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Methane Production in Dairy cows - Impact of Feed and Rumen 
Microbiota  

Abstract 

Greenhouse gas emissions from the agricultural sector represent about 14.5% of total 

emissions related to human activity. Approximately 40% of agricultural sector emissions 

derive from enteric methane (CH4) production by ruminants, due to their microbial 

digestion of feed. Level of CH4 production varies according to feed type, feed intake and 

even among individual animals raised under similar conditions, but the underlying 

mechanism is not well known. This thesis investigated the effects of feed, feed additives, 

and rumen microbiota on CH4 production within dairy cows and in a gas in vitro system. 

Effect of individual cow was stronger than effect of diet for both CH4 production and 

methanogenic population when two different levels of forage proportions were fed. 

Dividing Methanobrevibacter species into two groups better explained the variation in 

CH4 production. The effect of individual was evaluated in cows fed the same diet during 

mid-lactation. High, low and medium emitters were identified and selected for further 

studies on rumen microbiota. These revealed that CH4 production was associated with 

archaeal and bacterial community structure. Differences were observed in volatile fatty 

acid proportions between communities, but not in fibre digestion or milk production.  

Tests on feed additives, cashew nut shell extract (CNSE) and glycerol in a gas in vitro 

system for their ability to reduce CH4 production showed that CNSE reduced CH4 

production by 18% and had a strong impact on microbiota, while glycerol increased CH4 

production by 12% and had less effect on microbiota compared with the control. 

Comparison of microbial composition in inoculum from the in vitro control and in 

inoculum from the donor cow before incubation revealed that the bacterial community 

was relatively similar, while relative abundance of some species changed for archaeal 

population. This effect of transfer into another system should be considered when 

evaluating in vitro data. Evaluation of the in vitro system by comparing predicted and 

observed CH4 production on 49 test diets showed an overall good relationship, with small 

root mean square error for prediction (12.3% and 9.5% of observed mean for fixed and 

mixed models, respectively). However, the in vitro system had limitations in prediction 

of concentrate proportion.  

Keywords: Dairy cattle, diet composition, cashew nut shell extract, glycerol, archaeal 

and bacterial community structure, methanogens, volatile fatty acids, in vitro gas 

production.  
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Abbreviations 

  

  

DM Dry matter 

DMI Dry matter intake 

ECM Energy corrected milk 

GE Gross energy 

GEI Gross energy intake 

GHG Greenhouse gases 

NDF Neutral detergent fibre 

OM Organic matter 

OTU Operational taxonomic unit 

PCR Polymerase chain reaction 

qPCR Quantitative polymerase chain reaction 

T-RF Terminal restriction fragment 

T-RFLP Terminal restriction fragment length polymorphism 

VFA Volatile fatty acid 
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1 Introduction 

With an expected increase in the world’s population from 7.4 billion today to 

9.6 billion in 2050 and with an increasing middle class world-wide, there will be 

an increase in demand for animal products such as milk and meat (Gerber et al., 

2013). According to FAO (2011), demand for milk and meat is expected to 

increase by 73 and 58 %, respectively, from 2010 to 2050, but the natural 

resources for increasing the food supply are limited (Gerber et al., 2013). 

Agriculture plays an important role in environmental issues, with a major impact 

on climate change, water pollution, land degradation and loss of biodiversity. A 

major challenge in livestock production is thus to increase productivity while at 

the same time reducing the environmental impact. In recent decades, increasing 

concentrations of greenhouse gases (GHG) in the atmosphere have led to rising 

global temperatures and climate change. Human activities (anthropogenic) are 

most likely responsible for causing the observed change to a warmer climate 

(IPCC, 2013). The main GHGs are water vapour, carbon dioxide (CO2), methane 

(CH4), nitrous oxide (N2O) and ozone. Livestock sector is estimated to 

contribute to anthropogenic GHG emissions as follows: 5% of CO2 emissions, 

44% of CH4 emissions and 53% of N2O emissions (IPCC, 2007). To make 

comparisons between different GHGs, all gases are converted into CO2 

equivalents (CO2-eq) according to their global warming potential (GWP). 

Measured over a 100-year period, CH4 and N2O have 28 and 265 times higher 

GWP than CO2 (IPCC, 2013). Anyhow, it is important to be aware of that 

calculations in GHG emissions data from agricultural production contains a wide 

range of uncertainty due to the complexity of biological systems (Gerber et al., 

2013; IPCC, 2007). 

Globally, there has been a major increase in GHGs since the pre-

industrial era. According to IPCC (2014), total anthropogenic global GHG 

emissions in 2010 were 49 ± 4.5 Gt CO2-eq, with the livestock sector accounting 

for around 7.1 Gt CO2-eq per year (Gerber et al., 2013). Within the livestock 

sector, enteric fermentation from ruminants is the largest source of GHG (40%), 

followed by manure management (Figure 1). Total CO2-eq. from monogastric 

animals are much lower than from ruminants (Figure 2).  
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Figure 1. Agriculture emissions by subsector. Source; Gerber et al. (2013) 

 

 

Swedish GHG emissions are about 54 Mt CO2-eq per year, but decreased by 

24% between 1990 and 2014 (Naturvårdsverket, 2016). The emissions from 

agriculture are about 7 Mt CO2 -eq., which have also decreased since 1990, by 

around 11%. The reduction in emissions is mainly because of the decrease in 

livestock numbers, higher feed quality, increased production efficiency and 

reduced use of synthetic fertilisers (Naturvårdverket, 2016). On the other hand, 

food imports have increased dramatically since 1990 and GHG emissions from 

imported food are not accounted for as Swedish emissions (LRF, 2016). For 

example, imports of beef increased from 12 510 to 139 370 tonnes per year from 

1990 to 2015 (Svensktkött, 2016).  

 

http://www.svensktkott.se/
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Figure 2. Global estimated emissions by species. Emissions are attributed to edible products and 

non-edible products such as draught power and wool. Beef cattle produce meat and non-edible 

outputs. Dairy cattle produce milk and meat, as well as non-edible outputs. Source: (GLEAM, 

Gerber et al., 2013). 

Methane emissions derive from several sources. Emissions can be divided into 

natural sources such as plants, wetlands, termites, ocean and hydrates, and 

anthropogenic sources such as rice fields, ruminants, landfills, sewage, biomass 

burning and fossil (Aronsson et al., 2013). Increased concentration of CH4 in the 

atmosphere over time is closely linked with human activities. Since pre-

industrial times there has been an almost 2.5 fold increase in CH4 concentration 

in the atmosphere. At the beginning of industrial revolution, around 1750, the 

concentration was about 750 parts per billion (ppb), which could be attributed to 

CH4 production from natural sources. Today, with its high human activity, the 

concentration of CH4 in the atmosphere is around 1800 ppb (IPCC, 2013). Since 

pre-industrial times there has also been a huge increase in the number of 

livestock. Even within this century, enteric CH4 production has increased by 

11%, from 1858 Mt CO2-eq to 2071 Mt CO2-eq between 2001 and 2011, with a 

major increase in developing countries (Tubiello et al., 2014).  

 

The potential for mitigation of CH4 production from ruminants per unit of 

product, e.g. milk or meat, depends on a number of factors. Thus knowledge of 

CH4 formation and of the factors that are important in the formation process is 

essential for any successive mitigation strategy. Methane production from 

ruminants occurs during microbial digestion of feed in the anaerobic 

environment in the rumen and hindgut. This fermentation process makes 

ruminants unique compared with humans and other monogastric animals. 
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Ruminants harbour a large number of microbes that have the capacity to convert 

feeds rich in fibre, which are non-valuable from a human perspective, into highly 

valuable products such as milk and meat. Level of CH4 production depends on 

type of feed and host (Johnson & Johnson 1995). Furthermore, CH4 production 

varies significantly between individual animals, even if they are raised under 

similar conditions (Pinares-Patiño et al., 2013; Jami et al., 2012). The effect of 

animal may be influenced by physiological parameters such as chewing time, 

rumen size and passage rate from the rumen. These factors may benefit certain 

types of microbial community structure of microorganisms in the rumen, which 

in turn influences digestion of the feed into end-products that have an effect on 

both animal production and the environment (Jami et al., 2012). Due to the 

individual variation in CH4 production, it might be possible to select cows with 

traits that seem to lower CH4 production. However, it is essential that selection 

for low CH4 production not affect other parameters negatively, as digestion of 

feed and milk or meat production.  

 

As a first step to identify possible low CH4 producers, diets or feed additives that 

contribute to lower CH4 production and use of consistent measuring techniques 

are important. At present, several options with different approaches for reducing 

CH4 production are available, all with their advantages and disadvantages, and 

most approaches lack long-term effect of inhibition.  

For measuring CH4 production in vivo several techniques can be used, all 

had their advantages and disadvantages that needs to be considered before 

choosing technique. In addition, in vitro measurements can be used as a first step 

to test the effect of feeds or feed additives on CH4 production where many 

samples can be analysed at the same time. When CH4 production has been 

measured, a further step is to examine parameters that may explain the variation 

in CH4 production, such as different physiological parameters and the rumen 

microbial structure. Today, knowledge of rumen microbes is still somewhat 

limited and a better understanding of rumen microbiology is essential for 

strengthening the possibilities for improving feed utilisation or for manipulating 

the microbial community to reduce CH4 production. 
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1.1 Aims of thesis 

Reducing enteric CH4 production from livestock is one of the main challenges 

in lowering the environmental impact from the agricultural sector. The overall 

aim of this thesis was to evaluate different factors with potential to reduce CH4 

production in dairy cows, e.g. feeds, feed additives and the rumen microbiota. 

In particular, the thesis investigated cows fed under Nordic feeding regimes, 

which are unique as agriculture is not practised at such high latitudes anywhere 

else in the world. 

 

The specific aims of the studies described in Paper I-IV were to: 

 Investigate correlations between methane emissions, microbial 

community structure and forage proportion (Papers I-II) 

 Identify links between microbial community, feed digestion and 

fermentation product with in cows producing high and low levels of 

CH4 (Paper II) 

 Investigate the effects of the feed additives cashew nut shell liquid 

extract and glycerol on microbial community structure and CH4 

production (Paper III) 

 Evaluate the ability of a gas in vitro system to predict CH4 production 

and the effect on microbial community structure compared to in vivo 

studies (Papers III-IV). 
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2 Rumen fermentation and methane 
production 

2.1 Rumen fermentation 

In ruminants, the main digestion of the ingested feed occurs in the rumen, 

reticulum and omasum, which together are called reticulo-rumen. These three 

compartments of the four-compartment ruminant stomach contain different 

fractions of liquids and solids which all have different turnover times (Wolin, 

1979). In the rumen, all three domains of microbial life (archaea, bacteria and 

eukarya (fungi and protozoa)) are present (Woese et al., 1990). When feed enters 

the rumen, primary fermenters, such as bacteria, fungi and protozoa, start to 

digest the feed macromolecules into monomers such as simple sugars and carbon 

skeletons. The effective degradation of fibrous feed in the rumen is due to 

fibrolytic enzymes produced by bacteria, protozoa and fungi, which include 

cellulases, xylanases, β-glucanases and pectinases. There are also other non-

fibrolytic enzymes present in the rumen, such as amylase, protease and phytase 

(Wang & Mc Allister, 2002). To degrade the complicated structure of cellulose 

chains, several enzymes are needed: i) endoglucanase (cellulase) splitting the β-

1,4 glyosidic bond within the chain, ii) exoglucanases (cellobiosidase or 

cellobiohyrolases) cleaving cellobiose from the end of the chain and iii) β-

glycosidase (cellobiases) converting cellobiose into glucose (Lynd & Zhang, 

2002). Several cellulolytic species are predominant in herbivores to optimise the 

utilisation of nutrients from cellulosic feed (Morrison & Miron, 2000). 

Carbohydrates are degraded to glucose equivalents, which are metabolised to 

pyruvate through the Emden-Meyerhof-Parnas (EMP) pathway (glycolytic 

pathway). In the pathway, NAD is reduced to NADH, which needs to be re-

oxidised to NAD for complete sugar fermentation and during this re-oxidation 

hydrogen (H2) can be produced (Moss et al., 2000). Pyruvate, the end-product 

of the EMP pathway, is then further fermented by microorganisms known as 

secondary fermenters to main end-products such as volatile fatty acids (VFA), 

mainly acetate, propionate and butyrate, H2 and CO2, but ethanol, formate, 

succinate, lactate and ammonia are also produced (Van Soest, 1994; Hungate, 

1966). The amounts of the different end-products vary depending on diet 

composition, but when considering VFA, CO2 and CH4 as sole fermentation end-

products the overall fermentation equation of hexoses can be summarised as:  

 

57.5 Hexose → 115 Pyruvate → 65 Acetate + 20 Propionate + 15 Butyrate + 35 

CH4 + 60 CO2       (Wolin, 1960) 
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The majority of the VFAs produced are rapidly absorbed through the rumen wall 

into the bloodstream and serve as major energy and carbon sources for the 

animal. Amino acids, peptides and ammonia, released during the degradation of 

proteins and non-protein N-compounds, can be taken up by the microbes and 

converted to microbial protein. Some of this microbial protein is degraded and 

utilised in the rumen, but the majority of protein, both microbial protein and 

undegraded feed protein, is further utilised in the small intestine. The 

fermentation in the rumen is dependent on syntrophic, and symbiotic relations 

between different microbes, including bacteria, archaea, fungi and protozoa. For 

instance, syntrophic interspecies H2 transfer occurs in the rumen when some 

microbes produce H2 that is then used by other microbes (Krause et al., 2014). 

In the rumen, no single microbial species can ferment the substrate all the way 

and therefore other microbes with other substrate preferences are needed.  

 

 

 

Figure 3.  Metabolism of NADH H+ and electron sink products*. Source: Moss et al. (2000)1 

2.2 Methanogenesis 

Depending on the amount and proportions of different VFAs produced, different 

amounts of CH4 and CO2 are also produced. When acetate is produced, re-

oxidation of NADH occurs by production of H2 that can be further used by 

methanogenic Archaea (methanogens) to reduce CO2 to CH4. In comparison, 
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during propionate production the re-oxidation of NADH occurs by production 

of succinate or lactate that is then fermented to propionate, giving no CH4 

formation (Figure 3). Methanogenesis, as the CH4 production step is called, is 

where methanogens generate their energy in the form of ATP (Ferry & Kaestad, 

2007). Methanogenesis is one of the important means to remove H2 from the 

rumen, in order to maintain effective fermentation (Moss et al., 2000). Hydrogen 

is the most common substrate for CH4 production, but there are also other 

substrates that can be used by the methanogens, such as formate, methanol, 

methyl amines, methyl sulphides and the methyl group of acetate. Depending on 

the substrate used, the methanogens can be divided into three groups: i) 

hydrogenotrophic methanogens, which are most common in the rumen (Janssen 

& Kirs, 2008) and mainly use H2, but some can also use formate to reduce CO2 

(Liu & Whitman, 2008; Thauer et al., 2008); ii) methylotrophic methanogens, 

which use methyl compounds from methanol, methylamines or methyl sulphides 

and oxidise them partly to CO2 to produce electrons that can be used for further 

reduction of methyl groups to CH4 (Lang et al., 2015; Janssen & Kirs, 2008); 

and  iii) acetotrophic methanogens, which use the methyl group from acetate for 

dissimilation to CH4 and CO2 production (Janssen & Kirs, 2008). Furthermore, 

some of the methanogens are versatile and can use several substrates, while 

others are stricter and only use a certain substrate (Costa & Leigh, 2014). In the 

rumen, hydrogenotrophic and methylotrophic methanogenesis occur (Poulsen et 

al., 2013; Hungate, 1970). Hydrogenotrophic methanogenesis, with H2 as 

substrate, follows the reaction: 

 

CO2 + 8H → CH4 + 2H2O 

2.2.1 Alternative electron incorporating processes 

There are other electron incorporating processes in the rumen than CH4 

formation and if this could be favoured, CH4 production could be reduced. As 

mentioned above, in propionate production less H2 is produced than in acetate 

production, giving less CH4 production. Methane reduction is possible if the 

ratio of the VFAs is changed to favour a higher ratio of propionate (Johnson & 

Johnson, 1995). Increasing the proportion of concentrate in relation to forage 

usually increases the digestibility of the feed and leads to a higher propionate 

proportion, but this mainly has an impact when the diet contains >50% 

concentrate (Johnson & Johnson, 1995). However, this has not been observed 

with Nordic diets, where no effect has been found on propionate proportion with 

increasing starch proportion in the diet (Sveinbjörnsson et al., 2006; Murphy et 

al., 1999). Another H2-using process is biohydrogenation of unsaturated fatty 

acids, but this uses a very small proportion of H2 compared with methanogenesis 
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(Johnson & Johnson, 1995). Hydrogenotrophic bacteria such as acetogens exist 

in the rumen and can reduce CO2 to form acetate (4H2 + 2CO2 → CH3COOH + 

2H2O) by the Wood-Ljungdahl pathway (reductive acetogenesis). Acetogenic 

bacteria are the major utilisers of H2 to reduce CO2 to acetate in many 

environments. Acetogenesis, instead of methanogenesis from H2, is favourable 

as it results in acetate, which is taken up by the animal and used as energy 

(Joblin, 1999). However, in the typical ruminal fermentation, methanogens drop 

H2 pressure to a level at which reductive acetogenesis has been estimated to be 

thermodynamically unfeasible (Kohn & Boston, 2000) and as a result the 

process is believed not to occur to any significant extent, instead the 

methanogens have a strong advantage (Ellis et al., 2008; Le Van et al., 1998). If 

methanogenesis is inhibited acetogenesis will probably take place, as shown in 

a study by Fonty et al. (2007) where gnobiotic lambs were inoculated with a 

functional microflora but without methanogens. The lambs grew well and the 

acetogens developed in high numbers (106-107 cells/g), which also indicates that 

rumen fermentation seems able to cope with higher H2 pressure.   

There are other possible electron incorporating processes, such as 

reduction of nitrate and sulphate, which has an advantage in the reduction step 

(Table 1) compared with reduction of CO2 to CH4, due to higher energy yield 

that gives higher growth rate and that use of H2 that occur at lower pressure 

(Ungerfeldt & Kohn, 2006). Sulphate and nitrate are not as common in the rumen 

and addition to the diet may pose a risk, as the intermediate product in 

conversion of nitrate to ammonia is nitrite, which is toxic (Lewis, 1951), while 

in conversion of sulphate hydrogen sulphide is produced and it is also toxic at a 

certain level (Gould, 1998). If these two additives could be fed in a safe way and 

within the recommended amounts, it would have a major impact in reducing CH4 

production (Van Zijderveld et al., 2010). However, the cost of these additives 

may make this unfeasible in practice. More detailed information on different 

diets and on factors that may inhibit CH4 production or methanogenic activity is 

provided in Chapter 3.  

 

Table 1. Free energy yield from reduction of different possible hydrogen sinks 

in the rumen. ∆G0 values from Ungerfeldt and Kohn (2006) 

Reduction Gibbs free energy,  (∆G0, kJ / mole hydrogen) 

 

Nitrate → Nitrite -130  

Nitrite → Ammonia -124  

Sulphate → Hydrogen sulphide -21.1 

CO2 → CH4 -16.9 
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3 Mitigation strategies for CH4 production 

Mitigation of CH4 production is a central issue for reducing the climate impact 

from the agricultural sector. The goal is to reduce total CH4 production from the 

sector in general, but also to reduce CH4 production specifically per kg product 

(milk and meat). For the dairy industry, the main aim is to reduce CH4 production 

per kg energy corrected milk (ECM). Increasing the efficiency of the animals by 

improved animal health and maintained high fertility has the main impact on 

CH4 production per kg ECM. Furthermore, various strategies have been devised 

to improve feed digestion and optimise rumen functions, with the aim of 

reducing CH4 emissions. Manipulating the ruminal microbiome through 

different dietary strategies may have a certain impact that can partly be additive 

to other reduction strategies. This chapter give some examples of possible 

strategies. 

 

3.1 Intake level and composition of feed  

3.1.1 Feeding level 

Dry matter intake (DMI) is assumed to be one of the main factors that determines 

CH4 production. Total CH4 production (g/day) is positively correlated with DMI 

intake and hence high intake means more feed to ferment. Nevertheless, when 

DMI and gross energy intake (GEI) increase over maintenance level, CH4 as a 

proportion of DMI or GEI generally decreases (Pinares-Patino et al., 2009; Moe 

& Tyrrell, 1979; Blaxter & Clapperton, 1965). This is most likely related to a 

decrease in DM digestibility changes in fermentation pattern and possible 

repartitioning of carbon between microbial cells and VFA production and 

associated increase in passage rate caused by the higher intake rate. An increase 

in productivity results in a reduction in CH4 production per kg product, milk or 

meat, mainly due to dilution of the CH4 that is always produced from the feed 

consumed to fulfil the animal’s maintenance requirement. Gerber et al. (2011) 

showed how increasing milk production reduced total CO2-eq per kg fat protein 

corrected milk (FCPM) from 12 kg CO2-eq/kg FPCM at a very low level of 

production of around 300 kg FPCM per cow and year to 3 kg CO2-eq/kg FPCM 

at a production level of 2000 kg FPCM per cow and year. Emissions were further 

reduced to 1.6-1.8 kg CO2-eq/kg FPCM as yield increased to 6000 kg FPCM, 

after which they more or less stabilised. For CH4 production only, the trend was 

very similar (Gerber et al., 2011). In Sweden, the number of cows decreased 

from 525 000 in 1993 to 338 000 in 2014 (-36%), while total milk delivered to 

dairies only decreased marginally (SCB, 2016). This means that total CH4 
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emissions decreased by more than 20%. However, in analyses using data on the 

linear relationship between DMI and CH4 production, there is usually a high 

correlation between intake and CH4 production. This high correlation is achieved 

with a wide range of DMI, while when considering a more narrow range of DMI 

and also increased feeding level the variation is much higher. The reason for this 

variation needs to be further investigated. Non-linear models has been used for 

predicting CH4 in relation to DMI, the quadratic model of Axelsson (1949) 

predicts maximum CH4 production at DMI of 12.5 kg/d and the declined values 

above that. In the study by Ramin and Huhtanen (2012a) non-linear models was 

more precise than linear DMI models, according to lower prediction error. 

3.1.2 Concentrate inclusion 

Type of diet has been shown to affect microbial community composition and 

microbial diversity, which in turn can impact on CH4 production.  In different 

cattle systems, the animals are fed forage-only diets or mixed diets with different 

proportions of forage and concentrate. Forage usually contains more fibrous 

material than concentrates. Concentrates are instead rich in starch. Reducing the 

proportion of forage and increasing the proportion of starch is widely assumed 

to be a useful strategy to reduce CH4 production from ruminants, mainly with 

inclusion of more than 50% concentrate in the diet (Johnson & Johnson, 1995). 

According to IPCC (2006), CH4 production as a percentage of gross energy  

intake (GEI) is 6.5% for dairy cows fed a mixed ration, compared with 3% for 

cattle in feedlots, which are commonly fed >90% concentrate. However, in the 

meta-analysis by Ramin and Huhtanen (2013), only diets with less than 75% 

concentrate as dietary DM were included. The results showed that the effect of 

forage to concentrate proportion was rather small up to 70-75% of dietary DM. 

Diets with concentrate comprising between 0-75 and 90% were suggested to 

probably rapidly change CH4 production, but this may be difficult to predict 

(Ramin & Huhtanen, 2013). Digestion of starch-rich diets is faster than digestion 

of forage diets and this results in a rapid increase in the amount of VFAs, 

followed by a pH decrease (Krizan et al., 2010; Cannas & Van Soest, 2000). It 

has been observed that on changing from a forage-rich diet to a high grain diet, 

the proportion of fibrolytic bacteria decreases and the proportion of starch-

fermenting bacteria increases (Penner et al., 2010). This type of diet shift has 

also been shown to result in a shift in VFA proportions as described above, with 

an increase in propionate and a decrease in CH4 production (Penner et al., 2010). 

This effect has not been found in all cases however, as some studies report no 

effect (Popova et al., 2011) or the opposite effect (McGinn et al., 2006) on CH4 

production. In other studies with barley as the main starch source, an increase 
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has been observed in molar proportion of butyrate and a decrease in molar 

proportion of propionate with increasing barley proportion in the diet (Moss et 

al., 1995; Jakkola & Huhtanen, 1993). Furthermore, other studies show that the 

impact of concentrate has a variable effect on CH4 production (Figure 4). This 

difference in CH4 response with increasing concentrate level between different 

studies is most likely related to the different effects on fermentation pattern or 

feeding level depending on type of starch or concentrate used (Hristov et al., 

2013; Moss et al., 1995).  

 
Figure 4. Results of five different studies showing different responses in terms of CH4 production 

per kg dry matter intake (DMI) to proportion of concentrate in the total diet. Different colours and 

marks represent data from different studies. Red circles = Moss and Givens (2002), grey crosses = 

Moss et al. (1995), blue squares = Ferris et al. (1999), yellow triangles = Beever et al. (1988) and 

green diamonds = Kirkpatrick et al. (1997). 

 

However, when changing to starch-rich diets, the advantage of ruminants’ ability 

to degrade cellulose is decreased and instead there is greater competition for 

starch-rich feeds, such as cereals, that could be better used for monogastric 

animals or directly as human food. In addition, forage is crucial for the health 

and welfare of ruminants and too low a proportion of forage will decrease 

rumination and salivation. A decrease in salivation in turn reduces the capacity 

to buffer VFAs, which can cause the pH to fall too low for the microbes in the 

rumen (Van Soest, 1994). Instead, by increasing forage quality through 
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increasing its digestibility and its energy content, forage can constitute the 

majority of the diet fed to dairy cows. Swedish cows produce on average 9900 

kg ECM/year, which is in the upper range of production levels in the world 

(FAOSTAT, 2015). In a study in Sweden by Patel (2012) it was shown that 

feeding cows with a forage:concentrate ratio of 70:30 ratio did not affect milk 

production compared with a 50:50 diet, provided the energy content of the silage 

was above 11 MJ ME and it contained 14-15% CP per kg DM. Furthermore, an 

increase in forage proportion in the diet of dairy cows will increase the demand 

for cultivation of leys compared with grain. This will have a positive impact on 

the environment, as there are several environmental benefits of ley cultivation, 

e.g. it is a perennial crop that needs less tillage and less energy from fossil fuels, 

less pesticide is used and it results in less eutrophication compared with grain 

(Flysjö et al., 2008).  

 

3.1.3 Digestibility 

Depending on type of forage, the NDF content increases in relation to maturity 

stage, which decreases the digestibility (Rinne et al., 1997). High digestibility 

increases the utilisation of energy and increasing the level of energy intake gives 

only a small increase in CH4 production, while milk and meat production 

increase dramatically (Hegarty et al., 2010). For example, for a lamb weighing 

30 kg that consumes 900 g/day of forage, an increase in digestibility from 65 to 

75 % would lead to an average increase in daily weight gain from 51 to 101 g, 

with only a slight increase in CH4 output of less than 1 g CH4/day. Thus this 

would give only half the emissions per unit average daily weight gain compared 

with the low digestibility diet (Hegarty et al., 2010). Dietary starch composition 

can vary widely between forage species, e.g. maize silage contains around 30% 

starch while the concentration in grass silage is very low (Rinne et al., 1997). 

High quality feeds with high digestibility and energy content can increase animal 

productivity by improving feed utilisation and also lower CH4 production per kg 

product.  

3.2 Feed supplements and additives 

3.2.1 Fat  

Fat inclusion seems to be one of the most promising strategies to reduce CH4 

production, but the effect varies between studies and seems to be influenced by 

type of diet, source of fat, type of fatty acid and level of inclusion (Beauchemin 

et al., 2008, 2007). In the review by Beauchemin et al. (2008), an analysis 

performed with results from 17 different studies showed that CH4 (g/kg DMI) 
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was reduced by 5.6% per additional 1% of inclusion of fat in the diet compared 

with the control. A total reduction of 10-25% was proposed for a common 

commercial diet when fat inclusion was at most 6-7%, which is the maximum 

fat inclusion recommended in NRC (2001) feed recommendations (Beauchemin 

et al., 2008).  The potential reduction in CH4 production is due to several actions 

of the lipids. Lipids are not fermented in the rumen and thus the digestion of 

organic matter (OM) is less, giving less CH4 production per kg OM (Martin et 

al., 2010). Moreover, lipids have an anti-microbial action against methanogens 

and also affect protozoa, cellulolytic bacteria and other bacteria (Maia et al., 

2007; Doreau & Ferlay, 1995), which is promising for reducing the CH4 

production. This effect seems to be mainly due to different long-chain fatty acid 

(LCFA) sources, although CH4 emissions are also somewhat lowered because of 

reduced fibre digestion (McGinn et al., 2004). The inhibition of cellulolytic 

microbes gives a shift in microbial population, which may increase propionate 

production (Martin et al., 2010). Moreover, as mentioned in section 2.2.1, 

biohydrogenation of unsaturated fatty acids can be an alternative source for use 

of the H2, but incorporation of the H2 produced is small compared with in 

methanogenesis (Czerwaski & Clapperton, 1984). In a study by Palmqvist and 

Jenkins (1980), addition of 3-5% fat was shown to have the best effect on milk 

production, without any negative effect on the microflora. Similar conclusions 

were drawn in a meta-analysis study by Huhtanen and Nousianen (2012), who 

found that 3-4% fat inclusion was most optimal with regard to milk production. 

Different sources of lipids can have a negative effect on DMI, which may affect 

milk production over longer periods of time, and it is therefore important to 

analyse the long-term effect of fat additives (Knapp et al., 2014; Beauchemin et 

al., 2008; Grainger et al., 2008). Furthermore, the economic aspect needs to be 

considered, as the cost of fat additives, especially refined oils, is usually higher 

than the cost of the fat source in the commonly used cereals, which makes use 

of fat additives unprofitable for commercial use. However, within Swedish dairy 

production there are small possibilities to make any gains by increasing fat 

feeding, as most common commercial feeds in Sweden already contain 5-10% 

crude fat.  

 

3.2.2 Plant bioactive compounds 

Plant bioactive compounds such as tannins and saponins may have CH4 

mitigating potential. Tannins, as feed supplements or as tanniferous plants, have 

frequently been shown to have potential for reducing CH4 emissions by up to 

20% (Mohammed et al., 2011; Waghorn et al., 2002). The reduction in CH4 is 

due to the inhibitory effect on methanogens, protozoa and other hydrogen-
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producing microbes (Patra & Saxena, 2010; Tavendale et al., 2005). At the same 

time, reduced digestibility is common for diets containing condensed tannins at 

high levels (Patra & Saxena, 2010; Waghorn, 2008). In addition, intake and 

animal health can be negatively affected if tannin inclusion rate is more than 50 

g/kg feed (Mueller-Harvey, 2006). Temperate plants rich in tannins can replace 

other forages and in hot and arid regions many legumes are rich in tannins and 

represent a valuable feed resource. There is a large diversity within different 

types of tannins depending on chemical structure, which together with level of 

intake partly explains differences in mitigation potential for CH4 production 

observed with different sources of tannins (Morgavi et al., 2013; Mueller 

Harvey, 2006). Tannins are also used in ruminant nutrition to increase protein 

utilisation. This effect is obtained though tannins binding to dietary proteins, 

which can then become ‘rumen-escape’ proteins that are further utilised in the 

intestine instead (McSweeney et al., 2001).  

Saponins influence CH4 production and protein metabolism in the 

rumen by their toxic effect on protozoa (Patra & Saxena, 2010; Jouany & 

Morgavi, 2007). In a meta-analysis by Goel and Makkar (2012), six of the nine 

studies investigated reported a decrease in CH4 production from about 6 to 27% 

(per unit body weight (BW) or DMI). In sheep, decreases of 10-15% in CH4 

production have been reported with Yucca schidigera and Quillaja saponaria 

saponin sources (Wang et al., 2009; Pen et al., 2007) and similar results have 

been reported for tea saponins (Mohammed et al., 2011). The effect over time is 

unknown and it has been observed that there may be an inactivation of rumen 

bacterial populations (Newbold et al., 1997), which may give a reduced effect 

over time. 

3.3 Methane inhibitiors 

Inhibitors such as bromochloromethane, 2-bromo-ethane sulfonate and 

chloroform have been shown to reduce CH4 emissions, but with a harmful effect 

on the animal, which makes them unsuitable for use on commercial farms 

(McAllister & Newbold, 2008). Recently, the use of 3-nitrooxypropanol (3NP) 

was shown to reduce CH4 emissions in dairy cows by 30 % without any effect 

on milk production or feed intake (Hristov et al., 2015). However, in another 

study the effect was about 8% and no further reduction was obtained with 

increased inclusion (Reynolds et al., 2014). The difference in effect may be due 

to animal, diet and dosing method (Reynolds et al., 2014). In contrast to the 

above-mentioned inhibitors, the results indicate that 3NP shows no signs of toxic 

effects on the animal and no or a minor effect on DMI. The effect of 3NP is due 
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to blockage of CH4 production by inhibition of the last step of methanogenesis 

(Haisan et al., 2014).  

3.4 Ionophores 

Ionophores are lipid-soluble ion carriers that transfer ions over the cell 

membrane and thus disrupt the membrane potential, specifically in gram-

positive bacteria, and as a consequence affect CH4 production (Wolin & Miller, 

2006). Monensin is the most commonly applied ionophore and it is routinely 

used in beef production and dairy cattle nutrition in North America to increase 

feed efficiency (Hristov et al., 2013a). It promotes the production of propionate 

at the expense of acetate and hydrogen (Johnson & Johnson, 1995). However, 

the use of monensin has been shown to cause a reduction in feed intake, which 

may explain part of the lowering effect on CH4 through less feed being 

fermented (Hegarty, 1999; Johnson & Johnson, 1995). Monensin does not 

appear to have a consistent direct effect on CH4 production in dairy or beef cattle, 

but due to the increase in production a reduction in CH4 emissions per unit of 

meat (Goodrich et al., 1984) and milk (Duffield et al., 2008) may be obtained 

for a short period. However, ionophores are banned in the European Union due 

to the potential risk of antibiotic resistance. Furthermore, the image of milk as a 

‘natural product’ could be affected negatively by using chemical additives. 

3.5 Vaccination 

Vaccination may be a possible strategy for inhibiting CH4 production that is very 

attractive, as it can be applied in all types of animals and is a practical approach 

on farm level (Clark, 2013; Wedlock et al., 2013). A vaccine used for inhibition 

of CH4 is thought to induce antibodies in saliva and this results in high levels of 

antibodies in the rumen, reducing the activity of the methanogens (Wedlock et 

al., 2013). However, no significant inhibition of CH4 production has been 

observed with the vaccines tested to date (Williams et al., 2009; Wright et al., 

2004). To succeed in reducing CH4 production, an anti-methanogen vaccine 

needs to have broad specificity against common methanogens in the rumen. 

Identification of key antigens is needed and knowledge of the genome of 

methanogens will probably increase the potential to succeed with a vaccine 

(Wedlock et al., 2013). However, even if a potential vaccine is produced, there 

may be only a short-term effect as the adaptation of microbes and persistence of 

the effect are unknown. 
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3.6 Individual variation 

Measurements on individual sheep in respiration chambers have shown that 

methane emissions from animals within the same group fed the same diet can 

vary significantly in terms of g CH4 per kg DMI (Pinares-Patiño et al., 2003)The 

mechanism behind the individual variation is not well known and researchers 

are trying to identify certain parameters that can have an impact. In a study by 

Goopy et al. (2014), a positive correlation was found between CH4 production 

and rumen size and rumen retention time. Furthermore, the passage rate has been 

shown to be heritable (Smuts et al., 1995). The pH level in the rumen also varies 

and seems to be regulated by the individual through salivation, rumination and 

absorption of VFAs (Weimer et al., 2010). In addition, previous studies have 

shown host-specific interactions on the microbial flora, which could make it 

possible to breed for animals with a microbiota that promotes low CH4 

production (Hernandez-Sanabria et al., 2013; Guan et al., 2008). Breed of beef 

cattle has been shown to have an effect on microbial composition (Guan et al., 

2008) and in a study by Hernandez-Sanabria et al. (2013) the sire had effect on 

the microbial composition in the offspring. 

Recently, Roehe et al. (2016) analysed the links between microbial genes 

and CH4 emissions according to sire effect and concluded that archaeal 

abundance is under host genetic control and that selection of low emitters would 

be possible. Another example showing that the microbiota is host-specific is 

provided by Weimer et al. (2010), who performed an almost total exchange of 

rumen content with differing VFA concentration and pH between two pairs of 

cows. The first pair showed recovery of pH and VFA within 24 hours and 

recovery of the bacterial community composition took 14 days for one cow and 

61 days for the other. For the second pair of cows, one showed total recovery of 

pH and VFA within 24 h, while the other had a higher pH and lower VFA that 

was maintained during the test period of 62 days. The bacterial community for 

the second pair was different to the pre-change community, but was still more 

similar to the individuals’ community pre-change than to the donor community. 

Weimer et al. (2010) therefore concluded that bacterial community composition 

is host-specific and is optimised according to the different ruminal conditions in 

different individuals. However, the differences in CH4 production between 

animals may be related to the increased passage rate and also reduced fibre 

digestibility. Thus, before selecting low CH4 emitters, it has to be confirmed that 

low CH4 production is not associated with low fibre utilisation and less milk or 

meat production.    
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3.7 Other aspects to be considered 

When analysing the effect of certain strategies, it is important to evaluate the 

long-term effect of the reduction potential and the overall effect of rumen 

function. The microbial community structure in the rumen seems to change 

according to dietary changes, but then there seem to be a return to the pre-change 

structure which may be only visible after a long period (Weimer et al., 2010). 

Practical and economic issues are important in the evaluation of potential CH4 

production inhibitors for sustainable strategies at farm level. In low intensity 

systems, increased individual production by improving feed quality and feeding 

intensity level will significantly reduce CH4 production per unit product through 

dilution of the CH4 from maintenance. However, in intensive systems the 

mitigation potential is lower. In a study by Knapp et al. (2014), the effect of feed 

and feed additives in intensive dairy production systems was calculated to reduce 

CH4 production/kg ECM by 2-15%. Combining feeds and additives with other 

strategies such as breeding and improved management leading to higher feed 

efficiency and higher lifetime production may reduce CH4 production by 15-

30%. When aiming for lower CH4 production with certain strategies, it is 

important to avoid wastes in the whole chain from field to farm, so that a 

decrease in CH4 production does not increase GHG in another part of the 

production chain.  
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4 Rumen microbiology 

Rumen microbes have co-evolved with their hosts and perform specialist 

functions which are highly important for the health and nutrition of the ruminant 

(Morgavi et al., 2010). The rumen environment harbours microbes from all three 

domains: bacteria, archaea and eukaryotes. The microbial ecosystem in the 

rumen consist predominantly of bacteria, accounting for approximately 95% of 

the total amount of microorganisms. The numbers of the different group of 

microbes are around: 1010-1011 bacteria/mL, 104-106 protozoa/mL, 103-107  

fungi/mL, 107-109 archaea/mL and 109-1010 viruses/mL (Wright & Klieve, 

2011). However, less than 1% of rumen microbes have been cultured and 

identified (Amann et al., 1995). This lack of sufficient understanding of the 

ruminal microbiome is one of the major knowledge gaps hindering effective 

enhancement of rumen functions (Firkins & Yu, 2006). There are many factors 

that affect microbial community composition and function and it is important to 

get a better understanding of their interactions with environmental factors in 

order e.g. to succeed in attempts to redirect the fermentation pattern to increase 

fibre digestion and energy utilisation with reduced impact on the environment. 

4.1 Bacteria 

Within the rumen, about 70-75% of the bacteria are associated with feed 

particles (Craig et al., 1987). By attachment to feed particles, bacteria require a 

lower growth rate to remain in the rumen, compared with the higher passage rate 

and washout in the liquid phase (McAllister et al., 2004). The remaining 25-30% 

of bacteria are in the liquid phase, where they soon attach to feed particles or 

flow down to the lower tract, where they are utilised as feed protein for the host 

in the intestines (Legay-Carmier & Bauchart, 1989; Craig et al., 1987). There 

are also some bacteria that are attached to the epithelium of the rumen wall, but 

these represent just a small fraction of the total number of bacteria and seem to 

be more related to the metabolic signal to the host than other types of bacteria 

(Wallace et al., 1979). The bacterial community in the rumen is highly diverse 

and more than 200 species have been identified (McSweeney et al., 2005). The 

number of active bacteria depends on parameters such as animal, breed, type of 

feed, composition of feed and many other factors (Agarwal et al., 2015). Each 

microbial species has specialist substrate preferences and the rumen bacteria can 

be classified into cellulose, hemicellulose, pectin, starch and sugar digesters 

(Zhou et al., 2015). Cellulose, hemicellulose and pectin are the main components 

of plant cell wall polysaccharides, which can all be degraded with different types 

of enzymes from certain microbes. The dominant hemicellolytic bacteria 

http://femsec.oxfordjournals.org/content/76/1/49#ref-13
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identified to date are Butyrivibrio fibrosolvens, Ruminococcus flavefaciens, 

Ruminococcus albus and Prevotella ruminocola (Dehority, 1994). Pectin and 

hemicellulose need to be degraded before it is possible to degrade the cellulose. 

Cellulolytic bacteria in the rumen are both gram-negative and gram-positive 

species. Many cellulolytic bacteria belong to the genera Fibrobacter, 

Ruminococcus, Butyrivibrio, Prevotella and Eubacterium (Koike & Kobayashi, 

2009), with the most commonly found species present in almost all ruminants 

being Fibrobacter succinogenes, Ruminococcus flavefaciens and Ruminococcus 

albus (Weimer, 1992). These cellulolytic species have a very restricted range of 

growth substrate, as they can only utilise cellulose and its hydrolytic product 

glucose (Hungate, 1966). In forages, pectin represents a smaller percentage 

compared with hemicellulose and cellulose, but is fermented more rapidly 

(Chesson & Monro, 1982). The major pectin-degrading species have been 

identified as Butyrivibrio fibrosolvens, Prevotella ruminocola, Fibrobacter 

succinogenes, Lachnospira multiparous and Succinovibrio dextrinosolvens 

(Bryant & Small, 1956).   

4.2 Archaea  

Archaea are widespread in different anaerobic environments. Methanogenic 

archaea have been found in the rumen, lower intestinal tract of mammals, gut of 

termites, sewage, anaerobic digesters, landfills, rice paddies, freshwater 

sediments, marine sediments, geothermal systems and heartwood of trees (Liu 

& Whitman, 2008). In all these environments, methanogens form a large and 

diverse prokaryotic domain, not only ecologically but also phylogenetically 

(Cerosimo & Wright, 2015). Although the methanogens are strictly anaerobic, 

they are difficult to grow in vitro and consequently only a few methanogens have 

been cultured (Wright & Klieve, 2011). Compared with bacteria, rumen archaea 

are much less diverse (Henderson et al., 2015). Today there are seven known 

orders of methanogens: Methanobacteriales, Methanomicrobiales, 

Methanococcales, Methanocellales, Methanopyrales, Methanosarcinales and the 

recently discovered order Methanomassiliicoccales (Oren & Garrity, 2013). In 

ruminants, the genus Methanobrevibacter, which belongs to the order 

Methanobacteriales, is the most abundant methanogen (St Pierre & Wright, 

2012; King et al., 2011; Jeyanathan et al., 2011; Wright et al., 2004). According 

to Cerosimo and Wright (2015), 120 species and 33 genera of methanogens have 

been identified in the rumen. Methanogens are not able to degrade complex 

molecules and thus need other microorganisms that provide them with their 

substrates. In the rumen, some methanogens live in a symbiotic relationship with 

other microbes, such as protozoa, and some are free-living. There is a synergistic 
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relationship between fermenting microbes producing H2 and H2-utilising 

methanogens, involving interspecies hydrogen transfer (Thiele et al., 1988). This 

synergistic relationship enhances the fermentation of feed by keeping the H2 

pressure low (Demeyer & Van Nevel, 1975). As mentioned in section 2.2, 

different methanogens utilise different substrates, and hydrogenotrophic and 

methylotrophic methanogens are most commonly found in the rumen. In 

general, species within the genus Methanobrevibacter utilise H2 for the 

reduction of CO2 to CH4, but some species can also utilise formate. These 

include Methanobrevibacter olleyae, Methanobrevibacter ruminantium, 

Methanobrevibacter millerae, Methanobrevibacter smithii and 

Methanobrevibacter woesei (Ferry & Kaestad, 2007). Even though most 

methanogens in the rumen are hydrogenotrophs, some species also utilise 

methanol or/and methyl amines. Methanosarcina barkeri and Methanosarcina 

mazei utilise both methanol methyl amines (Ferry & Kaestad, 2007), whereas 

Methanosphaera stadtmanae only utilises methanol (Miller & Wolin, 1985). 

Recently, Poulsen et al. (2013) found that species within the recently discovered 

genus Methanomassiliicoccus also utilised methanol and methyl amines as 

substrate.  

 A feature in common for all methanogens is the use of methyl coenzyme 

M-reductase (MCR), an enzyme that is only present in methanogens (Luton et 

al., 2002). In the last step in methanogenesis, the methyl group in methyl 

coenzyme M is reduced to CH4 by MCR reductase and coenzyme M is 

regenerated. There are different types of MCR enzymes which seem to be 

activated at different hydrogen pressures (Reeve et al., 1997). In general, 

hydrogenotrophic methanogens encode two of these MCR enzymes, Mcr I and 

Mcr II (Rospert et al., 1990). However, Leahy et al., (2010) found that M. 

ruminantium M1 only encoded Mcr I, which is active at comparatively lower H2 

concentrations, which suggests that M1 has adapted to rumen conditions over 

time (Leahy et al., 2010).   

4.3 Protozoa and fungi 

In addition to archaea and bacteria, protozoa and fungi are other microbes found 

in the rumen that have an impact on feed digestion. Protozoa account for up to 

50% of the microbial biomass in the rumen, although they are present in much 

smaller numbers than bacteria and may contribute to approximately one-third of 

feed degradation (Williams & Coleman, 1997; Hungate, 1966). Protozoa 

produce large quantities of H2 via their hydrogenosome organelles containing 

hydrogenases (Yarlett et al., 1986) and can also live in a symbiotic relationship 

with hydrogen-consuming archaea (Williams & Coleman, 1997). Newbold et al. 

http://www.sciencedirect.com/science/article/pii/S0378111913004307#bb0065
http://www.sciencedirect.com/science/article/pii/S0378111913004307#bb0065
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(1995) concluded that 9-25% of rumen methanogens are associated with 

protozoa (living inside protozoa or in close contact). Up to 37% of rumen-

derived CH4 can be produced by protozoa-associated methanogens (Finlay et al., 

1994). Protozoa are of two major types: holotrichs and entodiniomorphids. The 

differences between holotrich and entodiniomorphid protozoa seem to be related 

to substrate preference, O2 consumption, H2 production, growth rate and 

fermentation end-products (Ellis et al., 1989). It has been observed that holotrich 

protozoa seem to be more closely related to CH4 production, as their presence 

increases CH4 production compared with in defaunted (protozoa removed) sheep 

(Belanche et al., 2012). The symbiotic relationship between protozoa and 

methanogens has made the area of manipulation of protozoa very attractive as a 

strategy to reduce CH4 production (Wright, 2015). 

When fungi were first observed in the rumen, they were considered 

protozoa. It was not until 1975 that Orpin (1975) recognised these cells as fungi. 

Fungi in the rumen belong to the phylum Neocallimastigomycyota, which just 

comprises one family (Gruninger et al., 2014), with seven different genera 

(Callaghan et al., 2015). Fungi account for 5-20% of the microbial biomass in 

the rumen. It has been suggested that fungi are adapted to penetrate and disrupt 

plant tissues that cannot be degraded by other microorganisms, which further 

improves bacterial colonisation and degradation (Lowe et al., 1987). The fungi 

produce all the enzymes needed for biomass degradation, such as cellulases, 

xylanases, esterases, glucosidases and glucanases, but the level of their 

contribution to degradation of feed is not well known (Lee et al., 2000). More 

recently, fungi have been considered a key contributor in the degradation of 

lignocellulosic plant fibre (Gruninger et al., 2014). During fermentation, fungi 

produce H2, CO2, acetate, formate, lactate and ethanol as metabolic waste 

products (Gruninger et al., 2014). Similarly to the protozoans, H2 is produced by 

hydrogenosomes. Furthermore, the wide range of enzymes that are produced by 

fungi and their ability to degrade lignified plant walls have made them 

interesting for different biotechnological methodologies. Studies on rumen fungi 

by next generation sequencing have observed a much higher variation between 

individuals within species and between species compared with bacteria and 

archaea (Kittelman et al., 2013).   

4.4 Core rumen microbiome 

A common set of microbes that are shared by individual samples may contribute 

to basic rumen function (Henderson et al., 2015). To define the core rumen 

microbiome, knowledge of basic microbial structure and function is important 

to further identify temporary changes (Jami et al., 2012). A meta-analysis by 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4286163/#b14
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Henderson et al. (2015) in which rumen fluid was sampled from different 

ruminants from 35 different countries suggested that there is a core microbiome 

of some dominant groups within ruminants. The seven most abundant groups 

identified in that study were: Prevotella, Butyrivibrio, Ruminococcus 

unclassified Lachnospiraceae, Ruminococcaceae, Bacteriodales and 

Clostridales, representing 67.1% of total sequence data. Henderson et al. (2015) 

concluded that it is not likely that any new dominant species will be found. In a 

study by Jami et al. (2012), Bacteroidetes and Firmicutes mainly dominated at 

phylum level, but with a high variation in relative abundance between 

individuals, while at genus level 32 genera were shared across all samples. 

Although there was high variation in abundance of each genus between samples 

and some genera were present in very low abundance, they were still shared 

between all individuals and clearly have a key role in rumen function (Jami et 

al., 2012). In the study by Henderson et al. (2015), the archaea were dominated 

by methanogens. Clades of Methanobrevibacter gottschalkii and 

Methanobrevibacter ruminantium were found in almost all samples. These 

clades were represented by closely related species with 99% identity, with the 

M. gottschalkii clade being represented by the species M. gottschalkii, M. 

millerae and M. thaueri and the M. ruminantium clade by M. ruminantium and 

M. olleyae (Seedorf et al., 2015).  Both clades accounted for 74% of all archaea 

(Henderson et al., 2015). Methanosphaera sp. and two 

Methanomassiliicoccaceae-affiliated groups were also widely found and, 

together with both the Methanobrevibacter clades, represented 89.2% of the 

archaeal communities. Similar results were observed in the study by Seedorf et 

al. (2015), where Methanobrevibacter ruminatium, Methanobrevibacter 

gottschalkii, Methanospharea spp. and Methanomassiliicoccales spp. 

represented 99.98% of all archaeal sequences. 
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5 Methods used to study CH4 production 
and rumen microbiota 

Reliable methods are important when estimating the amount of CH4 produced 

from individuals and/or from different types of diets or added supplements. The 

same applies when studying rumen microbial population. Today there are many 

different methods for measuring CH4 and for investigating rumen microbiota, all 

with their advantages and disadvantages. The choice of method affects the 

results, which is important to take into consideration when evaluating the results 

and before comparisons between different studies can be made. The choice of 

method depends on the purpose of the study and is usually a balance of pros and 

cons. This chapter mainly discusses methods used to study CH4 production and 

rumen microbiota in the different papers in this thesis. A summary of methods 

used for measuring CH4 production and microbial populations in Papers I-IV is 

presented in Table 2. 

5.1 Measuring CH4 production 

The choice of method among those that are available today for measuring CH4 

production in vivo depends on the purpose of the study. In general, the choice is 

between high accuracy in CH4 production from few animals, as with the chamber 

technique, and/or CH4 measurements in many animals with a higher variability 

compared with the chamber technique. Cost in relation to the quality of the 

results from a certain method is another important aspect to take into account. 

Methane production can also be measured in vitro, although in vivo methods are 

more accurate because they measure directly on the animal. The in vitro 

approach is a way to mimic the in vivo situation, with certain limitations. 

Advantages with in vitro applications are that they are cheaper and have no effect 

on the animal. 

5.1.1 Chamber technique 

The respiration chamber is the most consistent technique and is usually used as 

a reference method for evaluation of other CH4 measurement techniques (Paper 

IV; Yan et al., 2010; Johnson & Johnson, 1995). In brief, the animal is placed 

in the chamber for some hours or days, with ventilation for inlet and exhaust air. 

Production of CH4 is calculated from gas flow and gas concentrations from the 

chamber. All CH4 production from the animal is taken into account, even rectal. 

The main disadvantage of the chamber technique is the controlled environment, 

which is unnatural for the animal and can have an impact on intake behaviour 

(Johnson & Johnson, 1995). However, a recent study in which the chamber was 
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covered with transparent polycarbonate to allow the test animals to see other 

animals found no impact on DMI (Hellwing et al., 2012). Other disadvantages 

are the cost of the equipment and the high labour requirement.  

5.1.2 Sulphur hexafluoride (SF6) 

The SF6 technique was used for measuring CH4 production by the cows in Paper 

I. The technique is described in full in Johnson et al. (1994) and has been used 

in a number of studies (Hammond et al., 2011; Pinares-Patiño et al., 2003; Boadi 

& Wittenberg, 2002). It is based on the known release of the tracer gas SF6 and 

the ratio between SF6 and CH4 concentration. A brass tube with a permeable 

membrane containing the SF6 gas, with known release rate, is placed in the 

rumen. Cows are fitted with a PVC yoke which is pre-evacuated so there is a 

constant draw of air into the yoke (Figure 5). Methane and SF6 gas are collected, 

usually during 24 hours, and samples from the yokes are then analysed for 

concentrations of both gases. Release rate and concentration of SF6 are related 

to the concentration of CH4. Background SF6 and CH4 concentrations are also 

measured and subtracted from the final CH4 calculation. Enteric measurements 

reported by Patel et al. (2011) were the first measurements of CH4 production 

on dairy cows in Sweden. The major advantage of this technique is that it can be 

used on cows in their ‘natural’ environment and can also be used on grazing 

cows. The disadvantages are high labour requirement and high variability 

between samples, much higher than with chambers (Pinares-Patiño et al., 2011).  

 

 
Figure 5. Cow 1381 equipped with halter with inlet tube connected to a PVC yoke. 

5.1.3 Spot sampling 

Measuring CH4 production on many animals in chambers or by SF6 would be 

very laborious and costly. Therefore other techniques have been developed in 
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recent years to make representative measurements of CH4 on many individuals. 

Today there are several types of so-called spot sampling techniques, which are 

generally based on measuring CH4 production in the air while the cow is eating 

during milking or in concentrate feeders. These measurements are repeated 

several times during the day and over a period of days, weeks or months. One of 

the spot techniques that used in Paper II was initially described by Garnsworthy 

et al. (2012). The equipment is set up in a feeding bin, usually in a robotic 

milking system, and CH4 is measured each time a cow makes a visit. Calculation 

of CH4 concentration per cow and day is then based on CH4 eructation frequency 

and CH4 concentration per unit eructation at milking. CH4 concentration is 

measured by an infrared technique. This technique has been used in several 

studies and permits repeated analysis of CH4 production in a large number of 

cows during periods of weeks and/or whole lactations (Paper II; Bell et al., 

2014; Garnsworthy et al., 2012). There are other similar spot sampling 

techniques, such as the method described by Madsen et al. (2010) for measuring 

CH4 and CO2 in the breath when a cow is milked or fed from a feeding bin. 

Predicted CH4 is calculated based on predicted CO2 production (according to 

intake of metabolisable energy (ME) or heat-producing units) and the measured 

CH4:CO2 ratio. When CO2 production is predicted, this is based on the 

assumption that there is no difference in feed utilisation efficiency between 

cows, which may not be the reality. The main disadvantage with the spot 

sampling techniques is higher variability than with respiration chambers 

(Huhtanen et al., 2015).  

Another spot sampling technique is a gas flux quantification method 

called the GreenFeed system (C-Lock Inc., Rapid City, SD). This method uses 

a similar technique to the respiration chamber, with a constant airflow through 

the system and continuous analysis of CH4 and CO2 concentration in the air and 

gas flow. The GreenFeed system is equipped with head position sensors and data 

are only used when the head is in the right position, which is one of the main 

advantages compared with the spot techniques described by Garnsworthy et al. 

(2012) and Madsen et al. (2010) (Huhtanen et al., 2015).  

 

5.1.4 In vitro 

In vivo studies are expensive and in order to reduce costs and reduce the impact 

on the animal, in vitro systems have been developed as an alternative way to 

analyse CH4 emissions. Continuous culture experiments as described by 

Czerkawski and Breckenridge (1977) and batch culture experiments as reported 

by Van Nevel and Demeyer (1981) are commonly used for evaluating the effects 

of diets and additives on enteric CH4 production. In vitro studies can also be used 
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for screening a large number of substrates/diets or as a first step in evaluating 

possible CH4 inhibitors. The gas in vitro technique used in Papers III and IV 

was developed by Ramin and Huhtanen (2012). This method predicts CH4 

production in the cow rumen using kinetic parameters obtained from an 

automated in vitro gas production system and a two-compartment rumen model. 

This approach takes into account rumen dynamics of digestion and passage 

kinetics in the rumen, which may have advantages compared with single 

timepoint batch culture systems. In this batch culture system (Figure 6), samples 

of gas are collected from each bottle during incubation at different times, e.g. 2, 

4, 8, 24, 32, and 48 h. Based on the kinetic data on CH4 production obtained 

from the in vitro gas production, CH4 production can be predicted in vivo using 

the modelling approach described in detail by Ramin and Huhtanen (2012). A 

disadvantage with the in vitro system is the artificial environment used to mimic 

the in vivo system. The batch system used is closed and there is no outflow of 

VFA produced, which may have an impact on CH4 production and on 

development of the microbiota. A continuous in vitro system that has been used 

in many studies is the Rusitec semi-continuous rumen simulation system 

(Czerkawski & Breckenridge, 1977). In Rusitec, the fermentation can continue 

for several weeks. However, loss of protozoa and probably some bacteria has 

been observed in the Rusitec system, which may make a difference to the in vivo 

environment (Prevot et al., 1994). In vitro techniques are used to explain what 

happens in vivo and it is therefore important that the techniques are reliable and 

well validated. It is also important to be aware of the differences from the in vivo 

state and the limitations of in vitro systems when evaluating in vitro results.   

 
Figure 6. Gas in vitro system for measuring total gas and CH4 production at SLU Umeå  
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5.2 Methods for measuring archaeal and bacterial communities 

in rumen 

The rumen microbial environment has been investigated mainly with cultivation 

techniques in the past. Robert Hungate, a pioneer in microbial ecology, 

developed the first techniques for culturing anaerobic microbes by using agar 

layers in roll tubes (Hungate, 1960, 1969). This technique was applied in his 

studies of the bovine rumen and has thereafter contributed to rapid progress in 

microbiological studies in other anaerobic environments (Tajima & Aminov, 

2015). The advantage with cultivation is that the isolates can be studied as 

regards metabolic properties and other physiological parameters. However, 

cultivation has several disadvantages; it is labour- and time-consuming and does 

not provide a fair picture of the whole community structure. Although 

microorganisms are dependent on interplay with other microorganisms in the 

community, functions related to interaction and or competition are difficult to 

determine on isolated microorganisms (Vanwonterghem et al., 2014). 

Uncultured microorganisms represent the majority of the microorganisms in the 

rumen, while less than 15% have been isolated and identified (Henderson et al., 

2015; Wright and Klieve, 2011). Based on genomic data, a variety of culture-

independent methods have been developed during recent years. These culture-

independent methods can be used for further understanding the complex 

microbial diversity and function of ruminal microbes. Characterisation and 

taxonomic assignment of microbial rumen communities by culture-independent 

methods usually includes small subunits of 16S ribosomal RNA gene (Leahy et 

al., 2013; Woese, 1987). The 16S rRNA gene, which is found within all 

prokaryotes, archaea and bacteria, contains conserved, variable and 

hypervariable regions that make it possible to differentiate between organisms 

(Juste et al., 2008). Databases such as Greengenes, a ribosomal database project 

with sequence information on the 16S rRNA gene, are well established. 

Moreover, the functional gene methyl coenzyme A (mcrA) (encoding the α 

subunit of methyl co-enzyme reductase) has also a general application for 

studying methanogens due to its specific occurrence and involvement in 

methanogenesis within methanogens (Sirohi et al., 2013).  

5.2.1 qPCR 

For quantification of certain species or groups of species, real-time quantitative 

PCR (qPCR) is a commonly used culture-independent method. Quantitative 

PCR has been used in many studies on rumen microbiota to compare differences 

between individuals, diets and effects of feed additives (Papers I and II; 

Wallace et al., 2015; Zijderveld et al., 2010; Denman et al., 2007). Compared 

https://en.wikipedia.org/wiki/Culture
https://en.wikipedia.org/wiki/Anaerobic_organism
https://en.wikipedia.org/wiki/Rumen
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with end-point PCR, which displays the amplification product at the end, real-

time qPCR displays the amplification process in real time. The detection of PCR 

products is possible due to inclusion of a fluorescent reporter molecule, e.g. an 

intercalating dye such as SYBR green, which fluoresces at double-stranded 

DNA. The concentration of double-stranded DNA increases after each 

amplification cycle, which subsequently increases the fluorescent signal. A 

standard curve is made by dilution of a known amount of target DNA cloned 

into a cloning vector. By comparing the signal against the standard curve, 

absolute amount of the gene of interest can be calculated. To decrease the risk 

of false positive signals, such as primer dimer and amplification errors, a melt 

curve analysis is performed during the programme (Van Guilder, 2008). The 

limitations of the method relate to PCR artefacts such as chimeras generated 

during the amplification step (Wintzingerode et al., 1997). It is also known that 

there is overestimation within genomes according to heterogeneity (copies of 

16S rRNA within a sequence) and different target regions within 16S rRNA have 

more or less heterogeneity (Sun et al., 2013). A PCR bias is also related to 

different programmes based on temperature, time for elongation and number of 

cycles.  In this thesis, qPCR was used in both Papers I and II to quantify certain 

groups of archaea and bacteria based on 16s rRNA gene. In Paper I, primers 

were used for quantifying total numbers of archaea and species within the genera 

Methanomicrobiales and Methanobrevibacter. In Paper II, primers were 

designed for the group of species within the genus Methanobrevibacter, which 

was shown in Paper I to be related to low CH4 production. 

5.2.2  Fingerprinting techniques 

Fingerprinting techniques can be used for comparison between treatments or 

other types of changes to the study environment in order to reveal shifts in the 

community. Terminal restriction length polymorphism (T-RFLP) has been used 

in several rumen studies for profiling microbial communities (Paper I; Frey et 

al., 2010; Fernando et al., 2010). T-RFLP is based on a target gene using PCR, 

where at least one primer in the PCR reaction is labelled with a florescent dye, 

such as 6-carboxyfluorescein (FAM). The PCR-amplified product is digested 

with a restriction enzyme that is suitable for the desired sequence. The digested 

products, which are called fluorescently labelled terminal restriction fragments 

(T-RFs), are separated by capillary electrophoresis and detected based on their 

fluorescence by an automated sequencer. T-RFLP profile is presented as relative 

abundance of each T-RF at a specific length. Limitations of the technique are 

that there is no identification of sequences and that it is unable to give a 

comprehensive view of the structure and function of the microbiota. T-RFLP 

was used in Paper I to get an overview of the methanogenic community 
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structure in cows fed different proportions of concentrate. For identification of 

species that contribute to certain TRFs, a clone library can be constructed (Paper 

I).  

5.2.3 Clone library 

A clone library is used for investigation of DNA extracted from an 

environmental sample by cloning and following sequencing (Chouari et al., 

2005). The clone library approach was used in Paper I for identification of 

specific methanogenic species in combination with T-RFLP. Clone libraries can 

be constructed from PCR amplicons, such as 16S gene amplicons, which are 

subsequently ligated into cloning vectors. Vectors are transformed into 

competent cells (a vector/cell) and by cultivating competent cells individual 

cloning vectors with different inserts can be isolated and further sequenced. 

Quality-checked sequences are matched against a database for identification or 

alignment for phylogenetic construction. Cloning is mainly used in small-scale 

projects as it is very time- and labour-consuming in relation to the number of 

sequences obtained. It has largely been replaced by next generation sequencing, 

especially in large-scale analyses.  

5.2.4 Next generation sequencing 

Next generation sequencing (NGS), such as 454-pyrosequencing and Illumina 

sequencing, are cost-effective massive parallel sequencing technologies that can 

be applied on environmental samples. These techniques enable sequencing of 

PCR products without an extra clone step, which eliminates clone bias and gives 

an opportunity for evaluation of the phylogenetic relationship within a 

community (McCann et al., 2014). Barcodes (a string of nucleotides) added onto 

primer ends enable processing of large numbers of samples at the same time. 

These NGS techniques have inspired research regarding ruminal microbial 

diversity, where most studies have applied 454-pyrosequencing to study the 

rumen microbiota (Paper III; Zened et al., 2013; Jami et al., 2012; Castro-

Carrera et al., 2014), because of longer reads compared with Illumina (McCann 

et al., 2014). However, the use of Illumina sequencing has increased due to 

substantially higher throughput and lower costs compared with 454-

pyrosequencing (Paper II; Ross et al., 2013; Hess et al., 2011). The limitations 

of NGS mainly relate to short reads and the fact that these techniques are only 

semi-quantitative, generally providing only information on relative abundance. 

Depending on the sequencing depth, the coverage of the microbial diversity 

varies, but it usually covers dominant microbes. However, low abundance 

microbes may be missed and these might still have a key role within the 

microbiota (Zarraonaindia et al., 2013).  
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5.2.5 Some other modern culture independent techniques used for studying 

rumen microbiota  

Whole genome sequencing determines the complete DNA sequence of an 

organism, which enables understanding of its function. The first rumen bacterial 

genome sequenced was that of Fibrobacter succinogenes S85, which revealed 

genes involved in plant cell degradation (Jun et al., 2007). From that first 

attempt, genome sequencing has increased continuously. Leahy et al. (2010) 

sequenced the whole genome of the important methanogen Methanobrevibacter 

ruminatium M1 and provided new information on the cellular processes and the 

lifestyle of this certain rumen methanogen. This information can potentially 

increase the rate of success in development of a vaccine for inhibition of 

methanogenesis, as it includes identification of methanogen-specific adhesion 

enzymes and also specific components of the cell envelope (Leahy et al., 2010). 

Hungate 1000 (http://www.hungate1000.org.nz/) is a database project that aims 

to produce a reference set of 1000 rumen microbial genome sequences, in order 

to get a better understanding of rumen function. This approach opens up new 

ways for targeting genes central in ruminant nutrition and CH4 production 

FibRumBa (Fibrolytic Ruminal Bacteria, (http://jcvi.org/rumenomics) is a 

database that provides genetic information on the dominant species of fibrolytic 

ruminal bacteria, with the aim of increasing knowledge on rumen microbes. 

Transcriptomics 

Metagenomics has expanded the understanding of rumen microbial diversity and 

function, but this method mainly reveals whether a gene is present or not (Kumar 

& Pitta, 2015). Transcriptomics has recently been applied for the expression of 

genes and it is likely that coming research will focus more on expressed genes 

in a microbiome using RNA, instead of studying the functions present using 

DNA sequencing (Kumar & Pitta, 2015; McCann, 2015). Deep metagenome and 

metatranscriptome sequencing was recently used by Shi et al. (2014) to analyse 

the relationship between microbial population in rumen content and CH4 

production. The relative abundance of methanogens did not differ between high 

and low CH4 emitting sheep, but the transcripts showing expression of the genes 

involved in methanogenesis were higher in high CH4 emitting sheep than in low 

emitting sheep (Shi et al., 2014). 

 

5.2.6 .and back to culturing.  

Even though the culture independent techniques have open new ways for 

understanding the complex microbial diversity Edwards et al. (2004) highlight 

the need of combination of classical culture-based rumen microbiology methods 

http://www.hungate1000.org.nz/
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with molecular ecological methods to define the metabolic role of uncultivated 

species in rumen. Isolation and cultivation of microorganisms is an important 

stage and available pure culture makes the development of molecular tools 

possible based on genomic information. Anyhow, the information of overall 

structure of microbial communities and genomic structures that is obtained by 

culture-independent methods may improve the rate of success for isolation and 

identification by culture methods for studying the morphology, physiology and 

genetics of specific microorganisms (Zhou et al., 2015). For instance, in the 

study by Pope et al., (2011) it was possible to isolate the bacterial species WG-

1 (from family Succinovibrionacea) by reconstruction of the bacterium’s 

metabolism based on information from metagenomics datasets reported in the 

literature from similar bacterial species.  

5.3 Variations in sampling procedure between studies 

There are a number of factors that can affect the results and are important to keep 

in mind when comparing results between different studies and laboratory 

experiments. In rumen studies, it is important to be aware of how the sampling 

was performed, e.g. the rumen contents can be sampled via a ruminal fistula 

(Paper I) or through stomach tubing (Paper II; Shingfield et al., 2002). When 

using stomach tubing, it is more difficult to control where the sample is taken, 

while samples taken through the fistula sample can be taken from different sites 

in the rumen, such as the liquid or solid phase (Pitta et al., 2010; Geishauser & 

Gitzel, 1996). However, Tapio et al. (2016) did not find any significant 

differences in the taxa present in buccal samples compared to rumen fistula 

samples, but some species relative abundance varies. Similar results were found 

in a comparison in post-weaned calves, where no changes were observed in 

molar proportion of VFA or bacterial population (Terré et al., 2013).  

Extraction of the DNA is the first processing step of the sample and also 

another step with a bias effect. There are many different extraction kits, all 

producing different results in terms of yield and purity (Henderson et al., 2013). 

In most studies the kit has in some way been modified for optimisation of the 

procedure (McCann et al., 2014). In order to compare results between studies 

and laboratories, standardisation of the sampling procedure and DNA extraction 

is important. This is discussed by Henderson et al. (2013), who evaluated several 

different extraction kits used for rumen populations and found high variation in 

community composition. 
Choice of primer has an impact, as there are differences in primer 

binding energy. Primers can be universal or specific. Universal primers are 

designed to analyse as many species as possible, but no one primer can target all 
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bacteria or archaea, so some species are probably not covered (Klindworth et al., 

2013).   

Considering these bias effects, it is important to be aware when 

comparing results between studies where different sampling techniques, 

extraction procedures, analytical methods and primers have been used.   
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Table 2. Summary of objective and main results in Paper I-IV and methods used for measuring CH4 production and microbial population 

Paper General objective No. of cows and 

diets 

CH4 method Microbial 

population 

Molecular 

techniques 

Main results 

I Investigate CH4 production, methanogenic 

population structure and yield for diets 

with high-quality forage in two forage/ 

concentrate ratios (900/100 and 500/500) 

fed to high-producing Swedish Red dairy 

cows 

 

5 cows,  2 diets, 

cross-over design  

Sulphur hexa-

fluoride (SF6) 

tracer 

technique 

Methanogenic 

population 

T-RFLP, 

clone library, 

qPCR.  

Forage proportion had different effects on 

methanogenic community in individual 

cows. Dividing Methanobrevibacter spp.  

into two groups better explained the 

variation in CH4 production  

II Identify high and low CH4 emitters and 

investigate the correlation to microbial 

population, fermentation pattern, feed 

intake, digestibility and milk production.  

 

73 cows in mid 

lactation, 21 cows 

selected for 

microbial analyses 

Spot 

sampling, 

Garnsworthy 

IR technique   

Archaea and 

bacteria 

Illumina, 

qPCR 

Methane production was associated with 

microbial community structure and 

fermentation pattern. No effect was found 

on fibre digestion or milk production.  

III Investigate the effects of cashew nut shell 

extract (CNSE) and glycerol on in vitro 

production of CH4 and VFA and 

investigate effects of these feed additives 

on the archaeal and bacterial community 

structures. 

5 treatments; 

Control, CNSE low 

(5 mg), high (10 

mg) and  Glycerol 

low (15 mmol) and 

high (30 mmol )  

 

In vitro Archaea and 

bacteria 

454-pyro-

sequencing 

CH4 production was reduced with CNSE 

treatment by at most 18%, and there was a 

shift in microbial communities. CH4 

production increased with glycerol up to 

12%, with no direct effect on microbial 

population.  

IV Evaluate in vitro system and possibilities to 

rank diets compared with chamber 

technique  

49 diets selected 

from in vivo studies 

In vitro No analyses 

included 

 The in vitro system seems to predict CH4 

production with reasonable accuracy and 

precision, but has limitations in evaluating 

the effect of concentrate on CH4 

production. 



46 



47 

6 Results and discussion 

6.1 Impact of forage proportion on CH4 production 

In Paper I, CH4 production from five cows included in the study by Patel (2012) 

was further investigated. The results showed no significant differences between 

diets, although there was a numerical difference in CH4 production for the 50:50 

and 90:10 diets (16.9 and 20.2 g CH4/kg DMI). Due to the low number of cows 

in the study and the high variation within cows between days, it was perhaps not 

possible to find significant differences. The SF6 technique used may have had an 

influence in the high variability in CH4 production between days within animals, 

as has been shown in previous studies (Hammond et al., 2011; Pinares-Patiño et 

al., 2008). Therefore this may not be the best technique for a low number of 

animals. However, the non-significant difference in CH4 measurements was 

supported by the results on concentration and proportions of VFA. There was no 

difference in total VFA concentration and a difference was only seen for butyrate 

proportion, which was higher in relation to total VFA for the 50:50 diet (11.7%) 

than the 90:10 diet (9.9%). This small difference may be related to a relatively 

higher number of protozoa (producing butyrate) in the diet with higher 

concentrate level (Jakkola & Huhtanen 1993).  

6.1.1 Methanogenic population  

To further investigate the effect of forage proportion on CH4 production, in 

Paper I the methanogenic population was investigated in rumen fluid samples 

which was the first study on methanogenic population in dairy cows in relation 

to CH4 production in Sweden. There was a significant difference in numbers of 

total methanogens and in the dominant group Methanobacteriales, which were 

both present in higher total copy numbers in the 50:50 diet compared with the 

90:10 diet. However, this did not have any significant effect on CH4 production, 

suggesting that the composition or activity of methanogens rather than their 

absolute numbers is of higher importance for CH4 production. The relationship 

between numbers of methanogens and amount of CH4 produced has been 

debated elsewhere and it has been suggested that the amount of CH4 produced 

relates to the species that are present, rather than the total number of 

methanogens (Shi et al., 2014; Zhou et al., 2011). However, others claim that 

there should be a proportional relationship between the number of methanogens 

and the level of CH4 produced, as this is the only way for methanogens to gain 

energy by ATP (Wallace et al., 2014). According to the T-FRLP analysis on the 

archaeal population in Paper I, diet composition had no clear effect on 

population structure. In fact, the response on population level appears to be 
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individual, as different cows responded differently to changes in the feed. The 

clone library related to the TRFs revealed that the two dominant TRFs, obtained 

with two different restriction enzymes (Hha I and Hae III) were ≥97% related to 

Methanobrevibacter species. This dominance of  methanogens belonging to the 

genus Methanobrevibacter confirms previous findings on cattle in other 

countries (Seedorf et al., 2015; St-Pierre et al., 2013; King et al., 2011; Hook et 

al., 2009) and in our other studies on Swedish cows (Papers II and III). Species 

within the Methanobrevibacter genus are assumed to represent core members of 

the microbiome in the rumen (Henderson et al., 2015; Jami et al., 2012). 

. 

6.1.2 Dividing Methanobrevibacter into two groups 

The dominant TRFs in the study investigating the effect of different levels of 

forage (Paper I) showed that the methanogens present were ≥98% related to 

species belonging to Methanobrevibacter ruminantium and Methanobrevibacter 

olleyae or ≥98% related to species belonging to Methanobrevibacter smithii, 

Methanobrevibacter gottschalkii or Methanobrevibacter thaueri. Based on the 

phylogenetic distribution of Methanobrevibacter-related 16S rRNA sequences, 

two major clades have been observed previously (King et al., 2011). One group 

comprises sequences similar to Methanobrevibacter ruminantium and 

Methanobrevibacter olleyae, called the RO group, and the other group has 

sequences similar to Methanobrevibacter smithii, Methanobrevibacter 

gottschalkii, Methanobrevibacter millerae or Methanobrevibacter thaueri, 

called the SGMT group (King et al., 2011). Several studies have shown that 

methanogenic community composition in a host seems to be dominated by either 

one of these groups, also depending on breed and/or geographical location 

(Seedorf et al., 2015; King et al., 2011). Moreover, Papers I-III demonstrated 

a relationship between individual animal, methanogenic clade and total amount 

of CH4 production. Cows with a methanogenic community dominated by the 

SGMT group, also called the M. gottschalkii clade, were associated with higher 

CH4 production compared with cows with a methanogenic community 

dominated by the RO group or M. ruminantium clade. The relationship between 

high CH4 production and M. gottschalkii clade was also observed by Shi et al. 

(2014). Setting these two different groups in relation to each other apparently 

helps to identify changes in the methanogenic population associated with levels 

of CH4 production. However, when studying abundance at genus level, no 

differences may be observed or they may be difficult to statistically correlate to 

changes in CH4 production. The relationship between host and type of 

methanogenic group may represent a genetic influence, or may indicate that 

methanogenic groups thrive in different environments according to pH, passage 
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rate or type of substrate coming from the fermentation by other microbes (St-

Pierre et al., 2015). Differences between the two clades of Methanobrevibacter 

spp. would be interesting to investigate further to increase understanding of the 

mechanism behind their presence and their connection to CH4 emissions. 

Methanobrevibacter ruminantium uses both formate and H2 for the reduction of 

CO2, while M. gottschalkii only uses H2. This may give an advantage for M. 

ruminatium if there is restricted availability of H2. On the other hand, other 

members of the SGMT group, such as M. thaueri and M. smithii, can both utilise 

H2 and formate (Miller & Lin 2002; Miller & Lin 1982). Methanobrevibacter 

ruminatium also seems to express only methyl CoM reductase Mcr I, which is 

used at lower H2 pressures, while M. gottschalkii has the capacity to express both 

Mcr I or Mcr II at low and high H2 pressure (Leahy et al., 2010).  

6.2 Linkage between microbial community structure and CH4 
production 

The results in Paper I, where the CH4 emissions seemed to be related to 

individuals rather than diet, and those in other studies, where an individual 

variation in CH4 production has been shown (Yan et al., 2009; Ellis et al., 2007), 

prompted further investigations of the relationship between CH4 production and 

individual microbiota (Paper II). This was performed by selecting animals with 

persistent low or high CH4 production over the study period (three months) and 

by reducing the impact of certain physiological and dietary parameters by 

choosing cows in the same lactation stage (mid-lactation) and fed the same diet. 

The microbial community structure in rumen fluid was assessed by sequencing 

the 16S rRNA gene. The results showed that the microbial flora from individual 

cows was clearly divided into one of two clusters of bacterial OTUs and a 

similar, but less segregated, pattern was shown for the archaea. Here, cluster L 

correlated with comparatively higher CH4 production than cluster H. Moreover, 

different molar proportions of VFAs such as propionate were higher in cluster 

L, whereas the molar proportion of butyrate was higher in cluster H, which 

probably partly explains the different levels of CH4 production. Similar results 

on different ‘ruminotypes’ have been reported by Kittelmann et al. (2014), who 

suggested that the difference in CH4 production was attributable to host selection 

of different microbial communities which produce different amounts of H2, 

giving more or less CH4. In Paper II, the microbiota of cows with high and low 

CH4 emissions were investigated. The results showed that the bacterial 

community was mainly represented by Prevotella, which is one of the most 

commonly found bacterial genera in the rumen (Henderson et al., 2015; 

Stevenson & Weimer, 2007). Different species within the genus Prevotella have 
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high metabolic versatility and ferment cellulose, protein and starch, which 

makes it difficult to fully understand their function looking only at genus level. 

Prevotella as a genus did not contribute to separation into clusters related to CH4 

production in Paper II, but different OTUs of Prevotella were related to each of 

the clusters. Only few species of Prevotella have been isolated from the rumen 

and cultured and it has been shown that these species only represent a small part 

of the genus Prevotella (Bekele et al., 2010; Stevenson & Weimer, 1997). The 

individual effect was clear, as community profiles of both bacteria and archaea 

within animals co-occurred in the same cluster in all three measuring periods 

over the three-month study (Figure 2 and 4). Moreover, the microbiota in one 

cow from each CH4 group appeared in the ‘opposite’ cluster, which was true 

both for bacteria and archaea, giving a robust correlation between the bacterial 

and archaeal community.  

 

6.2.1 Fermentation pattern and feed digestibility 

The individual composition of the community structure could be due to factors 

such as rumen size, intake and chewing behaviour. As mentioned above Goopy 

et al. (2013) observed that high emitter sheep had a larger rumen and a lower 

passage rate than low emitter sheep. Therefore, when the effect of individual 

properties on the level of CH4 production is being evaluated, it is important to 

investigate whether a reduction in CH4 production is an effect of decreased fibre 

digestion, which may also give less milk or meat production. There are few 

studies on rumen microbial populations associated with differences in CH4 

between individuals that further analyse factors related to digestion of feed and 

production of milk or meat. Due to the risk of reduced digestion with low CH4 

production, many parameters, such as intake, digestibility of feed, feed 

digestion, milk production, rumen fermentation products and microbiota, were 

analysed in Paper II. However, differences were mainly found for fermentation 

products, with an increase in the proportion of propionate in cluster L and an 

increase in the proportion of butyrate in cluster H, which may explain the 

association with CH4 production. There was difference in weight between cluster 

which may also mean that rumen size were bigger in cluster H. There was no 

effect on fibre digestion or milk production, which is in accordance with findings 

by Goopy et al. (2013) that the difference in apparent digestibility in total tract 

between sheep with different rumen size was not significant. Even when there 

are differences in rumen size and passage rate, the reduced digestion in the 

rumen may perhaps be compensated for by increased digestion in the hindgut 

(Goopy et al., 2013). If the digestion increases in the hindgut compared with the 

rumen, it can be speculated that less CH4 is produced in the hindgut due 
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acetogenesis seem to occur there (Ramin et al., 2015; Demeyer et al., 1996). 

Furthermore, the differences in microbial population and perhaps degradation of 

feed in the rumen may not be totally compensated for by hindgut fermentation. 

In studies analysing feed efficiency, it has been observed that cows with high 

residual feed intake (RFI) and lower degradation efficiency have differing 

methanogenic community structure in the rumen. High RFI is related to presence 

of higher abundance of Methanobrevibacter smithii (Carberry et al., 2014; Zhou 

et al., 2010). Moreover, Methanosphaera stadtmanae and Methanobrevibacter 

sp. strain AbM4 have been shown to be related to high-RFI animals (Zhou et al., 

2009). Interestingly, M. smithii, a member of the SGMT group, is related to high 

RFI and high CH4 production, suggesting that individuals with higher abundance 

of RO group may be both more efficient in utilising their feed for milk or meat 

production and produce less CH4.  

 

6.3 Impact of feed additives on CH4 production in an in vitro 
system  

For increasing efficiency in feed utilisation and/or inhibition of CH4 formation, 

some microbial communities need to be favourable or the microbial 

fermentation needs to be redirected. Certain substrates may have potential for 

this redirection by an inhibitory effect of H2-producing bacteria and 

methanogens or enhancement of non-H2 producing fibrolytic microbes, without 

decreased forage degradability. To investigate the effect of a certain substrate or 

inhibitor, tests in an in vitro system can be a first step, to reduce the need for 

animal trials. In vitro systems cost less than in vivo studies, which makes it 

possible to test several treatments at the same time. Based on the results from in 

vitro studies, the most promising substrate/diet can then further be tested in vivo. 

In an in vitro study, Watanabe et al. (2010) tested a promising substrate that can 

be obtained from a waste product from the cashew nut industry, cashew nut shell 

liquid (CNSL), which contains cardanol, cardol and anacardic acid. Anacardic 

acid is a compound shown to inhibit gram-positive bacteria and has been tested 

as a feed supplement (Shinkai et al., 2012). CNSL was shown to have a dramatic 

impact on certain species in the rumen microbiome (Watanabe et al., 2010). To 

further reveal possible CH4 inhibition by CNSL and to investigate effects on 

rumen archaea and bacteria communities, cashew nut shell extract (CNSE) was 

tested in vitro in Paper III. CNSE was added at two different levels, 5 and 10 

mg, to a 60 mL inoculum mixed with a forage:concentrate (60:40) substrate. The 

addition resulted in a reduction in CH4 of up to 18% and the relative abundance 

of unclassified Bacteriodales clearly decreased compared with the control. 
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However, in two previous in vivo studies, feeding cows with CNSL (4 g/100 kg 

BW) in the diet resulted in a reduction in CH4 production, but caused decreased 

DM digestibility in only one of the two studies (Shinkai et al., 2012). The 

observed inhibition in Paper III with CNSE could be due to the observed shift 

in bacterial population, possibly resulting in decreased production of hydrogen. 

Otherwise, the reduction could be explained by a shift in the methanogenic 

community. In that study too, reduced CH4 production was related to higher 

abundance of Methanobrevibacter species belonging to the RO group, whereas 

the control had higher abundance of Methanobrevibacter belonging to the 

SGMT group. Besides, a recent in vivo study found no effect on CH4 production 

when technical cashew nut shell liquid (TCNSL) without anacardic acid was 

added to the diet, which indicates that the main effect on CH4 production shown 

in vitro and in vivo is due to anacardic acid (Branco et al., 2015). Extract from 

cashew nut shell may be an alternative to achieve inhibition of CH4 production 

if it can be used in an appropriate formulation.  

In Paper III, the effect of glycerol was also evaluated, with the hypothesis 

that glycerol with an estimated value of 16.2 MJ ME/kg of DM for ruminants 

(Mach et al., 2009) will enhance the energy content of the diet and thus also 

result in increased propionate production and consequently a reduction in CH4 

production. Glycerol was added at two different levels, 15 and 30 mmol, to a 60 

mL inoculum mixed with a forage:concentrate (60:40) substrate. Glycerol 

treatment with 30 mmol addition increased CH4 production by 12% and no effect 

was observed on archaea communities compared with the control. For bacteria, 

glycerol gave an increase in the relative abundance of unclassified 

Ruminococcaceae and Anaerovibrio. The increase in CH4 production was 

probably due an increase in total VFA levels, thus giving an increase in total 

CH4 production. However, the response in vivo may be different from that in 

vivo. It has been observed that 70% of glycerol added to an empty rumen is 

absorbed directly through the rumen wall (Omazic et al., 2014). If this high 

absorption occurs, a smaller proportion of OM in the total diet is fermented in 

the rumen, giving less CH4 production. Overall, however, the results seem to 

vary between studies; Piantoni and Allen (2015) infused glycerol into the 

abomasum or reticulo-rumen of cows fed a commercial diet and found that this 

increased blood glucose more than infusion into the rumen, suggesting that more 

of the glycerol in the rumen is degraded to non-glucogenic end-products by 

microbes. However, a smaller proportion may be used for microbial digestion in 

the rumen compared to in in vitro systems where all glycerol is used for 

microbial digestion. The non-inhibitory effect of glycerol on CH4 production in 

vitro is consistent with findings by Avila et al. (2011) and Avila-Stagno et al. 

(2013).  
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6.4 Evaluation and effect of in vitro method 

When using an in vitro system, it is crucial to be confident that the technique is 

reliable in relation to what happens in vivo in the rumen. Evaluation of the 

system is thus needed and as there are several factors that can affect the 

predictions in vitro, it is important to be aware of the different biases and 

differences compared with in vivo. A recently developed in vitro method for 

prediction of in vivo CH4 production that takes into account rumen dynamics in 

a model for prediction (Ramin & Huhtanen, 2012) was evaluated in Paper IV. 

The evaluation was performed by comparing predicted CH4 production with 

observed CH4 production from several in vivo studies. The test diets had 

differing dietary composition in terms of: feeding levels, proportion of 

concentrate, carbohydrate composition of concentrates, protein and fat 

supplementation, forage type and maturity of forage. Overall, the system-

predicted values were well correlated to observed values in vivo, but there were 

also some weaknesses in the system. The gas in vitro system did not work for 

analysing the effect of increasing level of concentrate. Observed values showed 

variable response to CH4 depending on the increase in concentrate level, but this 

was not possible to show in the in vitro system as overall predicted CH4 values 

increased with increasing level of concentrate. This emphasises the importance 

of keeping in mind that effects obtained in the vitro environment may not always 

be the same as in the in vivo environment and vice versa. Furthermore, the 

inaccurate prediction of concentrate level could be an effect related to the 

different pools linked to the model for prediction. It was also shown that the 

system mainly under-predicted CH4 production slightly at high feeding level. 

Based on this, it is recommended that the in vitro system be used to measure 

CH4 production related to maintenance feeding level. After screening different 

treatments in vitro, the most promising additives could then be evaluated in vivo 

at maintenance level and, if still promising, tested at production level. 

6.4.1 In vitro versus in vivo 

One of the biases in the in vitro system is the inoculum. The individual donor 

animal has an impact on the digestion of the feed depending on the individual 

microbiota. As a way to reduce the effect of inoculum, pre-adaptation to the feed 

is recommended. In this way the microbiota has time to adapt to the substrate 

before transfer to the in vitro system (Broudiscou et al., 2014). In Paper III, 

where CNSE and glycerol were tested, the donor cows were already adapted to 

the same diet, 60:40 forage:concentrate ratio, as was used in vitro. The effect of 

the additives may still vary in vivo compared with in vitro. In Paper IV the 

rumen fluid used as inoculum was taken from donor cows given the 60:40 

forage:concentrate ratio and all diets evaluated in the in vitro test were different 
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to this feed. This may have had an impact on the results and better predictions 

might have been possible if similar diets had been fed to the donor cows.  

The rumen is a heterogeneous system where differences in fermentation 

pattern occur all the time depending on feed type, feed level, microbial 

interaction and passage rate. In vitro fermentation is principally a type of 

enrichment culture, where various parameters such as pH, type and 

concentration of substrate type affect the growth of some microbes and inhibit 

others which may differ from original inoculum. To further evaluate the effect 

of the in vitro system, one aim in Paper III was to compare how the microbial 

population developed in controls (with no feed additive) in vitro and in vivo. 

Bacterial and archaeal community structure were compared between inoculum 

in the in vitro control and rumen fluid from in vivo (Paper III).  For bacteria the 

community structure was similar in the in vitro control with no feed additive 

compared with in vivo sample, thus indicating that the transfer of the rumen fluid 

to the in vitro system had little impact on the bacterial community structure. An 

effect of time was shown in a decrease in relative abundance of e.g. Prevotella 

in the control in both treatments. This is in agreement with findings by Mateos 

et al. (2015) that the diversity of bacteria was lower in a batch culture in vitro 

system than in vivo in sheep. This indicates that there is selection of some 

bacteria species over time. However, the overall fermentation effect of forage 

was similar in vivo and in vitro in the sheep studied by Mateos et al. (2015). For 

the archaeal community there was an effect of transfer to the batch system. The 

effect was mainly clear for the dominant species M. olleyae and M. thaueri. The 

relative abundance of M. olleyae decreased, while the relative abundance of M. 

thaueri increased (Figure 7). It can be speculated that this reflects an increase in 

H2 pressure as discussed above, which may favour M. thaueri in vitro. For the 

CNSE treatment the effect on bacteria community was more similar to in vivo. 

If there is a negative effect of CNSE on H2-producing bacteria, the resulting 

lowering of H2 pressure might give an advantage for M. olleyae. More specific 

studies are needed on the impact on rumen inoculum in the in vitro system and 

whether certain parameters can be optimised. 
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Figure 7. Relative abundance at OTU level of the archaeal population for in vivo treatments at day 

1, 2 and 3 and for in vitro treatments at 8, 24 and 48 h of incubation. OTUs were compared with 

sequences in BLAST and described at species level. OTUs representing the same species (>97% 

identity) have been pooled together. 
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7 Conclusions 

 The effect of individual animal on CH4 production is stronger than the effect 

of diet  

 Increasing the level of highly digestible forage in the diet fed to dairy cows 

has no significant effect of CH4 production, but has a minor effect on 

fermentation end-products and the methanogenic population  

 Individual differences in CH4 production in cows cannot be explained by 

reduced fibre digestion or reduced milk production, but are rather associated 

with different microbial community structures  

 The gas in vitro system can be used for screening diets and additives before 

testing in vivo, with some limitations regarding concentrate inclusion  

 Division of rumen Methanobrevibacter species into two groups reveals a 

correlation to CH4 production. The group consisting of M. smithii, M. 

gottschalkii, M. millerae and M. thaueri is correlated to high CH4 production, 

while the group comprising M. ruminantium and M. olleyae is correlated to 

low CH4 production  

 Cashew nut shell extract can reduce CH4 production, based on in vitro data  

 Glycerol addition may increase CH4 production, based on in vitro data 

 Results from in vitro studies need to be verified in vivo. 
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8 Implications of findings and future 
perspective 

 It is essential that studies on rumen microbiology, digestion and milk 

production are combined, as the correlations between these are complex and 

gains in one aspect might easily affect other parameters negatively 

 To reduce the bias effect of inoculum, it is recommended that donor animals 

be fed similar diets will be tested for adaptation of microbes. 

 

Future research to increase knowledge on the possibility to reduce CH4 

production from dairy cows should focus on:  

 

 Host effect on community structure, together with measurements on CH4 

production, feed digestibility and milk production 

 Microbial analyses on rumen microbiota to investigate co-occurrence of 

different microbes in relation to CH4 production and milk production 

 Use of genomics and transcriptomics to characterise methanogenesis and 

identify methanogens with upregulated genes in high CH4 emitter animals 

 Identify parameters that differ between farms that are most and less effective 

regarding emissions in relation to production 

 Increase milk productivity, particularly in developing countries, by improved 

feed quality 

 Effects on CH4 production and milk production of increased proportion of 

high quality forages rather than concentrate. 

 Effects on CH4 production and milk production using potential inhibitory 

CH4 additives from waste or by-products.  
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9 Svensk sammanfattning 

Med en ständigt växande befolkning och en ökande medelklass så ökar 

efterfrågan på mjölk och kött. En ökad produktion av animala livsmedel bidrar 

dock till en ökad miljöbelastning. De negativa aspekterna måste begränsas 

samtidigt som produktionen ökar.  

Globalt sett står jordbruket för ca 14 % av de antropogena (beror på 

mänsklig aktivitet) växthusgasutsläppen. I Sverige har växthusgaserna från 

jordbruket minskat med 11 % sedan 1990. Detta beror främst på minskningen 

av antalet djur, men också högre foderkvalitet, ökad produktionseffektivitet och 

minskad användning av konstgödsel. Dock har köttkonsumtionen i Sverige ökat 

under samma period, vilket lett till dramatiskt ökad livsmedelsimport. Siffrorna 

är därför något vilseledande då utsläppen istället hamnar i det land djuret 

produceras. Kor pekas idag ut som de största miljöbovarna från lantbruket på 

grund av deras metanproduktion. Metan från kor utgör ca 40 % av totala 

utsläppen inom jordbruket. Kor spelar dock en stor roll i ett hållbart jordbruk 

och att endast se till metanutsläppen ger inte en rättvis bild.  

 

Idisslarnas största mage, våmmen, har ett mycket komplext ekossystem 

bestående av många olika mikrobiella grupper varav en av grupperna är de 

metanbildande metanogenerna (tillhör Arkeér). Vid nedbrytning av cellulosa 

(ex. gräs) bildas koldioxid och vätgas, som metanogenerna i sin tur omvandlar 

till slutprodukten metan. För att minska metanproduktionen görs försök att 

reducera antalet metanogener, minska deras aktivitet eller främja alternativa 

vägar som gör att metan inte bildas som biprodukt.  

 

Det övergripande syftet med denna avhandling var att utvärdera olika faktorer 

med potential att minska metanproduktion hos mjölkkor genom foder eller 

fodertillsatser, samt hur den individuella mikrobfloran påverkar 

metanproduktionen. I avhandlingen har kor som utfodrats under nordiska 

förhållanden undersökts. 
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9.1 Sammanfattning av studierna och resultat 

 

Metanproduktion och arkeépopulation i våmmen hos mjölkkor utfodrade med 

olika grovfoderandelar 

 

Idag utfodras mjölkkor med foderstater som innehåller en stor andel kraftfoder. 

I Sverige utgör kraftfoderandelen i konventionella foderstater oftast mer än 50 

% av TS (torrsubstans). Önskvärt vore att bättre utnyttja kons potential att bryta 

ner grovfoder (ex. gräs), istället för att utfodra kraftfoder som enkelmagade djur 

eller människor kan utnyttja istället. I den första studien undersöktes 

metanproduktionen och arkeépopulationen i våmmen när olika proportioner av 

grovfoder utfodrades. Hypotesen var att metanproduktionen ökar med ökad 

andel grovfoder. Fem kor utfodrades i två olika perioder med en foderstat av 

grovfoder och kraftfoder i olika proportioner, 50:50 och 90:10. Mängden metan 

uppmättes med en spårgasteknik som kallas svavelhexafluorid (SF6). 

Metanogenerna i våmmen undersöktes med olika molekylära metoder. 

Resultaten visade att varken metanproduktionen eller totala antalet metanogener 

skiljde sig signifikant mellan de olika foderstaterna med olika grovfoderandelar. 

Den individuella kon visade sig ha större påverkan på metanproduktionen 

jämfört med typ av foderstat. Resultaten visade också att genom att dela upp 

olika arter av Methanobrevibacter i två grupper så sågs en koppling till högre 

metanproduktion med ena gruppen och mindre metanproduktion med andra 

gruppen. 

 

Kor med låg eller hög metanproduktion 

 

För att vidare undersöka effekten av individen studerades metanproduktion och 

sammansättningen av mikroorganismer i våmmen, samt foderintag och 

mjölkproduktion. För att minska påverkan av vissa fysiologiska och 

foderrelaterade parametrar undersöktes kor i samma laktationsstadie utfodrade 

med samma foderstat. Utifrån totalt 73 kor valdes kor ut som producerade låg, 

medel eller hög mängd metan. Metanproduktionen uppmättes från kons 

utandningsluft i samband med mjölkning. Den mikrobiella samhällsstrukturen i 

våmvätska studerades genom sekvensering av 16S rRNA-genen från bakterier 

och arkeér. Resultaten från denna studie visade att den mikrobiella floran från 

enskilda kor var tydligt uppdelad i en av två grupper (kluster) av bakterier, 

liknande kluster uppstod även för arkeépopulationen. I kluster hög (H) fanns kor 

med högre metanproduktion jämfört med kor i kluster låg (L). Det fanns ingen 

skillnad i nedbrytningen av fiber mellan kor i de olika klustren. 

Metanproduktionen per kilo mjölk var lägre för de kor som var i kluster L. 



63 

Proportionerna av fermenteringsprodukter såsom flyktiga fettsyror skiljde också 

mellan klustren. Proportionen av propionat var högre i kluster L och 

proportionerna av butyrat var högre i kluster H, vilket delvis kan förklara de 

olika nivåerna av metanproduktion. Samma uppdelning av Methanobrevibacter 

arter som i studie ett visade även här tydliga kopplingar till metanproduktion. 

 

Utvärdering av fodertillsatsers effekt på metanproduktion och mikroorganismer 

i våmmen 

 

Som ett första steg i att utvärdera olika foderstater eller fodertillsatser så kan 

tester utföras i olika labb-system, så kallade in vitro system. Test in vitro gör att 

färre tester på djur, in vivo, behövs samt att det är en lägre kostnad. Dock skiljer 

sig in vitro och in vivo åt i vissa avseenden. Foderstater eller tillsatser som 

resulterat i sänkt metanproduktion in vitro måste vidare utvärderas in vivo innan 

en effekt kan fastställas. I studie tre undersöktes metanproduktionen vid tillsats 

av två olika potentiella metanhämmande fodertillsatser i ett gas in vitro system. 

Båda substraten, glycerol och extrakt från cashewnötskal, är rest- eller 

biprodukter från olika industriella processer. Substraten tillsattes till en mix av 

grovfoder och kraftfoder (60:40) och inkuberades tillsammans med våmvätska i 

gas in vitro systemet under 48 timmar. Metankoncentrationen mättes vid sex 

olika tillfällen och med hjälp av en teoretisk våm-modell beräknades mängden 

metan som producerats. Vid olika tidpunkter (8, 24 och 48 timmar) togs prover 

för analys av bildningen av flyktiga fettsyror samt för vidare studier av 

mikroorganismstrukturen (mikrobiota). Resultaten visade att 

metanproduktionen minskade med extrakt från cashewnötskal men ökade när 

glycerol tillsattes jämfört med kontrollen (inget tillfört). Effekter på mikrobiotan 

var tydlig med extrakt från cashewnötskal, andelen mellan grupperna av 

Methanobrevibacter ändrades, med en lägre andel av den grupp som kopplats 

till hög metanproduktion jämfört med kontrollen. För glycerol var 

sammansättningen av mikroorganismer liknande den i kontrollen. 

Koncentrationen av flyktiga fettsyror var klart högre när glycerol tillsattes vilket 

förmodligen förklarar metanökningen.  

 

Utvärdering av gas in vitro systemet  

 

I den fjärde studien utvärderades gas in vitro systemet. Genom att mäta metan 

på samma eller liknande foderstater som tidigare utfodrats till kor eller får där 

metanmätningar utförts direkt, in vivo, på djuren kunde de olika mätvärdena 

jämföras. Fyrtionio olika dieter valdes ut för att utvärdera olika typer av 

foderkomponenter så som; andel kraftfoder, nivå av utfodring utöver 
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underhållsbehovet, kolhydratsammansättning, fett, protein, fodertyp, samt 

grovfoder skördat tidigt och sent. Metanvärdena från gas in vitro systemet 

stämde överens med de observerade värdena in vivo, vilket visades med ett 

ganska litet skattningsfel (9,5 %). Systemet kan därmed användas för att 

utvärdera effekt av olika fodertillsatser, exempelvis fett. Det fanns dock vissa 

brister med systemet, det fungerade inte att analysera effekten av ökande andel 

kraftfoder i totala foderstaten. Direkta uppmätta in vivo värden visade varierande 

metanvärden när kraftfoderandelen ökade, men detta var inte möjligt att visa i 

gas in vitro systemet då metan alltid ökade vid ökad kraftfoderandel.  Detta 

understryker vikten av att effekter som erhållits i in vitro miljön inte alltid är 

densamma i in vivo miljön och vice versa. 

 

9.2 Slutsatser 

Sammanfattningsvis visar resultaten i denna avhandling att individuella 

skillnader i metanproduktion var större än effekt av foder. Ökad nivå av 

grovfoder i foderstaten till mjölkkor hade ingen signifikant effekt på 

metanproduktionen eller den metanogena populationen. Genom att dela upp 

Methanobrevibacter arter i två grupper sågs en korrelation till metanproduktion 

som tyder på att vissa miljöer främjar de olika grupperna. Beroende på våm-

miljö bildas mer eller mindre metan, men ingen effekt visades för varken 

mjölkproduktion eller foderutnyttjande i studien med kor med låg och hög 

metanproduktion. Tillsats av glycerol in vitro ökade metanproduktionen medan 

tillsats av extrakt av cashewnötskal resulterade i minskad metanproduktion, 

resultat från in vitro måste även verifieras in vivo. Det utvärderade gas in vitro-

systemet kan användas för screening av foderstater och tillsatser innan de testas 

in vivo, med vissa begränsningar när det gäller effekt av kraftfoderandel i 

foderstaten. Ökad kunskap om vad som egentligen sker i våmmen skulle ge ett 

bättre underlag om vad som kan göras för att reducera metanproduktionen. 
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