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Abstract: Data assimilation techniques were used to estimate forest stand data in 2011 by
sequentially combining remote sensing based estimates of forest variables with predictions from
growth models. Estimates of stand data, based on canopy height models obtained from image
matching of digital aerial images at six different time-points between 2003 and 2011, served as
input to the data assimilation. The assimilation routines were built on the extended Kalman filter.
The study was conducted in hemi-boreal forest at the Remningstorp test site in southern Sweden
(lat. 13˝371 N; long. 58˝281 E). The assimilation results were compared with two other methods
used in practice for estimation of forest variables: the first was to use only the most recent estimate
obtained from remotely sensed data (2011) and the second was to forecast the first estimate (2003)
to the endpoint (2011). All three approaches were validated using nine 40 m radius validation plots,
which were carefully measured in the field. The results showed that the data assimilation approach
provided better results than the two alternative methods. Data assimilation of remote sensing time
series has been used previously for calibrating forest ecosystem models, but, to our knowledge,
this is the first study with real data where data assimilation has been used for estimating forest
inventory data. The study constitutes a starting point for the development of a framework useful
for sequentially utilizing all types of remote sensing data in order to provide precise and up-to-date
estimates of forest stand parameters.

Keywords: data assimilation; extended Kalman filter; forestry; image matching; photogrammetric
point clouds; digital aerial images; forest inventory

1. Introduction

Accurate information about forest stands is one of the keys to successful forest management
and for efficient wood supply to the forest industry. Modern planning tools, such as the Heureka
system [1], can be applied to support decision making in forestry. These tools rely on accurate
information about the stands in the target forest area and have the potential to provide solutions to
the spatiotemporal planning problem that go beyond what can be achieved by human intuition [2].

Traditionally in many countries, stand-level forest information has been collected through
recurrent campaigns. That is, every 10–20 years data have been collected in the field from all
stands in a forest holding in order to update the information. However, the transfer to digital
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databases in combination with the increasing flow of low-cost data that are becoming regularly
provided through remote sensing motivates a shift towards continuous updating. Several new remote
sensing techniques are emerging, and we are entering an unprecedented era of information richness.
Modern 3D remote sensing techniques like point clouds from laser scanning [3] and stereo-view
image matching of digital aerial images (denoted “image matching”) [4] are being rapidly developed
and applied. Digital aerial images are regularly acquired in many countries, and it has recently been
shown that point clouds from aerial images can be used to estimate canopy heights and correlated
variables with good accuracy [5–8]. In a similar way, accurate forest height estimates can be obtained
frequently from interferometric SAR data [9,10] as well as from radargrammetry [11]. This remote
sensing development might imply a paradigm shift regarding how information is collected and
compiled for purposes of forest management planning.

Data assimilation can be used to continuously combine models and new sensor data in
an optimal way, offering great potential for making use of new sources of forest information.
Existing information about a forest area is forecasted using a model that provides an estimate for
the date of the next data acquisition and an estimate of the precision of the forecasted information.
Thus, the precision of the forecasted information can be compared with the precision of the new
information. In the assimilation step, the two sources of information are combined through
weights that are inversely proportional to their uncertainties (Figure 1). The combined estimate
is then forecasted to the time-point of the next data acquisition, and repeated when new data
become available.
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Figure 1. An illustration of the basic principle of data assimilation applied to a Gaussian model and
estimate. The figure shows how the prior forecast (the center of the orange distribution) is updated
to the posterior forecast (the center of the grey distribution) when a new estimate (the center of the
blue distribution) is taken into account. Notice that the grey distribution is narrower than the orange
distribution, indicating that the posterior forecast is more precise (i.e., the estimate has lower variance)
than the prior forecast.

The success of data assimilation in areas such as meteorology is well documented [12].
Data assimilation of time series of satellite data has also been used in research studies for calibration
of physical models of ecosystem functions [13]. Such models typically produce estimates of ecosystem
variables such as gross primary production, net primary production and ecosystem respiration [14].
Data assimilation techniques have also been proposed for operational forest inventory [15–18], but we
are not aware of any previous data assimilation studies where estimates like those usually produced
and employed for forest management planning have been made using real data.

However, in order to realize the potential in the context of forest inventory and management,
the data assimilation techniques need to be adapted to this field of application. This involves
development of new growth models from which not only growth predictions can be made but also
the uncertainty of those models can be ascertained. All new estimates from remote sensing or field
surveys should be used to adjust the forecasted forest information to the extent motivated by the
uncertainties of the new estimates as compared to the uncertainties of the forecasts. Thus, through
data assimilation, forest planning would benefit from having up-to-date and accurate information
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available as input to its different planning processes, from long-term strategic planning to short-term
optimization of the value chains linking forests with forest industry.

Two common approaches to data assimilation are Kalman filtering [19] and Bayesian
methods [20]. Kalman filters assume that the errors of the forecasts and the new measurements
based on sensor data are normally distributed whereas Bayesian methods can handle any distribution
of errors. In the basic setting, the Kalman filter assumes linear forecasting models, so that the
variance of forecasted variables can be calculated without approximation. However, several further
developments of the Kalman filter are available as well, such as the extended Kalman filter which
uses a Taylor approximation to linearize non-linear prediction models. Bayesian methods assume the
true state to be a random variable and predict entire joint probability distributions of the variables
of interest.

In a previous simulation study made by our research group [15], several challenges for
applying data assimilation to forest information were identified. These included non-linear growth
models, temporal correlation of errors from growth models, poorly known uncertainty of estimates,
spatiotemporally correlated inventory errors, and the need in some cases to handle discrete data, such
as individual trees within description units. Thus, any future system for data assimilation in forestry
would need to be developed through a series of research studies where the different challenges
are addressed.

The objective of the present study was to present our first empirical results of the application
of data assimilation to forest stand data. In our previous study [15], the results were based on
theoretical assumptions and the article provided case examples of the potential benefits of applying
data assimilation. In the present study, we applied the data assimilation technique to empirical
estimates based on point clouds from image matching from six time-points obtained over an eight
year period (2003–2011) calibrated with forest estimates from circular field plots. Estimates were
compiled for three variables: stem volume (V), basal area (BA) and Lorey’s mean height (HL).
Data assimilation using the extended Kalman filter was compared to two methods used in practice
for estimation of forest variables: (i) estimates of the target variables using point clouds from image
matching from the most recent time-point (denoted “most recent estimate”) and (ii) forecasting the
stand development with growth models from the initial state estimate (denoted “forecast”).

2. Materials and Methods

2.1. Study Area

The study was carried out at the forest estate Remningstorp in southwestern Sweden (lat.
13˝371 N; long. 58˝281 E). This 1500 ha estate is covered primarily by well-managed, productive
forest. The forest is dominated by Norway spruce (Picea abies) and Scots pine (Pinus sylvestris), with
some deciduous forest of mainly birch (Betula pendula and Betula pubescens). Generally, the area is
rather flat, with ground elevations ranging from 120 to 145 m above sea level.

2.2. Field Data

In this study, field data were applied for three different purposes: (i) for developing models
linking the remotely sensed data with the ground conditions for the target variables (V, BA, HL),
(ii) for developing growth models, and (iii) for validating the results at the endpoint of the data
assimilation period.

For the development of models estimating the state of the target variables from the remote
sensing data, we used field data from sample plots (denoted “training plots”) distributed across the
Remningstorp study area. Training plots were available from two different field campaigns during
the study period (data set 1 and 2 in Figure 2). All trees greater than 4 cm diameter at breast height
on the plots were calipered, and a sub-sample of the trees was selected for measurements of height
and age. Site index (SI) [21] was also assessed on the plots, using the Swedish system for site index
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based on ground- and field-layer vegetation as indicators of site productivity. Lorey’s mean height
(HL) [22], basal area (BA) and stem volume (V) [23] were calculated for the plots using all trees greater
than 4 cm in diameter at breast height. The stem volume was defined as the total volume of the entire
stem above the stump, including bark but excluding branches. In Table 1, a summary of the training
plot data available for the development of remote sensing based models is given.

Table 1. Field inventories of training plots used for the development of predictive models estimating
the state of the target variables from the remote sensing data.

No Inv. Year No of Plots Radius (m) V (m3/ha)
min/mean/max

BA (m2/ha)
min/mean/max

HL (m)
min/mean/max

1 2004 849 10 0/277/1050 0/28/80 0/19/34
2 2010 247 10 0/202/697 0/22/60 0/16/33

V = Stem volume, BA = Basal area, HL = Lorey’s mean height, based on all calipered trees greater than 4 cm
diameter at breast height.
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Figure 2. Overview of the study area, the location of the field inventoried training plots, and the
validation plots used for assimilation. Data set 1 consists of 849 field plots located in a regular grid of
40 m within the cross-hatched area. ©Lantmäteriet I2014/00764.

The field data used for developing the growth models were derived from the Swedish National
Forest Inventory (NFI) [24]. The NFI each year lays out approximately 10,000 field plots across
the land area of Sweden. A majority of the plots are permanent and are revisited every fifth
year. The permanent plots from the NFI were used for developing the growth models and the
corresponding models for estimating the variance of the growth predictions (see Appendix A).

The third set of field data was the large plots (denoted “validation plots”) used for validating the
results of the data assimilation and the two methods used in practice for estimating forest variables
(most recent estimate and forecast). The validation plots were selected from a larger dataset of 52 plots
with 40 m radius whose positions had initially been located in the interior of fairly homogeneous
stands. After having removed all plots that had been subject to cutting or major damages during
the study period, as well having omitted the only multi-storied stand, nine plots remained. The nine
validation plots (Table 2, Figure 2) were classified into four different forest type classes for which
different growth models based on the Swedish NFI data were used. The forest type class was based
on the conditions at the time-point of validation (2011). The composition was recorded as spruce
stand if more than 65% of the total stem volume was Norway spruce, pine stand if more than 65% of

4543



Forests 2015, 6, 4540–4557

the total stem volume was Scots pine, mixed conifer stand if more than 65% of the total stem volume
was conifer, and mixed stand if the total stem volume of broadleaved trees was between 35 and 65%.
None of the validation plots had, according to the field inventories, been subject to management
(such as thinning or clear-felling) during the period from the first acquisition of images used to the
last. All the validation plots (except two) were inventoried in the same growth season as the last
aerial images were acquired. The two other plots inventoried during the growth season of 2012 and
2013 were back-casted to the growth season of the field inventory (2011), using the growth models
developed in this study.

Table 2. Summary of the validation plots, i.e., the nine large plots with 40 m radius that were used to
validate the results of the data assimilation, at growth season 2011.

ID Inv. Growth
Season 1

SI
(m/100 years)

Age
(years) HL (m) V (m3/ha) BA

(m2/ha)
Forest Type

Class

10 2011 25 39 21.5 389 39.3 Spruce stand
116 2011 30 55 25.3 501 43.4 Spruce stand
151 2011 31 44 19.8 283 29.3 Spruce stand
211 2011 32 41 21.6 308 30.5 Spruce stand
212 2011 32 40 20.2 241 26.4 Mixed stand
325 2011 31 43 22.2 386 37.0 Spruce stand
351 2011 31 46 20.5 265 27.1 Spruce stand
515 2012 25 26 12.1 115 20.6 Mixed stand
517 2013 30 30 13.1 185 30.8 Mixed stand

1 Growth season when the plot was measured in field.

2.3. Remote Sensing Data

Aerial images were acquired with the Intergraph Z/I Imaging Digital Mapping Camera (DMC)
system [25] operated by Lantmäteriet (Swedish National Land Survey) for six different survey
campaigns with partial or complete coverage of the study site (Table 3). All datasets were acquired
at 4800 m above ground level (a.g.l.) except for the 2003 dataset which was acquired at 3000 m a.g.l.,
resulting in a ground sampling distance of approximately 0.48 m and 0.30 m, respectively. The images
were acquired with 60% along-track overlap and 30% across-track overlap, resulting in at least one
stereo model for each position on the ground. The images were block triangulated using bundle
adjustment and radiometrically corrected by Lantmäteriet, as part of their operational aerial image
production, creating a pan-sharpened false colour composite image with 8-bit radiometric resolution.

Table 3. Digital aerial images and training plots used for modeling the target variables.

Acquisition Date Growth Season 1 Leaf-on/leaf-off Altitude
(m a.g.l.)

Field Ref.
Data Set 2

No. of Training
Plots Used

13 October 2003 2003 leaf-on 3000 1 361
28 June 2005 2005 leaf-on 4800 1 416
26 May 2007,
3 June 2007 2006 leaf-on 4800 1 258

1 September 2009 2009 leaf-on 4800 2 214
2 May 2010 2009 leaf-off 4800 2 214

23 May 2012 2011 leaf-on 4800 2 166
1 Refers to whether the acquisition was performed before or after the 15th of June. See section Estimation of
forest state from aerial image matching data for details. 2 Refers to Table 1.

Image matching was performed using the SURE software [26,27] to produce point cloud data
for each dataset. SURE generates a height value for each point using cost-based matching, similar to
the semi-global matching method [28]. All possible stereo pairs were used, so that both along-track
and cross-track stereo images were incorporated. The point clouds from all stereo-matched image
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pairs were merged into one point cloud with a point density ranging from 2 to 46 points/m2 (mean
8 points/m2) depending on the amount of overlap, the height of acquisition, and object occlusion
within the 10 m radius training plots. Finally, the height values of the point cloud were transformed
from height above sea level to height above ground level by subtracting a digital terrain model
(DTM). The DTM used to normalize the photogrammetric point cloud was created from airborne laser
scanning (ALS) data acquired using a Leica ALS 60/23 on April 21, 2011 under leaf-off conditions.
The DTM used was the national DTM from Lantmäteriet; its grid size is 2 m and its vertical accuracy
(RMS) is 0.2 m [29] and the density of the ALS point cloud used to create the DTM was 0.7 last
returns/m2.

In this study, an area based approach [30] was used. Metrics describing the point cloud data,
such as height distribution and spatial density characteristics, were calculated for every training plot
using Fusion software [31]. For the validation plots, raster of each metric was calculated using a grid
cell size of 18 m ˆ 18 m, which corresponds to the size of training plot i.e., 314 m2.

2.4. Estimation of Forest State from Aerial Image Matching Data

The state of each validation plot was estimated for each image acquisition using the
corresponding raster with metrics. Estimation models were trained with training plots, namely data
sets 1 and 2 described in Table 1. In order to obtain as good temporal matches as possible, sample plot
data were either fore- or back-casted for short time periods to correspond to the time-points of the
image acquisitions. This was done using growth models in the forestry planning and analysis system
Heureka [1,32]. In southern Sweden, the growth of tree-shoots occurs mainly in June. Therefore, if
the images were acquired after the 15th of June, the growth for that particular year was included
when the field reference data were computed. For example, the last images (acquired the 23rd of May
2012) will be defined as belonging to growth season 2011, as they were acquired before the breaking
point (15th of June). Therefore, we consistently denote the last estimate to be from year 2011 in this
study to avoid confusion. Plots that had been subject to logging operations in the time between the
field inventory and the remote sensing acquisition were identified through management operations
registers provided by the land manager. Affected plots were excluded from the training data, thus
resulting in a different number of training plots used for the different acquisitions. Linear regression
was applied for modeling Lorey’s mean height (HL) and non-linear regression for modeling stem
volume (V) and basal area (A), using the aerial imagery metrics as predictors. First, model expressions
and metrics were chosen using studies of correlation and regression residuals of the reference data
surveyed in 2010 and metrics from the aerial images acquired in 2010 (Equations (1)–(3)).

HL “ β0 `β1P95`β2D` ε (1)

V “ exp pβ3 `β4P95`β5ln pP95qq ` ε (2)

BA “ exp pβ6 `β7P30`β8ln pP95qq ` ε (3)

where P30 and P95 are the 30th and 95th percentiles of the height distribution of image matching
points at each plot and D is the ratio of matched points with heights larger than 2 m above ground
to all matched points at each plot. Second, the parameters β were then re-estimated for each
remaining time-point of aerial images and corresponding reference data. Third, the state of HL,
V and BA for each of the raster elements in the validation plots was estimated at each time-point
using the developed models (Equations (1)–(3)) and, for each time-point, the corresponding data
and parameter estimates. The residual variances of V and BA were not constant, rather there were
increasing trends with respect to the predicted values. As accurate error variance estimates are
crucial in the assimilation model, predictive models of the error standard deviations for V and BA
and each time-point were developed using linear regression. In other words, models predicting the
residual standard deviation from the predicted value of each respective variable were developed.
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These models were fitted using data of standard deviations calculated for residuals of ten equal
intervals of predicted values.

2.5. Data Assimilation

In this study, we applied the extended Kalman filter [19] for the data assimilation.
Only univariate models were used. For simplicity, influential factors such as SI, tree species
classification and age were assumed to be measured without error to simplify the modeling.
We limited the study in this way in order to more easily interpret causes and effects as well
as to compare the usefulness of applying data assimilation for estimation of the three different
target variables.

Data assimilation was used for modeling the target variables over time using remote sensing data
for adjusting the development given by the growth model. Figure 3 shows a flow chart describing the
forecasting and assimilation steps in this study. The notations in this article are the same as in [15].
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Figure 3. Illustration of the data assimilation procedure used in this study. The years state the growth
season for each remote sensing data acquisition. The percentage is an example of the Kalman Gain,
i.e., the amount of information that is included from each source when assimilating. The Kalman Gain
value is different for each 18 m ˆ 18 m pixel within the validation plot. There were two acquisitions
with growth season 2009 and, therefore, no forecast of the growth was needed between these two.

The development over time of the target variable can thus be formulated as:

Xt “ f pxt´1, Wt, t´ 1q “ xt´1 ` g pxt´1, t´ 1q `Wt (4)

where the random variable Xt denotes the state of the target variable at time t. The model describes
the conditional distribution of Xt, given that the observed value of the variable at time t ´ 1 was
xt´1. Thus, the forecasted value at time t was given by the previous value, to which the expected
growth g pxt´1, t´ 1q and a random term Wt) were added. The growth models were developed
through regression analysis. Details about the methods used for developing the growth models, and
the corresponding model outputs, are given in Appendix A.

The growth was estimated for a five-year period; predictions for any shorter periods were
obtained through computing a share corresponding to the share of the length of the prediction period.
Model precision was assessed through analyzing the variance of the residual errors. It was found that
the residuals were heteroscedastic and thus a separate model was applied for estimating the variance
of the predictions. This was made by dividing the dataset into groups based on the predicted values
and deriving a simple linear regression model for the variance prediction (see Table A3). We assumed
the random term Wt to be normally distributed with zero mean and a variance q2

t that is dependent
on the previous state as well as on time; qt “ α ` βg pxt´1, t´ 1q, where t ě 1 and α and β are
parameters used for estimating the standard deviation of the residual errors. The parameters were
different for the three target variables and for different forest type classes.
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The deviations between the state of the target variable and estimates of it—based on remotely
sensed data—were assumed to be independent normally distributed random variables. These normal
distributions were assumed to have zero mean and time-dependent variances according to:

Zt “ xt `Vt (5)

where Zt is the (random) estimator, xt is the true state at time-point t, and Vt is a random deviation
with zero mean and variance, r2

t , which is estimated from the residual errors obtained in connection
with the development of estimators for the target variables based on the remotely sensed data, and
rzt is used as notation for the actual value observed of Zt. Similarly, rxt is used as notation for
the actual value obtained through the growth predictions, i.e., rxt “ f px̂t´1, 0, t´ 1 q, where x̂t´1

is the assimilated variable at time-point t ´ 1; its variance is denoted p2
t´1. In case no estimates

are made at time-point t, the assimilated variable x̂t will obtain the value rxt and the variance
rp2

t “ a2
t p2

t´1 ` q2
t . This is a consequence of the use of first order Taylor linearization, in connection

with the extended Kalman filter, to linearize the growth model in order to compute the variance.

Thus, at “
d

dx
f px̂t´1, 0, t´ 1q, or in other words, at is the partial derivative of the growth model with

respect to the target variable.
In case an estimate is made at time-point t, the forecast and the estimate are weighted inversely

proportional to the variances to obtain the assimilated variable, i.e.,

x̂t “ p1´ Ktq rxt ` Ktrzt (6)

with the Kalman gain Kt “
rp2

t
rp2

t ` r2
t

. If the estimator (Equation (5)) has considerable variance then the

Kalman gain becomes almost zero, implying that the estimate does not contribute to the assimilation.
On the other hand, if the estimator is very precise, then the Kalman gain becomes almost 1, implying
that the forecast does not contribute much to the assimilation. Equation (6) is based on the assumption
that rxt and rzt are independent. Further, the variance of the assimilated variable is:

p2
t “ p1´ Ktq rp2

t . (7)

The assimilation steps were conducted for each raster element (18 m ˆ 18 m). For purposes
of comparison, we also estimated the state of the validation plots based on two methods used in
practice for estimation of forest variables: use of only the most recent remotely sensed data trained
with simultaneously surveyed training plots (Table 1, data set 2), and forecasting of the first estimate
using growth models. Both these methods and the assimilation were performed on single raster cells
and the mean value of the raster cells with its center within the validation plots was calculated for the
year of validation (2011). Figure 4 shows a flowchart of the implementation in the code of the data
assimilation framework.
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Figure 4. Flowchart of the implementation of the data assimilation framework. 

Validation of the three methods (assimilation, most recent estimate, and forecast) was made by 
calculating the deviation (𝑒𝑒𝑖𝑖) from the field measured value for the nine validation plots at the last 
time-point. For each method, the deviations were calculated by subtracting the field measured value 
from the plot mean value of the intersecting raster cells. In addition, the root mean squared error 
(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) and mean deviation (𝑅𝑅𝐷𝐷) was calculated for the three target variables and methods as: 

Figure 4. Flowchart of the implementation of the data assimilation framework.

Validation of the three methods (assimilation, most recent estimate, and forecast) was made by
calculating the deviation (ei) from the field measured value for the nine validation plots at the last
time-point. For each method, the deviations were calculated by subtracting the field measured value
from the plot mean value of the intersecting raster cells. In addition, the root mean squared error
(RMSE) and mean deviation (MD) was calculated for the three target variables and methods as:

RMSE “

g

f

f

e

1
n

n
ÿ

i“1

e2
i (8)

MD “
1
n

n
ÿ

i“1

ei (9)

3. Results and Discussion

The initial state (2003) was estimated from point clouds obtained from image matching.
The validation was made with field data for the 40 m radius validation plots reflecting the state
in 2011. Figure 5 shows the deviation from the field measured value for each of the three methods
(i.e., assimilation, most recent estimate, forecasting) for the nine validation plots. Table 4 shows the
RMSE of the deviation from the field measurements and Table 5 shows the corresponding mean
deviation (MD). A positive MD means that the plot value is on average overestimated. It can be
seen that the RMSEs are smaller using data assimilation compared to forecasting the value from
the first (initial state) remote sensing prediction. The full strength of data assimilation will probably
first be seen when data from multiple sources are combined. For example, if data are first acquired
using airborne laser scanning (ALS) and later acquired with a technique that has lower accuracy, we
will be able to update the high accuracy acquisition from the ALS with new data. In a similar way,
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the data assimilation framework can be used for maintaining information from earlier high quality
measurements, for example from field visits, and combining it, rather than replacing it, with new
information from remote sensing.
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Figure 5. Deviation at year 2011 between field measurement and estimates of (a) stem volume; (b) 
basal area, and (c) Lorey’s mean height using different methods. A positive value means that the plot 
has an overestimated value. 

Table 4. Root mean squared error (RMSE) of the deviation from the field measurement 2011 for the 
nine assimilated plots. In parentheses is relative RMSE. 

Target Variable Assimilated Most Recent Estimate Forecasted 
V 40.1 (13.5%) 44.7 (15.0%) 58.5 (19.7%) 

BA 3.80 (12.0%) 4.05 (12.8%) 4.49 (14.2%) 
HL 1.81 (9.3%) 1.86 (9.6%) 1.86 (9.5%) 

Table 5. Mean deviation (𝑅𝑅𝐷𝐷) from the field measurement 2011 for the nine assimilated plots.  
A positive 𝑅𝑅𝐷𝐷  means that the value is on average overestimated compared to the field 
measurements. In parentheses is relative 𝑅𝑅𝐷𝐷. 

Target Variable Assimilated Most Recent Estimate Forecasted 
V 0.73 (0.3%) −10.0 (−3.4%) 35.7 (12.0%) 

BA −0.89 (−2.8%) −2.12 (−6.7%) 1.47 (4.7%) 
HL 0.19 (1.0%) 0.12 (0.6%) 0.27 (1.4%) 

The results of the validation shows that the accuracy of estimates are similar to other studies of 
image matching based forest inventory [5,6]. Tables 4 and 5 show that the assimilated values on 
average for all stands and variables are better than the most recent estimates, as well as the 
forecasted estimates. The only exception is that the mean deviation of Lorey’s mean height is lower 
when using only the most recent estimate. This might be explained by the fact that the 
photogrammetric point cloud contains particularly accurate information about tree height, and then 
the gain by data assimilation to reduce noise is less [15]. It is also evident from Figure 5 that two of 
the mixed stands (515 and 517) had comparatively large over estimates of the canopy height. This 
might be because broadleaved trees have more leaves and branches in the upper part of the canopy 
than cone-shaped spruces. Thus, developing separate regression models for different tree species 
groups might improve the results in future studies. 

Figure 6 shows the growth of validation plot 212. Each line represents one raster cell within the 
40 m radius validation plot. The black dots represent remote sensing based estimates. In the fifth 
acquisition (2 May 2010), there is one clear outlier at 14.5 m, but the assimilation remained stable 
despite this. The result of the last assimilation (the rightmost triangle) should be compared with the 
field measured value (the red cross). It should also be noticed that the acquisition dates are shown on 
the x-axis, but it is the growth season that determines the growth prediction, and, therefore, the 
slope is different between the acquisitions. 

Figure 5. Deviation at year 2011 between field measurement and estimates of (a) stem volume;
(b) basal area, and (c) Lorey’s mean height using different methods. A positive value means that
the plot has an overestimated value.

Table 4. Root mean squared error (RMSE) of the deviation from the field measurement 2011 for the
nine assimilated plots. In parentheses is relative RMSE.

Target Variable Assimilated Most Recent Estimate Forecasted

V 40.1 (13.5%) 44.7 (15.0%) 58.5 (19.7%)
BA 3.80 (12.0%) 4.05 (12.8%) 4.49 (14.2%)
HL 1.81 (9.3%) 1.86 (9.6%) 1.86 (9.5%)
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Table 5. Mean deviation (MD) from the field measurement 2011 for the nine assimilated plots.
A positive MD means that the value is on average overestimated compared to the field
measurements. In parentheses is relative MD.

Target Variable Assimilated Most Recent Estimate Forecasted

V 0.73 (0.3%) ´10.0 (´3.4%) 35.7 (12.0%)
BA ´0.89 (´2.8%) ´2.12 (´6.7%) 1.47 (4.7%)
HL 0.19 (1.0%) 0.12 (0.6%) 0.27 (1.4%)

The results of the validation shows that the accuracy of estimates are similar to other studies
of image matching based forest inventory [5,6]. Tables 4 and 5 show that the assimilated values on
average for all stands and variables are better than the most recent estimates, as well as the forecasted
estimates. The only exception is that the mean deviation of Lorey’s mean height is lower when
using only the most recent estimate. This might be explained by the fact that the photogrammetric
point cloud contains particularly accurate information about tree height, and then the gain by data
assimilation to reduce noise is less [15]. It is also evident from Figure 5 that two of the mixed stands
(515 and 517) had comparatively large over estimates of the canopy height. This might be because
broadleaved trees have more leaves and branches in the upper part of the canopy than cone-shaped
spruces. Thus, developing separate regression models for different tree species groups might improve
the results in future studies.

Figure 6 shows the growth of validation plot 212. Each line represents one raster cell within the
40 m radius validation plot. The black dots represent remote sensing based estimates. In the fifth
acquisition (2 May 2010), there is one clear outlier at 14.5 m, but the assimilation remained stable
despite this. The result of the last assimilation (the rightmost triangle) should be compared with the
field measured value (the red cross). It should also be noticed that the acquisition dates are shown on
the x-axis, but it is the growth season that determines the growth prediction, and, therefore, the slope
is different between the acquisitions.
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Figure 6. Data assimilation of Lorey’s mean height on validation plot 212. The black dots are the 
estimates from remote sensing where each dot represents one 18 m × 18 m raster cell within the 
validation plot. The triangles are the mean value of the assimilation for each time-point. The red 
cross is the field measured Lorey’s mean height for the same growth season (2011) as the last 
acquisition. The black lines are the current estimate for each raster cell. Note that the lines jump 
either up or down depending on the outcome of the assimilation at each acquisition time-point. 

In this study, the data are all from the same remote sensing method, i.e., point clouds from 
image matching of aerial images. Therefore, it is likely that the estimation errors are correlated, 
which would imply that too much weight is being put on the forecasted information as compared to 
the new information. This could explain why data assimilation did not perform much better than 
using information from the most recent estimate (Table 4). Methods to compensate for this will be 
developed in future studies but requires non-standard filters for the data assimilation. During the 
course of the study, a test was made where smaller weights were consistently given to the forecasted 
values in the assimilation step as compared to the weights assigned by the Kalman filter. This led to 
improved assimilation results, which indicates that the issue of correlated errors needs to be more 
carefully addressed in future studies. 

In a future version of the data assimilation application, the models for prediction of the stand 
attributes ought to be evaluated in a simultaneous setting to handle cross-correlated errors across 
models. However, in the present study, we analyzed the different growth characteristics separately 
over a short time period using simple growth models where the non-static predictors (V, BA, HL) 
were not used as predictor variables across the growth models to reduce cross-correlation effects in 
the forecasts. 

The first images were from growth season 2003 and the last from 2011. Thus, the assimilation 
period is rather short (eight years) considering the time perspective in Nordic forestry where the 
rotation period is typically 80–100 years. In an operational case, we would have a model that is 
continuously updated when new data become available and probably spans over much longer time 
periods than eight years. The starting point for the assimilation is an estimate based on the first aerial 
images. The short time period might give fairly good growth predictions; however, since the initial 
state itself is an estimate, it is difficult to evaluate how the forecasts perform. 

In this study, the assimilation was conducted on 18 m × 18 m raster cells. Further research is 
needed to investigate at what level the assimilation should be performed. An alternative could be to 
assimilate directly at stand level. However, the modeling units for the growth forecasts and the 
estimates based on remotely sensed data need to correspond, and it must be possible to acquire high 
quality field reference data for purposes of modeling. These issues point towards raster based 
approaches to data assimilation being more straightforward than stand based approaches. However, 

Figure 6. Data assimilation of Lorey’s mean height on validation plot 212. The black dots are the
estimates from remote sensing where each dot represents one 18 m ˆ 18 m raster cell within the
validation plot. The triangles are the mean value of the assimilation for each time-point. The red cross
is the field measured Lorey’s mean height for the same growth season (2011) as the last acquisition.
The black lines are the current estimate for each raster cell. Note that the lines jump either up or down
depending on the outcome of the assimilation at each acquisition time-point.
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In this study, the data are all from the same remote sensing method, i.e., point clouds from
image matching of aerial images. Therefore, it is likely that the estimation errors are correlated,
which would imply that too much weight is being put on the forecasted information as compared
to the new information. This could explain why data assimilation did not perform much better than
using information from the most recent estimate (Table 4). Methods to compensate for this will be
developed in future studies but requires non-standard filters for the data assimilation. During the
course of the study, a test was made where smaller weights were consistently given to the forecasted
values in the assimilation step as compared to the weights assigned by the Kalman filter. This led
to improved assimilation results, which indicates that the issue of correlated errors needs to be more
carefully addressed in future studies.

In a future version of the data assimilation application, the models for prediction of the stand
attributes ought to be evaluated in a simultaneous setting to handle cross-correlated errors across
models. However, in the present study, we analyzed the different growth characteristics separately
over a short time period using simple growth models where the non-static predictors (V, BA, HL)
were not used as predictor variables across the growth models to reduce cross-correlation effects in
the forecasts.

The first images were from growth season 2003 and the last from 2011. Thus, the assimilation
period is rather short (eight years) considering the time perspective in Nordic forestry where the
rotation period is typically 80–100 years. In an operational case, we would have a model that is
continuously updated when new data become available and probably spans over much longer time
periods than eight years. The starting point for the assimilation is an estimate based on the first aerial
images. The short time period might give fairly good growth predictions; however, since the initial
state itself is an estimate, it is difficult to evaluate how the forecasts perform.

In this study, the assimilation was conducted on 18 m ˆ 18 m raster cells. Further research
is needed to investigate at what level the assimilation should be performed. An alternative could
be to assimilate directly at stand level. However, the modeling units for the growth forecasts
and the estimates based on remotely sensed data need to correspond, and it must be possible to
acquire high quality field reference data for purposes of modeling. These issues point towards raster
based approaches to data assimilation being more straightforward than stand based approaches.
However, procedures need to be developed where the precision of aggregated raster elements can
be estimated.

We are entering an era with a frequent flow of data from different sources and of different types.
An example of this is the potential availability of several optical and radar satellite images per year,
point clouds from digital photogrammetry with a few years’ time interval, and laser scanning data
with five to ten years’ time interval. In addition, there will also be different types of field reference
data, for example, from field plots, harvesters and ground based laser scanners. The data assimilation
technique offers a potential method for utilizing all of these data sources, even if some of these sources
would not be sufficient for use in operational forest planning when used alone. The combination of
these different data sources will be the subject of further studies.

4. Conclusions

This study presents the first empirical results of data assimilation applied to the estimation of
forest variables. A system for data assimilation has been developed, implemented and validated.
The input to the data assimilation was canopy height models obtained from image matching of
digital aerial images at six different time points during the growth season between 2003 and 2011.
The study showed that data assimilation of stem volume, basal area and Lorey’s mean height
resulted in marginally better accuracy than estimates made from the last available aerial images,
but substantially better accuracy than estimates from the first available aerial images forecasted
to the endpoint. There is a strong potential to further develop the data assimilation concept.
Among the benefits are that data from all relevant remote sensors can be utilized in proportion to
their information content and complement each other in the assimilation. Furthermore, there is no
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need for each new remote sensing data set to cover the whole area of interest. When remote sensing
data are missing for an area of interest at any time point, predictions for that area will be obtained
by the growth models. In a similar way, a database with field reference plots could be continuously
updated with new ground truth data, for example, from harvesters, even if the whole area of interest
is not covered each time. The field reference plots will be forecasted, and old plots with cutting or
suspected damages according to records and/or remote sensing change detection will be omitted
when the next set of remotely sensed data becomes available.
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Appendix A

Stand Level Growth Models for Stem Volume, Basal Area, and Mean Height Increment

The stand development (forecast) regarding stem volume (V), basal area (BA), and basal area
weighted mean height (Lorey’s mean height, HL) were simulated with simple and robust growth
models in the present study. The growth models were based on data from permanent sample
plots (plot size 314 m2) of the Swedish National Forest Inventory established during 1983–1987 and
re-inventoried three to four times between 1988 and 2010. Stand aggregates were computed at each
plot and measurement. In the present study, we only used plots with an increment period of five
growth seasons and where no harvest had been performed (registered) during the increment period.
The net increments were derived as the difference between estimated yield attributes (V, BA, HL)
from two consecutive inventories. The growth data were divided into four forest types according to
species composition based on standing volume at initial stage (see Field Data for a definition of the
forest types). Summary statistics of some stand variables by forest type are presented in Table A1.

Table A1. Mean and standard deviation (SD) of some stand characteristics for the different forest
types used in the modeling (n = number of plots).

Stand Characteristics

Vi V BAi BA Hi HL Age SI

Spruce stands (n = 4467)
Mean 28.4 169 2.7 21.7 1.2 15.7 82 23

SD 23.8 118 2.8 10.6 1.6 6.1 46 6

Pine stands (n = 6235)
Mean 21.1 115 2.5 17.0 1.2 12.8 74 20

SD 18.0 89 2.6 9.7 1.4 5.5 43 4

Mixed conifers stands (n = 2751)
Mean 25.4 162 2.6 22.0 1.2 15.0 77 22

SD 20.9 111 2.8 10.9 1.5 5.6 40 5

Mixed stands (n = 1678)
Mean 22.4 105 2.8 17.2 1.4 11.6 58 21

SD 20.8 89 3.2 10.5 1.7 5.6 37 6

Note: Vi = 5 years net volume increment (m3/ha), V = stem volume (m3/ha), BAi = 5 years basal area increment
(m2/ha), BA = basal area (m2/ha), Hi = 5 years basal area weighted mean height increment (m), HL = basal
area weighted mean height (m), Age = basal area weighted stand age (years), SI = site index [21] according to
site properties expressed as expected height at 100 years total age for dominant height (m).
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The modeling approach used in the present study is rather straightforward and the different
growth models were evaluated and estimated independent of each other. The following general
exponential model was used to describe the net increment for all models (Y):

Y “ exp
´

b0 `
ÿ

biXi

¯

` ε (A1)

where b0 is a constant, bi a vector of coefficients for the independent variables (Xi) and ε is a random
error component. The independent variables in the model were restricted to size of the current yield
variable (Y), stand age (Age), site index (SI) [21], as well as their transformations and interactions
among these variables.

The traditional logarithmic transformation of the dependent variable and use of linear regression
is not an option in our case since we sometimes have a negative increment in our data due to
mortality, unregistered cutting, measurement errors, etc. To remove severe outliers a preliminary
model was fitted to the data and, in a second fit, we used only observations having residuals within
three standard deviations, i.e., approximately 1% of the data were removed from the current data
set. The final parameter estimates were evaluated with ordinary nonlinear regression. The parameter
estimates are presented in Table A2a–c.

Table A2a. Coefficients for the net volume growth (Vi, 5 years) functions.

Spruce Stands Pine Stands Mixed Conifer Stands Mixed Stands

Variable Estimate SE Estimate SE Estimate SE Estimate SE
Intercept 0.2207 0.2404 ´0.6707 0.2118 0.8171 0.3111 0.3930 0.3754

V ´0.0003 0.0001 - - - - - -
ln(V) 0.3907 0.02286 0.3706 0.0147 0.3867 0.0254 0.3867 0.0307

ln(Age) ´0.2712 0.0605 ´0.2897 0.0474 ´0.3721 0.0775 ´0.1555 0.1095
Age ´0.0048 0.0010 ´0.0046 0.0008 ´0.0038 0.0012 ´0.0091 0.0022

ln(SI) 0.8671 0.0579 1.1857 0.0536 0.7302 0.0784 0.6961 0.0822
ln(1 + Pns) 0.2805 0.1313

MSE 335 200 317 302
N (obs.) 4467 6235 2751 1678

Table A2b. Coefficients for the net basal area growth (BAi, 5 years) functions.

Spruce Stands Pine Stands Mixed Conifer Stands Mixed Stands

Variable Estimate SE Estimate SE Estimate SE Estimate SE
Intercept 0.6755 0.2641 0.3408 0.2620 0.2890 0.3559 0.4635 0.4020

BA ´0.0222 0.0024 ´0.0071 0.0025 ´0.0130 0.0035 ´0.0140 0.0047
ln(BA) 0.3172 0.0268 0.3599 0.0342 0.1860 0.0423 0.1718 0.0411
ln(Age) ´0.5512 0.0271 ´0.7863 0.0471 ´0.5307 0.0379 ´0.4725 0.0509
ln(SI) 0.6712 0.0667 1.0175 0.0647 0.8280 0.0963 0.7032 0.1047

BA/Age - - ´0.5603 0.1130
MSE 5.8 4.8 6.4 8.6

N (obs.) 4467 6235 2751 1678

4553



Forests 2015, 6, 4540–4557

Table A2c. Coefficients for the basal area weighted mean height growth (Hi, 5 years) functions.

Spruce Stands Pine Stands Mixed Conifer Stands Mixed Stands

Variable Estimate SE Estimate SE Estimate SE Estimate SE
Intercept ´0.4226 0.4161 0.2966 0.3105 0.0679 0.4963 ´1.6143 0.8103

HL ´0.2156 0.0149 ´0.2598 0.0145 ´0.2301 0.0222 ´0.1472 0.0335
ln(HL) 0.4275 0.0551 0.4880 0.1488 0.4585 0.0876 0.2891 0.1214

Age - - - ´0.0144 0.0039
ln(Age) - - - 0.3900 0.1686
ln(SI) 0.4140 0.1268 0.1488 0.1035 0.2800 0.1620 0.5533 0.1883

HL ˆ SI 0.0039 0.0004 0.0058 0.0005 0.0040 0.0007 0.0020 0.0009
MSE 1.92 1.46 1.84 2.24

N (obs.) 4467 6235 2751 1678

Note: V = stem volume (m3/ha), BA = basal area (m3/ha), HL = basal area weighted mean height (m),
Age = basal area weighted stand age (years), SI = site index [21] according to site properties expressed as
expected height at 100 years total age for dominant height (m), Pns = proportion volume of Norway spruce.

Residual analysis indicates that the present functions fit the data well (e.g., Figures A1 and A2)
and might be useful to update inventory registers at least for shorter periods, as done in the present
study. However, the residual variances increased slightly with the size of the prediction for the
volume and basal area increment model, and decreased for the mean height increment model. To be
able to plug in accurate estimates of the prediction errors into the data assimilation application,
the residual standard deviation (SD) was regressed as a linear function of the predicted value (see
Table A3).
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Figure A1. Mean residuals (Bias) and standard deviation (SD) in different classes of predicted 
growth for the different growth models, (a) Vi (stem volume growth); (b) BAi (basal area growth), 
and (c) Hi (Lorey’s mean height growth), for spruce stands. 

 
Figure A2. Mean residual (Bias) in different classes of the yield variable and stand age for the 
different growth models, (a) Vi (stem volume growth); (b) BAi (basal area growth), and (c) Hi (Lorey’s 
mean height growth). 

Table A3. Relationships for estimations of the residual standard deviation (SD) as a function of 
predicted increment. 𝑅𝑅𝐷𝐷 = α + βŶ. 

 Spruce Stands Pine Stands 
Mixed Conifer 

Stands Mixed Stands 

Function α β α β α β α β 
Volume increment, Vi 13.67 0.147 8.68 0.248 14.58 0.113 11.20 0.260 

Basal area increment, BAi 1.92 0.183 1.43 0.263 1.83 0.260 2.65 0.096 
Mean height increment, Hi 1.55 −0.113 1.34 −0.131 1.46 −0.103 1.71 −0.133 

Figure A1. Mean residuals (Bias) and standard deviation (SD) in different classes of predicted growth
for the different growth models, (a) Vi (stem volume growth); (b) BAi (basal area growth), and (c) Hi

(Lorey’s mean height growth), for spruce stands.
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Figure A2. Mean residual (Bias) in different classes of the yield variable and stand age for the different
growth models, (a) Vi (stem volume growth); (b) BAi (basal area growth), and (c) Hi (Lorey’s mean
height growth).

Table A3. Relationships for estimations of the residual standard deviation (SD) as a function of
predicted increment. SD “ α`βŶ.

Spruce Stands Pine Stands Mixed Conifer
Stands Mixed Stands

Function α β α β α β α β

Volume increment, Vi 13.67 0.147 8.68 0.248 14.58 0.113 11.20 0.260
Basal area increment, BAi 1.92 0.183 1.43 0.263 1.83 0.260 2.65 0.096

Mean height increment, Hi 1.55 ´0.113 1.34 ´0.131 1.46 ´0.103 1.71 ´0.133
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