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Functionalization of partial spider silk with affinity domains and its 
use for diverse applications 

Abstract 

Over the past years, spider silk has drawn considerable attention from researchers 

because of its renowned mechanical strength (force needed to break), elasticity, 

biocompatibility and biodegradability. The advancements in genetic engineering have 

led to the production of artificial mimics of spider silk proteins. 

The main objective of this thesis is to functionalize two variants of partial spider silk, 

4RepCT (RC), 23 kDa and NTCT (NC), 27 kDa, by covalent attachment to affinity 

domains at gene level. Retained functional properties of the silk part and added affinity 

domains were studied in the resulting silk fusion proteins.  

In Paper I, four affinity domains of different sizes (5-17 kDa) with different folds 

were genetically attached to the RC silk variant. We confirmed that all four RC silk 

fusion proteins could self-assemble to silk-like fibers. The ability of each added affinity 

domain to bind its respective target while in RC silk fusion protein was also confirmed. 

A non-covalent way of presenting biotinylated growth factors was achieved by one of 

the constructs; M4-4RepCT silk. In a similar way, presentation of an active enzyme 

was verified by the activity measurement of the silk-fusion material with bound 

enzyme. Thus, these findings highlight the use of such materials in for example cell 

culture and tissue engineering applications. 

In Paper II, as a proof-of-concept, two recombinant antibody fragments (scFvs) each 

of 30 kDa, previously shown to contribute to the candidate protein signature for 

diagnosing systemic lupus erythematosus (SLE), were covalently attached to either 

ends of RC and NC silk variants. All of the generated scFv-RC and scFv-NC silk 

fusion proteins were shown able to self-assemble to fibres. The retained functionalities 

of scFv domains in scFv-RC/NC silk fusion proteins were confirmed in micro- and 

nanoarrays, respectively. Significantly higher target detection signal was reported by 

scFv-silk fusion proteins when compared to the same added amount of scFvs alone in 

the immunoassays. Thereby, suggesting the use of scFv-silk fusion proteins as capture 

probes in generation of sensitive diagnostic immunoassays. 

The overall results from this thesis thus highlight the diverse possible applications of 

partial spider silk proteins after being functionalized with various affinity domains. 

Keywords: affinity domains, biotinylated ligands, immunoassays, partial spider silk, 

single chain variable fragments, functionalization. 

Author’s address: Naresh Thatikonda, SLU, Department of Anatomy, Physiology and 

Biochemistry, P.O. Box 7011, 750 07 Uppsala, Sweden  

E-mail: naresh.thatikonda@ slu.se 



Dedication 

To my parents and friends 

May all be happy; May all be without disease; May all have well-being; May 

none have misery of any sort. 

-Brihadaranyaka Upanishad 1.4.14 

  



 

Contents 

List of Publications 7 

Abbreviations 10 

1 Introduction 11 
1.1 Overview of spider silk 11 

1.1.1 Natural spider silk 11 
1.1.2 Recombinant production of partial spider silk in bacteria 12 
1.1.3 Processing of partial spider silk proteins to various formats 14 
1.1.4 Modification of partial spider silk proteins 14 

1.2 Different ways to immobilize proteins onto solid supports 14 
1.3 Affinity domains 15 

1.3.1 Domains derived from bacterial surface receptors 15 
1.3.2 Domain derived from streptavidin 16 
1.3.3 Domains derived from antibodies 16 

1.4 Diverse applications of functionalized partial spider silk 18 

2 Present investigations 19 
2.1 Aims of the thesis 19 
2.2 Results and discussion 20 

2.2.1 Paper I: Recombinant spider silk genetically functionalized with 

affinity domains. 20 
2.2.2 Paper II: Genetic fusion of single-chain variable fragments to 

partial spider silk improves target detection in micro- and 

nanoarrays. 22 

3 Summary 25 

4 Concluding remarks 27 

5 Future studies 29 

6 Popular scientific summary 31 

7 Populärvetenskaplig sammanfattning 33 

References 35 

Acknowledgements 41 



 

 



7 

List of Publications 

This thesis is based on the work contained in the following papers, referred to 

by Roman numerals in the text: 

I Jansson R., Thatikonda N., Lindberg D., Rising A., Johansson J., Nygren 

PÅ and Hedhammar M. (2014). Recombinant spider silk genetically 

functionalized with affinity domains. Biomacromolecules 15 (5), 1696-

1706. 

II Thatikonda N., Delfani P., Jansson R., Petersson L., Lindberg, D., 

Wingren C., Hedhammar M. (2016). Genetic fusion of single-chain variable 

fragments to partial spider silk improves target detection in micro- and 

nanoarrays. Biotechnology Journal 11 (3), 437-448. 

Papers I-II are reproduced with the permission of the publishers. 

  



8 

  



9 

 

The contribution of Naresh Thatikonda to the papers included in this thesis was 

as follows: 

I Planned the studies, performed laboratory work and analyzed data, for the 

work related to the fourth construct. Participated in the discussions related 

to other constructs together with minor contribution to writing the 

manuscript. 

II  Planned the studies, performed majority of the work related to the 

construction, expression and purification of all recombinant silk constructs 

employed in the study. Analyzed results together with major contribution 

to writing the manuscript. 

 

  



10 

Abbreviations 

ABD 

B. mori 

CT 

E. australis 

E. coli 

EGF 

ECM 

IMAC 

MaSp 

NT 

N. clavipes 

scFv 

VEGF 

Albumin binding domain 

Bombyx mori 

C-terminal domain 

Euprosthenops australis  

Escherichia coli 

Epidermal Growth Factor 

Extracellular Matrix 

Immobilized Metal ion Affinity Chromatography 

Major ampullate spidroin 

N-terminal domain 

Nephila clavipes 

Single chain variable fragment 

Vascular Endothelial Growth Factor 

  

  

  

  

  

  

  

  

  

 

  



11 

1 Introduction 

The capability to generate silk, a natural protein fiber, has developed by 

spiders, several arthropods and 23 groups of insects (Walker et al., 2012; 

Sutherland et al., 2010; Altman et al., 2003). Due to the remarkable 

mechanical and elastic properties of the silk derived from spiders, combined 

with its biocompatibility, spider silk has been exploited for biomaterial and 

biomedical applications (Borkner et al., 2014; Bittencourt et al., 2012; Widhe 

et al., 2012; Omenetto & Kaplan, 2010). However, additional functionalization 

is needed for generation of more advanced materials, which otherwise does not 

exist in nature. Processing of silk from cocoons produced by silkworms require 

harsh processing steps involving for example, degumming in alkali solution 

followed by solubilization in organic solvents like hexafluoroisopropanol, 

which restrict their use in applications where additional functionalization is 

needed (Rockwood et al., 2011). The work described in this thesis is mainly 

based on the silk derived from spider silk, thus information regarding other 

kinds of silk is not described and can be found elsewhere (Kasoju & Bora, 

2012; Sutherland et al., 2010). 

1.1 Overview of spider silk 

1.1.1 Natural spider silk 

In nature, orb weaving spiders can generate up to seven types of silks, which 

have different physical properties and perform different functions (Rising et 

al., 2011). Out of the seven types of spider silks, dragline silk that is produced 

in the major ampullate gland of spider has widely been studied for its 

incredible mechanical properties (Borkner et al., 2014; An et al., 2012; 

Bittencourt et al., 2012). Spider dragline silk is composed of two high 

molecular weight proteins (Ayoub et al., 2007; Bini et al., 2006), namely 

Major ampullate spidroin 1 and 2 (MaSp1 and MaSp2, respectively) (Humenik 

et al., 2011). The dragline silk spidroins produced by various species of spiders 
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share a common tripartite protein architecture (Humenik et al., 2011). They are 

composed of a non-repetitive N-terminal domain, a repetitive region mainly 

containing poly-alanine segments interspersed between glycine rich repeats, 

and a non-repetitive C-terminal domain (Ayoub et al., 2007). The repetitive 

region, which is composed of different amino acid segments, was reported to 

account for the amazing physical properties of the dragline silk (Rising et al., 

2011).  Naturally, spiders produce silk in liquid form (dope) and store it at high 

concentrations (50% w/v) within specialized silk glands (Chen et al., 2002). 

Upon changes in the ion composition, pH, dehydration (Walker et al., 2012), 

and shear forces occurring along the duct (Dicko et al., 2004; Knight & 

Vollrath, 2001); stored silk solution will emerge out as silk fibers, which are 

rich in β-sheets (Gosline et al., 1999; Simmons et al., 1996). The 

intermolecular interactions occurring between the poly-alanine segments and 

glycine rich repeats in the repeat region (Rising et al., 2011), combined with 

the N-terminal (Askarieh et al., 2010) and C-terminal domain (Hagn et al., 

2010) of the spidroins were reported to regulate the process of silk fibre 

formation.  

The dragline silk of Euprosthenops is stronger than that from other species 

of spiders like Nephila, Araneus and Latrodectus (Stark et al., 2007; 

Pouchkina-Stantcheva & McQueen-Mason, 2004). Advantages and limitations 

in production of natural and engineered dragline silks are addressed in a later 

section.   

1.1.2 Recombinant production of partial spider silk in bacteria 

The predatory behaviour of spiders together with the insufficient amounts of 

silk produced by spiders, have restricted the option to perform sericulture of 

spiders and hence opted for recombinant production of spider silk proteins 

(Guhrs et al., 2000). Recombinant production is defined as the expression of a 

foreign gene in a production host, for example bacteria (Tokareva et al., 2013). 

Due to the well characterized genome and low costs involved in production, 

Escherichia coli (E.coli) is often considered as a suitable option for large scale 

protein production. 

Due to the repetitive nature and large size of natural spider silk genes in 

general, issues like premature translational stops, low protein yield and 

homologous recombination to host genome, can be of concern when expressed 

in the bacteria (Arcidiacono et al., 1998). For this reason, partial spider silk 

sequences are preferred for production of artificial spider silk mimics in 

bacteria (Tokareva et al., 2013; Stark et al., 2007; Prince et al., 1995). 

However, with recent progress in the field of genetic engineering together with 

the modular nature of spider silk, different partial spider silk proteins derived 
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from different species of spiders have been produced in various hosts including 

yeast, bacteria, insects, plants and mammalian cells with varying success 

(Tokareva et al., 2013; Rising et al., 2011). Some of the partial spider silks 

which were cloned and expressed in bacteria include repeat segments derived 

from MaSp1 and MaSp2 of Nephila clavipes with (Prince et al., 1995) or 

without (Mello et al., 2004) inclusion of a native C-terminal domain. Another 

example of partial spider silk is 4RepCT (RC silk), composed of four poly-

alanine/glycine rich co-segments together with a C-terminal domain derived 

from MaSp1 of Euprosthenops australis (E. australis) (Stark et al., 2007). 

Likewise, another partial spider silk variant, NTCT (NC silk) was herein 

generated by combining native N-terminal and C-terminal domains derived 

from E. australis. The study presented in this thesis is based on these two 

partial spider silk variants, RC and NC silks. 

Major steps involved in the recombinant production of partial spider silk 

proteins in bacteria are (Figure 1): (i) Isolation of full length spider silk cDNA 

from spider, (ii) Selection of cDNA that codes for partial spider silk protein, 

(iii) restriction cleavage of target vector, (iv) ligation of partial spider silk 

cDNA to the cleaved target vector, (v) transformation of generated 

recombinant DNA (rDNA) into bacteria, (vi) expression of rDNA in the 

bacteria, (vii) harvesting the purified partial spider silk proteins from the 

bacteria mainly using affinity purification (Stark et al., 2007; Prince et al., 

1995). All the steps are represented in Figure 1. 

 
 

Figure 1. Scheme of recombinant production of partial spider silk proteins in bacteria. 
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1.1.3 Processing of partial spider silk proteins to various formats 

The success of recombinant production in bacteria has enabled a convenient 

way to produce partial spider silk proteins under denaturing (Humenik et al., 

2011) and non-denaturing conditions (Stark et al., 2007). Moreover, the 

produced partial spider silk proteins have an advantage of being possible to 

process into unnatural silk morphologies like, foam, film and mesh formats 

with (Hardy & Scheibel, 2009) or without (Widhe et al., 2010) being subjected 

to post-treatment with organic solvents for β-sheet enrichment. Partial spider 

silk variants which are produced under non-denaturing conditions without any 

requirement of organic solvents during material fabrication might have better 

opportunities for modification with a wide range of biologically active 

molecules. 

1.1.4 Modification of partial spider silk proteins 

Chemical or genetic modification of partial spider silk proteins will broaden 

the applicability window of silk based materials (Wohlrab et al., 2012; Spieß et 

al., 2010). Chemical modification can be achieved by the use of established 

procedures that permit efficient and site-specific modifications of proteins 

(Hackenberger & Schwarzer, 2008). However, certain coupling chemicals used 

for modification of silk materials might exhibit side-effects that are detrimental 

to cells when used for tissue engineering applications (Wohlrab et al., 2012). In 

those cases, genetic modification of partial spider silk proteins could be used as 

a more beneficial alternative. The possibility to genetically modify partial 

spider silk has been shown by the addition of cell binding motifs using genetic 

engineering method with convincing results in cell culture studies (Widhe et 

al., 2016; Widhe et al., 2013; Wohlrab et al., 2012). 

1.2 Different ways to immobilize proteins onto solid supports 

Methods which rely on the binding of target molecules to complementary 

“bait” molecules depend on the immobilization of those bait molecules to a 

solid support. This section describes different ways to immobilize proteins, 

which constitute one important group of such bait molecules. For example, 

antibodies are immobilized to solid support for their use in affinity purification 

and immunoassays. 

Immobilization of proteins on solid surfaces is of great importance in the 

production of protein based arrays and biosensor related applications. The 

challenging task is to immobilize the proteins in such way their functionality 

and orientation are maintained, and also to remain their conformation unaltered 

after immobilization (Oshige et al., 2013). Furthermore, restricting the 
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interaction between the immobilized antibodies and the solid surface might 

help to achieve an appreciable portion of antibodies that retain their native 

confirmation. 

Addressing the above challenges can allow for the successful use of 

immobilized proteins for their intended applications. The chemical and 

structural complexity of proteins have created difficulties in determining a 

general strategy for immobilization of proteins (Saerens et al., 2008). Different 

ways to immobilize proteins on various surfaces have been reported, namely 1) 

non-covalent physical adsorption, 2) covalent coupling via free amines or thiol 

groups and 3) non-covalent protein linkage via affinity interactions (e.g., 

His6/Ni-NTA) (Oshige et al., 2013; Kimple et al., 2010). In all cases, physical 

and chemical properties of the surface and also other factors like temperature 

and pH have been shown to affect the surface immobilization of the proteins 

(Oshige et al., 2013).  

Non-specific physical adsorption is a quick way to immobilize protein 

molecules, but often leads to protein denaturation (Butler et al., 1993). In order 

to prevent the denaturation of immobilized proteins, they can be spotted onto 

solid surfaces, which have been pre-coated with e.g. polyacrylamide gels or 

polyethylene glycol (Pollak et al., 1980). In the covalent coupling method, 

reactive functional groups present in the protein molecules (e.g., amines, 

thiols) are crosslinked onto the solid support modified with complementary 

reactive groups, thus ensuring protein immobilization (Oshige et al., 2013; 

Camarero, 2008). However, the immobilization methods described above does 

often not result in well oriented protein molecules, which is necessary for 

efficient binding of their target molecules (Oshige et al., 2013; Camarero, 

2008). The orientation of immobilized protein molecules can be improved by 

use of a non-covalent protein immobilization via affinity. For example, 

proteins carrying histidine tags can be immobilized onto solid surface which is 

coated with Ni-NTA molecules. However, use of non-covalent means of 

immobilization is limited by the lack of long-term stability of the immobilized 

proteins (Camarero, 2008). 

1.3 Affinity domains 

One important class of proteins that is beneficial to have immobilized onto 

surfaces for certain applications are affinity domains. 

1.3.1 Domains derived from bacterial surface receptors 

In the recent past, exploiting the host defense mechanisms developed by 

bacteria for their use in the field of biotechnology has gained considerable 
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attention (Diamandis & Christopoulos, 1991). Bacterial strains of the 

Staphylococci, Streptococci and Streptomyces genera express certain proteins 

in order to evade the host immune system (Sauer-Eriksson et al., 1995; 

Diamandis & Christopoulos, 1991). Out of the several IgG-binding bacterial 

proteins that were identified, staphylococcal protein A (SPA) and streptococcal 

protein G (SPG) are extensively studied for their use in the purification of 

antibodies (Boström et al., 2012). 

SPA contains five homologous IgG-binding domains. The Z domain (7 

kDa), which folds into a three-helix bundle, is an engineered protein domain 

derived from the IgG-binding B-domain of SPA (58 kDa) (Boström et al., 

2012; Nilsson et al., 1987). SPG has a multi domain structure containing both 

albumin-binding domains and immunoglobulin-binding domains (Kraulis et 

al., 1996). The C2 domain (6 kDa), which folds into four β-sheets and α-helix 

structure is derived from the Fc binding domain B1 of SPG (Sauer-Eriksson et 

al., 1995). Both Z and C2 domains can be used for the purification of 

antibodies or target proteins fused to the Fc domain. SPA and SPG exhibit 

different specificities to IgG obtained from different species (Boström et al., 

2012). Likewise, species specific IgG binding of the domains derived from 

SPA and SPG can be speculated.  

The ABD domain is an engineered protein domain derived from albumin-

binding domain 3 of SPG (63 kDa). Domain ABD (5 kDa) has affinity towards 

human serum albumin and folds into a three-helix bundle (Nilvebrant & Hober, 

2013; Kraulis et al., 1996). 

1.3.2 Domain derived from streptavidin 

Streptavidin is a protein produced by Streptomyces avidinii, which has affinity 

towards biotin and biotinylated ligands (Diamandis & Christopoulos, 1991). 

The extreme affinity between biotin and streptavidin (Diamandis & 

Christopoulos, 1991) complicate the release of biotinylated ligands (Rybak et 

al., 2004). This resulted in the generation of monomeric streptavidin (M4) (Wu 

& Wong, 2005), which exhibit a lower binding affinity than streptavidin, in 

order to expand the applicability of biotin/streptavidin system for several 

biotechnological applications. M4 is a 16.5 kDa monomeric version of 

streptavidin, which has affinity to biotin molecules and folds into a β-sheet 

barrel structure (Wu & Wong, 2005). 

1.3.3 Domains derived from antibodies 

Naturally, antibodies are produced by B-cells in order to protect against foreign 

substances. As represented in Figure 2, antibodies are composed of two heavy 

and two light chains joined together by disulfide bonds. There are three 
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constant domains and one variable domain in the heavy chains, while there is 

one constant domain and one variable domain in the light chains (Figure 2). 

The epitope recognition site of an antibody is in the variable heavy (VH) and 

variable light (VL) domains. Due to excellent target specificity and affinity, 

antibodies are considered as paradigm for cell biology and biochemistry 

applications (Gebauer & Skerra, 2009). However, structural complexity and 

laborious procedures involved in the production of antibodies have led to 

creation of recombinant antibody fragments such as scFv and Fab (Gebauer & 

Skerra, 2009) (Figure 2). Considerable loss of biological activity has been 

observed upon immobilization of antibodies onto solid supports, which affects 

the sensitivity of the antibody based immunoassays, for example. Furthermore, 

the presence of the Fc part of the antibody can result in unwanted cell 

reactivity upon binding to the effector cells containing Fc receptors (Holliger & 

Hudson, 2005). 

Generation of antibody mimics was considered as a breakthrough in the 

field of antibody engineering. Monovalent Fabs (55 kDa) are generated from 

full-length antibodies subjected to papain cleavage (Porter, 1959), whereas, 

single-chain variable fragment, scFv (28 kDa), one of the most popular formats 

of antibody derivatives, is generated by the fusion of variable domains of the 

heavy and light chain (VH and VL) joined by a flexible linker. Generated Fab 

and scFv fragments are smaller in size when compared to the antibodies 

(Figure 2) and can be expressed in E. coli with retained antigen binding affinity 

of the intact IgG (Bird et al., 1988). Due to the smaller size of scFv and due to 

less efficient folding and assembly of Fab fragments in E. coli (Hust et al., 

2007), scFv is considered as a suitable affinity ligand for different applications, 

immunoassays for example. The biomolecular properties, like stability, can be 

enhanced by engineering scFvs (Worn & Pluckthun, 2001).  

 
Figure 2. Representation of an antibody and domains derived from an antibody. 
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1.4 Diverse applications of functionalized partial spider silk 

The relevance of functionalized partial spider silk for diverse applications is an 

actively growing field of research. Partial spider silk proteins, which can be 

produced using recombinant DNA technology can be subjected to genetic 

modifications by incorporation of peptides, recognition motifs or functional 

domains (Borkner et al., 2014). In the recent past, cell binding peptides have 

successfully been incorporated to different engineered spider silk proteins, 

thereby suggesting the applicability of such functional silk materials for in 

vitro cell culture studies (Widhe et al., 2013; Wohlrab et al., 2012). 

Furthermore, silver binding peptides (Currie et al., 2011) and antimicrobial 

peptides (Gomes et al., 2011) were genetically incorporated to partial spider 

silk and the added peptides were reported to retain their functionalities, thus 

highlighting the use of silk-silver and silk-antimicrobial materials for 

biomedical applications. Likewise, uranium recognition motifs were 

genetically fused to a partial spider silk protein derived from N. clavapies, and 

then the uranium binding ability of the chimeric silk-uranyl proteins were 

confirmed. This highlights the applicability of such functional silk fusion 

proteins as biosensor capture probe for environmental monitoring applications 

(Krishnaji & Kaplan, 2013).  

Affinity domains are complex and larger in size when compared to the 

peptides or recognition motifs. Therefore, exploring the possibility to 

incorporate affinity domains to partial spider silk might increase the 

applicability of functional silk based materials for other applications, for 

example immunoassays, advanced biosensor and cell culture applications. 
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2 Present investigations 

2.1 Aims of the thesis 

The main aim of the present thesis is to immobilize different affinity domains 

to two variants of partial spider silk proteins (RC and NC) via genetic 

engineering technique. Moreover, to study the functional properties of the silk 

part and added affinity domains in RC/NC silk fusion proteins. Furthermore, 

explore the applicability of such functional RC/NC silk fusion proteins for 

different applications. The specific aims of this thesis have been: 

 

 Paper I: To investigate the possibility to functionalize RC silk 

proteins with different fold-dependent affinity protein domains using 

genetic fusion/linkage followed by functional studies of silk materials 

generated from the RC silk fusion proteins. 

 

 Paper II: To covalently combine two scFvs to RC and NC silk protein 

variants at the gene level and to evaluate the possibility to use scFv-

RC/NC silk fusion proteins as capture probes for generation of 

sensitive immunoassays. 
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2.2 Results and discussion 

2.2.1 Paper I: Recombinant spider silk genetically functionalized with affinity 

domains. 

In paper I, functionalization of RC silk with various affinity domains was 

evaluated. Four different fold dependent affinity domains (Z, C2, ABD and 

M4) were covalently attached to the N-terminus of 4RepCT at the gene level. 

Domains Z (7 kDa) (Nilsson et al., 1987) and ABD (5 kDa) (Kraulis et al., 

1996) are folded into a three helix bundle, and bind to IgG and albumin 

respectively. In contrast, C2 (6 kDa) and M4 (17 kDa) domains contain β/α 

domains (Sauer-Eriksson et al., 1995) and β-sheet barrel (Wu & Wong, 2005) 

respectively, and have affinity towards IgG and biotin, respectively. All four 

recombinant RC silk constructs were successfully produced in the BL21 (DE3) 

strain of E. coli and purified using immobilized metal ion affinity 

chromatography under non-denaturing conditions. It is worth noting that the 

produced RC silk fusion proteins could still be self-assembled to film and fiber 

format despite the relatively large sizes (5-17 kDa) of the affinity domains 

added to the RC silk. Moreover, no additional processing steps are required to 

make fibers and films of RC silk fusion proteins compared to RC silk alone. 

Since target binding ability of the added affinity domains is dependent on their 

secondary structure, Fourier transform infrared spectroscopy (FTIR) analysis 

was performed for films and fibers made from all RC silk fusion proteins. 

FTIR analysis supported maintained β-sheet structure, which is a characteristic 

of 4RepCT, in both film and fiber formats of RC silk fusion proteins. In order 

to evaluate the selective IgG binding ability of Z and C2 domains, a complex 

serum mixture was added to the fibers and films of Z-4RepCT and C2-

4RepCT. Bound IgG was then released and run on the SDS-PAGE, which 

showed a band corresponding to the correct size of IgG (140 kDa), thus 

confirming retained functionality of added Z and C2 domains to selectively 

bind IgG. Likewise, the functionality of added ABD was verified upon 

incubation of complex human plasma to fiber and film of ABD-4RepCT 

followed by the release of bound albumin and gel analysis that confirmed the 

maintained functionality of ABD to selectively bind albumin.  

In order to explore the possibility to create multi-functional silk materials, 

mixed films and mixed fibers were prepared by combining soluble fractions of 

Z-4RepCT and ABD-4RepCT. The ability of mixed films and fibers to 

selectively capture both IgG (by Z-4RepCT) and albumin (by ABD-4RepCT) 

was shown by addition of human plasma to the mixed silk materials followed 

by the release of both bound target molecules as shown by gel electrophoresis, 

thus confirming the concept of multi-functional silk materials.  
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Due to the simplicity and versatility of the biotin-streptavidin system, it has 

gained a significant focus in the field of biotechnology (Diamandis & 

Christopoulos, 1991) and also for being used to link functional groups to 

biomaterials (Wang & Kaplan, 2011; Spieß et al., 2010). Likewise, in the quest 

to link functional groups to RC silk based materials, the possibility to 

covalently link the monomeric streptavidin domain (M4) to 4RepCT has been 

verified in Paper I. To demonstrate the biotin binding ability of the M4 

domain in the M4-4RepCT construct, films of M4-4RepCT were incubated 

with biotinylated DNA molecules. High affinity between monomeric 

streptavidin and biotinylated ligands (Wu & Wong, 2005) resulted in a 

difficulty to release the bound biotinylated ligands. Since release of bound 

biotinylated ligands usually requires harsh elution conditions (Rybak et al., 

2004), a restriction enzyme site was included at the 5’ end of the biotinylated 

DNA molecules to ensure mild release, which could be confirmed by a DNA 

gel. Thus the applicability of M4-4RepCT silk materials for nucleic acid 

hybridization assays is envisioned. Furthermore, functionalization of M4-

4RepCT films with growth factors was evaluated. This concept was confirmed 

by capture of EGF molecules pre-labeled with a chromophoric biotin onto M4-

4RepCT films, followed by measurement of the absorbance signal that come 

from the bound biotinylated EGF molecules.  

In a recent study, a recombinant silk construct named FN-4RepCT was 

shown to enhance the cell supportive ability of spider silk (Widhe et al., 2016). 

Upon combining soluble FN-4RepCT and M4-4RepCT, an advanced silk 

based cell scaffold could possibly be designed for in vitro cell culture studies, 

provided that the basal culture medium is supplemented with biotinylated 

growth factors. Moreover, due to the high affinity between M4 domain and 

biotinylated ligands (Wu & Wong, 2005), long term use of bound biotinylated 

growth factors is envisioned during media change, thus providing an economic 

benefit. 

On the other hand, if release of growth factors is demanded by the cells and 

if it is difficult to biotinylate growth factors, a reversible two-step presentation 

of growth factor via Z-4RepCT materials could instead be employed. The 

feasibility of such two-step approach using Z-4RepCT silk was shown by the 

capture of the growth factor vascular endothelial growth factor (VEGF) using 

anti-VEGF IgG, which was first bound to the Z domain. To visualize the 

indirect binding of VEGF to Z-4RepCT films via anti-VEGF IgG, the VEGF 

was biotinylated and a streptavidin labelled with fluorophore was used for 

detection. 
Since it is challenging to determine the function of biotinylated growth 

factors captured to 4RepCT fusions, a domain with more easily measured 
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functionality, the enzyme xylanase, was biotinylated and captured onto M4-

4RepCT films. Activity of bound xylanase was thereafter verified upon 

conversion of the substrate to a product that could be measured at a certain 

wavelength. Higher absorbance signal was observed from M4-4RepCT films 

with biotinylated xylanase than corresponding Z-4RepCT control films, thus 

confirming the maintained activity of the xylanase. This finding highlights the 

possible use of M4-4RepCT silk materials to capture other enzymes which 

have potential applications in the field of biology and medicine (Costa et al., 

2005). 

2.2.2 Paper II: Genetic fusion of single-chain variable fragments to partial 

spider silk improves target detection in micro- and nanoarrays. 

In paper II, one of the attractive features of spider dragline silk proteins, 

namely stickiness (Vollrath, 2000) has been exploited for the development of 

high performing recombinant antibody based immunoassays. In this study, two 

single chain variable fragments (scFvs), αVEGF and αC1q (30 kDa) that bind to 

the serum proteins VEGF (low abundant) and C1q (high abundant) 

respectively, were selected from a human recombinant scFv phage-display 

library (Soderlind et al., 2000). Corresponding genes were then genetically 

attached to either ends of two partial spider silk variants (RC and NC). All of 

the generated RC/NC silk fusion constructs (RC-α and α-RC, 52 kDa, NC-α 

and α-NC, 54 kDa) could be efficiently produced in E. coli and purified using 

immobilized metal ion affinity chromatography (IMAC). Even though a partial 

degradation of target proteins was observed, scFv-silk fusion proteins of 

sufficient quality were obtained. Concentrated fractions of soluble scFv-

RC/NC silk fusion proteins could be processed to silk like fibers. This 

confirmed a retained functionality of RC and NC silk to form silk like fibers 

despite when covalently attached to scFv domain (30 kDa), which is larger in 

size compared to the sizes of both RC (23 kDa) and NC (27 kDa) silk proteins.  

To investigate the target binding affinities of added scFv domains in scFv-

RC silk constructs, a microarray slide carrying microspots of scFv-RC silk 

fusion proteins (RC-αVEGF & αVEGF-RC, RC-αC1q & αC1q-RC) was designed. 

Since silk protein provides a hydrophilic environment and mechanical stability 

to the array spot, this might change the morphology of the array spot and 

thereby affect the outcome of immunoassay. Therefore, mixed spot (soluble 

scFvs and RC added together) and double spot (soluble scFv added onto dried 

RC) formats were formulated to constitute controls of scFvs non-covalently 

attached to RC silk. Incubation of VEGF antigens onto a microarray slide 

revealed VEGF binding to the microspots containing αVEGF, RC-αVEGF and 

αVEGF-RC proteins but almost no binding to the other microspots. Similarly, 
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addition of C1q antigens to the microarray slide showed binding of C1q 

antigens only to the microspots of αC1q, RC- αC1q and αC1q-RC. These 

observations also confirmed that there exists no cross reactivity among 

different scFv-RC silk fusion proteins. Moreover, target detection signal was 

distinctly increased when scFvs were covalently attached to RC silk compared 

to the same added amount of scFvs to the microspots containing only scFv. 

The increase in target binding signal might be due to the high propensity of 

spider silk proteins to self-assemble and adhere to the solid surfaces, thereby 

resulting in well oriented antibody fragments from the fusion protein. Presence 

of well oriented immobilized antibody fragments would enable efficient 

binding to the target molecules, thereby contributing to the success of solid-

phase assays. Likewise, in another study, use of well oriented antibody 

fragments has been shown to improve the target binding (Hu et al., 2013). 

Another reason for improved target detection signal might be that a higher 

proportion of scFvs might have stayed within the array spots during the several 

processing steps involved in the immunoassay when attached to the silk 

protein. On the contrary, very low target detection signal, close to the 

background signal, was obtained from mixed and double spots, thus 

demonstrating the necessity of having scFvs covalently linked to silk when 

used as capture probes in immunoassays. Incubation of non-fractionated serum 

sample onto the microarray slide containing microspots of scFv-RC silk fusion 

proteins confirmed the selective binding between the scFv-silk fusion proteins 

and their respective targets present in the serum. This highlights the ability of 

scFv-RC silk fusion proteins to bind their targets even from a complex sample. 

In the quest for generation of sensitive and high density arrays, possible use 

of scFv-silk fusion proteins as the capture probes was investigated also using 

nanoarrays. Deposition of proteins for nanoarrays can be done by several 

techniques, for example using dip-pen technology (Petersson et al., 2014; 

Wingren & Borrebaeck, 2007). The repetitive region in the RC silk variant has 

a high tendency to fibrillate, which could potentially clog the nozzle if 

deposited using dip-pen technology. To avoid this problem, NTCT (NC), a 

new engineered variant of spider silk was generated, without including the 

repetitive region, and used for nanoarray analysis. Again the previously 

selected scFvs (αVEGF and αC1q) were covalently attached onto either ends, 

resulting in the generation of scFv-NC silk fusion proteins (NC-αVEGF & αVEGF-

NC, NC-αC1q & αC1q-NC). Similar to microarray analysis, upon addition of 

pure antigen samples (VEGF and C1q) onto the nanoarray slides containing 

nanospots of scFv-NC silk fusion proteins, no sign of cross reactivity was 

observed among different scFv-NC silk fusion proteins. Furthermore, 

significantly higher target detection signal was observed by scFvs when 
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covalently attached to NC silk compared to the same added amount of scFvs 

alone. Thus, the results from the nanoarray analysis were in line with 

microarray results. 

In order to rule out unspecific binding of serum components to the silk, C1q 

depleted serum was prepared. Upon addition of C1q depleted serum onto a 

scFv-silk coated nanoarray slide, very low target binding signal was reported 

from NC-αC1q & αC1q-NC, confirming low unspecific binding of serum 

components to scFv-NC silk proteins. To study the array setup using a 

clinically relevant sample, pooled serum from Systemic Lupus Erythematosus 

(SLE) patients was examined. Upon incubation of serum from Systemic Lupus 

Erythematosus (SLE) patients onto the nanoarray slide, a higher target signal 

was reported by αVEGF-NC silk fusion protein compared to incubation with C1q 

depleted serum. This might be due to the high levels of VEGF in serum derived 

from SLE patients (Zhou et al., 2014), which is an hallmark of patients with 

SLE disease compared to low levels of VEGF present in the serum obtained 

from normal patients. The results from the nanoarray analysis confirmed a 

retained functionality of the two scFvs that were attached to NC silk. 

To summarize, in Paper II a procedure to immobilize antibody fragments 

via partial spider silk, which would result in well oriented antibody fragments, 

was demonstrated. Moreover use of scFvs covalently attached to the N-

terminus of partial spider silk could yield stable scFvs within array spots. Thus 

future use of such in vitro targeting agents for sensitive diagnostics is 

envisioned. 
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3 Summary 

Technological advancements have led to the generation of artificial mimics of 

spider silk proteins in amounts sufficient for their use in certain applications. 

Characteristics like biocompatibility and biodegradability exhibited by partial 

spider silk signify their use for cell culture and tissue engineering applications.  

The capability of partial spider silk to adhere to the surfaces can be 

considered for generation of sensitive immunoassays and biosensor related 

applications. 

In paper I, by use of genetic engineering, RC silk was functionalized with 

fold dependent affinity domains (Z, C2, ABD and M4) of different sizes (5-17 

kDa). The resulted RC silk fusion proteins were shown to retain the ability of 

the silk part to self-assemble into silk like fibers. Moreover, the target binding 

ability of the added affinity domains was retained. RC silk functionalized with 

the biotin-binding M4 domain opens up the opportunity to use such functional 

silk materials for several different applications. Ability of M4-4RepCT to bind 

biotinylated growth factors has been validated in paper I. Thus, M4-4RepCT 

silk materials carrying immobilized growth factors could be used as 

extracellular matrix (ECM) analogues for cell culture applications. In many 

cases, attachment of biotin to macromolecules does not alter the biological 

activity of the macromolecules (Diamandis & Christopoulos, 1991). 

Procedures to biotinylate various macromolecules are well established, 

enabling a wide repertoire of available biotinylated macromolecules. Capture 

of such biotinylated macromolecules by M4-4RepCT silk materials could be a 

convenient way to generate various functional silk materials, which could have 

implications for diverse applications.  

In paper II, functionalization of RC and NC silk variants was carried out 

by the covalent attachment of two recombinant antibody fragments (αVEGF and 

αC1q, 30 kDa) to both silk variants at the gene level. Results from this study 

demonstrate the scalability in the size of affinity domains that can be 

covalently attached to the partial spider silk. The functionality of recombinant 
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antibody fragments in the produced scFv-RC/NC silk fusion proteins was 

confirmed by immunoassays. Specific and significantly improved binding of 

the scFv-silk fusion proteins to their respective targets was detected. 

Furthermore, no cross reactivity between different scFv-silk fusion proteins 

was observed. Thus, a novel procedure to immobilize scFvs via partial spider 

silk has been described. The applicability of such improved probe format in 

generation of sensitive immunoassays for efficient disease diagnosis is thus 

envisioned. 

In summary, the ability of partial spider silk to be furnished with different 

functional domains expands the application horizon of such functional partial 

spider silk materials. 
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4 Concluding remarks 

Paper I: Affinity domains that are cloned into recombinant spider silk retain 

their binding specificity when the fusion protein is coated onto a solid surface 

and processed to fiber format. This means that the affinity domain part of the 

fusion protein is folded in such a way that binding properties are maintained, 

and that it is exposed on the surface of the silk well enough to enable efficient 

binding of its target. 

 

Paper II: By genetic linkage of antibody fragments into recombinant silk, it is 

possible to improve sensitivity and signal strength of immunoassays where the 

silk fusion protein is coated onto a surface, as compared to coatings of the 

antibody fragments alone. 
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5 Future studies 

Paper I:  

 Fibers produced from recombinant spider silk were previously 

reported to be well tolerated when implanted in rats (Fredriksson et 

al., 2009). Likewise, in future, fibers generated from M4-4RepCT silk 

could be first used to capture biotinylated antimicrobial drugs for 

example, amikacin (Boyce et al., 1993) followed by their implantation 

to the wounded site. Such type of materials carrying antimicrobial 

drugs could likely be used for local and sustained delivery of drugs to 

alleviate wound healing. 

 Ability of Z-4RepCT silk to capture growth factors in a two-step 

procedure was shown in paper I. Possibility to use Z-4RepCT silk 

with captured growth factors as in vitro cell culture scaffold should be 

evaluated. 

Paper II:  

 The surface properties of the array slide were shown to affect the 

functionality of immobilized biomolecules (Seurynck-Servoss et al., 

2007). Therefore, future study of herein used scFv-silk fusion proteins 

on various array slides made of different materials could provide 

better understanding for their efficient use as capture probes in 

sensitive diagnostic applications. 

 Two recombinant antibody fragments (αVEGF and αC1q) used in paper 

II were selected from a collection of scFvs that contribute to a 

candidate protein signature for diagnosing the autoimmune disease 

SLE (Petersson et al., 2014; Carlsson et al., 2011). In future 

investigations, covalent attachment of other scFvs to the N-terminus of 

NC silk variant could be performed for generation of a sensitive 

nanoarray slide to diagnose SLE disease.  

 Collection of scFv fragments that contribute to the candidate protein 

signature for diagnosis of breast (Olsson et al., 2013) and pancreatic 



30 

cancers (Wingren et al., 2012) are available. Future use of herein 

described silk based scFv immobilization strategy can possibly result 

in the generation of sensitive array chips for efficient diagnosis of 

prostate and breast cancers. 

 Shelf life study of the array slides containing capture probes is an 

important parameter to consider when designing a chip for disease 

diagnosis. Therefore, long term shelf life studies of the array slides 

containing scFv-silk fusion proteins should be evaluated. 

 The ability of αVEGF-RC silk coating to bind VEGF protein was 

verified in paper II. In future, solutions of the cell adhesion 

promoting FN-silk (Widhe et al., 2016) and VEGF growth factor 

binding αVEGF-RC silk can be mixed and processed to combined silk 

coat. Future study of cellular behavior on cell culture plates containing 

such combined silk coatings would provide valuable information for 

generation of artificial cell culture matrices. 

 Anti-VEGF based therapies has been developed to inhibit the growth 

of new blood vessels, thereby starving tumor cells (Ellis & Hicklin, 

2008). Since αVEGF-RC silk can bind to VEGF, the possibility of 

αVEGF-RC silk to bind VEGF in a way which prevents the angiogenesis 

process could be investigated. Exploring this possibility enables the 

use of αVEGF-RC as a biopharmaceutical for treatment of certain 

cancers. 
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6 Popular scientific summary 

Over several decades spider silk has widely been known for its incredible 

mechanical properties in terms of toughness, strength and elasticity. Spider silk 

is reported to be stronger and tougher than steel and high performance 

synthetic fibers, like Kevlar, by weight. In addition to amazing mechanical 

properties, biocompatibility and biodegradability exhibited by spider silk fibers 

has made spider silk as the subject of research for different biomedical and 

material applications. Certain spiders, like orb weaving spiders, can produce 

several types of silk from various silk glands and the produced silks differ in 

their primary amino acid sequence, physical properties and functions. Out of 

several types of silk produced by spiders, dragline silk, which is used by the 

spiders to capture their prey, is the strongest. Even though researchers have 

succeeded in deciphering the valuable secrets shared by spiders, still there exist 

no possible way to produce spider silk in commercial quantities. The 

cannibalistic behavior exhibited by spiders restricted their farming. A great 

deal of effort by material scientists and biologists had resulted in generation of 

partial spider silk protein in amounts sufficient for certain biomedical 

applications. Furthermore, compared to synthetic high-performance materials, 

artificial spider silk is produced using renewable resources. If produced at large 

scale, spider silk might has the ability to be used as an alternative to stainless 

steel, thus contribute to the generation of ecological materials. 

Mainly for economic reasons, E. coli bacteria, has often been chosen for the 

production of partial spider silk. Since large gene size of full length spider silk 

cannot be handled by bacteria, pieces of full length spider silk gene are 

selected and were transferred to bacteria thus resulted in the production of 

partial spider silk proteins. 

The applicability of produced partial spider silk proteins for various 

applications within the field of medicine and biotechnology can be increased 

by a process called functionalization, in which different biological properties 

are incorporated to partial spider silk. Likewise, this thesis is focused on 
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functionalization of two partial spider silks (4RepCT (RC) and NTCT (NC)) 

with various affinity domains using genetic engineering. RC and NC partial 

spider silks are derived from the dragline silk of the spider E. australis. In 

paper I and II, we have shown that different affinity properties can be 

incorporated to RC and NC partial spider silks by covalently combining 

various affinity proteins to partial spider silk proteins using genetic engineering 

techniques, thus resulting in RC and NC silk fusion proteins. Both in paper I 

and II, we observed that the ability of the silk part in RC and NC silk fusion 

proteins to spontaneously form fibers is still maintained despite the fusion of 

different protein domains. Moreover, the target binding properties of the added 

protein domains are maintained in the RC and NC silk fusion proteins. In paper 

I, we could show the ability of M4-4RepCT and Z-4RepCT silk materials to 

bind biomolecules in two different ways, which are essential for human cell 

culture. We also showed the ability of M4-4RepCT to present an active 

enzyme in paper I. Thus use of such silk materials has been contemplated for 

their use in tissue engineering applications. In paper II, we have shown that the 

ability of anti-VEGF and anti-C1q proteins to recognize their target molecules 

has significantly been improved when attached to NC silk. This hints the future 

of NC silk fusion proteins for applications where improvement of target 

recognition is required. 
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7 Populärvetenskaplig sammanfattning 

Under flera decennier har spindeltråd varit allmänt känd för sina otroliga 

mekaniska egenskaper i termer av bland annat styrka och elasticitet. 

Spindeltråd rapporteras vara starkare än stål och högpresterande syntetfibrer, 

såsom Kevlar, per vikt. Förutom fantastiska mekaniska egenskaper har även 

biokompatibilitet och bionedbrytbarhet hos spindeltrådsfibrer gjort spindeltråd 

intressant för olika biomedicin- och materialtillämpningar. Vissa spindlar kan 

producera flera olika typer av silke från olika silkeskörtlar och de framställda 

silkena skiljer sig åt i sin primära aminosyrasekvens, fysikaliska egenskaper 

och funktioner. Av de olika typerna av silke som produceras av spindlar är 

”dragline-silke”, som används av spindlar för att fånga sitt byte, den starkaste. 

Även om forskare har lyckats dechiffrera värdefulla hemligheter om spindlar 

och dess tråd finns det fortfarande inget sätt att framställa spindeltråd i 

kommersiella kvantiteter. Det kannibalistiska beteende som spindlar uppvisar 

har begränsat möjligheten att föda upp spindlar i större skala. Gemensamma 

arbetsinsatser av materialforskare och biologer har dock resulterat i generering 

av partiella silkesproteiner i mängder som är tillräckliga för vissa 

biomedicinska tillämpningar. Dessutom är artificiell spindeltråd producerad 

med hjälp av förnybara resurser jämfört med syntetiska material. När de 

produceras i stor skala skulle spindelsilke kanske ha förmåga att kunna 

användas som ett alternativ till rostfritt stål i vissa applikationer och på så sätt 

bidra till genereringen av ekologiska material. 

Av främst ekonomiska skäl har ofta E. coli-bakterier använts för 

framställning av partiellt spindelsilke. Eftersom den stora genstorleken av 

naturliga spindeltrådsproteiner inte kan hanteras av bakterier har istället kortare 

bitar av fullängdsgenen valts ut och överförts till bakterier för att på så sätt 

producera partiella spindelsilkesproteiner istället. 

Användbarheten av de producerade partiella silkesproteinerna för olika 

tillämpningar inom områden som medicin och bioteknik kan ökas med en 

process som kallas funktionalisering, där olika biologiska egenskaper 
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inkorporeras i det partiella spindelsilket. Denna avhandling fokuserar på 

funktionalisering av två partiella spindelsilkesproteiner (4RepCT (RC) och 

NTCT (NC)) med olika affinitetsdomäner med hjälp av genteknik. Partiellt 

RC- och NC-silke härstammar från dragline-silke från spindeln E. australis. I 

artikel I och II har vi visat att olika affinitetsegenskaper kan tillföras RC- och 

NC-silke genom att kovalent kombinera olika affinitetsproteiner med de 

partiella silkesproteinerna genom att använda genteknik, vilket resulterar i RC- 

och NC-silkesfusionsproteiner. Både i artikel I och II observerade vi att 

förmågan hos silkesdelen i RC- och NC-fusionsproteinerna att spontant bilda 

fibrer fortfarande upprätthålls trots kovalent koppling till de olika 

affinitetsdomänerna. Dessutom bibehölls de målmolekylbindande 

egenskaperna hos de tillsatta affinitetsdomänerna i RC- och NC-

fusionsproteinerna. I artikel I kunde vi demonstrera förmågan hos M4-

4RepCT- och Z-4RepCT-silkesmaterial att binda biomolekyler på två olika 

sätt, båda väsentliga för till exempel odling av humana celler. Vi visade också 

på förmågan hos M4-4RepCT att presentera ett aktivt enzym i artikel I. Vi tror 

att sådana här funktionaliserade silkesmaterial skulle kunna användas för 

avancerade cellodlingstillämpningar, såsom i fältet ”tissue engineering”. I 

artikel II visade vi att förmågan hos anti-VEGF- och anti-C1q-proteiner för att 

känna igen sina målmolekyler väsentligt förbättrades när de var kovalent 

kopplade till NC-silke. Detta antyder att NC-silkesfusionsproteiner i framtiden 

kan användas för applikationer där det krävs en förbättring av 

målmolekyligenkänning. 
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