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Genetic Diversity and Nutritional Content of Sorghum [Sorghum 
bicolor (L.) Moench] Accessions from Southern Africa. 

Abstract 

Sorghum [Sorghum bicolor (L.) Moench] is an important cereal crop in semi-

arid regions of the world especially in Africa, South Asia and China. It is an 

important food and fodder crop in the semi-arid tropics (SAT) of Africa, where 

it is used for making different kinds of food. In Southern Africa, it serves as a 

principal source of energy, protein, vitamins and mineral nutrients for the people 

in the region. The aim of this study was to characterise sorghum landrace 

accessions from Southern Africa in order to generate information that could help 

design appropriate breeding and conservation strategies in the region. Both agro-

morphological and DNA markers were used to study the genetic diversity of 

accessions from five countries in the region. Nutritional diversity in terms of 

protein and mineral contents was also characterised. 

A significant level of genetic variation was observed among 30 sorghum 

accessions from different agro-ecological regions in Botswana (70% among 

accessions and 30% within accessions), when genetic diversity was assessed 

using microsatellite (SSR) markers. The analysis of genetic diversity in 22 

sorghum accessions from five countries (Botswana, Namibia, Swaziland, 

Zambia and Zimbabwe) of Southern Africa, revealed a significant variation in 

both agro-morphological traits and SSR markers. There were significant 

differences for protein and mineral content among 23 sorghum accessions from 

Southern Africa in terms of nutritional composition (protein and minerals). The 

patterns of genetic diversity and relationships observed in this research provide 

insights for genetic resource conservation and utilization of sorghum germplasm 

in Southern African. The protein and mineral content variation found among the 

sorghum accessions could also be exploited in sorghum improvement programs 

in the region. 
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1  Introduction 

 

Sorghum (Sorghum bicolor (L.) Moench) belongs to the genus Sorghum, tribe 

Andropogoneae, of the Poaceae family (Clayton & Renvoize, 1986). The species 

S. bicolor includes all cultivated sorghums as well as a group of semi wild and 

wild plants regarded as weeds (Mutegi et al., 2011). Based on the morphological 

features of the inflorescence, grain and glumes, cultivated sorghum has been 

classified into five races: bicolor, caudatum, durra, guinea and kafir (Harlan & 

De Wet, 1972). Very high levels of diversity exist among and within the races 

(House, 1985). 

The diversity in sorghum ensued mainly by practicing disruptive selection 

and isolation, recombination in the extremely varied habitats and movement of 

people carrying one or more cultivars of the species (Doggett et al., 1970). A 

balance of farmer selection for cultivated traits and natural selection for wild 

characteristics has generated improved sorghum types, wild types and 

intermediate types (Doggett et al., 1970). Sorghum is predominantly self-

pollinating, with only 6% of the plants outcrossing. Hybrids are produced using 

a cytoplasmic male sterility system that prevents selfing (House, 1985).   

 

 

1.1 Taxonomy of the genus Sorghum 

 

Sorghum taxonomy has been variously described since Linnaeus’s first 

description in 1753. Snowdon followed in 1936 (Snowden, 1936), whose work 

was tremendous and remains useful to scientists today, and then De Wet in 1970 

also described the various groups of sorghum as well as their distribution.  

Presently, 25 species of sorghum are recognized, and these are classified into 

five sections: Stiposorghum, Parasorghum, Eu-sorghum, Heterosorghum and 

Chaetosorghum. Under the section Eu-sorghum, three species are recognized: S. 

halepense (L.) Pers. occurring in India, S. propinquum (Kunth) Hitchc found in 

Southeast Asia and S. bicolor (L.) Moench, which originated in Africa (De Wet, 

1978). S. bicolor (L.) Moench (2n=20), includes all annual and domesticated 

types found in Africa, India and Asia.  

S. bicolor is divided into five basic races: bicolor, guinea, caudatum, kafir 

and durra as illustrated in figure 1. Harlan and De Wet (1972) described the races 

based on the morphological features of the inflorescence, grain and glumes. The 
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race bicolor has its grain elongated, with glumes clasping the grain, which may 

be completely covered or exposed. This race is mostly grown west of the Rift 

valley and also on a minor scale almost everywhere in Africa. Guinea is 

primarily West African with a secondary centre in Malawi and Tanzania. The 

grain is flattened dorso-ventrally, twisting at maturity 90 degrees between 

glumes that are nearly as long as or longer than the grain.  

The caudatum grain is asymmetrical, with glumes half the length of the grain 

or less. This race is most abundant in east Nigeria, Sudan and Uganda. Kafir is 

mostly a race of east and Southern Africa. It has symmetrical grain, with glumes 

of variable length clasping the grain. Durra is dominant in Ethiopia and 

westward across the continent, covering the driest parts near the Sahara. Its grain 

is rounded and the glumes are very wide (House, 1985).  

 

 

 

      

 

 

 Figure 1. Morphological diversity in the sorghum accessions studied, illustrating the five sorghum 

races: A-Guinea; B-Caudatum; C-Durra; D-Kafir; E-Bicolor. (Photo: T. Motlhaodi) 

 

1.2 Agro-ecology of sorghum 

 

Sorghum is a short day plant but a wide genetic variation exists for its adaptation 

to a wide range of photoperiod and temperature conditions (Craufurd et al., 

1999). It requires a deep, well-drained fertile soil, fairly stable rainfall and a 

warm, frost-free period to grow well. A wide range of soil conditions can be 

tolerated, but growth on sandy soils is usually poor, unless heavy textured 

subsoil is present. A pH of between 5.5 and 8.5 is acceptable. Sorghum tolerates 

water logging better than maize. 

Sorghum is a warm season crop, requiring high temperature for good 

germination and growth. Temperature ranges for germination are 7 to 10°C, but 

if there is sufficient moisture, germination occurs well at a soil temperature of 

15°C or higher. After germination, temperatures of 27 to 30°C are required for 

optimum growth development. A temperature of as low as 21°C can however 

A B C D E 
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have a dramatic effect on growth and yield (Vanderlip & Reeves, 1972). If 

temperatures are exceptionally high, grain yields can be reduced. Temperatures 

below zero can result in death of the plants, especially if plants are older than 3 

weeks. Sorghum is mainly a rainfed crop of lowland, semi-arid areas of the 

tropics (Craufurd et al., 1999). It requires an annual rainfall of 400 to800 mm, 

which should be well distributed over the cropping season (Ng'uni et al., 2011). 
 

1.3 Sorghum cultivation and utilization 

 

Sorghum is usually cultivated as a field crop and has been, for centuries, one of 

the most important staple foods for millions of people in the semiarid tropics of 

Africa and Asia (Ali et al., 2011). In most of these areas, sorghum remains the 

principal source of energy, proteins, vitamins and minerals. Presently, it is a 

staple food for more than 500 million people in more than 30 countries (Kumar 

et al., 2011). This is probably because it can be cultivated in harsh environments 

where other crops such as maize and wheat cannot grow (Ali et al., 2009). 

Cultivation in these areas is usually done without the application of fertilizers or 

other inputs  (FAO, 1995). Sorghum can also tolerate cultivation on a wide range 

of soils and grows well on heavy vertisols commonly found in the tropics, where 

its tolerance to waterlogging is often required (Paterson et al., 2009). It is equally 

suited to light sandy soils found in the dry areas. It can therefore produce grain 

on soils where many other crops would fail (FAO, 1995). 

Sorghum has several uses. It is used for food, fodder and alcoholic beverages. 

Its stalks can also be used for fencing, firewood or for making brooms. The fibres 

can be used commercially to make wallboards and   biodegradable packaging 

material (Delserone, 2007) and even solvents or dye can be extracted from the 

plant. A more recent use is as a source of ethanol and by-products from the 

ethanol production are also finding a place in the market (Delserone, 2007). 

Variation in grain colour, shape and size as well as stalk thickness juiciness, 

sugar content and colour often influence the use of the crop. The white, large 

grains with corneous endosperm are usually preferred for human consumption. 

Nutritive value is increased if the endosperm is yellow with carotene and 

xanthophyll (Ng'uni et al., 2012). The red varieties are preferred for making 

beer, especially in Africa where this sorghum-derived drink is very popular 

during traditional celebrations. The tall sweet varieties are usually used to make 

silage and hay for livestock feed. Those with succulent, sweet stalks and small 

heads and grains are preferred for chewing as with sugar cane. The white grained 
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varieties are usually soft and vulnerable to attack by birds during the dough stage 

of maturity, while the darker varieties are not (Ng'uni et al., 2012). 

Sorghum is used for human nutrition all over the world (Carter et al., 1989). 

More than half of all sorghum produced in the world is used for human 

consumption. For subsistence farmers in arid, less developed regions of the 

world such as Africa, Central America and South Asia, it is the major food crop. 

The grain is used to make flour, porridge, couscous and molasses food 

supplement. In many parts of Africa, sorghum is used for making porridge, flat 

breads or the grains can be cooked as whole decorticated grain, more like rice. 

The nutritive value of sorghum based food is usually enhanced through its 

combination with locally grown edible oil crops such as sunflower, sesame and 

nigerseed in countries such as Ethiopia (Geleta et al., 2002). 

In the southern United States, sorghum syrup is used as a sweet condiment 

(like maple syrup) usually for biscuits, corn bread, pancakes, hot cereals or 

baked beans (Delserone, 2007). As an Arab cuisine, the milled grain is often 

cooked to make couscous, porridges, soups and cakes. In Central America, 

sorghum flour is sometimes used to make tortillas and especially in El Salvador 

where there is a shortage of corn. Sorghum can also be popped in the same 

manner as popcorn, although the popped kernels are smaller than popcorn. 

Sorghum has come into increasing use for homemade and commercial breads 

and cereals for gluten-free diets since 2000 (Delserone, 2007) 

Sorghum can also be used for making alcoholic beverages. In China it is the 

most important ingredient for the production of distilled beverages such as 

maotai and kaoliang. In the United States sorghum can also be used as a main 

ingredient in production of gluten-free beer. This particular beer is aimed at 

those with celiac disease and its low carbohydrate content makes it popular 

among health-minded drinkers. African sorghum beer is a brownish pink 

beverage with a fruity, sour taste. The beer is not filtered so its appearance is 

cloudy and yeasty, and may contain bits of grain. This beer is a popular drink in 

Africa for traditional reasons (Van der Walt, 1956). 

 Sorghum is also considered to be a significant crop for animal feeds.  Plants 

in the field can be used as pasture after harvesting the grain, where cattle and 

sheep can graze (Carter et al., 1989). In most African countries this is a common 

practice and sometimes the stover can be cut and fed to livestock. Sorghum straw 

(stem fibre) can be made into very good wallboard for building houses. It can 

also be used to make biodegradable packaging; this kind of packaging does not 

accumulate static electricity so it is being used for packaging sensitive electronic 

equipment. In some countries the stems can be used for fencing, sweeping broom 

and for cooking fuel. For industrial purpose it is used for making ethanol and 

dye can be extracted from the plant to colour leather (Delserone, 2007). Sorghum 
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is also an important component in poultry feed and good progress has been made 

in the manufacturing of dog food, as well as pigeon and ostrich food (Delserone, 

2007). 

 

1.4 Nutritional status of sorghum 

Sorghum is a principal source of energy, proteins, vitamins and minerals for 

people in the semi-arid tropics (Duodu et al., 2003). It is a good energy source 

because it is about 70% starch. Proteins are the main constituents of sorghum 

after starch, making up to 12% dry weight of sorghum grain (Ng'uni et al., 2012). 

The essential amino acid profile of sorghum protein differs (3-12% range) 

between varieties, soil and growing conditions (FAO, 1995). The digestibility of 

sorghum protein has also been found to vary between varieties, ranging from 30 

to 70%. Sorghum’s nutritional profile includes several minerals, though 

unevenly distributed and more concentrated in the germ and seed coat. Sorghum 

is a good source of the β-complex vitamins and some varieties contain B-

carotene which can be converted to vitamin A by the human body. Some fat-

soluble vitamins like D, E and K have also been detected, though not in sufficient 

amount (FAO, 1995).  

1.5 World sorghum production  

Cultivated sorghum is grown on about 42 million ha worldwide with an average 

production of 54 million t annually. About 90% of world sorghum is grown in 

developing countries, where it is a dietary staple food for more than 500 million 

people. It is estimated that 80% of the crop is produced by subsistence farmers, 

who often use local landraces that provide low but stable yields under marginal 

conditions; therefore it plays a vital role for farmers in dry areas where little else 

can grow (FAO, 2013). The five largest producers of sorghum in the world are 

the United States, India, Nigeria, Sudan and Ethiopia. USA usually leads total 

sorghum production and trade-off the crop due to very high yields, but India 

leads on acreage (FAO, 2013). 

World sorghum production and area under cultivation have recorded mixed 

trends over the last five decades. Production expanded from 40 million tons at 

the beginning of the 1960s to 76 million t in the mid-1980s. However, by 1990 

it had fallen to 58 million t. In Africa, production generally increased from 15 

million t in the 1960s to 22 million t in 2010 (Fig. 2). The area under production 

worldwide also declined slightly during this period. The reduction in production 

was largely due to a decline in sorghum production in the USA and China. 
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Figure 2. Sorghum production trend over the past five decades (FAO, 2013) 

 

 Production increased and in 2007/2008 it stood at 64.5 million tons 

worldwide. This increase could have been due to the increase in production area 

in countries like Brazil, Mali, Mexico, Niger, Sudan and Tanzania at the end of 

the 20th century (FAO, 2013). 

In sub-Saharan Africa, the production data on sorghum can be considered as 

only the best estimates that are available as production data from small 

subsistence farms are difficult to obtain for countries. In many of the developing 

countries throughout the semi-arid tropics, inadequate infrastructure and lack of 

skilled manpower have contributed to the lack of information (FAO, 2013). 

 

1.6 Breeding and conservation of sorghum 

 

Breeding efforts on sorghum are largely conducted at the International Crops 

Research Institute for the Semi-Arid Tropics (ICRISAT, Patancheru, India) and 

have been going on since this Institute was established in 1972. These efforts 

have been necessary because sorghum is threatened by both biotic and abiotic 

productivity-limiting constraints  sorghum growing regions (Reddy et al., 2004). 

The main aim of the breeding programs at ICRISAT has therefore been to 

improve the productivity of the crop. From the 1980s to the 2000s, there was a 
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gradual shift in their breeding strategy from initial wide adaptability to specific 

adaptations and trait-based breeding for threshold traits (Reddy et al., 2004). 

In Southern Africa, ICRISAT, together with regional governments 

established a Sorghum and Millet Improvement Programme (SMIP) in the early 

1980s. Through this regional effort, enhanced germplasm was acquired from 

different sources and these were used with local collections to form the 

foundation of national breeding programmes (Chisi, 2010). Important breeding 

objectives for sorghum in the region have been towards increasing productivity 

of the crop and host plant resistance to pathogens and pests, and lately grain 

quality and drought adaptation (Chisi, 2010). 

Breeding efforts are generally limited in Southern Africa (Mujaju, 2009), and 

sorghum is not an exception. Several sorghum cultivars have, however, been 

developed by local farmers throughout the region by systematic and gradual 

selection in their fields, both temporally and spatially. Some improved varieties 

have also been developed by breeders in the region, mostly by National 

Agricultural Research Systems (NARS) of different countries. The various 

NARS have directed their breeding research priorities towards increasing grain 

yield, excluding genetically low yielding landraces, developing resistant 

varieties to drought, the parasitic weed Striga, other pathogens and pests. 
 

1.7 Genetic diversity and characterization 

Genetic diversity within cultivated plant species is precious genetic resources 

that allows an increase in crop productivity and product quality as well as the 

development of varieties resistant to pests and pathogens (Geleta & Ortiz, 2013). 

Characterization of plant species using agro-morphological markers is the 

classical way of assessing genetic diversity for its use in plant breeding (Mujaju, 

2011), especially in Southern Africa where resources for molecular 

characterization are limited. Doggett (1988) assets that in most crops, analyses 

of morphological traits that inherit according to Mendelian genetic principles 

were the earliest methods for estimating genetic diversity. The synthesis and 

categorization of morphological data into presumably genetic similarity groups 

is most useful when none is known about the population structure in a collection 

(Marshall & Brown, 1975). Different studies have been done in which 

phenotypic diversity index of morphological traits was used to measure genetic 

relationships in sorghum (Bucheyeki et al., 2009; Habindavyi, 2009; Geleta et 

al., 2005; Abdi et al., 2002; Ayana & Bekele, 1999). 

Characterization based only on morphological markers is usually not 

adequate to evaluate genetic diversity of plant genetic resources. This is because 
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they are highly influenced by environmental conditions, and different genes may 

contribute towards the expression of one morphological trait. Therefore, there is 

a need to complement them with molecular markers. 

Molecular markers are basically nucleotide sequences corresponding to a 

physical position in a genome, and their polymorphisms between accessions 

allow the pattern of inheritance to be easily traced (Schulman, 2007). Their use 

for the genetic analysis and manipulation of important agronomic traits has 

become an increasingly useful tool in crop improvement and understanding of 

genetically complex quantitative traits. The availability of these markers for 

genetic diversity assessment is a quick way that breeders can use to select 

suitable genotypes for breeding (Lekgari & Dweikat, 2014). They have the 

potential to enhance the efficiency of plant breeding programs through a number 

of ways; DNA fingerprinting of elite genetic stocks, assessment of genetic 

diversity, increasing the efficiency of selection for difficult traits, and to make 

environment-neutral selection possible are some of them (Patil et al., 2010).  

PCR-based markers are widely used in fingerprinting because of their high level 

of polymorphism (Warburton et al., 2008) as well as their ease of detection 

(Sharon et al., 1997). 

Molecular tools, especially those employing DNA markers, have proven to 

be a robust and cost effective technology for the assessment of sorghum genetic 

diversity (Ng'uni et al., 2011; Yang et al., 1996; Deu et al., 1994). Their use as 

a tool to assess relatedness in cultivated and between cultivated and wild 

sorghum have been successfully demonstrated (Ritter et al., 2007; Menz et al., 

2004; Tao et al., 1993). 

Several types of molecular markers that are used for sorghum diversity 

assessments became available, and they vary in their complexity, reliability, as 

well as information generating capacity. The earliest DNA marker system, 

known as Restriction Fragment Length Polymorphism (RFLP), proved to be 

very useful, but their development and utilization is laborious, time consuming, 

expensive and not suitable for high-throughput automation. For these reasons, 

PCR-based markers such as Random Amplified Polymorphic DNA (RAPD), 

Amplified Fragment Length Polymorphism (AFLP), Simple Sequence Repeats 

(SSR), Sequence Tagged Sites (STS), Single Nucleotide Polymorphism (SNPs) 

and their derivatives have become popular for molecular diversity research 

(Billot et al., 2013). They provide useful information for breeders about genetic 

relationships between individuals (Mujaju, 2009). For sorghum, there have been 

a considerable number of studies designed to assess genetic diversity and 

phylogenetic relationships among sorghum cultivars. This research have used 

both isozyme and DNA based methods, for assessing cultivars from both 

developing and developed countries (Ramu et al., 2013). 
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Out of the PCR based markers, simple sequence repeats (SSR) markers -also 

called microsatellites- quickly became the DNA markers of choice for plant and 

animal genomes because of the small quantity of genomic DNA required for 

their analysis and their suitability for automation and high-throughput platforms 

(Gutierrez et al., 2005; Hearne et al., 1992). SSRs are tandem repeats of di-, tri-

, tetra-, penta- or hexa- nucleotide units in the DNA of plants and animals. They 

are abundantly distributed throughout the nuclear genomes of all studied plant 

species, which make them useful both for genetic mapping and for diversity 

studies (Ghebru et al., 2002). 

To date, a good number of microsatellite markers have been developed for 

sorghum that allows a very high rate of (and low cost) sorghum genotype 

assessment (Djè et al., 2000; Smith et al., 2000; Dean et al., 1999).  Several 

sorghum diversity studies involving SSR markers alone (Mutegi et al., 2011; 

Ng'uni et al., 2011; Thudi & Fakrudin, 2011; Ali et al., 2008; Casa et al., 2005; 

Ghebru et al., 2002; Djè et al., 2000) or in combination with other markers 

(Lekgari & Dweikat, 2014; Zhan et al., 2012; Geleta et al., 2006; Uptmoor et 

al., 2003) have been undertaken. These studies have demonstrated that 

substantial genetic diversity exists between and among accessions both in the 

African gene banks as well as in the world sorghum collections, and that this 

diversity requires attention in terms of germplasm conservation. Poor 

correspondence between observed genetic structure and geographic origin is 

prevalent in most of the studies done in Africa (Mutegi et al., 2011). 

Lower genetic variation have been reported within than among accessions 

from recent SSR-based research involving sorghum accessions from Somalia 

(Manzelli et al., 2007), from Zambia (Ng'uni et al., 2011) and from Southern 

Africa (Ng'uni et al., 2012). This observation is probably due to the 

predominantly selfing nature of the sorghum. Breeding systems of plant species 

are reported to have a significant impact on population variability with self-

pollinating species being the least diverse and exhibiting higher between 

population than within population variation (Nybom & Bartish, 2000). The low 

levels of genetic variation among self-pollinated plant species is attributed to 

limited movement of genes through pollen, which also leads to greater 

differentiation among populations (Hamrick, 1983). 

 Ng'uni et al. (2012) reported clustering of sorghum accessions according to 

geographic origin of germplasm, when using SSR markers on sorghum 

accessions from Malawi, Tanzania and Zambia. However, Uptmoor et al. (2003) 

observed that accessions were not clustered according to their country of origin 

when using a combination of RFLP, RAPD and SSR markers on sorghum 

accessions from Botswana, Lesotho, South Africa, Zambia and Zimbabwe. Lack 

of clustering pattern of sorghum populations according to region or country of 
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origin could be attributed to out-crossing and seed movement across regions 

(Ayana et al., 2000).  

The various SSR studies have also demonstrated that these markers are highly 

polymorphic even among closely related sorghum cultivars, which demonstrates 

that they are highly informative (Uptmoor et al., 2003). 
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2 Aim and objectives  

The main aim of this thesis was to study the phenotypic and genotypic diversity 

of sorghum [Sorghum bicolor (L.) Moench] accessions from Southern Africa. 

The specific objectives were to: 

 

1. Characterize genetic diversity among sorghum accessions from Southern 

Africa based on morphological traits 

2. Assess patterns of genetic diversity revealed by microsatellite markers in 

order to identify genetic variation that is useful for sorghum genetic resources 

conservation and utilization in Southern Africa 

3. Evaluate genetic relationships of sorghum accessions from different agro-

ecological regions in Botswana  

4.  Determine the variation in protein and  mineral contents among sorghum 

landrace accessions from Southern Africa  

5. Identify locally adapted sorghum landraces that have high nutrients content 

for breeding and conservation programmes. 
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3 Materials and methods 

3.1 Plant material 

All sorghum germplasm used in this study were accessions provided by national 

gene banks of five countries in the Southern African Development Community 

(SADC) region. 

Forty-seven Sorghum bicolor accessions were used for both the genetic 

diversity and nutritional diversity studies. Of these, thirty accessions obtained 

from the national gene bank of Botswana were used to analyse genetic diversity 

of sorghum accessions from Botswana (paper I). Twenty-two sorghum 

accessions from Botswana, Namibia, Swaziland, Zambia and Zimbabwe were 

used for the agro-morphological and SSR-based genetic diversity study (Paper 

II).  Twenty-three accessions from Botswana, Namibia, Swaziland, Zambia and 

Zimbabwe were used for protein and mineral nutrient content analysis (Paper 

III).  

3.2 Field experiments 

The field experiment was conducted during the 2013-2014 growing season 

(December to July) at the Department of Agricultural Research at two research 

stations in Botswana, namely, Sebele (24°34'25"S and 25°58'00"E) and 

Pandamatenga (18°16'00"S and 25°39'00"E). The average minimum/maximum 

temperatures during the crop growing period at the two stations were 10/40°C 

and 12/42 °C, respectively, with an annual total rainfall of 281 and 558 mm. The 

soil types are sandy clay loam at Sebele and clay at Pandamatenga.  The 

experimental design was randomised complete block design with two replicates. 

Each accession was planted in a separate plot, with rows of 5 m per accession. 

The distances were 1m between plots, 0.5m between rows and 0.25m between 

plants. No fertilizers were applied. Experimental measurement details are 

described in papers II and III. 

3.3 Agro-morphological characterization 

Agro-morphological data for 16 traits (10 qualitative and 6 quantitative) were 

recorded from 10 randomly chosen individual plants per accession in each 

replicate, based on the International Board for Plant Genetic Resources sorghum 

descriptors (ICRISAT, 1993). Ten qualitative traits recorded included waxy 

bloom, leaf midrib colour, stalk juiciness, juice flavour, awns, inflorescence 

compactness and shape, shattering, glume colour, grain covering and grain 
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colour. Quantitative characters recorded were plant height, days to flowering, 

inflorescence length, inflorescence width, 100 seed weight and grain yield. All 

agro-morphological traits used in the study are described in Paper II. 

 

3.4 Nutritional analysis 

3.4.1 Protein content determination 

Sorghum kernels were ground to a fine powder with a Kinematica A10 Grinder 

(Switzerland). Sorghum flour samples were then freeze dried to constant weight 

and around 100 mg was weighed into tin capsules prior to total nitrogen analysis. 

An aliquot was burnt in an elemental analyzer (Vario max CN analyzer from 

Elementar) at 900°C. Passage of the produced gasses over special absorbent 

columns eliminated CO2 and H2O. Nitrogen content was measured by passing 

the remaining gasses through a column with a thermal conductivity detector at 

the end. Glutamic acid (C5H9NO4; C: 40.81% N: 9.52%) was used as standard 

reference. A protein factor of 6.25, equivalent to 0.16 g of nitrogen per gram of 

protein, was used to estimate protein content in sorghum, as recommended by 

Merril and Watt (1973). 

3.4.2 Mineral content determination 

Approximately 0.5 g of sorghum flour was packed in a Teflon capsule and placed 

in a microwave oven (MARS 5 from CEM with a regulated pressure and 

temperature, which were kept at 375 psi and 185°C, respectively). Each sample 

was digested in 10 ml solution (7 ml of concentrated nitric acid and 3 ml of 

water), which was then diluted with water up to 50 ml before analysis. The 

samples were analysed for mineral content at the Instrumental Chemistry 

Laboratory (Department of Biology, Lund University, Sweden) using 

Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES; Perkin-

Elmer, OPTIMA 8300). Atomic spectrometry standards from Perkin-Elmer, 

SPEX, Accu Standard and Merck were used for this analysis. The mineral 

content was recorded in microgram of mineral per gram of flour (µg/g). 

3.5 DNA extraction 

Seeds were planted in seedling trays and grown in the greenhouse at 25°C for 

approximately 10 days. Leaves (approximately 6 cm in length) were sampled 

into 2 ml Eppendorf tubes and frozen in liquid nitrogen, then freeze dried and 

maintained on silica gel at -80°C (Paper I) until they were milled using a Retsch 

MM400 shaker (Hann, Germany). For the second study (Paper II), leaf samples 
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for DNA analysis were collected from 10 plants grown in the field for 

approximately 2 weeks. The samples were kept on silica gel in small plastic bags 

to keep them dry until they were milled. DNA was separately extracted from 

leaves of 12 individual plants per accession using a modified cetyl trimethyl 

ammonium bromide (CTAB) protocol, as described in Bekele et al. (2007) for 

the first and second study. 

3.6 SSR PCR reaction 

For the genetic diversity analyses of Botswana sorghum accessions (Paper I), 

the screening of SSR primers for amplification, optimization of PCR conditions 

and detection of polymorphism lead to the selection of ten SSR primer pairs. 

Similarly, eleven primer pairs were selected for the diversity analysis of 

sorghum accessions from Southern Africa (Paper II). The selected primers and 

their amplification conditions were provided in Papers I and II.  

The forward primers of each pair of selected primers were 5’-labeled with 

either HEX, 6-FAM, VIC or NED fluorescent dyes. The reverse primers were 

PIG-tailed with “GCTTCT” to avoid a non-template addition of a single 

nucleotide by Taq DNA polymerase to the PCR product, as previously described 

in Ballard et al. (2002). Reactions lacking DNA were included as negative 

controls. PCR reactions were prepared in 96-well thin wall PCR plates and 

amplifications were run in Gene Amp® PCR System 9700 (Applied Biosystems 

Inc., USA) at conditions optimized for each pair of primers. The PCR programs 

used are detailed in Papers I and II. 

The PCR products were then multiplexed into panels. Different panels 

contained PCR products from different loci. PCR products labelled with the 

same fluorescent dye but multiplexed in the same panel had a size difference of 

at least 100 base pairs to avoid overlapping. Multiplexed PCR products were 

then analysed using ABI 3730 capillary DNA sequencer (Applied Biosystems) 

at University of Copenhagen, Denmark. The size standard ROX 58-352 was 

used as a molecular size marker. 

3.7 Data scoring and analysis 

3.7.1 Genetic diversity analysis 

GeneMarker 2.4.0 (Softgenetics) was used for peak identification and fragment 

sizing. Allelic data for a particular locus was recorded as fragment size at a co-

dominant locus and the genotype of each individual at each locus was recorded. 

When a PCR product was not obtained, data for the specific loci and samples 

were treated as missing values.  
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Genetic diversity parameters for each locus were estimated using POPGENE 

version 1.31 (Yeh et al., 1999). Arlequin version 3.0 (Excoffier et al., 2005) was 

used for the analysis of population genetic structure. For the analysis of 

molecular variance (AMOVA), sorghum accessions were grouped according to 

their ecological region, their race and the ethnicity of the local populations 

inhabiting the sites where the accessions were originally collected. Sorghum 

accessions were also grouped according to donor country. Cluster analysis and 

bootstrapping were performed with the FreeTree Freeware program (Pavlicek et 

al., 1999) based on Nei’s standard genetic distance (Nei & Li, 1979). TreeView 

1.6.6 program (Page, 1996) was used to view the trees. 

 

3.7.2 Agro-morphological data analysis 

Analysis of variance (ANOVA) was performed on agro-morphological 

quantitative data using Minitab (version 17.0) statistical package. Details of 

analysis of both qualitative and quantitative data are provided in Paper II. 

3.7.3 Mineral nutrient and protein content analyses 

Minitab (version 17.0) was used for analysis of both protein and mineral 

nutrients.  The data was subjected to analysis of variance (ANOVA). Tukey’s 

test was carried out for pairwise comparisons of means. Pearson’s correlation 

test was carried out to assess the association between pairs of nutrients.  
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4 Summary of results and discussions 

4.1 Molecular genetic diversity in Sorghum bicolor (L.) Moench 
accessions (Papers I & II) 

Characterization of genetic diversity in crop germplasm is essential for rational 

utilization and conservation of genetic resources (Geleta & Ortiz, 2013; Thudi 

& Fakrudin, 2011). The 10 microsatellite markers used in the genetic diversity 

study for Botswana sorghum accessions revealed significant genetic variation 

among accessions, indicating the importance of microsatellites for 

characterizing genetic diversity among closely related individuals (Ng'uni et al., 

2011; Uptmoor et al., 2003). Genetic diversity analysis within the 30 sorghum 

accessions from Botswana revealed considerable amount of genetic diversity. 

The ten microsatellite loci used in the study revealed a total of 53 alleles, with 7 

of the 30 accessions having accession specific rare alleles. The total number of 

alleles recorded in our study was lower than previously reported by other authors 

(Thudi & Fakrudin, 2011; Deu et al., 2008; Folkertsma et al., 2005; Ghebru et 

al., 2002). These studies, however, assessed a higher number of accessions from 

different geographic areas. Comparable results to our study were obtained by 

Ng'uni et al. (2011). 

A total of 11 SSR loci were used in the analysis of genetic diversity of sorghum 

accessions from five countries in Southern Africa. The loci were polymorphic 

and among them revealed a total of 70 alleles across all accessions, with 2 to 15 

alleles per locus. This result suggests that a high genetic diversity exists in 

Southern African sorghum germplasm.  

4.2 Genetic structure and relationships among sorghum 
accessions 

Analysis of molecular variance (AMOVA) of the SSR data for 30 sorghum 

accessions from Botswana revealed significant differentiation among accessions 

(P < 0.001; Table 1). Genetic differentiation among accessions accounted for 

70% of the total variation while the within accession variation accounted for the 

remaining 30%. AMOVA, however, revealed no significant variation among 

groups of sorghum accessions grouped according to agro-ecological zones, or 

ethnicity of the local populations of the collection sites of the accessions 

(Bakwena, Bakgatla, Barolong, Bangwato, Batawana and Bakalaka) and when 

the grouping was done according to races of the accessions (Bicolor, Durra, 

Guinea, Kafir). AMOVA from microsatellite data for the sorghum accessions 

from Southern Africa revealed significant differentiation among individual 
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plants, among accessions and among countries (P < 0.001; Table 1). Genetic 

differentiation among accessions accounted for 66.9% of the total variation 

while the within accession variation accounted for 23.6%. When accessions 

were grouped according to donor country, variation among groups accounted for 

9.5%, and the remaining 5% variation was observed between individual plants 

within accessions. 

The unweighted pair group method with arithmetic mean (UPGMA)-based 

cluster analysis did not group the sorghum accessions from Botswana according 

to racial classification, ethnicity or agro-ecological regions (Figure 3). A similar 

observation was made by Djè et al. (2000). They found a scattering of accessions 

belonging to the same race or geographical region when a matrix plot of 

individual sorghum accessions based on RST distances. Several other studies 

have reported weak differentiation among accessions according to geographic 

region (Uptmoor et al., 2003; Ayana et al., 2000). This observation could be 

attributed to the practice of seed exchange through traditional and commercial 

seed systems. 

 Farmers usually exchange seeds in order to access new cultivars with 

desirable traits. In Botswana, as also common in other sub-Saharan African 

countries, farmers exchange traditional crops like sorghum following collective 

socio-cultural and traditional activities that involve relationships between 

friends and relatives (Deu et al., 2008). Ng'uni et al. (2011) however, reported 

that cluster analysis on Zambian sorghum accessions grouped them according to 

their geographic regions of origin, with 12.4% variation between regions.  This 

finding was similar to that reported by Ghebru et al. (2002) for a collection of 

Eritrean and world sorghums, and this could be attributed to the fact that the 

accessions were sampled from a wider geographic region.  

A pattern of genetic relationships where accessions from the same geographic 

region were genetically similar, as in Ng'uni et al. (2011),  could be attributed to 

the existence of seed exchange patterns of such landraces between relatives or 

friends in the communities within that locality. A landrace, which constitute an 

accession, is the outcome of a continuous and dynamic development process 

involving maintenance and adaptation of germplasm to the environment and 

specific local needs by a community. Farmers often exchange seeds of landraces 

with other farmers within a locality (Ng'uni et al., 2011) 
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 Table 1. SSR based analysis of molecular variance for 30 sorghum accessions from Botswana: 

without grouping the accessions (A), and by grouping the accessions according to agro-ecological 

zones (B), sorghum races (C) and ethnicity of the local population of the sampling site (D) 

Origin Accessions Source of 

variation 
d.f. Variance 

components 
Percentage 

Variation 

Botswana (A) Ungrouped AA 29 Va =1.69 69.7*** 
  WA 690 Vb = 0.73 30.3 
  Total 719 2.40  
 (B) Ecological zones AG 2 Va = 0.05 -1.2 
  AAWG 27 Vb = 2.03 70.7*** 
  WA 690 Vc = 0.83 30.5 
  Total 719 2.39  
 (C) Races AG 3 Va =0.02 0.97 
  AAWG 26 Vb = 1.66 68.8*** 
  WA 690 Vc = 0.73 30.2 
  Total 719 2.41  
 (D) Ethnicity AG 5 Va =0.06 2.53 
  AAWG 24 Vb = 1.63 67.31*** 
  WA 690 Vc =0.73 30.16 
Botswana, Namibia, 

Swaziland, Zambia, 

Zimbabwe 

(A)ungrouped AA 19 Vb =0.55  66.92*** 

  WA 180 Vc =0.147  17.98*** 

 (B)countries AG 4 Va =0.07  9.56*** 

  AAWG 15 Vb =0.55  66.92*** 

  WA 180 Vc =0.147  17.98 

AA = among accessions, WA = within accessions, AG = among groups, AAWG = among 
accessions within groups. *** indicates significant at 0.001 
 

 

The Nei’s standard genetic distance-based UPGMA cluster analysis for 

sorghum accessions from Botswana, Namibia, Swaziland, Zambia and 

Zimbabwe grouped the sorghum accessions into five groups (Figure 4). The 

dendrogram indicated the differentiation among the accessions, grouping those 

from different countries together. It is possible that some of these accessions, 

even though growing in different countries, could have been freely exchanged 

among farmers across borders of these countries 
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Figure 3. UPGMA dendrogram showing the clustering pattern of 30 sorghum accessions from 

Botswana based on Nei’s standard genetic distance. Bootsrap values generated from 1000 

resampling in the FreeTree program are shown between branches 
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4.3 Agro-morphological diversity in sorghum accessions 

The variation among the 22 sorghum accessions studied was demonstrated by 

morphological traits. The high level of variation exhibited by both qualitative 

and quantitative traits indicates the potential of these accessions for sorghum 

breeding. The variation could be a valuable source for sorghum improvement 

programs in the five countries and the SADC region at large. Other studies 

Figure 4. SSR based UPGMA dendrogram generated using Nei’s standard genetic distance for 

20 sorghum accessions. Bootsrap value generated from 1000 resampling using the FreeTree 

program is shown for the first branch. Letters before accession numbers represent the 

accession donor countries: B= Botswana, N= Namibia, S= Swaziland, ZMB= Zambia, ZIM= 

Zimbabwe. 

Figure 4.  
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(Gerrano et al., 2014; Geleta et al., 2005) have also observed genetic variation 

among sorghum germplasm that could be useful for improvement programs. 

Traits such as 100 seed weight, inflorescence length and width, had positive 

effects on grain yield hence can easily be selected together when planning 

breeding programs. 

 

4.3.1 Qualitative characters 

A majority of the accessions (about 91%) had white leaf midrib colour and had 

non-juicy stalks. Only two accessions, B2219 from Botswana and ZMB3947 

from Zambia, exhibited juicy stalks and dull green leaf midrib colour. A few (3) 

of the accessions were mostly bloomy, while the remaining 19 accessions had 

only slightly present to medium waxy bloom. Significant variation (P < 0.05) 

among accessions was noted for inflorescence compactness and shape.  

Thirteen (59%) of the accessions had 75% grain covering, three accessions 

had 25% grain covering, 2 had 50% covering, 3 had glumes longer than grain 

and only one had its grains fully covered. Glume colour was skewed towards 

sienna (10 accessions), followed by black (5), then white (3), red (2), mahogany 

(1) and grey (1). Only five of the accessions had awns while the rest did not have 

awns.  Twenty of the 22 recorded very low to low shattering, one was 

intermediate (B2273) and only one recorded high shattering (N406). Grain 

colour was skewed, with red dominating (13), 7 were whione (ZIM1317) had 

yellow grain and one  (B2219) had buff coloured grain. 

4.3.2 Quantitative characters 

The ANOVA of the quantitative morphological traits revealed a significant 

variation for 5 of the 6 traits. Days to flowering among accessions was 

significantly different (P < 0.05).  Accessions B2219, B2225 B2250, B2300 and 

ZIM1704 were early maturing, while late accessions included N53, N218, N406, 

ZIM1522, ZMB3947 and ZMB6986 were the latest. 

Correlation coefficients of six pairs of the quantitative traits (Table 2) showed 

a significant positive correlation between yield and inflorescence length (r = 

0.611); inflorescence width (r = 0.897), and 100 seed weight (r = 0,620). 

Correlation between inflorescence width and days to flowering was also 

significant (r = 0.593). Significant negative correlation was recorded between 

100 seed weight and plant height (r = -0.410) as well as 100 seed weight and 

days to flowering (r = -0.430). 
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Table 2. Correlation coefficients of quantitative morphological traits used to characterize sorghum 

accessions from Southern Africa. 

Traits Height DTF Infl. length Infl. width 100SW Yield  

Height 1.00 0.212 0.455* 0.164 -0.410* 0.334 

DTF  1.00 -0.025 0.593* -0.430* 0.356 

Infl. length   1.00 0.254 -0.336 0.115 

Infl. width    1.00 -0.170 0.897** 

100 SW     1.00 0.620* 

Yield      1.00 

** indicates correlation is significant at 0.01 while * is for correlation is significant at 0.05 level 

Based on morphological traits, accession B2219 from Botswana was the most 

distinct, and it grouped totally separately from the other accessions. This could 

be due to its sweet and juicy stalk, as well as its buff coloured grain. This 

accession is a non-grain or sweet type of sorghum belonging to the bicolor race 

and in Southern Africa its stalk is normally used for chewing whereas the grain 

is not palatable as food. It has been reported that bicolor types of sorghum have 

more primitive morphological characters (Harlan & De Wet, 1972) and are 

associated with a wide geographic distribution (Djè et al., 2000)..  

 Three accessions N53, N218, B2250 had similar phenotypic traits and had 

the most compact and short inflorescence with curved peduncle typical of durra 

type sorghums, with the grain covered up to 75% by the glumes. They also had 

other phenotypic traits in common as they were among the few that had awns, 

were least shattering, had red grains and were of short stature. In the molecular 

analysis, these three accessions had three common alleles at three different loci, 

which were not found in the other accessions. These durra types of sorghum are 

not very common in Southern Africa and could have been introduced from other 

African locations. Two accessions had morphological traits typical of guinea 

types, 7 showed characteristics of caudatum and 7 displayed kafir type 

characteristics. Caudatum, guinea and kafir type sorghums are the most common 

in Southern Africa and evolved from other African sorghums (Doggett, 1988). 

With microsatellite analysis, these had the least number of rare alleles when 

compared to the other accessions. This is consistent with previous research 

showing an absence of rare alleles in southern equatorial accessions (Deu et al., 

2006), with kafir sorghums displaying little genetic differentiation (Doggett, 

1988) and being mostly restricted to Southern Africa (Djè et al., 2000). 
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4.4 Nutritional content variation in accessions  

4.4.1 Nutrient variation in sorghum accessions 

A significant variation was revealed among the sorghum accessions studied 

for grain protein and mineral nutrient content.  Genetic factors played a major 

role for the variation between accessions, such as differences in the sorghum 

accessions’ ability to absorb nutrients from the soil under prevailing 

environmental conditions. The accessions could also have different levels of 

requirements for these mineral elements, which could also be solely genetic. 

Hence, genetic background of sorghum genotypes is a very important factor 

determining nutrient contents. Appropriate cultivar choice for enhancing 

nutrient composition in sorghum genotypes is possible considering the reported 

variation.  

Protein, Fe, Mg, Mn, Na and P were significantly different between the two 

sites while Ca, K and Zn were not. This suggests that environmental factors may 

have low effects the content for Ca, K and Zn. Hence, selection for breeding 

material can be done on different sites. For those nutrients with significant 

differences between sites, the effect of cultivation site should be considered 

when selecting cultivars for breeding. However, additional data from various 

sites (environments) should be analysed before a strong conclusion can be made 

regarding the effect of environment on these nutrients. 

The significant variation obtained for grain protein and mineral content 

among accessions is encouraging for selecting potential accessions for genetic 

improvement. It has been emphasized that sorghum parents with more diversity 

among themselves are expected to exhibit a higher amount of heterotic 

expression and a broad spectrum of variability in segregating generations 

(Sabharwal et al., 1995). Fe content reported in this study was lower than those 

reported by other authors (Ng'uni et al., 2012; Shegro et al., 2012; Kumar & 

Kumar, 2009), probably because of the different laboratory methods used in the 

different studies. However, protein and mineral nutrient content range reported 

in this study was similar to those reported by FAO (1995). Mn and P contents 

were similar to those obtained by Pontieri et al. (2014) and Shegro et al. (2012), 

who however reported higher contents of Ca, K, Mg and Fe. 

 

4.4.2 Correlation among nutrients 

Pearson’s correlation coefficients among mineral elements and protein are 

given in Table 3. A significant positive correlation was obtained between 

different mineral nutrients. This has implications for the possibility to combine 

selection for correlated nutrients in a single agronomic background. However, it 
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has to be determined whether breeding for high concentration of one nutrient 

correlated to the other in such a manner increases the concentration of the other 

and vice-versa. Similar to the present study, significant positive correlation 

between Fe and Zn have previously been reported in sorghum (Ng'uni et al., 

2012; Shegro et al., 2012; Kayodé et al., 2006; Reddy et al., 2005), wheat (Velu 

et al., 2011) and in rice (Zhang et al., 2004). Significant positive correlations 

were also observed between Ca and K, Fe and Mn and P as well as between Mg 

and P and P and Zn. Protein recorded a significant positive correlation with Mg 

and P. 

 

Table 3. Pearson’s correlation coefficients showing pair-wise association among eight mineral 

elements and protein in sorghum accessions from five countries in Southern Africa.   

 Protein Ca Fe K Mg Mn Na P 

Ca -0.092        

Fe  0.200 0.085       

K -0.028 0.799***  0.129      

Mg  0.440* 0.203  0.327  0.227     

Mn -0.132 0.163  0.508** -0.101  0.682    

Na -0.052 0.444*  0.278  0.255  0.160 -0.275   

P  0.512** 0.226  0.473*  0.449*  0.857***  0.640** 0.217  

Zn  0.275 0115  0.673**  0.045  0.655**  0.585** 0.043 0.524** 

***significant at P = 0.001; **0.01; * 0.05. 

4.4.3 Genotype x environment (G×E) interaction and heritability 

Ca, Fe K, Mg, Mn and P recorded high G×E, ranging between 20 and 29%. 

Protein had the lowest G×E effect (2.6%). Na and Zn also recorded low values 

for G×E at 18% each (Table 4).  

Table 4. Relative variance explained by genotype (accession), environment (site), and genotype by 

environment (G×E) interaction on nutrient content of 23 sorghum accessions from five countries 

in Southern Africa. 

 Relative variance (%) 

Source Protein Ca Fe K Mg Mn Na P Zn 

Accession 

(genotype, G) 

54.2 57.5 50,4 61.8 57.1 25.4 25.4 59.5 63.0 

Site (environment, 

E) 

1.9 0 14.9 0 9.8 37.8 10.1 11.0 1.0 

G×E 2.6 20.1 21.5 25.1 21.2 28.9 17.7 24.9 17.9 

Residual (Error) 17.7 21.4 12.0 9.0 10.2 7.7 41.8 4.4 16.6 
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Low G×E interaction and variation of genotypes for mineral nutrient 

concentration in the sorghum grain suggest that breeding for enhanced 

concentrations of the nutrients could be done across environments. The nutrient 

contents did not vary much across locations, hence their concentrations in the 

sorghum grains were stable. This was also reflected in quite high values for 

broad-sense heritability of grain nutrients (Table 5).  

Broad-sense heritability (H2) of the mineral elements and protein was 

estimated from the analysis of variance following Nyquist and Baker (1991). 

The formula used was H2 = VG/VP (Table 5).  

Table 5. Variance components and broad sense heritability for protein and mineral nutrient content 

in 23 sorghum accessions from Southern Africa. 

Variance 

component 

Nutrients 

 Protein Ca Fe K Mg Mn Na P Zn 

VG 1.79 3307 64.4 248193 50045 48.7 20.3 308650 45 

VGE 0.86 1157 27.4 100837 18551 55.5 14.2 129247 12.8 

VR 0.29 616.8 7.7 18041 4460 7.4 16.7 11501 6.3 

VP 2.3 4039 80 303122 60435 78.2 31.6 376148 53 

VGE/VG 0.48 0.35 0.43 0.41 0.37 1.14 0.70 0.42 0.28 

H2 0.78 0.82 0.80 0.82 0.83 0.62 0.64 0.82 0.85 

H2 = broad sense heritability, VG = genotypic variance, VGE = genotype x 

environment variance, VR = residual variance, VP = phenotypic variance 

 

The ratio between the G×E variance components to the genotypic variance 

component gives an insight about the magnitude of the genotype-environment 

interaction (Gomez-Becerra et al., 2010; Peterson et al., 1986). In this study, low 

G×E interaction and low VGE/VG ratios indicate that there are no specific 

adaptation patterns for the accessions studied, so when breeding for higher 

nutrient content of these minerals in sorghum, any of the locations may be used 

for cultivation.  
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5 Conclusions and future prospects 

5.1 Conclusions 

Southern African sorghums contain significant and valuable genetic diversity as 

indicated by the observed number of alleles and the presence of rare and unique 

alleles in most of the accessions.  

The pattern of genetic diversity revealed with both agro-morphological 

markers and microsatellites in Southern African sorghums may offer new 

opportunities to relate that diversity to the diversity structure for important 

agronomic traits such as grain nutrient quality and mineral content 

characteristics. 

The patterns of genetic relationships observed in this study should provide 

more detailed insights for genetic resource conservation and utilization of 

sorghum germplasm in the SADC region. 

The sorghum accessions from Botswana, Namibia, Swaziland, Zambia and 

Zimbabwe exhibited significant variation in grain protein, calcium, iron, 

magnesium, potassium and zinc contents. These results suggest that there is 

considerable variability for essential nutrients in the sorghum landrace 

accessions. 

Correlation analysis of protein and mineral nutrients has indicated that it is 

possible for simultaneous improvement of different nutrient, assuming there is 

no penalty in the agronomic traits when combined with these minerals.  

The study on nutritional contents variation has shown that identification of 

sorghum germplasm for breeding for improvement of mineral nutrients and 

protein is promising.  

The observed low G×E interaction in this study indicate that there are no 

specific adaptation patterns for the accessions studied, so when breeding for 

higher nutrient contents, different sites can be used for cultivation. 

 

5.2 Future prospects 

Since the accessions studied actually constitute farmers’ varieties, those that 

exhibited good levels of genetic diversity should be given priority in 

conservation strategies.  

Some of the SSR loci used in this study may be significantly linked to 

important agronomic traits, so further characterization at both phenotypic and 

molecular levels is crucial. Quantitative trait loci (QTL) mapping that explain 
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the variation in the traits considered in the present study can contribute to more 

effective sorghum breeding and improvement. 

In sorghum breeding, it is necessary to identify germplasm that breeders can 

use to improve not only yield, but essential nutrients needed for human nutrition. 

This is necessary to overcome malnutrition existing in world rural populations. 

Accessions exhibiting a relatively high nutrient content in this study could be 

used to improve farmers’ varieties with preferred agronomic traits such as early 

maturity, grain colour and yield. 
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