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Establishment and Early Management of Populus Species in 
Southern Sweden 

Abstract 

Populus species are among the most productive tree species in Sweden. Interest in growing 

them has increased during the 21st century due to political goals to increase the share of 

renewable energy and to increase the proportion of hardwood species in forests. Populus 

species have been shown to be potentially profitable, but currently they are mostly planted 

on abandoned agricultural land. There is a lack of knowledge about the establishment of 

Populus species on forest sites. There is also a lack of knowledge of how second generations 

can be established by root and stump sprouts, and about management of young stands. The 

main objective of this thesis was to focus on these issues. 

Site properties are important for successful establishment of Populus species and factors 

such as soil pH and soil moisture should be considered. Site preparation is important to 

control weed competition and to modify the microclimate, including soil moisture.  

In this thesis, mounding in relation to patch scarification, soil inversion and no 

intervention, were found to provide the highest survival and growth. Hybrid aspen was in 

most cases found to be more robust than other Populus species, but poplar plants or long 

unrooted cuttings showed similar survival and faster growth at the site where soil pH was 

high. In general, short unrooted poplar cuttings showed high mortality on forest sites. In 

water saturated soils, the growth of poplar cuttings was inhibited and roots were located 

closer to the soil surface. This was mainly caused by the absence of callus roots originating 

at the base of the cutting. 

Poplar stump sprouts can be used successfully for regeneration if the clones can produce 

living straight sprouts. Variability in this trait was found in one of the studies in this thesis. 

A second generation of naturally-regenerated hybrid aspen can produce over 100,000 root 

suckers per hectare. If no early management is conducted, biomass will be lost through self-

thinning. It was shown in this study that a substantial amount of biomass can be harvested 

schematically through corridors or cross-corridors, resulting in stimulated stem diameter 

development. An additional early thinning further increased the diameter on crop trees. 

In this thesis, site-adapted management of Populus species is suggested to be the most 

important measure to achieve successful regeneration. In particular, this includes choosing 

species and clones adapted to specific site properties. A second generation can be 

established either by stump sprouts (poplars) or root suckers (hybrid aspen). If larger-

dimensioned trees are desired, early thinnings are important in the second generation. 
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1  Introduction 

1.1 Biology and distribution of Populus species in the world 

Species from the genus Populus (family Salicaceae Linnaeus) occur naturally 

over large areas in the northern hemisphere (Dickmann & Kuzovkina, 2014). 

The genus is divided into six sections: Abaso Eckenwalder (Mexican poplar), 

Aigeiros Duby (cottonwoods and black poplar), Leucoides Spach (swamp 

poplars), Populus (white poplars and aspens, formerly called Leuce Duby), 

Tacamahaca Spach (balsam poplars), and Turanga Bunge (arid and tropical 

poplars). 

Populus spp. are light-demanding deciduous pioneer tree species. Some of 

the species are among the fastest growing tree species in the world and height 

growth can exceed 4 m year-1 (Isebrands & Richardson, 2014). 

Soil properties that are known to affect the vitality of Populus spp. are pH, 

soil moisture, soil bulk density, soil nutrient composition and soil temperature 

(Marron et al., 2014; McIvor et al., 2014; Stanturf & van Oosten, 2014; 

Zalesny et al., 2005a; DesRochers et al., 2003; Landhäusser, 2003; Stanturf et 

al., 2001). The fast growth requires good water availability and well-drained 

soils to avoid oxygen deficit. 

Poplars and aspens have a natural vegetative regeneration which is the 

reason why dense stands of clone groups often are found in their natural 

habitats (Dickmann & Kuzovkina, 2014) (definition of clone: Box 1). Stump 

sprouts are more common among poplars in the second generation, while root 

suckers are more common among aspens (definitions of stump sprout and root 

sucker: Box 1). 

Populus spp. are a desired food source for ungulates and rodents, especially 

when the trees are young (Richardson et al., 2014; Stanturf & van Oosten, 

2014; Myking et al., 2011). 
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Many of the Populus spp. are commercially valuable due to their growth rate 

and the versatile use of their wood. Populus spp. are planted for various uses 

including veneer, pulp, timber, bioenergy, phytoremediation (absorption of 

contaminating substances through plants), soil erosion control, agroforestry 

and as wind breaks. Thus, they are planted widely over temperate and boreal 

regions. The latest country report from the International Poplar Commission 

(IPC) reported 8.6 million ha planted with Populus spp. in 24 reporting 

countries, while the total occurrence of Populus spp. is estimated to be around 

87 million ha (IPC, 2012). China holds the largest share of Populus spp. 

plantations (7.6 million ha), while France, Spain and Italy have between 

100,000 to 235,000 ha each. North America has approximately 90,000 ha of 

Populus spp. plantations. 

The fact that many of the species are easy to propagate has led to numerous 

breeding programs, where hybridization is common, resulting in the wide 

spread use of the species (Isebrands & Richardson, 2014; Dickmann, 2006). P. 

deltoides Marshall, P. nigra Linnaeus, P. maximowiczii Henry and P. 

trichocarpa Torrey & Gray are often included in breeding programs due to 

their silvicultural importance. Some of the most well-known interspecific 

poplar hybrids are P. deltoides × P. nigra (also known as P. ×canadensis 

Moench or P. ×euramericana Guinier), P. deltoides × P. trichocarpa (also 

known as P. ×generosa Henry or P. ×interamericana van Broekhuizen), and 

recently also P. nigra × P. maximowiczii (Dickmann & Kuzovkina, 2014). 

The first controlled crossings of European and North American poplar 

species started in the early 1900s (Isebrands & Richardson, 2014), while 

breeding of hybrid aspen started in northern Europe in the 1920s (Tullus et al., 

2012). Since then, the breeding work has focused on growth, timber quality 

and tolerance against diseases such as leaf rust (Melampsora larici-populina 

Klebahn), leaf blight (Marssonina brunnea (Ellis & Everhart) Magnus), 

bacteria cankers (Xanthomonas populi Ridé) and other cankers (e.g. Septoria 

spp., Entoleuca spp. former Hypoxylon spp.). The search for disease tolerant 

genotypes is the main reason to why clones are used in Populus spp. 

plantations (Ostry et al., 2014). 

 

In this thesis, the focus is on commercially important species from the sections 

Aigeiros, Tacamahaca and Populus. Species and hybrids from the first two 

sections will be referred to as ‘poplars’. The focus in the latter section lies on 

the hybrid between P. tremula Linnaeus × P. tremuloides Michaux (also 

known as P. ×wettsteinii Hämet-Ahti), and will be referred to as ‘hybrid 

aspen’. Some of the terminology that will be treated in this thesis is defined in 

Box 1. 
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1.2 Swedish historical background 

In Sweden, interest in Populus spp. began with the discovery of a large triploid 

common aspen (P. tremula) that had very large leaves. This discovery also led 

to the start of the Swedish forest tree breeding program in 1936 (Werner, 

2010). The first hybrid aspen crossing was done in 1939 at the Ekebo research 

station located in southernmost Sweden (Werner, 2010; Johnsson, 1953). The 

research station is today part of the Forestry Research Institute of Sweden 

(Skogforsk). 

Populus spp. are dioecious, and the female species selected for the hybrid 

aspen crossings was the North American quaking aspen (P. tremuloides), while 

Terminology 
 
An asexually-reproduced tree that is genetically identical. Can be 
produced from e.g. roots, stumps, cuttings and micropropagation 
(Isebrands & Richardson, 2014) 
A replicate of a clone (clonal copy), i.e. clones produced vegetatively such 
as cuttings (Isebrands & Richardson, 2014) 
A cut part of a shoot, branch or root (in this thesis a one-year-old shoot 
from a stump sprout), planted in purpose to produces shoots and roots (1) 
Root produced by preformed root primordia at the side of the cutting 
(Zalesny & Zalesny, 2009; Haissig, 1974b) (2a)  
Root produced from induced callus tissue at the bottom of the cutting 
(Zalesny & Zalesny, 2009; Haissig, 1974b) (2b) 
Undifferentiated tissue capable of cell division. Produced as a response to 
wounding, e.g. at the base of cuttings or at the cut surface of stumps 
(Dickmann & Kuzovkina, 2014; Zalesny & Zalesny, 2009; Haissig, 
1974b) (3) 
Natural, asexual, regeneration from callus tissue or dormant buds in 
stumps after harvest (common among poplars) (Zasada et al., 1981) (4) 
Natural, asexual, regeneration from adventitious buds in roots, especially  
after harvest (common among aspens) (Isebrands & Richardson, 2014) (5) 

2 1 

a 

b 

3 4 5 

Box 1. 
 
Clone 
 
 
Ramet 
 
Cutting 
 
Primordia root 
 
Callus root 
 
Callus tissue 
 
 
 
Stump sprout 
 
Root sucker 
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the male species was the native common aspen. At that time, only two female 

trees growing in Sweden were used for the first hybrids. After World War II, 

male P. tremuloides trees and their pollen became possible to import, resulting 

in hybrids with both species as the female and male parent (Johnsson, 1953). 

Today, most hybrids have P. tremula as the female species, but all crosses are 

referred to as P. tremula × P. tremuloides. 

 

The interest in hybrid aspen increased when the Swedish Match Company 

(Svenska Tändsticks AB) became concerned that there would be a lack of 

timber for the match industry. Therefore, the company established progeny 

trials at the Mykinge trial area (near Jönköping, Sweden). In 1946, hybrid 

aspen trials were established at both Mykinge and Ekebo (also including one P. 

alba × P. tremula hybrid) (Johnsson, 1953). Additionally, some testing of 

poplars occurred during this period (e.g. P. trichocarpa × P. deltoides and P. 

alba × P. nigra). Due to the introduction and wide-spread use of cheap gas 

lighters, the industry lost interest in new fast-growing Populus spp., and the 

breeding work stopped around 1960 (Stener, 2004; Christersson & Sennerby-

Forsse, 1995). 

In response to the oil crisis, the interest in poplars started again in mid-

1970s. This time the focus was on bioenergy production as an alternative to 

fossil fuels (Stener, 2004; Christersson & Sennerby-Forsse, 1995). 

Additionally, some agricultural land which had been abandoned due to 

rationalizations in agriculture was planted with poplars in the 1990s when the 

government offered subsidies for afforestation. The poplar clones (definition of 

clone: Box 1) tested in Sweden have mainly been imported clones adapted to 

conditions in other European countries or North America (Stener, 2010; 

Christersson & Sennerby-Forsse, 1995). The hybrid aspen clones have been 

bred in Sweden or Finland. 

1.3 Present situation in Sweden  

Recently, the European Union stressed the importance of renewable energy to 

reduce global greenhouse gas emissions (European Commission, 2015). 

Previously, the European Union had set national goals for the EU-28 to 

increase their share of renewable energy by year 2020 (European Commission, 

2009). 

Further, the Nordic countries have a vision to become carbon neutral by 

year 2050 (IEA, 2013; Nordenergi, 2010). In Sweden, the national vision is to 

become independent of fossil fuels in the transport sector by year 2030 and to 

have zero net greenhouse gas emissions by the year 2050 (Regeringskansliet, 
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2012). Hence, bioenergy from renewable sources is of great interest in northern 

Europe (Rytter et al., 2015). In Sweden, the energy use coming from 

renewable sources was 53 % in year 2014, of which 34 % came from 

bioenergy (Swedish Energy Agency, 2016). Most of the biomass comes from 

forest residues, mainly tree tops and branches. However, since the beginning of 

the 21st century, the interest in growing poplar and hybrid aspen for bioenergy 

on agricultural land has increased. Additionally, severe storm damage occurred 

in conifer-dominated forests in 2005 and 2007. This resulted in subsidies, 

offered by the government, to promote forest owners to plant trees other than 

Norway spruce (Picea abies (Linnaeus) Karsten), especially deciduous tree 

species. The purpose was to spread the risks and increase biodiversity in 

previously conifer-dominated forest stands (Skogsstyrelsen, 2013). 

Furthermore, ash dieback, caused by the pathogen Hymenoscyphus fraxineus 

(Kowalski) Baral et al., increased the interest in alternative tree species that 

can be planted on moist and wetter soils. This has raised the question of if and 

where Populus spp. can also be used on forest land. 

 

Currently, 15 hybrid aspen clones and 12 poplar clones are well-tested and 

registered at the Swedish Forest Agency and are thereby commercially 

available. The poplar species or hybrids used in Sweden are P. trichocarpa, P. 

nigra, P. maximowiczii, and P. deltoides. However, the poplar plantations have 

until 2010 been dominated by the clone OP 42 (P. maximowiczii × P. 

trichocarpa) (Rytter et al., 2011). In 2010, other tested clones became 

commercial available, but OP 42 is still the most common clone in southern 

Sweden. This clone originates from the breeding program initiated by the 

Oxford Paper Company and the New York Botanical Garden in the 1920s 

(Schreiner, 1949). 

The trend to plant Populus spp. is still increasing. To date, the area planted 

with poplar and hybrid aspen is approximately 2,000 ha each, of which most 

are planted on former agricultural land (estimates from the Swedish Forest 

Agency and the Swedish Board of Agriculture). 

 

Although the interest in Populus spp. is growing due to promising economic 

forecasts, there are several factors holding back investments. The Swedish 

Forestry Act classifies poplar and hybrid aspen as exotic tree species and 

restricts the area that is allowed to be planted with clone material to 5 % of a 

forest estate, or 20 ha (Skogsvårdslagstiftningen, 2015). Commonly applied 

certification schemes (FSC and PEFC) restrict the use of exotic tree species, 

but do not further restrict the area that the law allows for planting of cloned 
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plant material (Programme for the Endorsement of Forest Certification, 2011; 

Forest Stewardship Council, 2010). 

Further, private forest owners are interested in increased productivity in 

their forests, but are at the same time reluctant to plant exotic tree species and 

to practice intensive forestry (Hemström et al., 2013; Lindkvist et al., 2012). 

The major reason behind this is lack of knowledge concerning the economic, 

management and environmental consequences. 

On agricultural land in Sweden, restrictions differ from forest land and there 

are few, if any, rules against planting Populus spp. Subsidies are currently 

available if the trees are grown as an energy crop with a rotation age below 20 

years. The extent of these plantations is mostly inhibited by high investment 

costs (i.e. plant material and fencing), lack of knowledge or a disturbed 

landscape view compared to open fields (Hannerz & Bohlin, 2012; Lindkvist et 

al., 2012). 

From a biodiversity perspective, it has been reported that Populus spp. can 

be of importance (Gustafsson et al., 2016; Isacsson, per. comm. 2016; Felton et 

al., 2013; Weih et al., 2003). An increased share of hardwoods, including 

Populus spp., has also been in focus in Sweden to enhance biodiversity in 

conifer-dominated forests. 

 

1.3.1 Establishment and management of Populus species in Sweden 

Both poplar and hybrid aspen have shown to be among the most productive 

tree species in Sweden when planted at suitable sites (Tullus et al., 2013; 

Christersson, 2008; Elfving, 1986; Eriksson, 1984; Persson, 1974). On fertile 

sites in southern Sweden and Denmark, the stem volume production of poplars 

has reached over 25 m3 ha-1 year-1 (Nielsen et al., 2014; Johansson & Karačić, 

2011; Christersson, 2010; Karačić et al., 2003). Including branches, this 

corresponds to approximately 10 ton dry mass (DM) ha-1 year-1. The growth of 

hybrid aspen has been reported to be somewhat lower; 20-25 m3 ha-1 (7-9 ton 

DM ha-1 year-1) (Rytter & Stener, 2014; Tullus et al., 2012). 

 

Poplars and hybrid aspen are commonly planted with stand densities between 

1,100 and 1,600 stems ha-1 (approximately 3 × 3 m or 2.5 × 2.5 m spacing) on 

agricultural land in Sweden (Rytter et al., 2013; Tullus et al., 2013; Tullus et 

al., 2012). Site preparations are made through plowing, harrowing and 

herbicide treatments. Recently other vegetation control methods, such as 

mulching, have been tested with promising results (Böhlenius & Övergaard, 

2015a; Böhlenius & Övergaard, 2015b). The rotation length is commonly 

between 15 to 25 years. Stand density, number of commercial thinnings and 
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rotation lengths are adapted to the production goal. Wider spacing makes it 

possible to avoid pre-commercial thinning and its associated cost.  

On forest land in Sweden, the use of herbicides is restricted, which stresses 

the importance of using suitable soil preparation and plant material to achieve 

fast establishment. 

  

Poplars and hybrid aspen have, in general, good survival and growth on 

agricultural land. On forest land, the survival of poplar has varied, but several 

types of damage have been reported for both poplar and hybrid aspen (e.g. 

browsing by ungulates or rodents, pathogens, insects, and abiotic damage) 

(Stener & Westin, 2015; Engerup, 2011). However, hybrid aspen has been 

observed by these authors to establish more successfully than poplar on forest 

land, but knowledge is lacking in this perspective. 

Hybrid aspen, which is difficult to root from cuttings (definition of cutting: 

Box 1), is commonly planted with micropropagated containerized plants 

(Stenvall, 2006; Haapala, 2004). Poplars are easier to root and are commonly 

planted with rooted containerized plants or bare root plants. Plants of Populus 

spp. are, in general, more expensive in comparison to mass produced conifer 

plants, mostly due to the small quantities demanded by the forest industry. In 

addition, fencing is almost always needed to avoid browsing damage from 

ungulates and soil preparation is needed to enhance the growing conditions and 

to ensure fast establishment. All these measures lead to high establishment 

costs. 

Thus, the methods to establish Populus spp. on forest land need to be 

further developed due to lack of experience, and more solid planting 

recommendations are essential to increase the share of Populus spp. in 

practical forestry. 

 

Due to the their resprouting ability after harvest, there is also an interest in 

using the second generation of Populus spp. as a regeneration method in 

plantations instead of planting a new stand after harvest. Interest is growing in 

attaining a new generation without the expense of plant material and soil 

preparation. Under Swedish growing conditions, it has been reported that 

poplar stumps can produce between 18 and 37 stump sprouts per living stump 

(Johansson & Hjelm, 2012). Hybrid aspen can produce over 50,000 root 

suckers ha-1 and root suckers tend to be more productive than the first 

generation (Rytter, 2006; Rytter & Stener, 2005). This is mostly related to the 

fast initial growth that is supported by the already existing root system (Frey et 

al., 2003). However, little has been reported concerning the performance of 

poplars and hybrid aspen in the second generation and management 
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alternatives are still missing. Cost-effective methods are especially needed to 

reduce the number of stems in these initially very dense stands without 

jeopardizing the future stand development. 

1.4 Objectives 

The main objective of this thesis was to further investigate the establishment of 

Populus spp. The individual studies aimed to explore the possibility to 

establishing Populus spp. on forest land, and how the second generation from 

stump sprouts or root suckers can be obtained and managed. The specific 

objectives were: 

 

 To find secure methods for establishment of poplars and hybrid aspen on 

forest land by investigating the effects of mechanical soil preparation, plant 

material and site properties on survival and growth (Paper I). 

 To study the effects of high water table on early root growth of poplar 

cuttings (Paper II), since Populus spp. are often planted on sites that, at 

times, can have a high water table (i.e. saturated soil condition).  

 To study the survival, quality and growth of stump sprouts of poplar clones 

to assess the reliability of stump sprouting as a regeneration method (Paper 

III). 

 To study the initial productivity and the effects of different thinning 

regimes on the growth development of hybrid aspen stands established by 

root suckers (Paper IV). 
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2 Materials & methods 

The studies in this thesis were based on randomized block designs or a totally 

randomized design established in field or greenhouse experiments. The field 

sites were located in southern Sweden (Figure 1). Two of the experiments were 

located on agricultural land in the southernmost Sweden where growing 

conditions are favorable. All poplar clones have been bred abroad and originate 

from nurseries in Europe or North America. The hybrid aspen clones were 

Swedish or Finnish breeds. Additional description of the sites and clone 

material used in this thesis are found in the appendix. 

This section is an overview of the materials and methods used to fulfil the 

objectives. Detailed descriptions are provided in each individual paper (I-IV). 

Shoots referred to in this thesis originate from buds on cuttings or stool beds 

for production of new cuttings. When referring to stump sprouts, the aim is to 

regenerate vegetatively and create a new stand. When referring to cuttings, the 

origin was stem cuttings from one-year-old shoots. 

 

2.1 Establishment of poplar and hybrid aspen after planting 
(Paper I & II) 

Three sites in southern Sweden (Brattön, Dimbo and Duveholm) were used to 

study the establishment of poplar and hybrid aspen on forest land (Figure 1) 

(Paper I). Four treatments containing four rows each were applied in a random 

block design: a) control with no soil preparation, b) patch scarification, c) 

mounding, and d) soil inversion (Figure 2). Within each treatment and row, one 

of four plant types was randomly used: i) short poplar cuttings (ca. 20 cm), ii) 

long poplar cuttings (ca. 50 cm), iii) rooted containerized poplar cuttings (ca. 

47 cm) (referred to as poplar plants), and iv) containerized hybrid aspen (ca. 57 

cm) (referred to as hybrid aspen). Clones were randomly assigned a position 
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within each row of a plant type. Growth characteristics were registered after 

each growing season during three consecutive years. 

The effect of treatment was analyzed with split-plot mixed models and 

survival was assessed by a generalized split-plot mixed model with a logit link. 

 

 
Figure 1. Locations of the study sites in southern Sweden used in Paper I (blue), Paper III (green), 

and Paper IV (red). 

Jordkull

Ekebo
Maltesholm
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Figure 2. Illustration of the four soil preparation methods used for planting Populus spp. on forest 

land in southern Sweden (Paper I). No scarification (a), patch scarification (b), mounding (c), and 

soil inversion (d). Planting was done with short poplar cuttings (ca. 20 cm), long poplar cuttings 

(ca. 50 cm), poplar plants (ca. 47 cm), and hybrid aspen plants (ca. 57 cm). The illustration shows 

planted short poplar cuttings. 

 

To study the effects of high water tables during the initial establishment phase 

of poplar, root growth of cuttings (20 cm) was studied under two treatments: 

moist and saturated (flooded) soil conditions (Figure 3) (Paper II). Both 

treatments were imposed with nutrient solution. The experiment took place in a 

greenhouse at the USDA Forest Service’s Center for Bottomland Hardwoods 

Research in Stoneville, Mississippi, USA. The two soil moisture treatments 

were applied in a random block design and nine clones replicated with four 

a

b

c

d
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ramets (definition of ramet: Box 1) were randomly placed within each 

treatment. The planting took place in sand-filled containers and growth 

characteristics were recorded 18 days after planting. 

Treatment effects were analyzed by split-plot mixed models at the whole 

plant level, or in sections of the cutting (apical, middle and basal) (Figure 3). 

Correlations among growth characteristics were calculated with Pearson’s 

correlation coefficient for each of the treatments. 

 

 
Figure 3. Illustration of the two soil moisture treatments conducted in sand-filled containers in a 

greenhouse experiment (Paper II). Water levels represent moist (left) and saturated (right) soil 

conditions. Rooting was studied in three separate 5 cm rooting sections (apical, middle, and basal) 

of the cutting. 

 

2.2 Stump sprouting of poplar clones (Paper III) 

To investigate the ability of stump sprouting after harvesting poplars, stump 

sprouts from 23 different clones located in a former clone test in southern 

Sweden were used (Figure 1). Growth characteristics were recorded after one 

year. Stump survival was defined as stumps having living sprouts. Sprout 

straightness was recorded in three classes: i) straight, ii) crooked, and iii) very 

crooked (Figure 4). The clones were represented by three to 10 stumps each 

and were regarded as randomly distributed within the site. Clones consisted of 

 

Apical (0-5 cm) 

Middle (5-10 cm) 

Basal (10-15 cm) 

Root sections 

15 cm 

5 cm 
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three groups: eight clones commercially available in Sweden, seven candidate 

clones (i.e. candidates to become commercial), and eight additional clones (i.e. 

clones excluded from further selection). 

Analyses of survival of clones and clone groups were conducted with a 

generalized mixed model with a logit link. Clones having less than two living 

stumps were excluded from further analysis. Straightness was analyzed by 

frequency analysis using Fisher’s exact test (PROC FREQ in SAS®). Other 

growth characteristics were analyzed by ANOVA for clones and clone groups. 

 

 
Figure 4. Illustration of straightness of poplar stump sprouts (Paper III) in three classes; straight 

(left), crooked (middle), and very crooked (right). 

 

2.3 Productivity and management of hybrid aspen root suckers 
(Paper IV) 

Paper IV comprised three study parts (A-C) of the productivity of hybrid aspen 

root suckers conducted at four sites in southern Sweden (Figure 1).  

In study part A, the initial growth of root suckers was studied at all four 

sites. Each site contained one to four blocks. Growth characteristics were 

recorded annually or every other year up to the age of four years. Site effects 

were analyzed by generalized linear models. 



1m 2m 1m 2m
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Study part B was conducted at one site (Figure 1: Jordkull), where effects of 

early harvests on the stand development were investigated. Three treatments 

were applied after two years of growth (Figure 5); i) control with no harvest, ii) 

corridor harvest, and iii) cross-corridor harvest. Growth effects were studied 

every two years up to the age of 12 years using a random block design. 

Analyses of harvest effects were performed by mixed models with block as a 

random effect. 

In study part C, the effects of thinning after harvest were investigated. Half 

of the experiment used in study part B was thinned to 1,100 stems ha-1 at the 

age of four years. Larger trees were selected within ca. 3 × 3 m spacing. The 

three treatments in this study part were; iv) control with no harvest followed by 

thinning, v) corridor harvest followed by thinning, and vi) cross-corridor 

harvest followed by thinning. These treatments (iv-vi) are hereafter called 

second thinning, although one treatment was thinned for the first time. This 

study part also had a random block design. Growth characteristics were 

recorded for all remaining trees every two years for 12 years. Harvest effects 

on growth after the second thinning were analyzed in the same way as in study 

part B. 

 

 
Figure 5. Illustration of treatments performed on two-year-old hybrid aspen root suckers (Paper 

IV). Left panel: no harvest. Middle panel: corridor harvest - 2 m corridors (striped areas) 

harvested, leaving 1 m wide rows of root suckers. Right panel: cross-corridor harvest - 2 m wide 

corridors harvested in two directions (striped areas), leaving 1 × 1 m patches of root suckers. 
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3 Main results 

3.1 Establishment of poplar and hybrid aspen after planting 
(Paper I & II) 

3.1.1 Survival and plant damage 

Survival and growth of Populus spp. plants on forest land were effected by site, 

soil preparation methods and plant types, but interactions showed that the 

effects of soil preparations and plant types differed among sites (Paper I). After 

three growing seasons, the Dimbo site had the highest survival rate (73 %) for 

all soil preparation methods and plant types (Figure 6). The Brattön and 

Duveholm sites showed, in general, lower survival (46 and 51 %, respectively). 

In general, mounding provided the best survival (67 %), while patch 

scarification had the lowest (49 %). Hybrid aspen generally showed the highest 

survival (75 %), but at Duveholm poplar plants and long cuttings showed 

similar survival. Short cuttings showed the lowest survival (35 %) at all sites. 

Damage was observed during the three-year study period. Despite the 

damage, most living plants still had positive growth. At Dimbo, the fence was 

damaged and 34 and 25 % of the plants were browsed by ungulates during the 

first and second seasons, respectively. At Duveholm, 34 % of plants had vole 

damage at the end of the second season. In most cases the cause of damage 

could not be assessed, but other obvious damage sources were weather (e.g. 

frost) and competing vegetation. However, concerns that a high water table in 

some areas caused poor plant development were raised. 
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Figure 6. Survival of Populus spp. after three growing seasons (Paper I). The three forest sites 

(Brattön, Dimbo and Duveholm) were treated with four soil preparation methods and four plant 

types. The soil preparations were: control, patch scarification, mounding, and soil inversion. The 

plant types were (from light grey to black): short cutting (20 cm), long cutting (50 cm), 

containerized poplar plant (47 cm), and containerized hybrid aspen plant (57 cm). 

 

Though the study on forest land was not designed to evaluate clonal 

performance, differences in survival of poplar clones were apparent. This was 

not statistically analyzed, due to low replication of clones, but only interpreted. 

Some additional indications of clone survival are discussed in section 4.1.6. 

 

3.1.2 Plant growth 

In Paper I, soil preparation and plant type showed site interacting effects on 

plant growth and height (Figure 7). The Duveholm site had the fastest height 

growth (76 cm year-1) and the tallest plants (192 cm) in the third season, but 

this site did not differ from the growth found at Dimbo (52 cm year-1) for all 

soil preparations and plant types. 

In general, mounding provided the fastest growth (63 cm year-1) and tallest 

plants (161 cm) after three seasons (Figure 7a). Patch scarification showed the 

slowest growth and shortest plants after three seasons (47 cm year-1, 129 cm, 

respectively). The control (i.e. no soil preparation) and soil inversion 

treatments showed great variability in their performance over the sites. 

Hybrid aspen showed no site effects, but generally had the fastest growth 

(62 cm year-1) and tallest plants (162 cm) in the third season (Figure 7b). Short 

cuttings had the slowest growth and shortest plants (51 cm year-1 and 123 cm). 
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However, at Duveholm poplar plants and long cutting showed faster growth 

(82 cm year-1) and taller plants (210 cm) compared to hybrid aspen (71 cm 

year-1 and 177 cm, respectively).  

Plant diameter (at 50 cm above ground) followed a similar response to soil 

preparation and plant type as plant height in the third season. 

 

 

 
Figure 7. Plant height (cm) of Populus spp. during three growing seasons planted at three sites 

(Brattön, Dimbo and Duveholm) (Paper I). (a) Mean height of plants planted with four soil 

preparations: control, patch scarification, mounding, and soil inversion. (b) Mean height of four 

plant types: short poplar cutting (20 cm), long poplar cutting (50 cm), containerized poplar plant, 

and containerized hybrid aspen plant. Mean height in growing season zero represents the above-

ground portion of the cutting or plant at planting. 

 

3.1.3 Rooting of poplar cuttings 

In the greenhouse study (Paper II), cuttings grown under moist soil conditions 

had roots located in all three sections of the cutting (Figure 8), while cuttings 

grown under saturated soil conditions did not produce roots that originated 
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from callus tissue at the base of the cutting (definitions of callus tissue and 

callus root: Box 1). The response to soil saturation differed between clones and 

not all clones showed treatment effects in root dry mass (DM), number of 

roots, and total root length. In general, the number of all types of roots and 

primordia roots decreased in the saturated soil (definition of primordia root: 

Box 1). Cuttings grown in saturated soil had a shallower root system. The 

relative distribution of roots differed between treatments in all sections of the 

cutting (Figure 8). Approximately 14, 30 and 60 % of the roots were found in 

the apical, middle and basal sections respectively in moist soil. In saturated 

soil, these numbers were 27, 40 and 34 %. The mean and total root length was 

also greater in the apical section when the soil was saturated. The moist 

treatment had more roots than the saturated treatment in the basal section. Soil 

saturation, in comparison to moist soil, also resulted in reduced shoot and leaf 

growth. 

 

 
Figure 8. Relative number of roots of nine poplar clones in moist (light grey) and saturated (dark 

grey) soil in three sections of the cutting (Paper II). The depths of the three sections below the soil 

surface were: apical (0-5 cm), middle (5-10 cm), and basal (10-15 cm). The cuttings were 20 cm 

long. 

 

Plants accumulated most biomass in leaves (ca. 65 %), followed by stems (ca. 

26 %) and roots (ca. 9 %), although these numbers differed among clones. 

Only one clone showed a treatment effect, increasing the share of biomass in 

the stem when the soil was saturated. 

Apical Middle Basal

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

Clone

R
e

la
ti
v
e

 n
u

m
b

e
r 

o
f 

ro
o

ts
 (

%
)



29 

This study showed a significant correlation between root DM and shoot 

characteristics in moist (Pearson’s r = 0.48-0.67) and saturated (r = 0.39-0.64) 

soils. Cutting DM and diameter showed significant positive correlations with 

above ground growth characteristics (r = 0.41-0.76), but not with roots. 

 

3.2 Stump sprouting of poplar clones (Paper III) 

Regeneration of poplar through stump sprouting differed among the tested 

poplar clones after one year of growth (Paper III). Clones differed in stump 

survival (proportion of stumps with living stump sprouts), sprout straightness, 

mean basal diameter and sprout height. The height of the tallest sprout did not 

differ significantly among clones (range among clones from 91 to 275 cm). 

Almost half of the clones had 100 % stump survival, while two of the clones 

had no living stumps at all (Figure 9). For two clones 100 % of the stumps had 

straight sprouts, but the other clones varied in sprout straightness (Figure 10). 

Candidate clones (Ca) had a higher stump survival (93 %) than additional 

(62 %) and commercial clones (Co) (55 %). No other differences in sprout 

characteristics were found among these groups of clones. 

 

 
Figure 9. Stump survival of 23 poplar clones (percentage of stumps having living stump sprouts) 

(Paper III). The clones were divided into three groups: commercial (black - Co), candidate (grey - 

Ca) and additional clones (light grey). The number of stumps per clone ranged between three and 

10. 
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Figure 10. Percentage of poplar stumps with sprouts in three straightness classes: straight, 

crooked, and very crooked (Paper III). The clones were divided into three groups: commercial 

(Co), candidate (Ca) and additional clones (indicated by numbers only). Only clones having at 

least two living stumps were included. 

 

3.3 Productivity and management of hybrid aspen root suckers 
(Paper IV) 

This paper consists of three separate study parts (A-C). In study part A, the 

initial growth of hybrid aspen root suckers was analyzed. Regeneration of 

hybrid aspen through root suckers differed among sites. After one year of 

growth, the most productive site had 110,000 root suckers ha-1. After two 

years, all four sites showed high production of root suckers (47,000 to 73,000 

living root suckers ha-1). The number of living root suckers started to decrease 

due to self-thinning (i.e. mortality due to competition) after one or two years. 

The standing biomass increased steadily and was on average 36 ton DM ha-1 

(range among the sites from 26 to 44 ton DM ha-1) after four years. 

In study part B, the harvest in corridors and cross-corridors after two years 

corresponded to 9.2 and 15.3 ton DM ha-1, respectively. The harvests, of 

course, reduced the stand density compared to the control, but due to self-

thinning this effect could no longer be distinguished at the age of 12 years 

(Figure 11a). The harvest had a positive influence on the quadratic mean 
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diameter at breast height (DQ) (Figure 11b), but tree height was not influenced. 

The obtainable biomass (i.e. harvested biomass and standing biomass) did not 

differ significantly among the treatments over the study period. At the age of 

eight years, all treatments had a mean annual increment of obtainable biomass 

above 9 ton DM ha-1 year-1. 

In study part C, after plots were first harvested (study part B) and later 

thinned to 1,100 stems ha-1, a strong effect of the first harvest was found. Plots 

that were previously left without harvest had a smaller crown ratio (Figure 

11c), smaller DQ (Figure 11d), and lower mean annual increment of stem wood 

(10 m3 ha-1 year-1 at the age of 12 years). The opposite was found for plots that 

were previously cross-corridor harvested. After 12 years this treatment 

produced over 14 m3 stem wood ha-1 year-1. The previously corridor harvested 

plots ended up in between the other two treatments. At the age of 10 years, the 

effect of harvest on crown ratio had declined, but the effect on DQ remained 

unchanged over the study period. The mean annual increment was still steadily 

increasing at this age. 
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Figure 11. Growth development of hybrid aspen root suckers in study parts B and C (Paper IV). 

Treatments after two years were: no harvest (black), corridor harvest (green), and cross-corridor 

harvest (blue). a) Number of root suckers (thousands per hectare), b) quadratic mean diameter at 

breast height (DQ), c) ratio between green crown height and tree height, and d) quadratic mean 

diameter at breast height (DQ). Panels a) and b) are results from thinning only through harvest at 

the age of two years (study part B) while panels c) and d) show results after an additional thinning 

to 1,100 stems ha-1 done at the age of four years (study part C). 
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4 Discussion 

4.1 Establishment of poplar and hybrid aspen 

For successful establishment of Populus spp., soil preparation, plant material, 

including choice of clone, must be adjusted to the site conditions (Papers I and 

II). 

 

4.1.1 Survival and plant damage 

Site properties were indicated to have had the largest influence on survival and 

growth in Paper I. Populus spp. need nutritious soils with pH above five to 

grow well (Stanturf et al., 2001; Ericsson & Lindsjö, 1981). Different soil 

properties, including soil fertility, also affect the growing conditions for 

competing weeds (Hedwall et al., 2010; Stanturf et al., 2001; Löf, 2000). 

Vegetation control is therefore of great importance when growing light-

demanding tree species such as poplars (Böhlenius & Övergaard, 2015b; Löf et 

al., 2012; Bilodeau-Gauthier et al., 2011; Hytönen & Jylhä, 2005; Czapowskyj 

& Safford, 1993). 

Damage from voles was rather frequently seen during the first two years at 

the Duveholm site, which may have been one of the main causes of the lower 

survival at this site. We ocularly observed that the weed competition differed 

between the sites and Duveholm was the only site having areas with clover 

(Trifolium spp.). The populations of voles related to the amount and 

composition of ground vegetation (Hytönen & Jylhä, 2005; Manson et al., 

2001). Due to the rate of vole-damaged plants at Duveholm (over 30 %), the 

weed situation seems to have been favorable for voles at this site. 

The survival rate at the Brattön site was also low. This site had some areas 

that were rather wet. The soil moisture affected the weed composition, but 

probably also decreased the soil temperature. Landhäusser (2003) and Hansen 

(1986) showed that survival, rooting and shoot growth of poplar cuttings are 
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strongly inhibited when the soil temperature is low. They did not recommend 

planting poplar cuttings in soil temperatures below 5 to 10˚ C. Additionally, 

the greenhouse experiment (Paper II) showed that root and shoot growth were 

negatively affected by a high water table (section 4.1.4). The short cuttings 

showed a very low survival (17 %) at Brattön. This may have been influenced 

by the high water table in combination with the low planting height (5 cm 

above soil surface). However, hybrid aspen showed reasonably good survival 

(82 %) at this site. 

At Dimbo the survival rate was, in general, highest for all soil preparations 

and plant types. The fence was damaged during the first two seasons, resulting 

in browsing by moose (Alces alces Linnaeus). This did not affect the survival, 

but only growth. Several other studies have reported that browsing by 

ungulates can be severe on hardwood species in the northern Europe (Edenius 

& Ericsson, 2015; Bergqvist et al., 2014; Edenius et al., 2011; Myking et al., 

2011; Bergquist et al., 2009; Härkönen et al., 2008; Zakrisson et al., 2007; 

Viherä-Aarnio & Heikkilä, 2006). The importance of fencing and maintenance 

of the fence should therefore not be ignored. 

 

4.1.2 Growth and soil properties 

The Duveholm site showed the highest growth. The soil pH was also highest 

(5.3) at this site compared to Brattön (4.7) and Dimbo (4.5). In the literature, 

soil pH above five is commonly recommended to achieve sufficient growth of 

Populus spp. (Stanturf et al., 2001; Boysen & Strobl, 1991; Timmer, 1985; 

Ericsson & Lindsjö, 1981).  

Hybrid aspen showed the best and most stable performance (i.e. survival, 

growth and plant height) over the sites, indicating that these hybrids are not as 

sensitive to changes in soil characteristics. This is probably influenced by the 

origin of the species. For hybrid aspen, the hybridized species originate from 

northern latitudes, compared to poplars which commonly originate from lower 

latitudes and where none of the species are native to Sweden. However, when 

soil pH was high, long cuttings and poplar plants grew better than hybrid 

aspen. It has also been found by Hjelm and Rytter (2016) that poplars are 

sensitive to low soil pH and their study included soils from the sites in this 

paper. 

The Dimbo site had, in addition to the lowest pH, a coarser soil structure 

(sandy moraine). It has been observed that the growth of poplar increases if the 

soil contains some sand, but too much sand degrades the growing conditions 

(Pinno et al., 2010). Medium soil textures, e.g. sandy loam, are commonly 

recommended for poplars in order to grow well (Stanturf et al., 2001). Soil 
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texture and a lower pH likely resulted in the general lower growth at this site, 

but, of course, the fact the plants were browsed should also be taken into 

account. 

 

Several authors have reported that soil properties other than pH, soil moisture 

content and texture affect the growth of poplars. For example, the composition 

of nutrients such as phosphorous, potassium and the source of nitrogen have 

been shown to influence the growth of poplars, but it has also been observed 

that the effect of nutrient composition can differ between clones (Guillemette 

& DesRochers, 2008; DesRochers et al., 2006; Brown & van den Driessche, 

2005; DesRochers et al., 2003; Czapowskyj & Safford, 1993). Therefore, the 

choice of sites for poplar growth should not be based only on the site 

characteristics explored in this thesis. 

 

4.1.3 Effects of soil preparation and plant type 

Among the soil preparation methods, mounding showed the most promising 

results in terms of survival, growth and plant height (Paper I). The elevated 

planting spots reduce soil moisture, increase soil temperature and delay 

colonization of weeds (Löf et al., 2012; Sutton, 1993; Örlander et al., 1990). 

Patch scarification, on the other hand, was found not to be suitable for 

establishment on these often moist sites with high weed competition. It has also 

been observed that patch scarification is not particularly effective to improve 

growth of young seedlings in southern Sweden (Bergquist et al., 2009). The 

results indicated that it could even be better to leave the organic layer intact 

(control) than to perform soil preparation methods that lower the planting spot 

(i.e. patch scarification and sometimes soil inversion) when the water table is 

high. 

Hybrid aspen was the most reliable plant type in Paper I (section 4.1). Short 

cuttings were found to be unsuitable to plant on forest land, while long 

cuttings, in most cases, performed as well as poplar plants in terms of survival 

and growth. Higher survival and growth of longer poplar cuttings compared to 

shorter cuttings have also been demonstrated on agricultural land (Rossi, 

1991), as well as in controlled experiments (Schuler & McCarthy, 2015; Vigl 

& Rewald, 2014; DesRochers & Thomas, 2003; Allen & McComb, 1956). The 

reason for this is related to the size of the cuttings. Longer cuttings can provide 

more stored carbohydrate and a larger surface area available for rooting 

(Schuler & McCarthy, 2015; DesRochers & Thomas, 2003; Dickmann et al., 

1980; Haissig, 1974a). It has been shown that longer cuttings increase the 

number of basal roots and shoot growth of cuttings, but also that a larger above 
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ground part of long cuttings is favorable (Schuler & McCarthy, 2015; 

Kaczmarek et al., 2014; Rossi, 1991).  

Böhlenius and Övergaard (2015a) found that 30 cm cuttings initially grew 

better than bare root plants. In Paper I, it was also seen that the two types of 

cuttings grew faster than containerized plants during the first growing season, 

but this effect declined, especially for the short cuttings, during the second 

growing season (Mc Carthy et al., 2016). This indicates a planting shock in 

containerized plants and that a better balanced root to shoot ratio may be 

favorable. However, long poplar cuttings can be a good alternative to poplar 

plants if they have a sufficient length. 

 

4.1.4 Influence of soil moisture on root growth 

When establishing cuttings, the greenhouse study showed that rooting and 

shoot growth were influenced by soil moisture regime and clone. Callus roots 

(i.e. roots originating from callus tissue: Box 1) were lacking at the bottom of 

the cutting. Consequently, the relative distribution of roots was shifted toward 

the soil surface when the soil was saturated. Others have shown that soil 

saturation has a negative influence on growth of poplars, and that clones 

respond differently to this soil condition (Guo et al., 2011; Cao & Conner, 

1999; Liu & Dickmann, 1992). On the contrary, Allen and McComb (1956) 

found the highest growth when cuttings were planted in saturated soil. 

However, at the end of their study the growth had started to decline and leaves 

started to turn yellow. Pezeshki et al. (1998) also found that roots located 

closer to the soil surface of black willow (Salix nigra Marshall) cuttings when 

the soil was saturated. At deeper levels these cuttings did not produce any 

roots. 

Callus roots emerge from callus tissue as a reaction to wounding. Heilman 

et al. (1994) reported that callus roots dominated the first-season growth, but 

Bloomberg (1963) suggested that primordia roots (i.e. roots originating from 

preformed root primordia: Box 1) are of greater importance for early survival 

and growth. The lack of callus roots (and callus tissue formation) in the 

saturated treatment could later have an influence on the overall plant growth, 

but the long-term effects need to be studied further. It is possible that callus 

roots could emerge later, since it has been observed that callus roots can 

emerge much later than primordia roots (Haissig, 1974b; Bloomberg, 1963). 

However, this occurrence was not reported for cuttings exposed to soil 

saturation. Thus, it is possible that callus roots could emerge later when soil 

saturation decreases. Deep-growing roots are of importance for hydraulic 

control (i.e. regulation of water in the tree) and may affect tree resistance to 
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windthrow (Zalesny & Zalesny, 2009; Kozlowski, 1986). Therefore, having 

roots shifted toward the soil surface at establishment may result in plants being 

less adaptable to changes in soil moisture regimes and later make them more 

susceptible to windthrow. On the other hand, when callus roots are lacking, the 

growth of primordia roots is essential for plant establishment and survival 

(Bloomberg, 1964). It is important to note that when stands become older the 

soil moisture conditions will also change. 

 

4.1.5 Influence of cutting characteristics on the rooting of poplars 

The location and age of the shoot from which cuttings are made, cutting size 

and cutting moisture content have also been shown to influence survival, and 

growth of roots and shoots (DesRochers & Thomas, 2003; Zalesny et al., 2003; 

Dickmann et al., 1980; Allen & McComb, 1956). In Paper II, the cutting 

diameter (7-15 mm), as well as cutting DM, showed positive correlations to 

shoot growth, and the importance of early shoot growth together with root 

growth is essential for successful establishment (Krabel et al., 2015; Branislav 

et al., 2009; Zalesny et al., 2005b; Rhodenbaugh & Pallardy, 1993; 

Tschaplinski & Blake, 1989; Pallardy & Kozlowski, 1979). This indicates that 

smaller cuttings should be used with care, especially when the growing 

conditions are tougher. This was also seen among the short cuttings planted on 

forest land (Paper I), which were both ca. 30 cm shorter and ca. 1 mm smaller 

in diameter compared to long cuttings. However, in both Paper I and II cuttings 

came from dormant one-year-old shoots, and cuttings from these shoots are 

generally recommended (Zalesny & Zalesny, 2009; Allen & McComb, 1956). 

 

Generalization of results for practical use from Paper I and II should be made 

with caution. Root growth in saturated soil needs to be studied in longer-

termed field trials, and the influence of soil properties on establishment needs 

to be further defined. Nevertheless, these two papers indicate that the site 

conditions influence survival and growth, and that a high water table affects the 

growth of cuttings negatively. 

 

4.1.6 Clonal effects on the establishment of Populus species 

Clonal differences are common among Populus spp., providing a basis for 

breeding and selection of clones (Stanton et al., 2014; Zalesny & Zalesny, 

2009; Stener & Karlsson, 2004; Bisoffi & Gullberg, 1996). Thus, it is 

important to use well-tested clones when planting Populus spp., but also to 

plant them under site conditions they have been tested for (Dickmann, 2006). 
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In Paper II, the effect of clones was strong on root growth under different soil 

moisture regimes (i.e. in root DM, number of roots, presence of callus roots, 

and root length). Additionally, above-ground growth showed differences in 

response depending on clone (i.e. in shoot DM, leaf DM and total leaf area). 

Some clones were less affected by soil moisture regime, while other clones 

showed a strong response. 

The study on forest land (Paper I) indicated that clones also had an 

influence on establishment and interacted with the site conditions. The number 

of replicates was low for poplar clones (two ramets per experimental unit) and 

higher for hybrid aspen (eight ramets per experimental unit) (definition of 

ramet: Box 1). Therefore, it is difficult to provide a solid figure for the clone 

survival of poplar and hybrid aspen, and the following discussion should be 

regarded as a preliminary indication of the clonal differences. 

To demonstrate the clonal influence on survival after three growing 

seasons, the most successful and comparable plant types (i.e. containerized 

poplar and hybrid aspen plants) and soil preparation method (mounding) were 

selected (Figure 12). 

Hybrid aspen clones generally performed more consistently among the sites 

compared to most poplar clones (Figure 12). Nevertheless, these hybrid aspen 

clones had lower survival at Duveholm. The vole population was also highest 

at this site, which probably influenced the survival (section 4.1.1). Two poplar 

clones (no. 4 and 10) showed a more stable survival than the other poplar 

clones and had a similar survival rate to hybrid aspen at all sites. The other 

poplar clones had a great variability in survival and some of them did not show 

a convincing suitability to these sites. 
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Figure 12. Clone survival of containerized poplar and hybrid aspen plants when mounding was 

performed at three forest sites after the third growing season (unpublished data, Paper I). Clones 

1-14 are poplars, and clones 60-62 are hybrid aspens. Nine of the poplar clones were P. 

trichocarpa (clones 1, 4, 5 and 8-14), two P. maximowiczii × P. nigra (clones 3 and 7), and one P. 

maximowiczii × P. trichocarpa (clone 6). Hybrid aspen clones 60 and 61 were Swedish breeds, 

while clone 62 originated from Finland. Each site contained 8-10 ramets per poplar clone and 32-

40 ramets per hybrid aspen clone. 

 

Containerized poplar and hybrid aspen from Paper I were also selected to 

interpret clone survival dependence on soil preparation (Figure 13). The 

survival of clones also tended to differ among soil preparations. Poplar clone 

no. 4 showed a more stable performance across the different soil preparation 

methods compared to the other clones. The hybrid aspen clones had a higher 

survival compared to most of the poplar clones in the control (no soil 

preparation) or when mounding was performed. The survival of most clones 

was lower in the control and patch scarification treatments. 

 

The variation in clonal survival, indicated in Paper I and observed in Paper II, 

emphasizes the importance of testing and selecting clones tolerant to site-

specific soil conditions when planting Populus spp. 
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Figure 13. Survival of clones from containerized poplar and hybrid aspen plants for four soil 

preparations (averaged over three sites) after the third growing season (unpublished data, Paper I). 

Clones 1-14 are poplars and clones 60-62 are hybrid aspens. Nine of the poplar clones were P. 

trichocarpa (clones 1, 4, 5 and 8-14), two P. maximowiczii × P. nigra (clones 3 and 7), and one P. 

maximowiczii × P. trichocarpa (clone 6). Hybrid aspen clones 60 and 61 were Swedish breeds, 

and clone 62 originated from Finland. Each soil preparation method contained 28 ramets per 

poplar clone and 112 ramets per hybrid aspen clone. 

 

4.2 Stump sprouting of poplar clones 

The first step for finding reliable clones for stump sprouting is the 

establishment and success of the first generation (Paper I and II). If this 

succeeds, there is a good possibility to find clones suitable for the second 

generation of poplars (Paper III). However, several clones showed poor 

performance in the sense of survival and straightness and may not be suitable 

for regeneration through stump sprouts in the second generation. Differences in 

stump sprouting among poplar clones have previously been reported 

(Laureysens et al., 2003; Dickmann et al., 1996; Herve & Ceulemans, 1996). 
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Zasada et al. (1981) observed differences in stump sprouting in poplars 

depending on harvesting technique and time of harvest. The ability to produce 

stump sprouts can also vary among balsam poplars (Zasada et al., 2001). Most 

of the clones commercially available in Sweden belong to the balsam poplar 

group (mostly P. trichocarpa). It is therefore important to test the capacity of 

current clones to produce stump sprouts. Stump sprouts originate from dormant 

buds or callus tissue (Zasada et al., 1981; DeBell & Alford, 1972). Callus 

sprouts seem to be more commonly produced, but do not always develop into 

dominant sprouts when sprouts originating from dormant buds are present 

(Zasada et al., 1981; DeBell & Alford, 1972). The dominant sprout type in this 

study was callus sprouts (determined by visual inspection) and many of the 

sprouts were still very small after one year of growth. 

Important characteristics for clones suitable for regeneration through stump 

sprouts are the production of living, straight and fast-growing sprouts. It is 

likely that crooked sprouts will negatively affect stability and future stem form. 

Johansson and Hjelm (2012) also observed problems with crooked sprouts that 

tended to break at the intersection with the stump. Two clones that produced 

100 % living stumps with 100 % straightness were found in this study. One of 

these clones had been phased out from the clone testing program due to 

undesirable characteristics (e.g. susceptibility to leaf rust). The focus in the 

breeding programs has been on growth rate, stem quality and disease resistance 

(Stanton et al., 2014; Stener, 2004; Bisoffi & Gullberg, 1996). In this study, a 

few other clones had a high survival rate and a rather high frequency of straight 

sprouts. However, more clones need to be tested to provide a sufficient base of 

plant material for use in practical forestry. 

The studied clones also differed in number of sprouts produced per stump. 

This may not be of great practical importance since a sharp decrease of sprouts 

during the first years has been reported (Johansson & Hjelm, 2012; Ceulemans 

& Deraedt, 1999; Zasada et al., 1981). The growth of the largest sprout per 

stump should be of greater importance, but at this early stage (one-year-old 

sprouts) no differences were found among the clones. 

It is important to note that this study did not cover all commercially 

available clones and that further sites and clones need to be studied over a 

longer period. Additionally, due to different experimental conditions in Papers 

I and III, it is difficult to draw parallels between the clone performance in these 

two papers even though some of the clones were the same. 
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4.3 Productivity and management of hybrid aspen root suckers 

Paper IV showed that when a healthy stand of hybrid aspen is harvested, a high 

biomass production could be achieved in the new generation of root suckers, 

often based on 50,000 to 100,000 root suckers ha-1. For common aspen, 70,000 

root suckers ha-1 has been reported in Norway (Børset, 1956), and at the age of 

8 years about 30,000 root suckers ha-1 has been observed in Sweden (Nilsson 

& Wasielewski, 1987). Bachmann et al. (2015) found 60,000 trembling aspen 

root suckers ha-1 after one year of growth, but this number was further 

increased to 90,000 root suckers ha-1 when the soil was disturbed. Increased 

soil temperature and light availability have been reported to affect vigor and 

growth of root suckers (Frey et al., 2003; Wan et al., 1999; Peterson & 

Peterson, 1992; Eliasson, 1971; Sandberg & Schneider, 1953). Soil compaction 

and wounding of roots, on the other hand, has been suggested to decrease the 

vigor of root suckers (Frey et al., 2003). When aiming for vigorous root sucker 

generation, the entire overstory should be removed, and the number of strip 

roads made by harvesting machines and soil preparation should be considered. 

However, knowledge of the effects of soil compaction and soil preparation on 

growth are still missing for hybrid aspen.  

A sharp decline in the number of living root suckers is common among 

aspens since the often dense root sucker stands cause competition, leading to 

self-thinning (i.e. natural mortality) (Frey et al., 2003; Peterson & Peterson, 

1992). This sharp decline was also observed in Paper IV when no thinnings 

were performed in the root sucker stand. Stronger and more frequent thinnings, 

on the other hand, resulted in larger DQ and hence a larger individual tree 

volume. When no harvest was conducted, this resulted in loss of biomass due 

to self-thinning. If larger dimensions are desired the stand has to be thinned. 

A strong increase in dbh and crown size in response to thinning is common 

among pioneer hardwoods such as Populus spp. (Rytter & Stener, 2014; 

Rytter, 2013; Simard et al., 2004; Rice et al., 2001; Miller, 2000; DeBell & 

Harrington, 1997; Cameron et al., 1995; Niemistö, 1995; Hibbs et al., 1989; 

Erdmann et al., 1975; Allen & Marquis, 1970; Steneker & Jarvis, 1966). It has 

also been suggested that fast-growing hardwoods should have a living crown of 

at least 50 % of the tree height to have good growth (Cameron, 1996; 

Niemistö, 1996). In the unthinned plots, the crown length after 4 years was 

below 45 % of the tree height. This further stresses the importance to space 

hybrid aspen root suckers early. Obtainable biomass (i.e. harvested and 

standing biomass) was the same over the 12-year-period whether or not 

harvesting was done in the second year. Instead of leaving the stand to self-

thinning, this harvested biomass could give an income. However, efficient 
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machinery with techniques that could perform this harvest have, so far, not 

been tested in Sweden (Bergkvist & Fogdestam, 2011). 

 

4.3.1 Diameter development of the largest trees 

The study in Paper IV was not designed to compare the largest trees remaining 

after the different harvest and thinning and regimes. However, this is a relevant 

comparison when designing treatments for practical application. Therefore, the 

approximately 1,100 largest trees ha-1 were selected in the plots that were only 

treated once (control, corridor harvest and cross-corridor harvest) (study part 

B). These trees were then compared to the trees in the study where a second 

thinning was conducted two years after the first harvest, leaving about 1,100 

trees ha-1 (study part C). 

More intense thinning regimes result in larger DQ among the largest trees 

(p < 0.0001) (Figure 14). The plots that were cross-corridor harvested and later 

thinned had the largest DQ after 12 years of growth. Cross-corridor harvest 

without further thinning reached the same level as the treatment that was first 

left unthinned and later thinned to 1,100 stems ha-1. Further, these two 

treatments did not differ from the corridor harvest that was later thinned, or 

from the corridor harvested that was not further thinned. Plots that were never 

thinned had a significantly lower DQ among the 1,100 largest trees ha-1 

compared to all other treatments (Figure 14). Significance levels were tested 

with the same model as in previous analyses of treatment effects on growth 

characteristics (section 2.3). 

This comparison further emphasizes the importance of early thinnings in 

hybrid aspen root suckers if larger-dimensioned trees are desired. 
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Figure 14. Development of quadratic mean diameter at breast height (DQ) of hybrid aspen root 

suckers after selecting the largest trees (1,100 stems ha-1) under six different thinning treatments 

(unpublished data, Paper IV). After two years three harvest regimes were applied (study part B): 

no harvest (black solid line), corridor harvest (green solid line), and cross-corridor harvest (blue 

solid line). At the stand age of four years, half of the plots were thinned to 1,100 stems ha-1, 

resulting in the last three thinning treatments (study part C): no harvest and thinned (black dashed 

line), corridor harvest and thinned (green dashed line), and cross-corridor harvest and thinned 

(blue dashed line). Different letters show statistically significant differences among treatments 

after 12 years according to Tukey’s test (α = 0.05). Means in year two are after harvest, but before 

selection of the largest trees. 

 

4.4 General considerations in clonal forestry of Populus species 

It has been common in many countries to plant only a few clones on a large 

scale (Zsuffa et al., 1993). Failure after widespread use of a few promising 

clones has been reported, and can result in catastrophic failure including 

economic losses. Many monoclonal plantations in Europe suffered economic 
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losses when the Italian poplar clone I-214 showed susceptibility to the 

pathogen Marssonina brunnea (Zsuffa et al., 1993; Heybroek, 1978). In this 

thesis, several clones have been included in each paper. The reason behind this 

was the risk of using only one clone, but also to study differences among 

clones. The results showed differences in growth and survival among clones 

(Paper I-III), including interacting effects where treatments were applied. In 

Paper IV root suckers were studied, which makes it difficult to study clonal 

effects without genetic analyses of the root suckers to determine clonal origin. 

At present, there is no regulation concerning the number of clones that must 

be used in Swedish forestry. The preference to choose the commonly used 

clone OP 42 in Sweden should therefore be considered by the forest owner. 

This may be especially important when establishing new large-scale 

plantations, or if the area planted with Populus spp. clones significantly 

increases in Sweden. 

 

Some authors have tried to determine how many clones should be used in a 

plantation (Bishir & Roberds, 1999; Libby, 1982). However, it is a complex 

problem where several known and unknown factors need to be taken into 

account. Libby (1982) suggested adapting the number of clones to the level of 

losses one is willing to accept, not to minimize the risks. Libby (1982) also 

suggested that the use of one clone should be optimal in a plantation, while 

polyclonal plantations containing seven to 25 clones may provide more safety 

(with the restriction that the clones are not relatives). Mixtures of two to three 

clones were suggested to be the worst strategy. Bishir and Roberds (1999) 

predicted that the number of clones should be reduced as harvest time increase, 

or as the intensity of pest attacks increases. However, Lindgren (1993), 

suggested that the number of clones could be lower when more intense systems 

with shorter rotations are applied. The number of clones should also be decided 

at a landscape level rather than at a stand level (Lindgren, 1993; Zsuffa et al., 

1993). 

In the last two decades, some authors have advocated clone mixtures to 

support the growth of more disease tolerant genotypes, while less tolerant 

clones in the mixture will attract the pathogens (Ostry et al., 2014). 

One way to draw benefits from superior clones, but reduce the possibility 

that different clones compete with each other, is to adapt the choice of clone to 

specific site requirements (Lindgren, 1993; Zsuffa et al., 1993). This can be 

done by planting different clones in separate sections of the stand, or to vary 

which clones are planted in different plantations (Lindgren, 1993; Zsuffa et al., 

1993). As discussed in section 4.1.6, site-specific requirements for Populus 

spp. clones currently used in Sweden are still missing, but would be valuable 
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for site-specific deployment. This would also be a highly relevant way to plant 

these species in Sweden, since this thesis showed high variability among 

clones at various site properties. However, DeBell and Harrington (1997) 

failed to show differences in production between monoclonal and polyclonal 

plantations when studying four poplar clones. On the other hand, they found 

that weak clones were supressed in polyclonal plantations and monoclonal 

plantations showed greater uniformity in tree size. 

 

Hybridization with native species is a risk of using exotic species. In Sweden, 

the only native Populus spp. is the common aspen (P. tremula). Hybrid aspen 

can hybridize with the native common aspen (Felton et al., 2013; Latva-

Karjanmaa, 2006). This could be a threat to the conservation of genes of native 

aspen. Hybridization has also been predicted to be more common in warmer 

climates, but it is still a matter of debate whether this would be an advantage or 

a threat (Latva-Karjanmaa, 2006). However, aspens more often reproduce 

clonally by root suckers rather than seeds (Dickmann & Kuzovkina, 2014; 

Latva-Karjanmaa, 2006; Peterson & Peterson, 1992).  

It has been reported that Populus spp. have a positive influence on 

biodiversity in Sweden, and common aspen is a desired host of vulnerable 

species (e.g. lichens, epiphytic bryophytes, fungi, insects and birds) 

(Gustafsson et al., 2016; Felton et al., 2013; Weih et al., 2003). It has also been 

observed that poplars can serve as a host to red-listed beetles (Isacsson, per. 

comm. 2016). However, further research is needed to provide more knowledge 

of which species hybrid aspen and poplars can host. 
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5 Conclusions 

If the right sites, methods and clones are chosen, Populus spp. can be highly 

productive, with a variety of uses, such as bioenergy, fiber production, 

furniture and construction. 

 

Soil properties, such as pH and soil moisture, should be considered when 

planting Populus spp. However, other soil properties, like nutrient composition 

are also likely to affect the growth of these species. 

Soil saturation inhibits root and shoot growth of poplar cuttings. When 

planted in saturated soils, the roots were more concentrated toward the soil 

surface. This was mainly caused by the absence of roots originating from callus 

tissue at the base of the cutting. 

 

At the sites in this thesis, mounding gave the most promising and stable results 

when planting Populus spp. on forest land. Hybrid aspen showed better 

establishment compared to other Populus spp. 

Short poplar cuttings and patch scarification cannot be recommended on 

moister sites with high abundance of competing weeds. Instead, poplars should 

be planted as containerized plants or long cuttings. However, the long-term 

effects of a shallow root system at root initiation are still uncertain. 

 

The choice of suitable clones is important when planting Populus spp., since 

the clones respond differently to different soil properties. 

The choice of clones also affects the potential to regenerate poplar via 

stump sprouts in the second generation. Among the tested clones in this study, 

a few produced stump sprouts with desired properties. 

 

Damage to plants was rather common during the first years of growth. To 

avoid browsing from ungulates, fencing or use of repellents should be 
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considered. It is more difficult to find measures to avoid damage from voles. A 

key measure should be weed control to reduce the amount of suitable vole 

habitat. 

 

Clear-felled stands of hybrid aspen have a high initial production of root 

suckers. The new generation needs early thinning for reasonable dbh 

development. Early thinnings can be made schematically in corridors or cross-

corridors, followed by selective thinnings. However, there are still technical 

limitations for an efficient harvest. If no thinnings are made there will still be a 

considerable reduction in the number of stems due to competition. 
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6 Future research 

Further studies are required to explore suitable site conditions for Populus spp., 

especially concerning nutrient composition on forest land. 

To study the economy of Populus spp. plantations is essential to provide forest 

owners with reliable economic forecasts and will most likely affect the future 

development of Populus spp. in Sweden. 

It is essential to study how long-term stand development is affected by the 

cutting type, especially properties of the root system. 

There are only a few poplar and hybrid aspen clones used in practical forestry 

in Sweden. Tests of new clones are therefore needed, especially for finding 

good material adapted to different site conditions.   

The stump sprouting ability of different poplar clones needs more research to 

provide solid recommendations on how to establish second generations based 

on stump sprouts. The long-term development of stump sprout regenerations 

must also be investigated. 

Root sucker regeneration of hybrid aspen is highly productive and could be 

used as a source of bioenergy. Development of efficient harvest techniques 

combined with adapted silviculture models is essential to be able to use this 

potential in practice. 

Measures that could affect the productivity of hybrid aspen root suckers need 

to be further studied. For example, how is the initiation of hybrid aspen root 

suckers influenced by soil compaction, soil preparation and forest residues left 

at the forest floor? 
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The endurance of hybrid aspen root suckers’ productivity after repeated 

harvests needs to be studied with different rotation ages to provide more 

knowledge about the third and fourth generations.  
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Appendix 

Descriptions of the study sites 

Complementary site descriptions from Paper I-IV are provided in table A1. 
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Clone information 

The Populus spp. clones used in Papers I-III are presented in tables A2 to A4 

below. Paper IV investigated hybrid aspen root suckers which were not 

identified by clone in the second generation. At harvest of the first generation, 

the sites Jordkull, Maltesholm, Snogeholm and Ekebo consisted of 4, 47, 8 and 

35 clones, respectively. 

 

Table A2. List of the 12 poplar clones and three hybrid aspen clones used in Paper I. Clone 

represents the identifier used in this paper, Clone ID is the identity assigned by the Forestry 

Research Institute of Sweden (Skogforsk). All clones are commercially available in Sweden. Six of 

the poplar clones were also used in Paper III (bold). 

Clone Clone ID Taxon Additional information 

1 S21K766049 P. trichocarpa  

3 S21K766003 P. maximowiczii × P. nigra Commercial name ‘Rochester’  

4 S21K82604 P. trichocarpa  

5 S21K766048 P. trichocarpa  

6 S23K9040086 P. maximowiczii × P. trichocarpa  

7 S23K9040089 P. maximowiczii × P. nigra  

8 S23K9040073 P. trichocarpa  

9 S23K9040025 P. trichocarpa  

10 S23K9040019 P. trichocarpa  

11 S23K9040011 P. trichocarpa  

12 S23K9040006 P. trichocarpa  

14 S216PPL52 P. trichocarpa  

60 S21K894012 Hybrid aspen Commercial name ‘KL-003’ 

61 S21K884012 Hybrid aspen Commercial name ‘KL-001’ 

62 S21K0940201 Hybrid aspen Finnish clone ‘C05-99-34’ 
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Table A3. List of the nine poplar clones used in Paper II. Clone represents the identifier used in 

this paper, Clone ID is the commercial identity or the identity assigned by the University of 

Minnesota’s experimental research nursery (UM NCROC), Grand Rapids, MN, USA. Clones 1 to 

6 are currently tested in Germany, Lithuania, Poland, Russia, Sweden and Ukraine. 

Clone Clone ID Taxon Additional information 

1 99007115 P. deltoides × P. nigra  

2 99008002 P. deltoides × P. nigra  

3 99038013 P. deltoides × P. nigra Full-sib with clone 4 

4 99105008 P. deltoides × P. nigra  

5 9732-24 P. deltoides × P. nigra Full-sib with clone 6 

6 9732-31 P. deltoides × P. nigra  

7 D110 P. deltoides Open-pollinated, WI, USA 

8 DN5 P. deltoides × P. nigra Commercial clone in the USA and 

Canada 

9 NM6 P. nigra × P. maximowiczii Commercial clone in the USA and 

Canada 
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Table A4. List of the 23 poplar clones used in Paper III. Clone represents the identifier used in 

this paper. The clones were divided into three groups: commercial clones (Co) are commercially 

available in Sweden, candidate clones (Ca) are candidates to become commercial, and additional 

clones (no prefix) not included in the other two groups. Clone ID is the identity assigned by the 

Forestry Research Institute of Sweden (Skogforsk). Number (No.) of stumps represents the 

number of replicates in this paper. Six of the clones were also used in Paper I (bold). 

Clone Clone ID Taxon Additional information 
No. of 

stumps 

Co1 S21K766005 P. maximowiczii × 

P. trichocarpa 

Commercial name ‘Androscoggin’ 7 

Co2 S21K766003 P. maximowiczii × 

P. nigra 

Commercial name ‘Rochester’  10 

Co3 S23K9040086 P. maximowiczii × 

P. trichocarpa 

 4 

Co4 S21K766048 P. trichocarpa  4 

Co5 S23K9040019 P. trichocarpa  4 

Co6 S23K9040011 P. trichocarpa  4 

Co7 S23K9040006 P. trichocarpa  3 

Co8 S21K82601 Balsam type ×  

P. trichocarpa 

 4 

Ca1 S23K9040059 P. trichocarpa  3 

Ca2 S21K766007 P. deltoides ×  

P. nigra 

 3 

Ca3 S23K9040035 P. trichocarpa  5 

Ca4 S23K9040032 P. trichocarpa  4 

Ca5 S23K9040046 P. trichocarpa  5 

Ca6 S23K9040009 P. trichocarpa  4 

Ca7 S23K9040041 P. trichocarpa  4 

1 S23K9040002 P. trichocarpa  4 

2 S21K766024  P. deltoides ×  

P. trichocarpa 

Commercial name ‘Barn’ 4 

3 S23K9040056 P. trichocarpa  4 

4 S23K9040058 P. trichocarpa  4 

5 S23K9040001 P. trichocarpa  5 

6 S23K9040010 P. trichocarpa  5 

7 S23K9040003 P. trichocarpa  4 

8 S23K9040051 P. trichocarpa  4 
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