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Abstract 8 

Many bacteria strains are now successfully used for plant-growth promotion (PGPR) and as 9 

biocontrol agents (BCA) against plant diseases. Mechanisms behind their action involve production of 10 

enzymes and antibiotics, which in high concentrations could also affect non-target organisms hence 11 

the biodiversity and processes in the soil. Despite these potential negative side effects, there is little 12 

research done on the subject to confirm whether they are significant. In three laboratory 13 

experiments, we tested the effect of the bacterial BCA Bacillus amyloliquefaciens UCMB5113 (BA) on 14 

two earthworm species, common in agricultural soils in temperate regions of the world and 15 

representing different ecological groups; one anecic (Aporrectodea longa) and one endogeic species 16 

(A. caliginosa). The earthworms were kept in replicated pots containing soil from local agricultural 17 

fields. They  were fed on cow manure, and exposed to BA by 1) dipping into a BA solution (short-term 18 

external exposure in high concentration), 2) mixing BA solution into the soil (long term external and 19 

internal exposure)  and 3) feeding earthworms with BA infested plant litter (internal exposure of the 20 

gut).  21 

After 1-2 months, survival, growth and reproduction of the earthworms were recorded. We found no 22 

effect of the treatments as compared to control without BA amendments. We conclude that the use 23 

of high doses of BA with concentrations at the same magnitude as maximally expected when the 24 
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bacteria are used as PGPR and BCA, is not harmful to the soil dwelling earthworms tested in this 25 

project. Further studies of the ecological effects of PGPR and BCA bacteria on other non-target soil 26 

organisms are encouraged.  The development of sustainable agricultural systems, where ecosystem 27 

services are optimized, has to be aided by a deeper knowledge of the combined effect of bacteria 28 

and earthworms on the promotion of plant health. 29 

 30 

 31 
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Highlights  35 

First study of PGPR and BCA bacteria’s influences on earthworms 36 

No harmful effects of the biocontrol bacteria on earthworms were found 37 

BCA bacteria-earthworm interactions are interesting for development of sustainable agriculture  38 

 39 

 40 

1. Introduction 41 

In recent years, scientific attention has been drawn to the effects of rhizobacteria as beneficial to 42 

plants: plant-growth promoting rhizobacteria (PGPR), enhancing plant tolerance against abiotic 43 

stress, and biological control agents (BCA) against plant diseases and insect pests (Dimkpa et al., 44 

2009; Lugtenberg and Kamilova, 2009; Pieterse et al., 2014). Several bacteria, including strains of the 45 

genera Pseudomonas and Bacillus, are now available commercially as BCAs and are successfully used 46 
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instead of chemical pesticides in crop production (Choudhary and Johri, 2009). PGPRs can stimulate 47 

plant growth in different ways, e.g. enhance seed germination and emergence, stimulate root 48 

development and thus mineral, nutrient and water uptake, as well as suppress diseases. The 49 

underlying mechanisms of beneficial rhizobacteria for protection of plants against parasitic root 50 

colonizing microorganisms include priming of induced systemic resistance and production of 51 

enzymes such as chitinases, peroxidases and proteases, and many types of antibiotics (Pieterse et al., 52 

2014). This production does not only affect microorganisms and their interactions with plants but is 53 

also known to suppress nematodes and techniques for use of bacterial BCA against plant parasitic 54 

nematodes are being developed (Abally 2012; Mutua et al., 2011; Niazi et al., 2014; Wepuhkhulu et 55 

al., 2011).  56 

It is suspected that the use of bacterial BCAs would also affect many other non-target soil organisms 57 

and therefore influence soil processes and biodiversity. This has so far not received much attention. 58 

For example, earthworms, like nematodes, have chitin in their cuticle, especially in their setae 59 

(Jamieson, 1992; Miller and Harley, 1999), and therefore could be negatively affected by addition of 60 

microorganisms producing chitinase. Although biocontrol bacteria occur naturally in soil, amending 61 

them in large concentrations to soils and plants could imply environmental risks. Therefore, thorough 62 

assessment of environmental impacts of BCAs needs to be carried out prior to their development and 63 

registration for use in plant production to avoid ecotoxicological effects at different trophic levels in 64 

the local ecosystem. 65 

Many Bacillus species are ubiquitously present in soil and can become enriched in the rhizosphere 66 

depending on root exudates. Phenotypically high ecological diversity has been found among different 67 

Bacillus species with plant interaction resulting both in epiphytic and endophytic colonization (Mc 68 

Spadden Gardener, 2004). Many strains of Bacillus subtilis, Bacillus cereus and Bacillus 69 

amyloliuefaciens have been found to interact with plants and produce beneficial effects including 70 

disease suppression (Choudhary and Johri, 2009). The type strain of plant-associated B. 71 



4 
 

amyloliquefaciens FZB42 has been shown to produce a variety of secondary metabolites involved in 72 

microbial antagonism and thus supporting disease suppression of plants (Chen et al., 2009), and this 73 

also includes chitinase (Niazi et al., 2014).  74 

In the present study we have tested the effect of the bacterial BCA Bacillus amyloliquefaciens 75 

UCMB5113 (Here after abbreviated as BA) on the survival, growth and reproduction of two 76 

earthworm species that are common in agricultural soils in temperate regions of the world and 77 

represent two different ecological groups (Bouché, 1977). Although the BA bacteria are not yet 78 

available as a commercial BCA, substantial research has been done on its effect on plant growth and 79 

health as well as the underlying mechanisms of action (Danielsson et al., 2007; Sarosh et al., 2009) 80 

and genomic and phenotypic analysis infer a close relationship with the type strain FZB42 (Niazi et 81 

al., 2014). 82 

The aim of the study was to ascertain whether B. amyloliquefaciens UCMB 5113 (BA) has any effect 83 

on earthworms when exposed directly to a solution of the bacteria, or to soil or feed inoculated with 84 

the bacteria. 85 

2. Material and Methods 86 

2.1 Test organisms 87 

The tested earthworm species were Aporrectodea longa (Ude) and Aporrectodea caliginosa 88 

(Savigny). The former belongs to the ecological category of anecic earthworms. It generally feeds on 89 

plant litter on the surface, buries litter into the soil and creates burrows from the surface down 90 

through the soil profile. The latter is an endogeic species that lives and feeds in the soil profile where 91 

it consumes large quantities of soil and organic matter but are not so selective towards fresh litter. 92 

The earthworms used were collected from agricultural and garden soils in the vicinity of Uppsala by 93 

digging and hand sorting. Prior to their use in the experiments, the earthworms were maintained in a 94 

climate chamber at 18 oC for up to two months, in 6-litre boxes with soil of the same quality as used 95 
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in the experiments (see description of soil below), and were fed with rehydrated dry cow dung added 96 

once a month and mixed into the superficial layer of the soil. We used new earthworms for each 97 

experiment. They were adults with fully developed clitellum or subadults with early signs of clitellum 98 

development and all chosen specimens were in full vigour. 99 

Bacillus amyloliquefaciens subsp. plantarum UCMB5113 (Borriss et al. 2011) (BA) was grown in LB 100 

medium at 28 °C with agitation until stationary phase was reached.  The suspension was heat 101 

shocked for 5 min at 65 °C and surviving spores collected by centrifugation. After washing the pellet 102 

in sterile MilliQ water, the density was determined using colony forming unit counts and the 103 

concentration adjusted with sterile water to 107 ml-1.  104 

2.2 Experimental set up 105 

The study was conducted in laboratories, based at the Swedish University of Agricultural Sciences 106 

(SLU), Uppsala (59o49’05’’N, 17o39’28’’E). In mesocosm experiments, we exposed earthworms to BA 107 

by 1) dipping into a bacteria solution (short term external exposure in high concentration), 2) mixing 108 

the bacteria into the soil where the earthworms were kept (long term external and internal 109 

exposure) and 3) feeding earthworms with bacteria infested plant litter (internal exposure of the 110 

gut).  111 

Three different experiments were done with various combinations of exposition methods and 112 

earthworm species, summarized in table 1. The experiments were preceded by preliminary studies 113 

where soil mixture, moisture level and feeding were tested.  Water content appeared to be the most 114 

critical since the soil became hard and impenetrable for the earthworms if allowed to dry out. The 115 

vessels used in experiment 1 and 2, were cylinders made from PVC plastic sewage pipes with 14.5 cm 116 

inner diameter and 30 cm height.  At the bottom of the cylinders, nylon mesh (mesh size 1 mm) was 117 

attached with a rubber band to allow good drainage of the soil and prevent earthworms from 118 

escaping.  The walls of the cylinders extended ca 15 cm above the level of the soil surface, to prevent 119 

earthworms from escaping. The top of the cylinders were loosely covered with transparent 120 
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polyethene plastic bags in order to minimize evaporation. For experiment 3, opaque plastic boxes (27 121 

cm x 17 cm wide x 13 cm deep) were used. They were perforated in the bottom to allow drainage 122 

and the internal base of the vessels was covered with nylon net to prevent escape of earthworms. 123 

The boxes had no lid and were covered with a net and a nylon sheet in order to avoid excessive 124 

evaporation and infection of Sciaridae flies (See table 1).  The boxes provided a greater soil volume 125 

than the cylinders allowing for a higher number of earthworms and less laborious handling.  126 

The vessels were filled with a moist soil mixture (15% water) consisting of 60 % clay-loam soil and 30 127 

% sandy soil and 10 % cow manure. The clay-loam soil contained 36.5 % clay, total carbon content 128 

was 1.5 %, pH 6.6, and was classified as Eutric cambisol (Kirchmann et al. 1994). The sandy soil 129 

contained 2.7 % carbon and pH was 6.3. Both soils were collected from the experimental farm area 130 

of the SLU University in the vicinity of Uppsala. The soils were hand sorted to remove roots, debris, 131 

stones and macrofauna (e.g. earthworms and beetles) and thereafter frozen (48 h, -20 oC) and 132 

thawed (48 h, +20 oC) twice to reduce the remaining indigenous fauna. This would be efficient for 133 

reduction of macro- and mesofauna but not for nematodes and other microfauna (Sulkava and 134 

Huhta, 2003). Dried cow manure (Weibulls® concentrated, dried organic cow manure) was wetted to 135 

50 % moisture content before being mixed into the experimental soil as feed for the earthworms. 136 

The particle size of the manure was on average less than 1 mm with no particles larger than 3 mm. In 137 

experiment 1, an additional amount of 100 g of wetted cow manure was added per cylinder at day 29 138 

of the experiment as feed for the worms. The manure was evenly mixed into the soil in all 139 

experiments and also when additional manure was added in experiment 1. The water content of the 140 

mineral soil was ca. 15 % by wet weight at the start of the experiment and the soil mixture was 141 

wetted to field capacity before introducing the earthworms.  142 

The procedure for the three exposure methods was as follows: In the dipping method (treatments DS 143 

and D in experiments 1 and 3) earthworm specimens were dipped for 15 seconds into a BA spore 144 

solution in sterile water with 1 x 107 cells ml-1. In the Control (C), worms were dipped into deionised 145 
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water for 15 sec before being added to soil-filled cylinders. In treatments with BA mixed into the soil 146 

(Experiments 1 and 2; treatments S, DS, SL, and SL+) 150 ml of BA spore solution in sterile water (1 x 147 

107 cells ml-1) was poured over the soil. To distribute it more evenly, we did not pour the whole 148 

solution on top of the soil. Instead, it was added in three portions; after filling 1/3, 2/3 and 3/3 of the 149 

whole soil volume. Amendment to leaves (treatment L+ in experiment 2) was done by keeping leaves 150 

in the BA solution for 1 min and then the excess liquid was shaken off gently to mimic spray 151 

administration of Bacillus with subsequent runoff.  Leaves treated with water only, served as a 152 

control (treatment L).  In a similar way to what we did with the BA solution to distribute it more 153 

evenly, we added 4 g of amended or control leaves on top of the first third of the total amount of soil 154 

mixture, then another third of soil was added to the cylinder and 4 g more of amended leaves, and so 155 

with the third portions of soil and leaves. An additional 4 g of leaves was added on the surface after 156 

one and two weeks in L+, L and SL+ treatments (see table 2).  157 

Two earthworm specimens were added to each experimental cylinder and four A. longa or six A. 158 

caliginosa to each box. The experimental units were arranged in a randomized design and kept in 159 

darkness at 17-19 oC in a climate chamber for the duration of the experiments (see table 1). They 160 

were covered with transparent plastic bags in order to prevent excessive evaporation, and watered 161 

regularly. They were moved around every second week in order to minimize effects due to any local 162 

differences in temperature and evaporation rates. Each individual earthworm was weighed at the 163 

start and end of the experiments after being washed in cold tap water and dried on paper tissue. The 164 

individual fresh mass was also recorded at day 29 in experiment 1. At the end of the experiments, all 165 

cocoons produced were sorted out by wet sieving of the soil over a mesh (mesh size 2 mm) and 166 

counted.  167 

The three experiments were arranged as indicated in tables 1 and 2. Experiment 1 included four 168 

treatments with A longa as follows: (1) DS: Dipping earthworms into BA solution+ mixing BA into the 169 

soil; (2) D: Dipping earthworms in BA solution+ no mixing; (3) S: No dipping + mixing BA into the soil; 170 
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(4) C: Control, no dipping + no mixing (table 2). To repeat and extend experiment 1, we added 171 

treatments with another earthworm species (A. caliginosa) and an alternative exposure method, 172 

where the earthworms were exposed to BA amended plant material (Brassica napus leaves) as food. 173 

In this case, both the external and internal tissues of the earthworms were exposed to the BA 174 

bacteria. Since results from experiment 1 had shown considerable earthworm weight increase and 175 

cocoon production during the first month, we judged that a shorter period would give reliable 176 

results. Hence, the experimental duration was shortened to 28 days for experiments 2 and 3. The 177 

treatments for experiment 2 were: control (C) without addition of BA; addition of BA by pouring 150 178 

ml of bacteria solution into the soil (S), like in the earlier experiments; addition of BA-amended 179 

Brassica napus leaves (L+); addition of leaves treated with water only (L); Addition of BA to the soil 180 

and addition of BA amended leaves (SL+). These five treatments were set up with A. longa 181 

(treatment 1-5) and with A. caliginosa (treatment 6-10). Experiment 3 included 4 treatments, dipping 182 

A. longa and A. caliginosa in BA solution and their respective controls (tables 1 and 2).  183 

 184 

2.3 Statistical analysis 185 

Data for earthworm mass, relative mass increase and cocoon production were analysed using a 186 

general linear model (GLM) with treatments as model components. When significant effects were 187 

found (P<0.05), Tukey’s pairwise comparisons was used to compare treatment means. Minitab 16 188 

Software was used for all analyses. 189 

3. Results 190 

3.1 Experiment 1  191 

The mortality of earthworms was rather high in this experiment. However, it did not differ 192 

significantly between treatments (P=0.903). In table 3, column n shows the number of populated 193 

mesocosms (with one or two live worms per mesocosm). The surviving earthworms grew well and 194 
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had on average increased from 2.2 g fresh mass at the start to 3.9 g at the end of the experiment 195 

(Table 3). There were no significant differences in earthworm individual growth between treatments 196 

after 29 days or 57 days from the start (P=0.25 and P=0.69, respectively). Relative increment of 197 

earthworm biomass did not differ between treatments, either after 29 days (P=0.16) or after 57 days 198 

(P=0.70). Cocoon production amounted to a maximum of 0.25 cocoons per earthworm. 199 

 200 

3.2 Experiment 2 201 

In this experiment all earthworms survived and gained mass during the four week experimental 202 

period (Table 4). The results confirmed earlier observations in experiment 1 where there was no 203 

significant effect of adding a solution of BA to the soil (P>0.05). In addition, offering leaves amended 204 

with the BA solution as food did not affect either growth or cocoon production of any of the two 205 

species (P>0.05). However, relative increment in mass of A. caliginosa was larger in treatment SL+.cal 206 

(P=0.029), with the combined addition of BA amended leaves and BA to the soil, as compared to the 207 

control. Cocoon production was considerably higher than in experiment 1. For A. longa, mean for the 208 

different treatments was between 2.92 and 4.17 cocoons per individual but did not differ 209 

significantly among treatments (P=0.921). The corresponding value for A. caliginosa was between 210 

6.50 and 9.58 and it did not differ significantly among treatments either (P=0.421). 211 

3.3 Experiment 3 212 

Effects of dipping earthworms into the BA solution are shown in Table 5. Growth of earthworms in 213 

absolute or relative terms did not differ between treatments (P=0.778 and P=0.768 for A. longa and 214 

P=0.880 and P=0.976 for A. caliginosa) and mean values were larger than in experiment 2. Cocoon 215 

production did not differ between treatments either (P=0.417 for A. longa and P=0.613 for A. 216 

caliginosa), but mean values were considerably lower than in experiment 2 (table 5). 217 

 218 
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4. Discussion  219 

We aimed to conduct the experiments in soil conditions similar to the soil where the earthworms 220 

were collected, which was the agricultural soil of the Uppsala area. In a preliminary study, we had 221 

some initial problems with the experimental conditions and found that the clay dominated soil got 222 

very hard and impenetrable when drying out, which affected earthworm survival. Therefore keeping 223 

moisture within favourable limits is a must for successful lab experiments with earthworms. Lowe 224 

and Butt (2005) suggest a moisture content of 25% wet weight for cultures of A. longa and three 225 

other earthworms of the same family (Lumbricidae). 226 

The conditions and viability of the worms is also a delicate issue. In experiment 1, the A. longa 227 

specimens used were collected from the field in October-November and had been kept in cultivation 228 

boxes for two months before the start of the experiment in February. High mortality and low cocoon 229 

production could be due to less favourable conditions of the worms during storage and perhaps also, 230 

because they were at the end of their life cycle. In experiments 2 and 3, which were done during the 231 

summer, the worms were in good conditions and moisture was regularly controlled. This ensured a 232 

100 % survival and high reproduction with little variation among replicates.  233 

In all experiments, the earthworms were provided with sufficient amounts of feed. This is necessary 234 

when studying the interaction of earthworms with their environment since they would otherwise go 235 

into diapause or try to escape from the experimental soil units. Boström (1988) and Boström and 236 

Lofs-Holmin (1986) found that A. caliginosa went into estivation in an earthworm growth 237 

experiment, as soon as the added food resource was depleted. The feed was mixed into the soil of 238 

the mesocosms of all treatments, although A. longa is an anecic species that feeds mainly on the soil 239 

surface. According to some authors (e.g. Boyle, 1990, Lowe and Butt, 2002), earthworms, especially 240 

anecic and epigeic species, but also endogeics, grow better if the feed is placed on the soil surface. 241 

Lofs-Holmin (1983) however, found that mixing of feed into the soil gives just as good growth and 242 

reproduction, and it is practical since the risk of drying out of fodder is minimized and infection of the 243 
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substrate with, e.g. Sciaridae fly larvae is less likely to occur.  Increase in mass for both species gives 244 

an indication that experimental conditions were favourable for their activity. In the case of A. 245 

caliginosa this increase ranged between 41 – 112 %, which is lower than the average 196% increase 246 

reported by Eriksen-Hamel and Whalen (2006), and by Vercesi et al (2006). If relative mass increase 247 

of the earthworms is a response factor, it is important to have specimens within the same mass 248 

range since relative growth rate decreases as the animals become larger.  Based on this, it should be 249 

noted that, whereas juveniles were used in these experiments, in our experiment only adults and 250 

sub-adults were used, hence lower growth rates are expected. In the case of A. longa, their relative 251 

increase in body mass, ranging 50-138%, more than doubled the 25.81% obtained by Butt (1993) in a 252 

3-month long study. The higher relative increment in treatment 5 of experiment 2 (Table 4) could 253 

also be a result of somewhat smaller worms used in that treatment as compared to the other 254 

treatments. Cocoon production, which ranged 0.027-0.287 and 0.004-0.104 cocoon worm-1 day-1, for 255 

A. caliginosa and A. longa, respectively, showed a higher production for the former than for the 256 

latter. Reported values for cocoon production in similar temperatures as in our study for A. 257 

caliginosa include averages of 0.09 and 0.221 cocoon worm-1 day-1 (Boström, 1988; Garvín et al., 258 

2002; Vercesi et al., 2006); the lowest value may also be due to the inclusion of juveniles in the study, 259 

while the highest value is within our range. Butt (1993) and Holmstrup (1999) report that A. longa 260 

produced an average of 0.052 and 0.090 cocoon worm-1 day-1 in their experiments, respectively. The 261 

former being included in our range, while the latter is slightly higher. The low cocoon production in 262 

experiment 3 (Table 5) could also be a result of smaller specimens used as compared to those used in 263 

experiment 2– the earthworms may not yet have reached their full maturityand was still allocating 264 

most resources to body mass increase. Growth of individuals decline asymptotically with increasing 265 

body mass (Lowe and Butt, 2005) and there is a trade-off between body-mass increase and 266 

reproduction. 267 

If laboratory reared earthworms had been used instead of specimens collected from the field, 268 

differences in fecundity, growth and survival between experiments due to seasonal changes caused 269 
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by the phenology of the earthworms could have been avoided. Under constant environmental 270 

conditions, earthworms have been shown to maintain both activity and reproductive conditions 271 

throughout the year. However, reproductive fatigue and high death rate can occur compared to 272 

those kept under fluctuating temperatures (Lowe and Butt, 2005). Although use of laboratory reared 273 

earthworms of the same age would have given more reliable and replicable data we chose to use 274 

field-collected ones since resources and time were not available to produce the amounts of 275 

specimens needed for our experiments. 276 

This is the first study focussing on the impact of BCA bacteria on earthworms and from the results we 277 

can conclude that no harmful effects of B. amyloliquefaciens UCMB5113 on the tested earthworm 278 

species were recorded.  Previous studies on the interaction between BCA bacteria and earthworms, 279 

focused on the opposite direction of the interaction: earthworm effect on bacteria, rather than 280 

bacteria effect on earthworms. These were conducted with the genus Pseudomonas, and the only 281 

reference made to the effect of these on earthworms was the lack of earthworm mortality during the 282 

experiments. No records of weight change or cocoon production have been reported (Stephens et al. 283 

1993; Doube, et al. 1994; and Schimdt, et al, 1997).  Further studies of interactions of BCA bacteria 284 

and earthworms could concern other species of bacteria and earthworms. Earthworms by 285 

themselves also have positive effects on plant production. The underlying mechanisms for these 286 

positive effects include (i) biocontrol of pests and diseases, (ii) stimulation of microbial plant 287 

symbionts, (iii) production of plant growth-stimulating substances, (iv) soil structure improvements, 288 

and (v) increase of soil nutrient availability (Brown et al., 1999). Though recent studies focused on 289 

the first three mechanisms, van Groenigen et al. (2014) suggest that the last one is the most 290 

important. Earthworm activity influences the microbial community of soils directly by consumption, 291 

digestion and distribution of microorganisms and indirectly by modification of the soil environment 292 

(Byzov et al., 2007; Postma-Blaauw et al. 2006; Scheu et al., 2002; Schrader et al. 2013). This could 293 

either enhance or hamper the effects of bacterial BCAs. Their potential synergy becomes a relevant 294 

line for future research since the combined effects of earthworms and BCA bacteria on plant health 295 
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and productivity are of great interest for development of sustainable agricultural methods with 296 

minimum use of chemical pesticides and optimal use of ecosystem services.  297 

5. Conclusions 298 

From the experiments described above, we can conclude that the use of high doses of BA with 299 

concentrations of the same magnitude as maximally could be expected when the bacteria are used 300 

as BCA, is not harmful to the soil dwelling earthworms tested in this project. BA does not have 301 

negative impact on survival, growth or reproduction of two of the most common earthworm species 302 

in Swedish agricultural soils when these  earthworms are exposed to BA by short-term external 303 

contact with high concentration (dipping), long-term external contact with lower dose (mixing into 304 

soil) and internal contact with the gut (feeding with BA-amended leaves). The combined effects of 305 

earthworms and BCA bacteria for promotion of plant health are of interest for the development of 306 

biological control and sustainable agriculture with reduced use of chemical pesticides. 307 

 308 
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 429 

TABLES 430 

Table 1: Characteristics of three laboratory experiments testing effects of the biocontrol and plant-431 

growth promoting Bacillus amyloliquefaciens UCMB5113 bacteria to the earthworms Aporrectodea 432 

longa and Aporrectodea caliginosa. 433 

Experiment 1 2 3 

Species A. longa A. longa 

A. caliginosa 

A. longa 

A. caliginosa 

Exposition methods short term external; 

long term external and 

internal exposure. 

 

long term external and 

internal exposure; 

internal exposure of 

the gut. 

short term external 

 

Vessels 3 L cylinders 3 L cylinders 6 L boxes 

Moist Soil* (kg) 1.5 1.5 4.0 

Treatments 4 10 4 

Replicates 6 6 3 

Starting date February 2, 2014 July 28, 2014 August 20, 2014 

Duration (days) 57 28 28 

 434 

Notes: *15% water content  435 

  436 
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 437 

 Table 2. Treatments in the three lab experiment testing effects of Bacillus amyloliquefaciens 438 

UCMB5113 (BA) on earthworms. 439 

Experiment: 

Treatment 

1 2 3 

1 DS.long C.long D.long 

2 D.long S.long C.long 

3 S.long L+.long D.cal 

4 C.long L.long C.cal 

5  SL+.long  

6  C.cal  

7  S.cal  

8  L+.cal  

9  L.cal  

10  SL+.cal  

 440 

Notes: D= dipping earthworms into BA solution; S= addition of BA by pouring 150 ml of bacteria 441 

solution into the soil; C= control; L+= addition of BA-amended Brassica napus leaves; L= addition of 442 

leaves treated with water only; long= Aporrectodea longa; cal= Aporrectodea caliginosa 443 

 444 

445 
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Table 3. Experiment 1: survival, biomass evolution and cocoon production of the earthworm 446 

Aporrectodea longa in a mesocosm experiment testing influence of Bacillus amyloliquefaciens 447 

UCMB5113 (BA).  448 

Treatment Start 29 days 57 days Cocoons 

 n Fresh mass 

 (g ind-1) 

n Fresh mass 

 (g ind-1) 

 Relative 

increment % 

n Fresh mass 

 (g ind-1) 

Relative 

increment % 

 

1. DS 6 2.20 (0.38) 4 3.37 (0.17) 53.2 (23.9) 4 4.51 (0.65) 105 (38.8) 0.12 

2. D 6 2.10 (0.39) 5 2.73 (0.38) 30.0 (6.6) 5 3.62 (0.40) 72.4 (25.9) 0.20 

3. S 6 1.99 (0.34) 4 3.78 (0.41) 89.9 (16.7) 4 3.82 (0.86) 92.0 (37.1) 0.25 

4. C 6 1.82 (0.35) 4 3.33 (0.40) 83.0 (10.7) 4 4.33 (0.44) 137.9 (10.6) 0.25 

 P value  0.91  0.25 0.16  0.69 0.70  

Note: Mean individual fresh mass (g per individual), relative increment from the start (Relative 449 

increment %), and SE (within brackets) of the number of mesocosms per treatment with live 450 

earthworms (n), which decreased during the course of the experiment; at the start, and at 29 days 451 

and 57 days after start. Treatments: 1. DS=dipping into BA solution, mixing BA into the soil; 2. 452 

D=dipping into BA solution; 3. S=mixing BA into the soil; 4. C= Control, no dipping or mixing into the 453 

soil. P value=Testing differences between treatments with Anova. 454 

  455 
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Table 4. Experiment 2: individual fresh mass (g per individual) and individual cocoon production of 456 

the earthworm Aporrectodea longa or Aporrectodea caliginosa in a mesocosm experiment testing 457 

influence of Bacillus amyloliquefaciens UCMB5113 (BA).  458 

 459 

 Aporrectodea longa 

Treatment Initial fresh 

mass (g ind-1) 

Final fresh 

mass (g ind-1) 

Relative 

increment % 

Cocoons per 

worm 

1. Control 2.71 (0.20) 4.44 (0.23) 63.8 (8.7) 2.92 (0.93) 

2. S 2.75 (0.20) 4.10 (0.22) 49.1 (5.4) 3.42 (0.80) 

3. L+ 2.53 (0.20) 4.15 (0.29) 64.0 (10.6) 3.67 (0.99) 

4. L 2.72 (0.23) 4.71 (0.26) 73.2 (9.8) 3.33 (0.79) 

5. S L+  2.86 (0.31) 4.81 (0.29) 68.2 (10.8) 4.17 (1.25) 

Anova P 

values 

0.894 0.223 0.358 0.921 

 460 

 Aporrectodea caliginosa 

Treatment Initial fresh 

mass 

Final fresh 

mass 

Relative 

increment % 

Cocoons per 

worm 

6. Control 1.71 (0.13) 2.40 (0.17) 40.4 (3.9) B 9.58 (2.22) 

7. S 1.61 (0.08) 2.62 (0.14) 62.7 (7.8) AB 9.75 (1.45) 

8. L+ 1.56 (0.10) 2.45 (0.13) 57.1 (5.3) AB 8.92 (1.08) 

9. L 1.58 (0.06) 2.42 (0.10) 53.2 (3.7) AB 6.83 (1.48) 

10. S L+  1.40 (0.07) 2.32 (0.13) 65.7 (13.7) A 6.50 (1.85) 

Anova P  0.245 0.627 0.029 * 0.421 

 461 



23 
 

Note: Mean and SE (within brackets), n=6. 28 days experimental time (28/7-25/8 2014). Treatments: 462 

1. Control=no application of BA or Brassica napus leaves; 2. S=mixing BA into the soil, no leaves 463 

added; 3. L+=leaves with BA added, no BA into the soil;   4. L-=Leaves without BA added, no BA into 464 

the soil; 5. SL+= mixing BA into the soil, leaves with BA added. Testing differences between 465 

treatments = Anova P value (* = significant difference). All earthworms in all treatments survived the 466 

experimental time. Values with different letters in a column indicate significant differences (P<0.05). 467 

  468 
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Table 5. Experiment 3: dipping earthworms (Aporrectodea longa, Aporrectodea caliginosa) into a 469 

bacteria solution of Bacillus amyloliquefaciens (107 cells ml-1) and into water (control).  470 

Treatment/species Initial fresh 

mass (g ind-1) 

Final fresh 

mass (g ind-1) 

Relative 

increment % 

Cocoons per 

worm 

A. longa 

- Water dipping 2.18 (0.18) 4.47 (0.35) 105.0 (9.44) 0.68 (0.55) 

- Bacteria dipping 2.23 (0.17) 4.35 (0.23) 95.1 (13.9) 0.17 (0.08) 

Anova P values 0.826 0.778 0.768 0.417 

A. caliginosa 

- Water dipping 0.98 (0.046) 2.03 (0.079) 107.1 (9.8) 0.67 (0.17) 

- Bacteria dipping 0.99 (0.051) 2.01 (0.075) 103.0 (13.0) 0.83 (0.26) 

Anova P values 0.906 0.880 0.976 0.613 

     

     

Note: Mean and SE (within brackets) of fresh mass of earthworms  at the start and after 29 days, 471 

relative increment and cocoon production per individual. Mean of 4 worms per container for A. longa 472 

and 6 worms per container for A. caliginosa, replicated in 3 containers with 4 l of soil. Testing 473 

differences between treatments = Anova P value. 474 

 475 


