefteå  

Fallow landj Border strips   

a In the paper, ‘field’ is used as a general term for a non-specified piece of arable land, including land lying fallow (but not 730 
permanent pasture land). 731 
b Each type of field was assumed to have a specific field shape. 732 
c Distinctive features between the locations were field areas, transport distances and crop yields. 733 
d The time demand for both small and large machinery was based on the dynamic simulation of machine operations in fields 734 
with different areas and shapes. 735 
e In small and irregular-shaped fields and in fields with less fertile soils, no N-fertilisation was included as an alternative 736 
option. Energy grasses on headlands and border strips were not fertilised with N at all for environmental reasons. 737 
f Two harvests per year was included as an alternative option.  738 
g RCG was harvested as round bales. The costs included all operations up to the boiler plant gate. 739 
h There were three harvest options: 1) harvest and handling as ensiled round bales, 2) harvest by a self-chopping wagon 740 
(SCW) and direct use, 3) harvest by a SCW and storage in bunker silos. The costs included all operations up to the biogas 741 
plant gate. 742 
i Conventional cultivation and use. The costs included transports, drying and storage. 743 
j ‘Green’-covered fallow. 744 
k An option was calculated for these locations, taking the economic value of reduced nutrient leakage into account. 745 
 746 
 747 
 748 
Table 2 – Average crop yields used for ‘normal’ fields in the calculations (m.c. – moisture 749 
content, DM – dry matter) [35]. 750 

 Svalöv Ronneby Vingåker Skellefteå 
RCG (spring harvest) (tonnes DM ha-1) 5.4 5.0 4.8 4.5 

Ley (tonnes DM ha-1) 
    Share, 1st harvest (%) 
    Share, 2nd harvest (%) 

7.5 
53 
47 

6.7 
56 
44 

6.0 
65 
35 

4.0 
68 
32 

Winter wheat (tonnes ha-1, m.c. 14%) 7.3 5.5 4.8 - 

Spring barley (tonnes ha-1, m.c. 14%) 5.2 4.1 3.6 2.2 

 751 
 752 
 753 

754 
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Table 3 – Arable land data for the municipalities investigated [38]. 755 
 Svalöv Ronneby Vingåker Skellefteå 

Total area of arable land (ha) 21 440 7 420 7 980 26 430 

Total number of arable blocksa 2 260 3 480 2 140 12 100 

Total number of arable parcelsb 3 200 3 860 2 450 12 780 

Average parcel area (ha) 6.71 1.92 3.25 2.07 

Parcels < 1.00 ha, share of total number (%) 24.7 47.3 32.1 38.7 

Parcels < 1.00 ha, share of total area (%) 1.8 12.7 5.3 10.3 

Blocks with SI > 1.75, share of total number (%) 12.8 17.9 18.2 13.6 

a A ‘block’ is a permanently demarcated area of agricultural land, which contains one or more parcels. 756 
b A ‘parcel’ is a continuous area of land, declared by one farmer, which does not cover more than one single crop 757 
[39]. 758 
 759 
 760 
 761 
Table 4 – Field areas (ha) used in the economic calculations. Calculated from data obtained 762 
from Swedish Board of Agriculture. 763 
 Svalöv Ronneby Vingåker Skellefteå 

Small and irregular-shaped fields 1.02 1.02 1.19 1.11 

Low-fertility fields 5.79 1.42 2.35 1.62 

Headlands 0.57 0.45 0.48 0.43 

Border strips 0.51 0.59 0.75 0.75a 

a No data available, therefore the same value as for Vingåker was assumed. 764 
 765 
 766 
 767 
Table 5 – Average distances between blocks, and between blocks and a conversion plant 768 
located at the site with the highest concentration of blocks (with a total marginal land area of 769 
180 ha). A tortuosity factor of 1.5 was used. 770 

 Between 
blocks (km) 

Between 
blocks and 
plant (km) 

Svalöv 0.8 4.0 

Ronneby 1.1 6.0 

Vingåker 0.9 4.6 

Skellefteå 1.0 5.0 

 771 
 772 
 773 

774 
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Table 6 – Reduction of phosphorous (P) and nitrogen (N) leakage when cultivating energy 775 
grasses instead of cereals, and estimated economic value of the reduced leakage [35]. 776 

 Leakage reduction 
 (kg ha-1) 

Economic value of leakage reduction 
(€ ha-1)a 

 P N P N Total 
Normal fields 0.2 20 21 312 333 

Small and irregular-shaped fields 0.2 20 21 312 333 

Low-fertility fields 0.2 20 21 312 333 

Headlands 0.6 25 62 389 451 

Border strips 0.5 22 52 343 395 
a Rate of exchange 2014-08-21: € 1.00  = 9.63 SEK. 777 
 778 
 779 

780 
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 781 
Fig. 1 – Shape of small and irregular-shaped fields. In this case, the driving pattern for 782 
mowing of grass with a working width of 2.25 m in a field with an area of 1.0 ha is shown. 783 
 784 
 785 

 786 
Fig. 2 – The number of agricultural blocks containing marginal land parcels in each 1x1 km-787 
grid in the municipality of Svalöv. The town of Svalöv is located at coordinates 6201-331. 788 
 789 
 790 
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 791 
Fig. 3 – In-field working time for machine operations in rectangular fields (length:width ratio 792 
2:1) with areas of 1.0 ha and 5.0 ha, as a function of optimal (maximum) driving speed and 793 
effective work width (1.0, 2.0, 4.0, 12.0 and 24.0 m). 794 

795 
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 796 

 797 

 798 

 799 
Fig. 4 – Net gain for the production of RCG, ley, winter wheat, spring barley and fallow in 800 
‘normal’ fields, small and irregular-shaped fields, fields with less fertile soils, headlands and 801 
border strips in the municipalities investigated (winter wheat is not cultivated at Skellefteå). 802 
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 803 

 804 
Fig. 5 – Area-related (in € per ha) and yield-related costs (in € per tonne DM for RCG and ley 805 
and € per tonne grain with 14% m.c. for winter wheat and spring barley) for cultivation at 806 
Ronneby. 807 
 808 
 809 

 810 
Fig. 6 – Costs for the production of RCG in ‘normal’ fields, small and irregular-shaped fields, 811 
fields with less fertile soils, headlands and border strips in the municipalities investigated. The 812 
dashed line shows the price for the product (17.6 € MWh-1). 813 
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 814 
 815 

 816 

 817 
Fig. 7 – Net gain from different ways of harvesting and handling the ley crop for biogas 818 
production in ‘normal’ fields, small and irregular-shaped fields, fields with less fertile soils, 819 
headlands and border strips at Svalöv and Skellefteå (SCW – self-chopping wagon). 820 
 821 
 822 
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 823 

 824 
Fig. 8 – Net gain when direct payments and the value of reduced nutrient leakage is 825 
considered for the different crops in ‘normal’ fields, small and irregular-shaped fields, fields 826 
with less fertile soils, headlands and border strips at Svalöv and Ronneby. 827 
 828 
 829 
 830 
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Supplementary content 
 
S1. MACHINERY COSTS 
 
S1.1. Simulation of machinery performance in rectangular fields 

 
Fig. S1. Driving pattern in a rectangular field with length l and width w. A machine with an 
effective work width Me tills the soil or processes the crop using n headland passes and m 
mainland passes. The driving pattern is implemented in the simulation model by using a 
number of intersections (I) and links (L) [1]. 
 
 
Table S1. Machine performance data used in the simulations (the number of simulation 
replications was 30 and the common random number technique was used to reduce the 
variance) [1-4] 
Variable Values used in simulations 
Field shapes (for rectangular fields) (length:width) 
Field areas (A) 
Effective operating width of machines (Me) 
Maximum (optimal) operating speed (va) 
Width of headlands 
 
In-field machine preparation time  
Operating speed, outer passes (following field 
boundaries) 
Operating speed, curves α < 60°, machine in work  
Operating speed, curves 60 ≤ α ≤ 90°, machine in 
work 
Time for curves α ≥ 90°, machine not in work 
 
Time for turns, machine not in work 
Retardation (d) (reduction of operating speed va) 
Acceleration (a) (increase of operating speed va) 
Driving speed when idle 
 
Time between stochastic stoppages (adjustments, 
blockages, breakdowns, etc.) 
Duration of stochastic stoppages 
Time for finishing up     

1:1, 2:1, 4:1 
0.5 ha, 1.0 ha, 1.5 ha, 2.5 ha, 5.0 ha, 15.0 ha 
1.0 m, 2.0 m, 4.0 m, 12.0 m, 24.0 m 
4.0 km/h, 8.0 km/h, 12.0 km/h, 16.0 km/h 
12.0 m, 16.0 m for A = 15.0 ha, 24.0 m for Me = 
24.0 m 
2 min per parcel + 2 min per 5 ha 
 
0,75va 
va (unchanged speed) 
 
0.5va  
22 sec., reverse corner (excl. retardation and 
acceleration)  
15 sec., loop turn (excl. retardation and acc.) 
d = -Δv/(Δs/((va+v)/2)), braking distance s = 5 m    
a = Δv/(Δs/((va+v)/2)), acc. distance s = 10 m   
8.0 km/h when operating speed 4.0 km/h, 
otherwise va 
 
exponential distribution, expected value 30 min 
exponential distribution, expected value 3.0 min  
3 min 
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Fig. S2. Changes in operating speed for different types of curves. The same changes were 
assumed independent of the direction of the curves (left +α or right -α) [1]. 
 

 
Fig. S3. Different types of corner and turn driving patterns: round corner, square corner and 
loop corner (upper; from left to right), reverse corner, loop turn and reverse turn (lower; 
from left to right) [1,4]. 
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Fig. S4. Simulated in-field working time for machine operations in rectangular fields 
(length:width ratio 2:1) with areas of 0.5 ha and 1.0 ha, as a function of optimal (maximum) 
driving speed and effective work width (1.0, 2.0, 4.0, 12.0 and 24.0 m) [1]. 
 
 

 
Fig. S5. Simulated in-field working time for machine operations in rectangular fields 
(length:width ratio 2:1) with areas of 1.5 ha and 2.5 ha, as a function of optimal (maximum) 
driving speed and effective work width (1.0, 2.0, 4.0, 12.0 and 24.0 m) [1]. 
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Fig. S6. Simulated in-field working time for machine operations in rectangular fields 
(length:width ratio 2:1) with areas of 5.0 ha and 15.0 ha, as a function of optimal (maximum) 
driving speed and effective work width (1.0, 2.0, 4.0, 12.0 and 24.0 m) [1]. 
 

  

  
Fig. S7. Simulated time demand for operations in fields with a width of 16 m (e.g. headlands) 
for machines with Me = 2.0-2.2 m (♦), 2.7-3.1 m (■), 4.0-5.3 m (▲) and 8.0-15.9 m (●), and 
optimal driving speeds of 4.0 km h-1 (upper left), 8.0 km h-1 (upper right), 12.0 km h-1 (lower 
left) and 16.0 km h-1 (lower right). The lengths of the fields were 156 m (0.25 ha), 312 m (0.5 
ha), 469 m (0.75 ha), 625 m (1.0 ha), 781 m (1.25 ha) and 938 m (1.5 ha) [1]. 
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Fig. S8. Simulated time demand for operations in fields with a width of 8 m (e.g. border 
strips) for machines with Me = 2.0-2.6 m (♦), 2.7-3.9 m (■), 4.0-7.9 m (▲) and  ≥ 8.0 m (●), 
and optimal driving speeds of 4.0 km h-1 (upper left), 8.0 km h-1 (upper right), 12.0 km h-1 
(lower left) and 16.0 km h-1 (lower right). The areas of the fields were 0.25 ha (313 m), 0.50 
ha (625 m), 0.75 ha (938 m), 1.00 ha (1 250 m), 1.25 ha (1 563 m) and 1.50 ha (1 875 m) [1]. 
 
 
S1.2. Simulation of machinery performance in irregular-shaped fields 
 

1.

6.

7.

5.

4.

3.

2.

 
Fig. S9. ’Irregular’ field shapes in the simulations (the rectangular shape (1) was used as a 
reference). The area was 1.00 ha [1].  
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Table S2. Perimeter, shape index and number of links (including a link for returning to the 
starting point) for the field shapes in Fig. S9 [1] 
Field shape 1 2 3 4 5 6 7 
Perimeter, m 
Shape index 
Total number of links 

424 
1.20 

45 

443 
1.25 

43 

433 
1.22 

74 

495 
1.40 

55 

455 
1.28 

65 

554 
1.56 

67 

620 
1.75 

95 
 
 

 
Fig. S10. Simulated time demand for mowing in different irregular-shaped fields (see Fig. 
S9). The area was 1.00 ha, the effective machine work width (Me) was 2.25 m and the optimal 
driving speed was 10 km h-1 (according to FAT Berichte [5]) [1]. 
 
 

  

 
Fig. S11. Simulated time demand for different optimal driving speeds as a function of the area 
of small irregular-shaped fields (shape no 7 in Fig. S9) for Me = 2.0 m (upper, left), 4.0 m 
(upper, right) and 12.0 m (lower) [1].  
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S1.3. Calculation of machinery costs 
 
Table S3. Data for field operations with ’large’ machines 

Operation Type of machine Working 
width 
(m) 

Optimal 
driving 
speeda 

(km h-1) 

Hourly 
costb,c  
(€ h-1) 

Stubble tillage 
Ploughing 
Harrowing 
Sowing 
Rolling 
Fertiliserd application 
Pesticide application 
Threshing 
Mowing 
Tedding/windrowing 
Baling, dry grass 
Baling, silage 
 
In-field chopping 
 
Fallow management 
Transporter for bales 
Bale storage building 
Concrete slab 

Heavy disc harrow 
Semi-mounted reversible plough, 5-furrow 

Trailed implement  
2 200 l (no combi-drill) 

Roller 
Mounted implement, 2 500 l, computer 

Trailed sprayer, 2 500 l 
Combine harvester, 180 kW 

Mower conditioner 
Rotary tedder/rotary windrower 
Round baler with bale collector 

Round baler with cutting knives and 
wrapper 

Self-chopping wagon (with compactor), 50 
m3 

Mower 

4.2 
5 x 0.4 = 2.0 

8.0 
6.0 

12.0 
24.0 
24.0 

5.4 
3.0 
6.5 
6.0 

 
3.0 

 
3.0 
3.0 

8.3 
6.7 

12.0 
7.4 
9.5 
5.0 
5.7 
4.5 

10.8 
7.7 
8.0 

 
6.0 

 
12.0 
10.8 

109.2 
89.3 
99.7 
95.6 

104.7 
74.1 

105.4 
209.5 

84.0 
78.5 

100.3 
 

131.3 
 

194.7 
84.0 

12.5e 
20.8e 

7.3e 
a Effective optimal speeds calculated from data by Maskinkalkylgruppen [6], assuming a field area of 5.0 ha, and the use of 
the data in Fig. S6. 
b According to Maskinkalkylgruppen [6], incl. labour costs (25.4 € h-1) and costs of tractor, diesel fuel (1.0 € l-1) and off-field 
preparations and pauses (15%), but excl. transports (€ 1.00 = 9.63 SEK; 2014-08-21). 
c The total costs for each operation were calculated as the time demand (obtained from Figs. S4-S8, S11) multiplied by 
hourly costs, plus transport costs. 
d Costs of P, K and N fertilisers were 2.39 € kg-1, 0.83 € kg-1 and 1.14 € kg-1, respectively. 
e Costs per tonne dry matter (DM). 

 
 
Table S4. Data for field operations with ’small’ machinesa 

Operation Type of machine Working 
width 
(m) 

Optimal 
driving 
speedb 

(km h-1) 

Hourly 
costb,c  
(€ h-1) 

Stubble tillage 
Ploughing 
Harrowing 
Sowing 
Rolling 
Fertilisere application 
Pesticide application 
Threshing 
Mowing 
Tedding/windrowing 
Fallow management 

Heavy disc harrow 
Mounted plough, 4-furrow 

Trailed implement  
Mounted, no combi-drill 

Roller 
Mounted implement, 1 500 l 
Mounted implement, 1 000 l 
Combine harvester, 60 kW 

Mower conditioner, mounted 
Rotary tedder/rotary windrower 

Mower 

2.5 
4 x 0.4 = 1.6 

6.0 
4.0 
6.0 

12.0 
12.0 

3.0 
2.4 
4.5 
2.4 

5.3 
6.5 

10.4 
5.3 
7.2 
5.3 
5.3 
3.0 
9.5 
7.1 
9.5 

72.9 
71.4 
79.8 
51.0 
52.3 
49.4 
60.2 
86.3 
66.9 
54.2 
66.9 

a The machines for baling and in-field chopping were assumed to be the same as for ‘large’ machines. 
b Effective optimal speeds calculated from data by Maskinkalkylgruppen [6], assuming a field area of 5.0 ha, and the use of 
the data in Fig. S6. 
c According to Maskinkalkylgruppen [6], incl. labour costs (25.4 € h-1) and costs of tractor, diesel fuel (1.0 € l-1) and off-field 
preparations and pauses (15%), but excl. transports (€ 1.00 = 9.63 SEK; 2014-08-21). 
d The total costs for each operation were calculated as the time demand (obtained from Figs. S4-S8, S11) multiplied by 
hourly costs, plus transport costs. 
e Costs of P, K and N fertilisers were 2.39 € kg-1, 0.83 € kg-1 and 1.14 € kg-1, respectively. 
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S2. SOME RESULTS (ALL RESULTS ARE PRESENTED IN [1] AND [7]) 
 
S2.1. Basic calculation options   
 
Table S5. Results for the basic calculation options for Svalöv. SCW –self-chopping wagon. 
For all options, RCG was used as solid fuel and ley was used for biogas production [7] 

Crop Harvested 
quantity 
(tonnes 
 ha-1)a 

Energyb 
(MWh 
ha-1) 

Pricec 
(€  

tonne-1)a 

Costsc 
(€  

tonne-1)a 

Costsc 
(€  

MWh-1)b 

Net gainc  
(€ ha-1) 

Normal fields 
   RCG 
   Ley, round bales 
   Ley, SCW, stored 
   Ley, SCW, fresh 
   Winter wheat 
   Spring barley 
   Fallow 
Small irregular-shaped fields 
   RCG with N-fert. 
   RCG without N-fert. 
   Ley with N-fert., round bales 
   Ley without N-fert., round bales 
   Ley with N-fert., SCW, stored 
   Ley without N-fert., SCW, stored 
   Ley with N-fert., SCW, fresh 
   Ley without N-fert., SCW, fresh 
   Winter wheat 
   Barley 
   Fallow 
Fields with less fertile soils 
   RCG with N-fert. 
   RCG without N-fert. 
   Ley with N-fert., round bales 
   Ley without N-fert., round bales 
   Ley with N-fert., SCW, stored 
   Ley without N-fert., SCW, stored 
   Ley with N-fert., SCW, fresh 
   Ley without N-fert., SCW, fresh 
   Winter wheat 
   Barley 
   Fallow 
Headlands 
   RCG 
   Ley, round bales 
   Ley, SCW, stored 
   Ley, SCW, fresh 
   Winter wheat 
   Spring barley 
   Fallow  
Border strips 
   RCG 
   Ley, round bales 
   Ley, SCW, stored 
   Ley, SCW, fresh 
   Winter wheat 
   Spring barley 
   Fallow 

 
5.4 
7.5 
7.5 
7.5 
7.3 
5.2 

- 
 

4.9 
3.4 
7.5 
5.3 
7.5 
5.3 
7.5 
5.3 
7.3 
5.2 

- 
 

4.1 
2.8 
5.6 
3.9 
5.6 
3.9 
5.6 
3.9 
5.1 
3.6 

- 
 

2.6 
3.7 
3.7 
3.7 
5.1 
3.6 

- 
 

3.2 
4.5 
4.5 
4.5 
6.2 
4.4 

- 

 
21 
19 
19 
19 
28 
20 

- 
 

19 
13 
19 
13 
19 
13 
19 
13 
28 
20 

- 
 

16 
11 
14 
10 
14 
10 
14 
10 
20 
14 

- 
 

10 
9 
9 
9 

20 
14 

- 
 

13 
11 
11 
11 
24 
17 

- 

 
94.1 

119.4 
119.4 
119.4 
197.3 
171.3 

- 
 

94.1 
94.1 

119.4 
119.4 
119.4 
119.4 
119.4 
119.4 
197.3 
171.3 

- 
 

94.1 
94.1 

119.4 
119.4 
119.4 
119.4 
119.4 
119.4 
197.3 
171.3 

- 
 

94.1 
119.4 
119.4 
119.4 
197.3 
171.3 

- 
 

94.1 
119.4 
119.4 
119.4 
197.3 
171.3 

- 

 
139.8 
169.2 
174.0 
128.8 
154.5 
175.0 

- 
 

166.5 
166.6 
195.8 
201.2 
218.3 
223.5 
173.1 
158.7 
192.9 
224.5 

- 
 

155.8 
159.2 
182.2 
190.8 
184.6 
191.0 
139.4 
145.8 
191.5 
229.6 

- 
 

184.1 
243.2 
249.5 
204.4 
181.6 
216.6 

- 
 

169.9 
225.9 
240.7 
195.4 
161.6 
186.8 

- 

 
31.8 
67.7 
69.6 
51.5 
39.9 
45.2 

- 
 

37.8 
37.8 
78.3 
80.5 
87.3 
89.4 
69.3 
63.4 
49.8 
58.0 

- 
 

35.4 
36.1 
72.9 
76.3 
73.8 
76.4 
55.8 
58.3 
49.5 
59.3 

- 
 

41.8 
97.3 
99.8 
81.7 
46.9 
56.0 

- 
 

38.6 
90.3 
96.3 
78.2 
41.7 
48.3 

- 

 
-202.9 
-373.4 
-409.3 
-69.9 
312.5 
-18.9 
-96.5 

 
-289.5 
-202.7 
-573.1 
-429.7 
-741.6 
-546.0 
-402.3 
-206.2 

31.6 
-276.3 
-132.4 

 
-205.5 
-151.9 
-353.4 
-280.9 
-366.8 
-281.9 
-112.1 
-112.1 

29.6 
-212.1 
-96.5 

 
-196.0 
-454.7 
-478.3 
-312.0 

80.0 
-164.9 
-116.2 

 
-200.4 
-474.9 
-541.2 
-339.3 
221.4 
-68.3 

-114.2 
a Tonnes of dry matter (DM) for RCG and ley, and tonnes of grain with a moisture content of 14% for wheat and barley. 
b Refers to the net calorific value of RCG, winter wheat and spring barley, and of biogas (ley). 
c € 1.00 = 9.63 SEK (2014-08-21). 
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Table S6. Results for the basic calculation options for Ronneby. SCW –self-chopping wagon. 
For all options, RCG was used as solid fuel and ley was used for biogas production [7] 

Crop Harvested 
quantity 
(tonnes 
 ha-1)a 

Energyb 
(MWh 
ha-1) 

Pricec 
(€  

tonne-1)a 

Costsc 
(€  

tonne-1)a 

Costsc 
(€  

MWh-1)b 

Net gainc  
(€ ha-1) 

Normal fields 
   RCG 
   Ley, round bales 
   Ley, SCW, stored 
   Ley, SCW, fresh 
   Winter wheat 
   Spring barley 
   Fallow 
Small irregular-shaped fields 
   RCG with N-fert. 
   RCG without N-fert. 
   Ley with N-fert., round bales 
   Ley without N-fert., round bales 
   Ley with N-fert., SCW, stored 
   Ley without N-fert., SCW, stored 
   Ley with N-fert., SCW, fresh 
   Ley without N-fert., SCW, fresh 
   Winter wheat 
   Barley 
   Fallow 
Fields with less fertile soils 
   RCG with N-fert. 
   RCG without N-fert. 
   Ley with N-fert., round bales 
   Ley without N-fert., round bales 
   Ley with N-fert., SCW, stored 
   Ley without N-fert., SCW, stored 
   Ley with N-fert., SCW, fresh 
   Ley without N-fert., SCW, fresh 
   Winter wheat 
   Barley 
   Fallow 
Headlands 
   RCG 
   Ley, round bales 
   Ley, SCW, stored 
   Ley, SCW, fresh 
   Winter wheat 
   Spring barley 
   Fallow  
Border strips 
   RCG 
   Ley, round bales 
   Ley, SCW, stored 
   Ley, SCW, fresh 
   Winter wheat 
   Spring barley 
   Fallow 

 
5.0 
6.7 
6.7 
6.7 
5.5 
4.1 

- 
 

4.5 
3.2 
6.7 
4.7 
6.7 
4.7 
6.7 
4.7 
5.5 
4.1 

- 
 

3.8 
2.6 
5.0 
3.5 
5.0 
3.5 
5.0 
3.5 
3.9 
2.9 

- 
 

2.5 
3.3 
3.3 
3.3 
3.9 
2.9 

- 
 

3.0 
4.0 
4.0 
4.0 
4.7 
3.5 

- 

 
20 
17 
17 
17 
21 
16 

- 
 

18 
12 
17 
12 
17 
12 
17 
12 
21 
16 

- 
 

15 
10 
13 
9 

13 
9 

13 
9 

15 
11 

- 
 

10 
8 
8 
8 

15 
11 

- 
 

12 
10 
10 
10 
18 
13 

- 

 
94.1 

119.4 
119.4 
119.4 
197.3 
171.3 

- 
 

94.1 
94.1 

119.4 
119.4 
119.4 
119.4 
119.4 
119.4 
197.3 
171.3 

- 
 

94.1 
94.1 

119.4 
119.4 
119.4 
119.4 
119.4 
119.4 
197.3 
171.3 

- 
 

94.1 
119.4 
119.4 
119.4 
197.3 
171.3 

- 
 

94.1 
119.4 
119.4 
119.4 
197.3 
171.3 

- 

 
143.3 
176.8 
181.2 
135.9 
182.1 
208.1 

- 
 

174.9 
176.3 
208.7 
216.9 
228.5 
236.2 
183.2 
171.5 
233.2 
270.9 

- 
 

173.8 
180.6 
210.3 
225.2 
216.3 
230.0 
171.0 
184.7 
259.2 
311.4 

- 
 

194.9 
265.2 
273.2 
227.9 
219.4 
260.6 

- 
 

177.6 
240.0 
247.5 
202.2 
192.1 
222.9 

- 

 
32.6 
70.7 
72.5 
54.4 
47.0 
53.8 

- 
 

39.8 
40.1 
83.5 
86.8 
91.4 
94.5 
73.3 
68.6 
60.2 
70.0 

- 
 

39.5 
41.0 
84.1 
90.1 
86.5 
92.0 
68.4 
73.9 
67.0 
80.5 

- 
 

44.3 
106.1 
109.2 

91.2 
56.7 
67.3 

- 
 

40.4 
96.1 
99.0 
80.9 
49.6 
57.6 

- 

 
-202.5 
-384.6 
-413.8 
-110.6 

83.5 
-150.8 
-96.5 

 
-299.0 
-213.0 
-598.4 
-457.3 
-730.5 
-548.1 
-427.3 
-244.5 
-197.5 
-408.2 
-132.4 

 
-246.0 
-186.7 
-456.5 
-372.2 
-486.8 
-389.1 
-259.4 
-259.4 
-238.4 
-402.1 
-110.3 

 
-203.1 
-478.6 
-504.8 
-356.2 
-85.0 

-256.2 
-105.3 

 
-204.4 
-480.8 
-510.4 
-329.9 

24.4 
-179.9 
-107.5 

a Tonnes of dry matter (DM) for RCG and ley, and tonnes of grain with a moisture content of 14% for wheat and barley. 
b Refers to the net calorific value of RCG, winter wheat and spring barley, and of biogas (ley). 
c € 1.00 = 9.63 SEK (2014-08-21). 
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Table S7. Results for the basic calculation options for Vingåker. SCW –self-chopping wagon. 
For all options, RCG was used as solid fuel and ley was used for biogas production [7] 

Crop Harvested 
quantity 
(tonnes 
 ha-1)a 

Energyb 
(MWh 
ha-1) 

Pricec 
(€  

tonne-1)a 

Costsc 
(€  

tonne-1)a 

Costsc 
(€  

MWh-1)b 

Net gainc  
(€ ha-1) 

Normal fields 
   RCG 
   Ley, round bales 
   Ley, SCW, stored 
   Ley, SCW, fresh 
   Winter wheat 
   Spring barley 
   Fallow 
Small irregular-shaped fields 
   RCG with N-fert. 
   RCG without N-fert. 
   Ley with N-fert., round bales 
   Ley without N-fert., round bales 
   Ley with N-fert., SCW, stored 
   Ley without N-fert., SCW, stored 
   Ley with N-fert., SCW, fresh 
   Ley without N-fert., SCW, fresh 
   Winter wheat 
   Barley 
   Fallow 
Fields with less fertile soils 
   RCG with N-fert. 
   RCG without N-fert. 
   Ley with N-fert., round bales 
   Ley without N-fert., round bales 
   Ley with N-fert., SCW, stored 
   Ley without N-fert., SCW, stored 
   Ley with N-fert., SCW, fresh 
   Ley without N-fert., SCW, fresh 
   Winter wheat 
   Barley 
   Fallow 
Headlands 
   RCG 
   Ley, round bales 
   Ley, SCW, stored 
   Ley, SCW, fresh 
   Winter wheat 
   Spring barley 
   Fallow  
Border strips 
   RCG 
   Ley, round bales 
   Ley, SCW, stored 
   Ley, SCW, fresh 
   Winter wheat 
   Spring barley 
   Fallow 

 
4.8 
6.0 
6.0 
6.0 
4.8 
3.6 

- 
 

4.3 
3.0 
6.0 
4.2 
6.0 
4.2 
6.0 
4.2 
4.8 
3.6 

- 
 

3.6 
2.5 
4.5 
3.2 
4.5 
3.2 
4.5 
3.2 
3.4 
2.5 

- 
 

2.4 
2.9 
2.9 
2.9 
3.4 
2.5 

- 
 

2.9 
3.6 
3.6 
3.6 
4.1 
3.1 

- 

 
19 
15 
15 
15 
19 
14 

- 
 

17 
12 
15 
11 
15 
11 
15 
11 
19 
14 

- 
 

14 
10 
11 
8 

11 
8 

11 
8 

13 
10 

- 
 

9 
7 
7 
7 

13 
10 

- 
 

11 
9 
9 
9 

16 
12 

- 

 
94.1 

119.4 
119.4 
119.4 
197.3 
171.3 

- 
 

94.1 
94.1 

119.4 
119.4 
119.4 
119.4 
119.4 
119.4 
197.3 
171.3 

- 
 

94.1 
94.1 

119.4 
119.4 
119.4 
119.4 
119.4 
119.4 
197.3 
171.3 

- 
 

94.1 
119.4 
119.4 
119.4 
197.3 
171.3 

- 
 

94.1 
119.4 
119.4 
119.4 
197.3 
171.3 

- 

 
145.4 
185.2 
189.0 
143.7 
199.2 
229.9 

- 
 

172.8 
173.8 
214.0 
223.7 
233.4 
242.4 
188.2 
178.7 
258.9 
303.3 

- 
 

166.6 
171.3 
206.3 
220.4 
211.2 
223.4 
165.9 
178.1 
270.0 
323.5 

- 
 

195.0 
277.7 
283.2 
237.9 
242.5 
289.5 

- 
 

176.5 
245.9 
252.6 
207.4 
210.8 
246.7 

- 

 
33.0 
74.0 
75.6 
57.5 
51.5 
59.4 

- 
 

39.3 
39.5 
85.6 
89.5 
93.4 
97.0 
75.3 
71.4 
66.9 
78.4 

- 
 

37.8 
38.9 
82.6 
88.2 
84.4 
89.3 
66.4 
71.2 
69.8 
83.6 

- 
 

44.3 
111.1 
113.3 

95.1 
62.6 
74.8 

- 
 

40.1 
98.3 

101.0 
83.0 
54.5 
63.8 

- 

 
-202.3 
-394.4 
-417.7 
-146.1 

-9.0 
-210.8 
-96.5 

 
-279.8 
-198.2 
-567.4 
-438.0 
-683.9 
-516.5 
-412.4 
-248.9 
-295.7 
-475.0 
-132.9 

 
-214.5 
-160.2 
-391.2 
-317.9 
-413.0 
-327.4 
-209.2 
-209.2 
-244.3 
-383.4 
-91.9 

 
-195.3 
-465.2 
-481.4 
-348.4 
-151.6 
-297.7 
-103.5 

 
-193.8 
-451.7 
-475.7 
-314.1 
-55.1 

-230.6 
-102.9 

a Tonnes of dry matter (DM) for RCG and ley, and tonnes of grain with a moisture content of 14% for wheat and barley. 
b Refers to the net calorific value of RCG, winter wheat and spring barley, and of biogas (ley). 
c € 1.00 = 9.63 SEK (2014-08-21). 
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Table S8. Results for the basic calculation options for Skellefteå. SCW –self-chopping wagon. 
For all options, RCG was used as solid fuel and ley was used for biogas production [7] 

Crop Harvested 
quantity 
(tonnes 
 ha-1)a 

Energyb 
(MWh 
ha-1) 

Pricec 
(€  

tonne-1)a 

Costsc 
(€  

tonne-1)a 

Costsc 
(€  

MWh-1)b 

Net gainc  
(€ ha-1) 

Normal fields 
   RCG 
   Ley, round bales 
   Ley, SCW, stored 
   Ley, SCW, fresh 
   Spring barley 
   Fallow 
Small irregular-shaped fields 
   RCG with N-fert. 
   RCG without N-fert. 
   Ley with N-fert., round bales 
   Ley without N-fert., round bales 
   Ley with N-fert., SCW, stored 
   Ley without N-fert., SCW, stored 
   Ley with N-fert., SCW, fresh 
   Ley without N-fert., SCW, fresh 
   Barley 
   Fallow 
Fields with less fertile soils 
   RCG with N-fert. 
   RCG without N-fert. 
   Ley with N-fert., round bales 
   Ley without N-fert., round bales 
   Ley with N-fert., SCW, stored 
   Ley without N-fert., SCW, stored 
   Ley with N-fert., SCW, fresh 
   Ley without N-fert., SCW, fresh 
   Barley 
   Fallow 
Headlands 
   RCG 
   Ley, round bales 
   Ley, SCW, stored 
   Ley, SCW, fresh 
   Spring barley 
   Fallow  
Border strips 
   RCG 
   Ley, round bales 
   Ley, SCW, stored 
   Ley, SCW, fresh 
   Spring barley 
   Fallow 

 
4.5 
4.0 
4.0 
4.0 
2.2 

- 
 

4.1 
2.8 
4.0 
2.8 
4.0 
2.8 
4.0 
2.8 
2.2 

- 
 

3.4 
2.4 
3.0 
2.1 
3.0 
2.1 
3.0 
2.1 
1.5 

- 
 

2.2 
2.0 
2.0 
2.0 
1.5 

- 
 

2.7 
2.4 
2.4 
2.4 
1.9 

- 

 
18 
10 
10 
10 
9 
- 
 

16 
11 
10 
7 

10 
7 

10 
7 
9 
- 
 

13 
9 
8 
5 
8 
5 
8 
5 
6 
- 
 

9 
5 
5 
5 
6 
- 
 

11 
6 
6 
6 
7 
- 

 
94.1 

119.4 
119.4 
119.4 
171.3 

- 
 

94.1 
94.1 

119.4 
119.4 
119.4 
119.4 
119.4 
119.4 
171.3 

- 
 

94.1 
94.1 

119.4 
119.4 
119.4 
119.4 
119.4 
119.4 
171.3 

- 
 

94.1 
119.4 
119.4 
119.4 
171.3 

- 
 

94.1 
119.4 
119.4 
119.4 
171.3 

- 

 
148.7 
225.0 
226.6 
181.3 
343.9 

- 
 

180.0 
182.3 
268.0 
291.7 
288.4 
311.3 
243.1 
246.4 
473.0 

- 
 

179.2 
188.6 
273.8 
310.8 
280.7 
315.6 
235.4 
270.3 
535.3 

- 
 

205.7 
376.3 
380.5 
335.2 
440.6 

- 
 

183.6 
322.0 
322.9 
277.7 
371.1 

- 

 
33.7 
90.0 
90.7 
72.6 
88.9 

- 
 

40.9 
41.4 

107.3 
116.6 
115.4 
124.5 

97.2 
98.5 

122.2 
- 
 

40.7 
42.9 

109.6 
124.3 
112.3 
126.3 

94.2 
108.1 
138.3 

- 
 

46.7 
150.6 
152.2 
134.1 
113.8 

- 
 

41.7 
128.9 
129.2 
111.1 

95.8 
- 

 
-202.1 
-422.4 
-428.7 
-247.7 
-379.8 
-96.5 

 
-286.0 
-205.8 
-594.6 
-482.2 
-675.7 
-537.4 
-494.6 
-355.7 
-663.6 
-133.5 

 
-236.3 
-183.6 
-463.3 
-402.0 
-483.8 
-411.9 
-348.0 
-348.0 
-560.5 
-110.3 

 
-202.4 
-503.5 
-511.6 
-422.9 
-414.6 
-105.3 

 
-197.2 
-482.2 
-484.4 
-376.7 
-373.5 
-102.9 

a Tonnes of dry matter (DM) for RCG and ley, and tonnes of grain with a moisture content of 14% for wheat and barley. 
b Refers to the net calorific value of RCG, winter wheat and spring barley, and of biogas (ley). 
c € 1.00 = 9.63 SEK (2014-08-21). 
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S2.2. Cost distribution for different crops at Svalöv 
 

 

 
Fig. S12. Costs per hectare (upper) and per tonne dry matter (DM) (lower) for RCG at Svalöv 
[7]. 

 

 
Fig. S13. Costs per hectare (upper) and per tonne dry matter (DM) (lower) for ley at Svalöv 
[7]. 
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Fig. S14. Costs per hectare (upper) and per tonne (14% moisture content) (lower) for winter 
wheat at Svalöv [7]. 

 

 
Fig. S15. Costs per hectare (upper) and per tonne (14% moisture content) (lower) for spring 
barley at Svalöv [7]. 
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Fig. S16. Costs per hectare for fallow at Svalöv [7]. 
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