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Metal sorption to ferrihydrite. Phosphate effects, X-ray absorption 
spectroscopy and surface complexation modelling 

Abstract 

Phosphorus affects the sorption of many metals and arsenate to iron (hydr)oxides. This 

may influence the mobility and bioavailability of metals and arsenate in soil and water. 

Phosphorus therefore plays an important role in, e.g., determining the ecotoxicological 

risk of contaminants in soils. 

The overall aim of this thesis was to improve the understanding of lead(II), 

copper(II), cadmium(II) and arsenate binding to iron (hydr)oxides. The focus was on 

how phosphate affects the sorption on ferrihydrite and in soils where ferrihydrite is an 

important constituent.  

The effect of phosphate on the sorption of lead(II), copper(II), cadmium(II) and 

arsenate was determined by batch experiments. X-ray absorption spectroscopy (XAS) 

was performed to identify the binding mechanisms. Geochemical models were 

developed based on the XAS results and knowledge about the mineral or soil 

properties. 

Phosphate enhanced the sorption of lead(II), copper(II) and cadmium(II) to 

ferrihydrite. The increased sorption was best explained by the formation of ternary 

complexes including the ferrihydrite surface, the metal and the phosphate ion. 

Phosphate competed strongly with arsenate for sorption sites on ferrihydrite. The 

competition was even stronger on poorly crystalline aluminium hydroxide.  

Zero-valent iron that is mixed into soil rapidly oxidises to ferrihydrite that can 

adsorb contaminants. It was shown that the immobilisation of copper and arsenic in 

soils that had been stabilised by zero-valent iron is long-lasting. Copper immobilisation 

was most effective at high pH (>6) and at low organic matter content. Competition with 

phosphate needs to be taken into account when modelling arsenate sorption in soils. 

Otherwise arsenate sorption may be greatly overestimated. 

Metal sorption to some podzolised soils was investigated in batch experiments. 

Despite the large influence on metal sorption in the pure ferrihydrite systems the 

addition of phosphate did not affect lead(II), copper(II) or cadmium(II) sorption to the 

B and C horizons of podzolised soils. The reasons may be strong metal binding to 

organic matter combined with a relatively small addition of phosphorus in the 

experiments.  

In conclusion this thesis shows that phosphate greatly affects the sorption of lead(II), 

copper(II), cadmium(II) and arsenate to iron (hydr)oxides. To determine the impact of 

this effect in more complex matrices such as soils, more research is needed. 



Keywords: Lead, copper, cadmium, arsenate, phosphate, ferrihydrite, iron (hydr)oxide, 

aluminium hydroxide, zero-valent iron, sorption, surface complexation modelling, 

EXAFS spectroscopy 

Author’s address: Charlotta Tiberg, SLU, Department of Soil and Environment,  

P.O. Box 7014, 750 07 Uppsala, Sweden  

E-mail: Charlotta.Tiberg@slu.se



 

Contents 

List of Publications 7 

Abbreviations 9 

1 Introduction 11 

2 Aim 13 
2.1 Overall aim 13 
2.2 Specific objectives 13 

3 Background 15 
3.1 Iron and aluminium (hydr)oxides 15 

3.1.1 Ferrihydrite 16 
3.1.2 Mixtures of iron and aluminium (hydr)oxides 17 

3.2 Sorption of lead(II), copper(II) and cadmium(II) to ferrihydrite 17 
3.2.1 Sorption in single sorbate systems 17 
3.2.2 Sorption in ternary systems 19 

3.3 Sorption of arsenate and phosphate to ferrihydrite and poorly  

 crystalline aluminium hydroxide 20 
3.3.1 Sorption in single sorbent systems 20 
3.3.2 Sorption to mixed sorbents 22 

3.4 Partitioning of elements in soil 23 
3.4.1 Using iron (hydr)oxides for immobilisation of metals and 

 arsenic in soils 24 

4 Materials and methods 25 
4.1 Overview of the experimental work 25 

4.2 Characterisation of minerals and soils 26 
4.3 Batch experiments 26 

4.3.1 Batch experiments with ferrihydrite and 

 aluminium hydroxide 26 
4.3.2 Batch experiments with soils 28 

4.4 X-ray absorption spectroscopy 29 
4.4.1 X-ray absorption near edge structure 30 
4.4.2 Extended x-ray absorption fine structure 30 

4.5 Geochemical modelling 31 
4.5.1 Surface complexation modelling 32 



4.5.2 Geochemical modelling of soils 34 

5 Results and discussion 35 
5.1 Phosphate effects on copper(II), lead(II) and cadmium(II) 

 sorption to ferrihydrite 35 
5.1.1 Single sorbate systems 35 
5.1.2 Phosphate effects 37 
5.1.3 Structures of surface complexes: EXAFS spectroscopy 37 
5.1.4 Surface complexation modelling 39 

5.2 Arsenate sorption to ferrihydrite and poorly crystalline aluminium 

hydroxide 41 
5.2.1 Arsenate and phosphate adsorption on pure sorbents 41 
5.2.2 Arsenate and phosphate adsorption on mixed sorbents 41 

5.3 Zero-valent iron stabilisation of copper and arsenic 43 
5.3.1 Leachable copper and arsenic 43 
5.3.2 Immobilising mechanisms 44 
5.3.3 Scenario modelling 45 

5.4 Phosphate effects on sorption of lead(II), copper(II) and  

 cadmium(II) to podzolised soils 46 
5.4.1 Soil properties 46 
5.4.2 Metal sorption 46 
5.4.3 Cadmium coordination in two B-horizons 50 

Conclusions 53 

Implications and future research 55 

References 57 

Acknowledgements 65 
 

 



7 

List of Publications 

This thesis is based on the work contained in the following papers, referred to 

by Roman numerals in the text: 

 

I Tiberg, C., Sjöstedt, C., Persson, I., Gustafsson, J.P. (2013). Phosphate 

effects on copper(II) and lead(II) sorption to ferrihydrite. Geochimica et 

Cosmochimica Acta 120, 140-157. doi: 10.1016/j.gca.2013.06.012. 

II Tiberg, C., Gustafsson, J.P. (2016). Phosphate effects on cadmium(II) 

sorption to ferrihydrite. Journal of Colloid and Interface Science 47, 103-

111. doi: 10.1016/j.jcis.2016.03.016 

III Tiberg, C., Kumpiene, J., Gustafsson, J.P., Marsz, A., Persson, I., Mench, 

M., Kleja D.B. (2016). Immobilization of As and Cu in two contaminated 

soils with zero-valent iron – Long term performance and mechanisms. 

Applied Geochemistry 67, 144-152. doi: 10.1016/j.apgeochem.2016.02.009 

IV Tiberg, C., Sjöstedt, C., Eriksson, A.K., Gustafsson, J.P. Phosphate 

competition with arsenate on poorly crystalline iron and aluminium 

(hydr)oxides. Manuscript. 

 

Papers I-III are reproduced with the permission of the publishers. 



8 

The contribution of Charlotta Tiberg to the papers included in this thesis was as 

follows: 

I Participated in planning. Performed batch experiments with copper(II) and 

assisted in collection of XAS spectra. Performed EXAFS data analysis and 

surface complexation modelling together with the co-authors. Wrote the 

manuscript together with the co-authors. 

II Participated in planning. Performed batch experiments. Collected XAS 

spectra with assistance from the co-author. Performed EXAFS data analysis 

including WT. Performed surface complexation modelling with advice from 

the co-author. Wrote the manuscript with assistance from the co-author. 

III Planned the study together with the co-authors. Performed parts of the 

laboratory work. Collected XAS spectra with assistance. Performed EXAFS 

data analysis and geochemical modelling with assistance from the co-

authors. Wrote the manuscript with assistance from the co-authors. 

IV Planned the study. Performed the laboratory work and EXAFS 

measurements. Took part in XAS data analysis. Performed surface 

complexation modelling. Performed the writing together with the co-

authors. 

  



9 

Abbreviations 

Alhox Poorly crystalline aluminium hydroxide 

ATR-FTIR Attenuated total reflectance Fourier transform infrared  

CD Charge distribution 

CD-MUSIC Charge distribution multisite complexation 

CN Coordination number 

DOC Dissolved organic carbon 

DOM Dissolved organic matter 

EXAFS Extended X-ray absorption fine structure 

Fh Ferrihydrite 

FT Fourier transform 

HSAB Hard and soft acids and bases 

ICP-MS Inductively coupled plasma-mass spectrometry 

ICP-OES  Inductively coupled plasma-emission spectrometry 

ICP-SFMS Inductively coupled plasma-sector field mass spectrometry 

LCF Linear combination fitting 

PZC Point of zero charge 

SCM Surface complexation model 

SHM Stockholm Humic Model 

SOM Solid organic matter 

WT Wavelet transform 

XANES X-ray absorption near-edge structure 

XAS X-ray absorption spectroscopy 

XRD X-ray diffraction 

ZVI Zero-valent iron 

 

  



10 

 



11 

1 Introduction 

All over the world, elements and compounds occur in concentrations that can 

be harmful to organisms. This may be due to ‘natural’ processes, but the cause 

is often enrichment or manufacture of toxic substances by humans. Harmful 

substances in soil and water are usually called contaminants, regardless of 

whether they are a result of human influence or not. 

Soil contamination has been identified as an important issue in the 

European Union soil thematic strategy (COM(2006) 231). Based on reporting 

from 27 European countries, 1,170,000 potentially contaminated sites have 

been identified, with the most frequent contaminants being heavy metals and 

mineral oils (van Liedekerke et al., 2014). Thus soil contamination is an 

important environmental challenge of our time. 

In order to predict the behaviour of contaminants in the environment, it is 

crucial to understand the mechanisms behind their mobilisation/immobilisation 

on a molecular scale. If the mechanisms are known, it is possible to predict to 

what extent contaminants are transported and available for uptake in plants, 

animals, humans etc., even under changing environmental conditions. 

Consequently, knowledge of mobilisation/immobilisation mechanisms is a key 

for risk assessments and for development of new methods for remediation of 

soils, waters and other contaminated materials. 

One challenge when working on a molecular scale is to transfer the 

knowledge to a macroscopic scale. As environmental systems are usually 

complex, much knowledge has to be compiled to understand a system and to 

make predictions on a macroscopic level. A powerful tool for assembling 

knowledge about geochemical processes is to describe them in a 

thermodynamic/mechanistic geochemical model. If the dominant processes in a 

matrix are described sufficiently well, the model acts as a bridge between the 

knowledge about molecular processes and observations or predictions on a 

macroscopic level. The model can then be used to simulate e.g. how the 
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concentration of contaminants in soil water is affected by changes in pH or the 

extent of contaminant sorption to a reactive barrier/filter or soil amendment. 

This thesis focuses on metal binding on the surface of iron (hydr)oxides 

(also known as iron oxide-hydroxides or iron oxyhydroxides), especially 

ferrihydrite, which has a large influence on the mobility of many elements in 

soil (Jambor & Dutrizac, 1998). While the sorption of elements to isolated iron 

(hydr)oxides is often quite well known, the interactions in more complex 

mixtures of solid phases are less well understood although they are important 

for the distribution of elements in soils and other matrices, such as reactive 

filters. In this thesis the focus is on interactions with phosphate, which is 

omnipresent in soils and waters. Phosphorus is essential for living organisms 

and often added to soils improve their fertility. 
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2 Aim 

2.1 Overall aim 

The overall aim of this thesis was to improve the understanding of lead(II), 

copper(II), cadmium(II) and arsenate binding to iron (hydr)oxides. The focus 

was on how phosphate affects the sorption on ferrihydrite and in soils where 

ferrihydrite is an important component. 

 

2.2 Specific objectives 

The specific objectives of the work were as follows:  

 

To investigate phosphate effects on the sorption of lead(II), copper(II) and 

cadmium(II) to ferrihydrite, to identify the interactions with phosphate on a 

molecular scale and to improve a surface complexation model by accounting 

for the interactions (Papers I and II). 

 

To investigate the long-term effect of zero-valent iron (ZVI) addition on 

dissolved arsenic and copper, to identify the mechanism(s) responsible for 

immobilisation and to predict the concentrations of dissolved copper and 

arsenic in different scenarios using a geochemical model (Paper III). 

 

To investigate how addition of phosphate affects the sorption of arsenate to 

ferrihydrite, poorly crystalline aluminium hydroxide and mixtures of these 

sorbents (Paper IV). 

 

To investigate how phosphate affects the sorption of lead(II), copper(II) and 

cadmium(II) to B- and C-horizons of podzolised forest soils (unpublished). 
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3 Background 

3.1 Iron and aluminium (hydr)oxides 

Iron and aluminium (hydr)oxide surfaces adsorb metal ions, arsenate and 

phosphate. Their surfaces are generally amphoteric, i.e. the surface charge is 

pH-dependent. Sorption of anions is favoured at low pH, while sorption of 

cations is favoured at high pH. At the point of zero charge (PZC), the surface 

has a zero net charge. Near the PZC (which is different for different 

(hydr)oxides), both anions and cations are sorbed. The PZC of iron 

(hydr)oxides lies between 6 and 10 (Cornell & Schwertmann, 2003), while 

aluminium hydroxides often have somewhat higher PZC, usually between  8.1 

and 10 (Goldberg et al., 1996). It has been shown that both iron and aluminium 

(hydr)oxides adsorb many metals and oxyanions strongly by inner-sphere 

surface complexation (Peacock & Sherman, 2004; Sherman & Randall, 2003; 

Arai et al., 2001; Spadini et al., 1994).  

Another common feature of iron and aluminium (hydr)oxides is that less 

crystalline (hydr)oxides have a larger reactive surface area and therefore 

adsorb greater amounts of ions than more crystalline (hydr)oxides. The surface 

area of ferrihydrite and poorly crystalline aluminium hydroxide has been 

estimated to as large as >600 m
2
 g

-1
 (Goldberg, 2002; Davis & Leckie, 1978). 

Poorly crystalline (hydr)oxides crystallise over time and are more common in 

young soils such as the soils of northern Europe, which developed after the last 

glacial period. 

Although goethite and haematite usually occur in greater quantities in soil, 

ferrihydrite has a larger influence on the mobility of ions in many soils because 

of its exceptionally large sorption capacity (Jambor & Dutrizac, 1998). 

Aluminium is mostly present in soil as aluminiosilicates. The only crystalline 

aluminium hydroxide that occurs to an appreciable extent in soil is gibbsite. 

Aluminium also forms poorly crystalline mineral colloids that are highly 

reactive (Huang et al., 2002). The poorly crystalline aluminiosilicates 
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allophane and imogolite are common in soils and important aluminium phases 

in for example spodic horizons of Swedish forest soils (Gustafsson et al., 

1999).  

There are several commercially available products using iron (hydr)oxide-

containing adsorbents for cleaning of arsenic-contaminated waters. Since these 

products are commercial, full details of their technical characteristics are 

usually not available, but there are e.g. products using granular iron oxides or 

iron nano-particles (Mohan & Pittman Jr, 2007). 

3.1.1 Ferrihydrite 

Ferrihydrite can form when dissolved Fe(II) rapidly oxidises to Fe(III) and 

precipitates as poorly crystalline nanoparticles. It can also form from rapid 

hydrolysis of Fe(III). Although considerable attention has been paid to the 

chemical and physical properties of ferrihydrite, there is still no consensus on 

its structure (Hiemstra, 2013; Michel et al., 2010; Michel et al., 2007). The 

PZC of ferrihydrite is around 8. Measurements of the surface area vary 

considerably; values between 157 and 840 m
2
 g

-1
 have been reported (Davis & 

Leckie, 1978). Much of this variation can probably be attributed to 

underestimates of the surface area by the commonly used BET-N2 method 

(Clausen & Fabricius, 2000) and the surface area is probably at the upper part 

of the reported range (Davis & Leckie, 1978). The large sorption capacity of 

ferrihydrite, combined with its ability to adsorb both negatively and positively 

charged ions, is potentially very useful in the cleaning of waste water, 

groundwater and drinking water.  

Each oxygen atom on the surface of ferrihydrite can be bound to either one, 

two or three iron atoms (i.e. singly, doubly or triply coordinated surface 

oxygens). Singly coordinated oxygens have been identified as most important 

for metal sorption (Hiemstra & van Riemsdijk, 2009; Spadini et al., 2003). 

When ferrihydrite particles age they aggregate and become more ordered in 

structure. The surface area then decreases. Two types of ferrihydrite, the more 

disordered ‘2-line’ and the more crystallised ‘6-line’, can be discriminated 

based on the observed X-ray diffraction (XRD) patterns (Jambor & Dutrizac, 

1998). Ferrihydrite is eventually converted into haematite or magnetite. This 

process may take only days/weeks in a clean ferrihydrite suspension (Das et 

al., 2011, Colombo & Violante, 1996), but is inhibited by e.g. adsorbed ions 

and interactions with organic matter (Jambor & Dutrizac, 1998). This is why 

ferrihydrite remains in soil for hundreds of years. Drying decreases the surface 

area of ferrihydrite (Scheinost et al., 2001). Organic acids (Vermeer et al., 

1998) or other minerals (Liu & Hesterberg, 2011) may also decrease the 

number of sites available for sorption by covering parts of the surface. 
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Ions initially adsorb quickly to the surface of ferrihydrite and an 

equilibrium is usually reached within minutes. Despite this, the sorption 

continues to increase slowly for a long time (months). This has been attributed 

to slow intraparticle diffusion into micropores (Swedlund et al., 2014; 

Scheinost et al., 2001), formation of surface precipitates (Anderson & 

Benjamin, 1990) and slow desorption of other ions such as carbonate 

(Carabante et al., 2009). Ultimately, adsorbed ions may be incorporated into 

the mineral matrix as the ferrihydrite ages (Stegemeier et al., 2015; Vu et al., 

2013).  

3.1.2 Mixtures of iron and aluminium (hydr)oxides 

Iron and aluminium (hydr)oxides interact with one another through co-

precipitation, sequential precipitation and agglomeration (Anderson & 

Benjamin, 1990). The properties of phases with both sorbents may therefore 

differ from the properties of the individual minerals.  

The properties of co-precipitated iron/aluminium (hydr)oxides and of mixed 

suspensions of iron and aluminium (hydr)oxides have been shown to differ 

from those of the pure solids (Liu & Hesterberg, 2011; Violante & Pigna, 

2002; Anderson & Benjamin, 1990). The molar proportion of aluminium to 

iron seems to be important for the properties of a co-precipitated suspension. 

At low aluminium concentration (<10-30 mol-% Al), the aluminium tends to 

be dispersed within the ferrihydrite matrix (Johnston & Chrysochoou, 2016; 

Harvey & Rhue, 2008; Masue et al., 2007). At higher concentrations of 

aluminium (~20-80% mol-% Al), the aluminium is often enriched at the 

surface (Liu & Hesterberg, 2011; Harvey & Rhue, 2008; Anderson & 

Benjamin, 1990). Ferrihydrite probably precipitates first, providing a substrate 

for aluminium hydroxide formation. The ferrihydrite surface may then be more 

or less covered by poorly crystalline aluminium hydroxide and some of the 

surface sites on the ferrihydrite may not be available for sorption. At a high 

concentration of aluminium (>80 mol-% Al), discrete aluminium hydroxide 

particles form (Liu & Hesterberg, 2011; Harvey & Rhue, 2008). 

In a natural system where other minerals and organic matter are also 

present, the interactions will be even more complex. 

3.2 Sorption of lead(II), copper(II) and cadmium(II) to ferrihydrite 

3.2.1 Sorption in single sorbate systems 

The sorption of lead(II), copper(II) and cadmium(II) to ferrihydrite is highly 

pH-dependent and stronger at higher pH. Within a limited pH range, the 

sorption of cations usually increases rapidly with increasing pH, creating a 



18 

‘sorption edge’ which describes how the sorption changes with pH. Of these 

three ions, lead(II) is adsorbed most strongly, while the sorption edge is 

displaced to higher pH for copper(II). Cadmium(II) is adsorbed rather weakly 

below pH 6 (Dzombak & Morel, 1990). An increasing metal concentration 

shifts the adsorption edge to higher pH. The adsorbed ions affect the surface 

charge and at high surface loadings there is also competition for sorption sites.  

Lead(II), copper(II) and cadmium(II) have all been shown to adsorb to 

ferrihydrite by inner-sphere complexation (Scheinost et al., 2001; Spadini et 

al., 1994), i.e. they share ligands with iron atoms on the ferrihydrite surface. 

Mono- and bidentate inner-sphere coordination to an iron (hydr)oxide surface 

is depicted schematically in Figure 1a. Spectroscopic studies suggest that 

lead(II) mainly bind to ferrihydrite by edge-sharing coordination at higher pH 

(>5), but there are also indications of monodentate or corner-sharing 

coordination at lower pH (Trivedi et al., 2003; Scheinost et al., 2001). 

Copper(II) binding to ferrihydrite is dominated by edge-sharing bidentate 

complexes at low copper concentrations (Scheinost et al., 2001). At high 

copper concentrations, copper dimers have been found to adsorb as corner-

sharing tridentate complexes to goethite (Peacock & Sherman, 2004). The only 

spectroscopic study on cadmium(II) complexation to ferrihydrite found in this 

thesis work identifies a mixture of edge- and corner-sharing bidentate 

coordination (Spadini et al., 2003). Other studies of cadmium(II) sorption to 

iron (hydr)oxides (goethite, lepidocrocite) show similar results (Parkman et al., 

1999; Randall et al., 1999). 

It has been suggested that cations often bind more strongly to a minor part 

of the surface sites (Benjamin & Leckie, 1981). In a surface complexation 

model (SCM), this can be considered by introducing ‘high-affinity sites’ that 

comprise a few percent of the surface sites (Gustafsson et al., 2011; Swedlund 

et al., 2003; Swedlund & Webster, 2001; Dzombak & Morel, 1990). The 

nature of these high-affinity sites is not clear and their existence has been 

questioned. Spadini et al. (2003) argue that sites with lower and higher affinity 

for sorption rather comprise about 50% each of the surface sites on ferrihydrite. 

They based this estimate on analysis of the surface structure and an SCM with 

one type of site. The SCM was able to fit cadmium(II) sorption up to about 

60% surface coverage, which was comparable to the estimated proportion of 

sites with higher affinity. 
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Figure 1. a) Schematic outline of different types of coordination with iron octahedra, 

monodentate coordination, bidentate corner-sharing coordination and bidentate edge-sharing 

coordination. b) Two different views of the iron octahedron. The iron, situated in the middle, 

coordinates to six oxygens.  

 

Ponthieu et al. (2006) discuss the differences in complexation on the [110] and 

[021] planes of ferrihydrite and goethite. They argue that sites with higher 

affinity are available on the [021] plane because complexes on this plane can 

coordinate to two ligands on one iron octahedron (edge-sharing coordination) 

rather than two ligands on two adjacent iron octahedra (corner-sharing 

coordination) (Figure 1). Spadini et al. (2003) also suggested that edge-sharing 

sites present on the [021] plane have higher affinity.  

3.2.2 Sorption in ternary systems 

Oxyanions can promote the sorption of metals to iron (hydr)oxides (Swedlund 

et al., 2003; Swedlund & Webster, 2001). There are different explanations for 

this phenomenon. When anions are added and adsorb to a surface, the surface 

charge becomes less positive. As a result the sorption of positively charged 

ions increases. Some authors suggest that this is the sole explanation for 

increased metal sorption (Collins et al., 1999), but the enhancement caused by 

electrostatic effects is not always sufficient to explain the whole increase. 

Another explanation can be a change in metal coordination to the iron 

(hydr)oxide surface. A modelling study by Venema et al. (1997) attributed 

increased cadmium(II) sorption to goethite in the presence of phosphate to a 

monodentate Cd-ferrihydrite complex, which was only important in ternary 

systems. On the other hand, several studies have successfully modelled 

increased sorption of metals after addition of anions by the introduction of 

ternary complexes involving the metal, the anion and iron (hydr)oxide surface 

groups (Nelson et al., 2013; Swedlund et al., 2003; Swedlund & Webster, 

2001). 
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The few existing studies of phosphate effects on lead(II) and cadmium(II) 

metal sorption to iron (hydr)oxides show that sorption can increase after 

addition of phosphate (Xie & Giammar, 2008; Wang & Xing, 2002; Venema et 

al., 1997). On the other hand, Weesner and Bleam (1998) did not observe a 

clear effect on the sorption of lead(II) to goethite.  

The formation of ternary surface complexes with lead(II) and sulphate has 

been demonstrated in spectroscopic studies (Elzinga et al., 2001; Ostergren et 

al., 2000). Less spectroscopic information is available for copper(II) sorption 

in the presence of other anions, but phosphomethylglycine (PMG) has been 

shown to form ternary complexes with copper(II) on goethite (Sheals et al., 

2003). Ternary cadmium(II)-phosphate-haematite surface complexes have been 

identified by ATR-FTIR (Attenuated total reflectance Fourier transform 

infrared) spectroscopy (Elzinga & Kretzschmar, 2013). On the other hand, an 

EXAFS (Extended X-ray absorption fine structure) study by Collins et al. 

(1999) excluded formation of ternary cadmium(II) complexation with 

phosphate on goethite due to lack of evidence for Cd∙∙∙P coordination in their 

EXAFS spectra. 

3.3 Sorption of arsenate and phosphate to ferrihydrite and 
poorly crystalline aluminium hydroxide 

Arsenate and phosphate ions have a tetrahedral structure and similar chemical 

properties. It is well known that they compete for sorption sites on iron and 

aluminium (hydr)oxides (Violante & Pigna, 2002; Manning & Goldberg, 

1996). The competitive sorption on mixtures of sorbents has been less well 

investigated. Such systems are more complex as interactions between the 

sorbents may affect the sorption. 

3.3.1 Sorption in single sorbent systems 

Arsenate and phosphate adsorption to ferrihydrite and aluminium hydroxides 

increases with decreasing pH. However, the effect is attenuated by the 

protonation of phosphate and arsenate at low pH. As a result, their sorption is 

less pH dependent than for the metal cations. The pH dependence of the 

sorption may be slightly different for sorption to iron and aluminium 

(hydr)oxides as shown by Manning and Goldberg (1996) studying arsenate and 

phosphate sorption to goethite and gibbsite. The sorption to gibbsite decreased 

faster with increasing pH (at pH>7) than sorption to goethite for both ions. 

Arsenate and phosphate exhibit similar sorption to iron (hydr)oxides and a 

similarly high affinity for ferrihydrite and goethite has been indicated 

(Gustafsson & Bhattacharya, 2007; Hiemstra & van Riemsdijk, 1999). 
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A greater difference in affinity between arsenate and phosphate has been 

observed for aluminium hydroxide surfaces, with phosphate adsorbing more 

strongly to aluminium hydroxides than arsenate (Violante & Pigna, 2002). 

Violante and Pigna (2002) found that iron (hydr)oxide and iron-rich soils 

were more effective in retaining arsenate than aluminium hydroxides and 

aluminium-rich soils, while the opposite was true for phosphate. Martin et al. 

(2014) explained a stronger association of arsenate with iron and of phosphate 

with aluminium by the HSAB (hard and soft acids and bases; Pearson, 1963) 

theory. Iron is a softer Lewis acid than aluminium. Arsenate, being a softer 

base than phosphate, should therefore prefer iron and phosphate aluminium. 

Despite this, ferrihydrite and aluminium hydroxide adsorbed similar amounts 

of arsenate per surface area due to a higher surface area of the aluminium 

hydroxide (Martin et al., 2014). Higher arsenate sorption capacity and surface 

area of poorly crystalline aluminium hydroxide than ferrihydrite was also 

found by Garcia-Sanchez et al. (2002). 

The structure of arsenate surface complexes on iron (hydr)oxides has been 

debated. Several studies used X-ray absorption spectroscopy (XAS) to 

determine the structure found an As···Fe distance of about 3.3 Å (Loring et al., 

2009; Sherman and Randell. 2003; Manceau, 1995; Waychunas et al., 1993). 

Most studies assign this distance to a bidentate corner-sharing arsenate surface 

complex (Sherman and Randell. 2003; Manceau, 1995; Waychunas et al., 

1993) but Loring et al., (2009) attributed this distance to formation of a 

monodentate complex on the surface of goethite. Edge-sharing bidentate 

complexes (As···Fe about 2.7 Å) and a monodentate complex with a longer 

As···Fe distance (3.6 Å) have also been discussed in the mentioned studies. 

Inner-sphere bidentate complexes have also been suggested to dominate 

arsenate sorption to poorly crystalline aluminium hydroxide (Xiao et al., 2015; 

Arai et al., 2005; Arai et al., 2001). 

The structure of phosphate surface complexes has been investigated by 

Fourier transform infrared spectroscopy (FTIR). Also for phosphate formation 

of bidentate complexes on the surface of iron (hydr)oxides has been suggested 

(Arai & Sparks, 2001; Tejedor-Tejedor & Anderson 1990) with possible 

contribution of mondentate complexes or mondentate complexes that are also 

coordinated to a second surface group via hydrogen bonding. Persson et al. 

(1996) on the other hand concluded that monodentate complexes dominate 

phosphate sorption to goethite. Structural investigations of phosphate species 

sorption to aluminium hydroxide are not conclusive but discuss both 

mondentate and bidentate complexes (Del Nero et al., 2010; Guan et al., 2005).  

The results from spectroscopic studies provide valuable information that 

can be used to constrain surface complexation models, for example the CD-
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MUSIC model (Hiemstra & van Riemsdijk, 1996). Arsenate sorption to 

ferrihydrite has been simulated with the CD-MUSIC model by Antelo et al. 

(2015) and Gustafsson & Bhattacharya (2007). Two bidentate surface 

complexes, ≡Fe2O2AsO2
2-

 and ≡Fe2O2AsOOH
-
, were used and dominated 

sorption at slightly acidic to neutral pH. The presence of additional 

monodentate species at high or low pH was also discussed (Antelo et al., 2015; 

Gustafsson & Bhattacharya, 2007). The surface complexation of phosphate to 

ferrihydrite is analogous to that of arsenate and can be simulated using the 

corresponding phosphate-containing surface complexes (Antelo et al., 2015; 

(Antelo et al., 2010; Sjöstedt et al., 2009). Surface complexation modelling of 

arsenate and phosphate adsorption to poorly crystalline aluminium hydroxides 

has been limited to date.  

 

3.3.2 Sorption to mixed sorbents 

As mentioned, it has been found that mixed sorbents may have sorption 

properties that are different from that which would be expected from simply 

mixing the sorption properties of the pure end-member phases. 

For example, more phosphate and arsenate was adsorbed to co-precipitated 

iron/aluminium (hydr)oxides (containing 50% Al and less, pH 8) in a study by 

Violante and Pigna (2002). Direct measurements of arsenate distribution 

between iron and aluminium in mixtures are scarce, but Suresh Kumar et al. 

(2016) evaluated sorption to co-precipitated iron/aluminium (hydr)oxides by 

EXAFS spectroscopy. Arsenate sorption could not be attributed to one 

particular metal hydroxide while arsenite was concluded to adsorb to surface 

groups on iron (hydr)oxides.  

Liu and Hesterberg (2011) showed that phosphate sorption to 

iron/aluminium co-precipitates was similar to sorption to pure ferrihydrite at 

low aluminium to iron ratios (< 50% Al), but higher at 75% Al (pH 6).  By P 

K-edge XANES spectroscopy they demonstrated that association with 

aluminium dominates the phosphate binding when aluminium is present and 

explained this by enrichment of aluminium at particle surfaces. Harvey and 

Rhue (2008) showed that more phosphate adsorbed to iron/aluminium co-

precipitates containing a high proportion of aluminium. 
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3.4 Partitioning of elements in soil 

Soils are usually complex mixtures of minerals and organic matter. Metal 

contaminants have different properties and are partitioned differently between 

the soil constituents. One of the reasons why the partitioning is so important is 

that the total content of a contaminant usually does not relate directly to the 

risk that it poses. Rather, it is the contaminants that may be transported in the 

soil and/or are available for uptake by organisms that constitute a risk. This 

fraction may change with chemical conditions and over time, and therefore 

understanding of the processes involved is crucial in long-term risk 

assessments. Important soil compartments for heavy metals and arsenic in soils 

are schematically summarised in Figure 2.  

The composition of the soil solution affects the partitioning of elements. 

The redox conditions and pH of the soil solution govern the speciation of 

contaminants to a great extent, as they affect both the speciation in solution and 

the properties of the solid soil constituents. One example is that although metal 

cations bind more strongly to iron (hydr)oxides and solid organic matter 

(SOM) at high pH, their concentration in the soil solution often increases at 

high pH due to complexation with dissolved organic matter (DOM). 

It is well known that lead(II), copper(II) and cadmium(II) all interact 

strongly with organic matter. Therefore, in addition to the iron and aluminium 

(hydr)oxides discussed in previous sections, organic matter has to be 

considered when working with soils. Clay minerals, precipitation of 

contaminants and weathering of primary minerals were assumed to be of less 

 

 
Figure 2. Schematic representation of soil constituents that may affect the concentration of ions in 

the soil solution. 
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importance for the systems studied in this thesis. The negatively charged 

surface of soil organic matter (increasing with pH) mainly attracts cations. 

Lead(II), copper(II) and cadmium(II) form strong inner-sphere complexes with 

groups on organic matter. They may also bind by weaker electrostatic 

interactions (Gustafsson & van Schaik, 2003).  

In Figure 2 the solid soil phases are depicted as discrete units. In reality, soil 

(hydr)oxides and organic matter interact and are commonly present as co-

precipitates or assemblages. For example, co-precipitation of iron and 

aluminium with organic acids is an important process in formation of spodic B-

horizons. 

3.4.1 Using iron (hydr)oxides for immobilisation of metals and arsenic in soils 

Addition of metal (hydr)oxides (or their precursors) has been successfully used 

for chemical stabilisation of metals and arsenic contaminants in soils in 

laboratory and pilot-scale field studies (Komarek et al., 2013; Cundy et al., 

2008; Kumpiene et al., 2008). One potentially effective immobilising agent is 

zero-valent iron (ZVI) in the form of iron grit (Kumpiene et al., 2006). In soils, 

ZVI is rapidly transformed into reactive iron (hydr)oxides (e.g. ferrihydrite) 

with a high surface area and sorption capacity (Komarek et al., 2013), and 

these can strongly sorb both cations and anions. Furthermore, elements can be 

co-precipitated with newly formed iron (hydr)oxides (Komarek et al., 2013). 

Critical factors that affect the immobilisation capacity of oxidised ZVI in soil 

include pH and redox conditions, the volume of infiltrating water and 

microbial activity (Kumpiene et al., 2007), as well as the rate of crystallisation 

of the iron (hydr)oxides formed (Cundy et al., 2008). 

The effect of ZVI addition on contaminant mobility has been investigated 

for a number of elements, including chromium, copper, arsenic and zinc (e.g. 

(Kumpiene et al., 2007; Kumpiene et al., 2006). However, the studies 

conducted so far have investigated immobilisation in a short-term perspective 

(months to a few years). For this technique to be recommended as a long-term 

solution, questions about the long-term performance (several years) remain to 

be answered. In particular, detailed knowledge about the immobilising 

mechanisms involved and how they might change over time is needed. 

Reviews of chemical stabilisation of soils highlight the need for long-term field 

studies (Komarek et al., 2013; Cundy et al., 2008; Kumpiene et al., 2008). 
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4 Materials and methods 

4.1 Overview of the experimental work 

The focus of this thesis was on metal interactions with ferrihydrite, but 

experiments were also conducted with soils and poorly crystalline aluminium 

hydroxide. The minerals and soils used are listed in Table 1.  

Batch experiments were conducted to investigate the sorption of metals and 

arsenic. Molecular-scale binding mechanisms were identified by X-ray 

absorption (XAS) spectroscopy. Geochemical models able to simulate the 

results from the batch experiments were then developed based on the XAS 

results and knowledge about the mineral or soil. 

Table 1. Minerals and soils used in the work described in this thesis 

Ferrihydrite, 2-line Synthesised in the laboratory according to the procedure of 

Schwertmann & Cornell (2000). Briefly, a solution containing 36 

mmol L
-1

 Fe(NO3)3 and 12 mmol L
-1

 NaNO3 was brought to pH 8.0 

by addition of NaOH and aged for 16 h. The suspension was back-

titrated to pH 4.6 before use to avoid CO2 in the solution. 

Poorly crystalline 

aluminium (hydr)oxide 

Prepared as ferrihydrite except that Fe(NO3)3 was replaced by 

Al(NO3)3 and the suspension was titrated to pH 7.0 before ageing 

and back-titrated to pH 5.0 after ageing. 

Cu-contaminated soil Soil from a former wood preservation site in France. Untreated soil 

(CuUNT) and soil stabilised with 2% ZVI (CuZVI) in 2006. 

Samples are from subsite P7 (Bes & Mench, 2008), sampled 2012. 

As-contaminated soil Agricultural soil near a former arsenic refinery in Belgium. 

Untreated soil (AsUNT) and soil stabilised with 1% ZVI (AsZVI) in 

1997 (Mench et al., 2006), sampled 2012.  

B- and C-horizons of 

Swedish forest soils 

Coniferous forests soils with, or developing, spodic horizons. 

Sampled by C. Tiberg and J.P. Gustafsson, May-August 2012. 
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4.2 Characterisation of minerals and soils 

Characterisation by XRD confirmed that the expected minerals, 2-line 

ferrihydrite and poorly crystalline aluminium hydroxide were produced in the 

mineral synthesis methods applied (Figure 1 in Paper IV). 

Characterisation of the contaminated soils focused on parameters required 

for the geochemical modelling. The ‘geochemically active concentrations’ of 

metal and major cations participating in equilibrium reactions were estimated 

by extraction with 0.1 M HNO3 (16 h) (Gustafsson & Kleja, 2005). The 

content of poorly crystalline iron and aluminium (hydr)oxides and of 

geochemically active arsenate was estimated by extraction with oxalate/oxalic 

acid buffer at pH 3.0 (van Reeuwijk, 1995). The ‘pseudo-total’ content of 

contaminants and iron in soil was determined after digestion with HNO3 and 

H2O2 or melting with LiBO2. The organic carbon content and pH were also 

determined. More details on the characterisation of the contaminated soils are 

available in Paper III.  

For the forest soils, oxalate/oxalic acid and pyrophosphate-extractable iron 

and aluminium were determined, as well as the pH and organic carbon content. 

4.3 Batch experiments 

The partitioning of elements between liquid and solid phases was determined 

in batch experiments, either by adding metals to mineral or soil suspension or 

by studying desorption of metals already present in soil samples. All batch 

experiments included in the thesis are summarised in Table 2. 

Elemental analysis of extracts from batch experiments and extractions was 

performed using inductively coupled plasma-mass spectrometry (ICP-MS), 

inductively coupled plasma-sector field mass spectrometry (ICP-SFMS) or 

inductively coupled plasma-emission spectrometry (ICP-OES). Phosphate was 

measured colorimetrically (using a Seal Analytical AA3 Autoanalyzer) and 

DOC content was determined with a Shimadzu TOC 5000 analyser. 

4.3.1 Batch experiments with ferrihydrite and aluminium hydroxide 

Series of batches were prepared to study sorption of lead(II), copper(II) and 

cadmium(II) to ferrihydrite in the presence and absence of phosphate (Papers I 

and II). The pH within each series was adjusted with HNO3 or NaOH to a 

range of pH values covering the adsorption edge (Table 2). Two additional 

series where phosphate was replaced with arsenate were prepared in the 

cadmium study (Paper II). The purpose was to verify that arsenate affected the 

sorption in the same way as phosphate. If so, arsenate could be used as an 
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analogue for phosphate in some synchrotron light experiments (see section 

4.4.2).  

For Paper IV, series of batches were prepared to study arsenate sorption to 

poorly crystalline aluminium hydroxide and ferrihydrite in competition with 

phosphate. The series had different Al/Fe ratios and within each series a range 

of phosphate concentrations (between 0 and 200 µmol L
-1

) were added (Table 

2). The pH was adjusted to 6.5 before equilibration and again after 1 h of 

equilibration time in all samples. 

Table 2. Summary of batch experiments and XAS measurements presented in this thesis 

Metal Matrix pH Batch experiments, series
 

XAS  Paper 

Cu(II) 

or 

Pb(II) 

Ferrihydrite 3-7 a) 3 mmol L
-1

 Fe, 0.3 µmol L
-1

 Cu(II) or Pb(II) 

b) 3 mmol L
-1

 Fe, 3 µmol L
-1

 Cu(II) or Pb(II) 

c) 3 mmol L
-1

 Fe, 30 µmol L
-1

 Cu(II) or Pb(II) 

d) 0.3 mmol L
-1

 Fe, 30 µmol L
-1

 Cu(II) or Pb(II) 

All series also with phosphate: 600 µmol L
-1

 to 

series a, b and c, 60 µmol L
-1

 to series d. 

 

 

Cu/Pb 

Cu/Pb 

 

I 

Cd(II) Ferrihydrite 4-8 a) 3 mmol L
-1

 Fe, 0.3 µmol L
-1

 Cd(II) or Pb(II) 

b) 3 mmol L
-1

 Fe, 3 µmol L
-1

 Cd(II) or Pb(II) 

c) 3 mmol L
-1

 Fe, 30 µmol L
-1

 Cd(II) or Pb(II) 

d) 0.3 mmol L
-1

 Fe, 30 µmol L
-1

 Cd(II) or Pb(II) 

All series also with phosphate, series c and d in 

addition with arsenate: 600 µmol L
-1

 to series a, 

b and c, 60 µmol L
-1

 to series d. 

 

 

Cd 

Cd+As
 

II 

Cu(II) Contaminated 

soil 

4-9 CuUNT: Untreated Cu-contaminated soil 

CuZVI: Stabilised Cu-contaminated soil 

Cu 

Cu 

III 

As(V) Contaminated 

soil 

4-8 AsUNT: Untreated As-contaminated soil 

AsZVI: Stabilised As-contaminated soil 

As 

As 

III 

As(V) Ferrihydrite, 

aluminium 

hydroxide 

~6.5 All series: 58 µmol L
-1

 As + 0, 50, 100 or 200 

µmol L
-1

 P added.  

In addition: Sample with only 100 µmol L
-1

 P to 

1 mmol L
-1

 Al or Fe. 

1 mmol L
-1

 Al  

0.25 mmol L
-1

 Fe + 0.75 mmol L
-1

 Al 

0.5 mmol L
-1

 Fe + 0.5 mmol L
-1

 Al  

0.75 mmol L
-1

 Fe + 0.25 mmol L
-1

 Al 

1 mmol L
-1

 Fe 

 

 

 

P 

As+P 

As 

As+P 

As 

As+P 

IV 

Cu(II)

Pb(II) 

Cd(II) 

Forest soils, 

B- and C- 

horizons 

4-8 Added concentrations of metals and phosphorus 

depending on sorption properties and 

phosphorus content of the soil
a
 (Table 3).

 

Cd to B- 

horizon 

b 

a 
Cu(II), Pb(II) and Cd(II) added to represent moderately contaminated soils and phosphate added to comply 

with median concentration in Swedish groundwater, see section 4.3.2. 
b 
Not published. 
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4.3.2 Batch experiments with soils 

The solubility of copper and arsenic in untreated and ZVI-treated contaminated 

soils was investigated over a broad pH range (~4-8) (Paper III). 

The sorption of metals to forest soils in the absence and presence of 

phosphate was investigated by adding metals (Pb(NO3)2, Cu(NO3)2 and 

Cd(NO3)2) and phosphate to batches with 2 g soil from B- or C-horizons. The 

batches were 30 mL in total and had a background electrolyte concentration of 

0.01 M NaNO3. The amounts of metals added (Table 3) aimed to represent 

concentrations in soil water of moderately contaminated soils based on the 

Swedish EPA generic guideline values for contaminated soils (Swedish 

Environmental Agency, 2002). The amount of phosphate added aimed at a 

concentration in the supernatant of about 0.5 µmol L
-1

, which is half the 

average concentration of phosphorus in Swedish groundwater (PO4-P = 30 µg 

L
-1

; SGU, 2013). The batches were equilibrated for 6 days at room temperature 

before pH was measured. Samples for measurement of cadmium and phosphate 

were filtered before analysis.  

In addition, samples for EXAFS measurements at the cadmium K-edge 

were prepared with Kloten B and Risfallet B. These samples were prepared in 

same way as the batch series but with 100 µmol L
-1

 cadmium(II) and 

500 µmol L
-1 

phosphate or arsenate. 

 

Table 3. Concentrations of metals and phosphate added to samples of Swedish forest soils in 

experiments. 

Soil profile Soil horizon Cu(II) and 

Pb(II) (µmol L
-1

) 

Cd(II) 

(µmol L
-1

) 

Phosphate 

(µmol L
-1

) 

Risfallet B 30 3 250 

Risfallet C 20 2 50 

Tärnsjö B 24 2.4 30 

Tärnsjö C 20 2 50 

Kloten  B 30 3 500 

Kloten C 20 2 70 

Risbergshöjden B 30 3 500 

Alnö B 50 5 50 

Alnö C 30 3 40 
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4.4 X-ray absorption spectroscopy 

X-ray absorption spectroscopy (XAS) measurements provide first-hand 

information about the oxidation state and the local binding environment of an 

element (Kelly et al., 2008). Spectra are collected at synchrotron radiation 

facilities by irradiating a sample with high-energy X-rays and measuring how 

they are absorbed by the sample. Different elements absorb the X-rays at 

different, well-defined energies (Thompson et al., 2009). The sample is 

scanned with X-rays across an energy range that covers this absorption energy 

for the element of interest. The technique is usually non-destructive and 

measurements for other elements can often be made on the same sample. A 

number of spectra per sample (between 5 and 20) are collected and averaged to 

increase data quality. Raw data are generally plotted as measured absorption 

versus incoming energy. The resulting spectrum includes the energy range 

around the absorption edge, which is the XANES (X-ray absorption near-edge 

structure) region, and an additional energy range after the edge, which is the 

EXAFS (Extended X-ray absorption fine structure) region (Figure 3). The 

absorption edge of an XAS spectrum moves to higher energy with higher 

oxidation number and the position can thus be used to identify the oxidation 

state of the measured element. For example, an arsenic K-edge at about 

11,875 eV confirms the presence of arsenic(V) (Mähler et al., 2013). 

 
Figure 3. X-ray absorption spectrum collected at the copper K-edge. The XANES region of the 

spectrum is marked with a red rectangle and the EXAFS region with a green rectangle. 
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4.4.1 X-ray absorption near edge structure 

Phosphorus K-edge XANES spectra were evaluated by linear combination 

fitting (LCF) to investigate the partitioning of phosphate between iron and 

aluminium (hydr)oxides (Paper IV). In an LCF, standard spectra of known 

structures are combined to decide approximately how much of the absorbing 

element that bind to different constituents in the sample.  

4.4.2 Extended x-ray absorption fine structure 

An EXAFS spectrum is composed of one or more sine waves, each 

representing one or more atoms at a certain interatomic distance from the 

central atom. To extract information from the EXAFS part of a XAS spectrum, 

a background function (“spline”) is subtracted from the measured spectrum. 

The Athena software (version or 0.8.061 or in the program package Demeter 

09.20; Ravel & Newville, 2005) was used for energy calibration, averaging of 

spectra and background removal.  

One common approach to interpreting EXAFS spectra is to develop a 

structural model of atoms coordinated to the absorber atom that fits the EXAFS 

spectra. The model gives information about the distance from the absorbing 

element to neighbouring atoms (Figure 4a). It can also indicate how many they 

are (the “coordination number”, CN) and what elements they are. The 

information is compiled to draw conclusions about the surface complexes 

formed. This approach was used in Papers I, II and III to identify the nature of 

the lead(II), copper(II), cadmium(II) and arsenate complexes formed. The 

software Artemis (version 0.8.012; Ravel & Newville, 2005) was used. The 

model is developed in a trial and error procedure, discarding fits that produce 

impossible or unlikely parameters (e.g. interatomic distances or elements) and 

deciding on the best fit by comparison of statistical parameters for the fits and 

visual comparison of measured and modelled spectra. Details of the data 

treatment are given in the respective paper. 

In development of the structural model, Fourier transforms (FT) and 

Wavelet transforms (WT) of the EXAFS spectra are helpful tools. In FT, the x-

axis represents the distance from the central atom and the peaks are signals 

from backscattering atoms at distinct distances (example in Figure 4b). The 

WT tool (Papers I-III) helps distinguish between heavy (i.e. Fe) and light (i.e. 

O, C) elements. It is useful to also compare the FT and WT plots of measured 

spectra with FT and WT of model fits in evaluation of model fits.  

Heavier elements (e.g. As) are easier to detect in analysis of EXAFS spectra 

than lighter elements (e.g. P). Arsenate was therefore added instead of 

phosphate in some EXAFS samples where the coordination of cadmium(II) 

was studied. It is also possible to do complementary measurements at the  
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Figure 4. a) Schematic representation of the adsorbing element (red) and neighbouring atoms 

(blue and green). Arrows denote interatomic distances. b) Fourier transform of a Pb L3-edge 

EXAFS spectrum. The x-axis is not phase-shifted, i.e. about 0.5 Å should be added to the 

distances on the x-axis. The peaks are marked with dashed lines. The first peak is due to 

coordination with oxygen atoms at ~2.3 Å (illustrated by the blue neighbouring atoms in 4a), 

while the second peak that is only present in samples 5.2 and 8 is due to iron at ~3.3 Å from the 

central Pb atom (illustrated by the green atom in 4a). 

arsenic K-edge while EXAFS measurements at the phosphorus K-edge are 

very difficult. 

EXAFS spectra can also be evaluated by LCF, as described in section 4.4.1. 

This technique was used in Paper IV for arsenic K-edge spectra. 

Cadmium(II) in the B-horizon of forest soils 

EXAFS spectra for soil samples at the cadmium K-edge were collected at 

beamline B18, Diamond Light Source, UK, during the same beamtime as the 

cadmium spectra in Paper II and with the same settings. Data treatment was 

also performed in the same way. The measurements were made on the solid 

phase (a wet paste) from the batch experiments. Only the surface of the 

centrifuged sample was transferred to the aluminium holder. This way coarse 

material was avoided in the EXAFS measurements. 

4.5 Geochemical modelling 

The most simple geochemical models are empirical models that describe the 

partitioning between the solid and liquid phase by only one element-specific 

partitioning coefficient. Empirical models are generally limited to the 
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conditions under which they were developed (Goldberg, 2007). 

Thermodynamic models have a more mechanistic approach and model 

processes in more detail. They can therefore, for example, simulate how 

changes in pH and ionic strength affect the partitioning of elements and 

compounds.  

Geochemical modelling in this thesis was performed in the chemical 

equilibrium software package Visual MINTEQ (Gustafsson, 2013). A surface 

complexation model (SCM) in Visual MINTEQ was used to model sorption of 

metals to ferrihydrite in detail. For partitioning of metal contaminants between 

different soil compartments, a number of ‘sub-models’ were combined into a 

‘multisurface’ model in Visual MINTEQ.  

4.5.1 Surface complexation modelling  

SCMs describe sorption to surfaces. The charging behaviour of the surface is 

described in detail and therefore SCMs require a larger number of parameters 

compared with empirical models. On the other hand, once a SCM is 

parameterised for a surface, e.g. ferrihydrite, it is easy to use and should also 

be valid for other ferrihydrite surfaces under variable chemical conditions.  

Different SCMs differ mainly in how the electrostatic forces at the interface 

between surface and solution are described. The charge distribution multisite 

complexation (CD-MUSIC) model (Hiemstra & van Riemsdijk, 1996) that was 

used for surface complexation modelling in this thesis probably has the most 

advanced description regarding the electrostatic interactions of the solid-

solution interface. 

The CD-MUSIC model is a 1-pK model, i.e., the surface protonation is 

described by one protonation reaction for each type of surface site. Equation 1 

shows the reaction for singly coordinated surface oxygens. Different types of 

surface sites can be distinguished based on the structure of the mineral surface. 

In line with Hiemstra and van Riemsdijk (2009) and Hiemstra (2013), metals 

were assumed to react only with singly coordinated oxygens, ≡FeOH surface 

sites, while protons were assumed to react also with triply coordinated 

oxygens, ≡Fe3O surface sites. The CD-MUSIC model divides the solid-

solution interface into three electrostatic planes, the surface plane (the o-plane), 

a 1-plane (also known as the β-plane or inner Helmholtz plane), which is 

situated in the Stern layer, and the 2-plane (also known as the d-plane or outer 

Helmholtz plane), which coincides with the head-end of the diffuse layer 

(Figure 5). The capacitance of the surface (C) is described by a combination of 

the inner and outer layer capacitances, C1 and C2, according to Equation 2. 
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 ≡SOH−1/2 
+ H+ ↔ ≡SOH2

+1/2                                        (Equation 1)    

   
1

C
=

1

C1

+
1

C2

                                                                          (Equation 2) 

 

Furthermore, the charge of inner-sphere complexes is distributed between 

the surface and the 1-plane, based on the Pauling concept of charge 

distribution. A fraction f of the charge of the central cation is attributed to the 

surface ligand(s) and the remaining part (1-f) to the ligand(s) in the 1-plane. 

There are several factors that determine the exact value of f. Therefore, f is 

usually regarded as an adjustable parameter in the CD-MUSIC model. The 

charge distribution (CD) values, ∆z0 and ∆z1, are related to f. They describe the 

net change of charge in the surface plane and the 1-plane for a surface 

complexation reaction (Hiemstra & van Riemsdijk, 1996). In this thesis ∆z0 

and ∆z1 were fitted in the modelling (within reasonable limits) and f was then 

calculated (Hiemstra & van Riemsdijk, 1996). A commonly used criterion for 

constraining ∆z0 and ∆z1 is that the surface oxygens should not be 

oversaturated (i.e. become positively charged) (Hiemstra & van Riemsdijk, 

1996). 

  
Figure 5. Schematic presentation of the three electrostatic planes in the CD-MUSIC model: the 

surface plane, the 1-plane and the 2-plane at the head-end of the diffuse layer. C1 denotes the 

capacitance between the surface plane and the 1-plane, while C2 is the capacitance between the 1-

plane and the 2-plane. 
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The CD-MUSIC model was parameterised for ferrihydrite (Paper I) based 

on the work by Hiemstra and van Riemsdijk (2009) and Hiemstra (2013). So 

far, no parameterisation of the CD-MUSIC model for poorly crystalline 

aluminium hydroxide has been published. 

Surface complexation constants, ∆z0 and ∆z1, were optimized in the 

modelling. For lead(II) and copper(II) interactions with the ferrihydrite surface 

in the absence and presence of phosphate (Paper I) FITEQL was used 

(Herbelin & Westall, 1999). Similar systems with cadmium(II) were optimised 

in Paper II with PEST (Doherty, 2010) which is integrated in Visual MINTEQ. 

4.5.2 Geochemical modelling of soils 

Optimised models for discrete surfaces can be combined in a ‘multisurface’ 

model to simulate more complex systems. A multisurface model was designed 

for the contaminated soils in Paper III to investigate how changes in soil 

parameters affect the dissolution/desorption of elements. A decisive feature for 

the performance of such models is to ensure that all important processes are 

covered by the model.  

The multisurface model included speciation of the soil solution, solid and 

dissolved soil organic matter, iron and aluminium (hydr)oxides and 

dissolution/precipitation of relevant minerals.  

Sorption to iron and aluminium (hydr)oxides was modelled with the 

ferrihydrite model developed in Papers I and II, i.e. both surfaces were 

assumed to behave as ferrihydrite. 

Sorption to solid organic matter (SOM) and dissolved organic matter 

(DOM) was modelled with the Stockholm Humic model (SHM) with the acid-

base parameters of Gustafsson and van Schaik (2003). 

The model was not calibrated for the samples investigated. Instead, a priori 

assumptions on the amounts and properties of soil constituents were used 

(Paper III). 
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5 Results and discussion 

5.1 Phosphate effects on copper(II), lead(II) and cadmium(II) 
sorption to ferrihydrite 

5.1.1 Single sorbate systems 

In line with the amphoteric surface properties of ferrihydrite, adsorption of 

lead(II), copper(II) and cadmium(II) increased with increasing pH, from about 

0% at low pH to 100% at high pH (Figure 6). Lead(II) was strongly adsorbed 

also at low pH despite a positively charged surface, while copper(II) and 

cadmium(II) were only adsorbed at higher pH.  

Sorption of copper(II) at the three lowest Cu/Fe ratios essentially followed 

the same adsorption edge (Figure 6c), which indicates that the sorption is 

independent of the total copper concentration as long as the surface sites of the 

ferrihydrite surface are far from saturated. By contrast, the adsorption of 

lead(II) proved to be highly dependent on the lead(II) concentration (Figure 

6a), also at low surface coverage, while cadmium(II) showed intermediate 

behaviour. Similar main features of the sorption patterns have been reported in 

earlier studies of similar systems (Swedlund et al., 2003; Swedlund & Webster, 

2001; Benjamin & Leckie, 1981).  

Sorption of phosphate to ferrihydrite (Figure 2 in Paper I) decreased with 

increasing pH, as expected for surface complex-forming anions (Antelo et al., 

2010; Gustafsson & Bhattacharya, 2007). 
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Figure 6. Sorption to ferrihydrite of: a) lead(II) at different Pb/Fe ratios, b) lead(II) in the absence 

and presence of phosphate, c) copper(II) at different Cu/Fe ratios, d) copper(II) in the absence and 

presence of phosphate, e) cadmium(II) at different Cd/Fe ratios and f) cadmium(II) in the absence 

and presence of phosphate. Symbols are data from batch experiments and solid lines are best 

model fits. Dashed lines are simulation of the systems with phosphate without ternary complexes. 
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5.1.2 Phosphate effects 

Phosphate increased the sorption of all metals to ferrihydrite, i.e. more of the 

metal was sorbed at a certain pH when phosphate was added (see examples in 

Figure 6). The enhancement was greater for lead(II) and cadmium(II) than for 

copper(II). The effect was smaller at higher surface coverage when the sorption 

edge was displaced to higher pH and very small for the highest Cu/Fe ratio 

(Figure 3 in Paper I). A similar effect was observed by Swedlund et al. (2003) 

and Swedlund and Webster (2001) for sorption of metals to ferrihydrite on 

addition of sulphate.  

At the lowest P/Pb and P/Cd ratio (60 µmol L
-1

 P and 30 µmol L
-1

 Pb or 

Cd), there was also clear enhancement of phosphate sorption in series with 

lead(II) or cadmium(II) added compared with a series with only phosphate 

(Figure 2 in Paper I, Figure 2 in Paper II). In the series with higher phosphate 

additions (600 µmol L
-1

), the metals had little effect on the phosphate sorption 

due to the much higher P/Pb and P/Cd ratios. 

5.1.3 Structures of surface complexes: EXAFS spectroscopy 

Based on the interpretation of EXAFS spectra, lead(II), copper(II) and 

cadmium(II) were concluded to form inner-sphere bidentate complexes on the 

ferrihydrite surface in single sorbate samples (Papers I and II). Similarly to 

previous studies (Trivedi et al., 2003; Scheinost et al., 2001), lead(II) and 

copper(II) edge-sharing complexes with Pb···Fe distances of about 3.4 Å and 

Cu···Fe distances of about 3.0 Å were identified (Figure 7a). For cadmium(II), 

two Cd···Fe distances, 3.3 and 3.8 Å, were found and interpreted as evidence 

of formation of two different bidentate complexes; one edge-sharing and one 

corner-sharing (Figures 7a and 7b). Similar distances were found by Randall et 

al. (1999) for cadmium(II) sorption to iron (hydr)oxides.  

Visible differences in the EXAFS spectra, FT and/or WT between samples 

indicate different coordination environments around the measured element. 

Differences between samples with and without phosphate added were 

especially prominent in the FT of lead(II) EXAFS spectra (see Figure 4), where 

the second peak in the FT almost disappeared in samples with phosphate. The 

pattern was similar for copper(II) and cadmium(II); the signal from the 

Me···Fe distance indicating an edge-sharing complex was weaker in the 

samples with phosphate. Instead, a longer Me···Fe distance emerged in the 

phosphate-containing samples (although there was only a weak indication in 

the case of copper(II)). This longer distance was interpreted as evidence of 

monodentate or corner-sharing bidentate coordination on the ferrihydrite 

surface. It could be part of a ternary complex including the ferrihydrite surface, 

 



38 

 
a. Edge-sharing            

(FeOH)2MeOH 

b. Corner-sharing  

(FeOH)2MeOH 

c. Ternary  

(FeOH)2MePO4H2
0
 

d. Ternary 

(FeO)2HMePO3H
0
 

Figure 7. Proposed structures for metal surface complexes consistent with EXAFS interpretations 

and SCM results. Bright red atoms are oxygen, white atoms are hydrogen, Me denotes Pb(II), 

Cu(II) or Cd(II) atoms. Dashed lines show interatomic distances for the complexes. The complex 

shown in (b) was only proposed for cadmium(II). In principle, P can be exchanged for As to 

illustrate arsenic-containing samples. 

the metal and the phosphate (Figures 7c and d). In a ternary complex, the metal 

would also be bound to phosphate. Metal-phosphate distances could only be 

identified in the samples with cadmium(II) (as well as an Cd··As distance in 

the corresponding arsenate containing sample). However, the absence of metal-

phosphorus distances in lead(II)- and copper(II)-containing samples does not 

rule out the formation of ternary complexes. Phosphorus is a light element and 

therefore not easy to detect by EXAFS spectroscopy. Combined with the 

relatively poor spectral quality of the lead(II) spectra, a Pb···P distance would 

be difficult to distinguish. Formation of rather few ternary copper complexes at 

the pH of EXAFS samples (5.85 and 6.58) could be one reason why a Cu···P 

distance was not identified. The interaction with phosphorus may also be of an 

outer-sphere nature for some metals, in which case the metal-phosphorus 

distances would be long, with a wide distance distribution, and therefore 

impossible to identify.  

Earlier spectroscopic studies (XAS and IR spectroscopy) of related systems 

mostly include complexes formed on goethite. Ternary complexes have been 

identified, e.g. lead-sulphate-goethite complexes (Elzinga et al., 2001; 

Ostergren et al., 2000) and phosphate-cadmium(II)-goethite complexes 

(Elzinga & Kretzschmar, 2013). 

In summary, the EXAFS measurements of lead(II), copper(II) and 

cadmium(II) showed that there was a change in metal coordination to the 

ferrihydrite surface when phosphate was added and that this change could be 

induced by formation of ternary complexes. 
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5.1.4 Surface complexation modelling 

Surface charging parameters for ferrihydrite in the CD-MUSIC model were 

determined in Paper I and used in all subsequent ferrihydrite modelling.  

Based on the results from EXAFS spectroscopy, the lead(II), copper(II) and 

cadmium(II) model reactions were defined as bidentate complexes (Table 4). 

The best modelling results were obtained with the assumptions that the 

adsorbed copper(II) and cadmium(II) were hydrolysed, whereas lead(II) was 

not (Table 4). As indicated by the dependence on sorbate concentration, 

modelling of lead(II) and cadmium(II) sorption was improved by the 

introduction of site heterogeneity. The surface sites were divided into classes 

with different affinity and a small proportion of the surface sites was assigned 

higher affinity, in line with previous modelling of similar systems by Dzombak 

and Morel (1990) and Swedlund et al. (2003). For cadmium(II), two different 

site affinities, corresponding to 99% and 1% of the surface sites, yielded good 

fits, but for lead(II) three different affinities, corresponding to 99%, 0.9% and 

0.1%, were required (Table 4, see also Figure 6). For copper(II) and 

cadmium(II) surface complexes the ∆z0 and ∆z1 were fitted to 0.5 for both the 

surface plane and the 1-plane. The fraction f of charge attributed to the surface 

was then 0.25, which can be considered realistic. The lead surface complex had 

an unusually large fraction of charge attributed to the surface (f = 0.6), which 

would create slight oversaturation of the surface oxygen ligands. This could be 

due to a weak interaction with a third surface group not explicitly included in 

the model, as discussed by Gustafsson et al. (2011). Phosphate and arsenate 

sorption was modelled with the complexes and constants listed in Table 4.  

A surface complexation model with only bidentate metal-ferrihydrite 

complexes was unable to simulate sorption of lead(II), copper(II) and 

cadmium(II) in the phosphate-containing systems, i.e. electrostatic effects 

alone could not satisfactorily explain the enhanced sorption after phosphate 

addition (see dashed lines in Figure 6). This was in line with results from 

EXAFS spectroscopy showing that metal coordination changed upon addition 

of phosphate. Better agreement with experimental data was obtained by adding 

a ternary surface complex with the surface reactions and complexation 

constants given in Table 4. This complex, depicted in Figure 7d, is consistent 

with interpretation of the EXAFS data. Fitting of the CD values for the ternary 

complexes yielded f = 0.24, which would leave the surface oxygens slightly 

undersaturated. It should be noted that the description in the CD-MUSIC 

model of the ternary complex depicted in Figure 7c, where the metal is 

bidentately coordinated to the ferrihydrite surface, would be the same as for 7d. 

 Site heterogeneity was applied for ternary lead(II) complexes (1% of the 

sites were assigned higher affinity) but not for copper(II) and cadmium(II). 
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Table 4. Surface complexation reactions and optimised constants used in the CD-MUSIC model for metal sorption to ferrihydrite  

Reaction  (z0, z1, z2)
a
 log K

b
 

2FeOH½- + Pb2+ ↔ (FeOH)2Pb+  

 

(1.2,0.8,0) 

 

9.58 (99%) 

12.25 (0.9%) 

14.24 (0.1%) 

2FeOH½- + 2H+ + Pb2+ + PO4
3-↔ (FeO)2HPbPO3H

0 + H2O (0.7,0.3,0) 33.64 (99%) 

37.20 (1%) 

2FeOH½- + Cu2+ + H2O ↔ (FeOH)2CuOH + H+ (0.5,0.5,0) 0.97 

2FeOH½- + 2H+ + Cu2+ + PO4
3-↔ (FeO)2HCuPO3H

0 + H2O (0.7,0.3,0) 31.7 

   

2FeOH½- + Cd2+ + H2O ↔ (FeOH)2CdOH + H+ 

 

(0.5,0.5,0) 

 

-1.42 (99%) 

1.31 (1%) 

2FeOH½- + 2H+ + Cd2+ + PO4
3-↔ (FeO)2HCdPO3H

0 + H2O (0.7,0.3,0) 30.50d 

2FeOH½- + 2H+ + Cd2+ + AsO4
3-↔ (FeO)2HCdAsO3H

0 + H2O (0.7,0.3,0) 30.01d 

   

2FeOH½- + 2H+ + PO4
3-↔  Fe2O2PO2

2- + 2H2O (0.46,-1.46,0) 27.59 

2FeOH½- + 3H+ + PO4
3-↔  Fe2O2POOH- + 2H2O (0.63,-0.63,0) 32.89 

FeOH½- + 3H+ + PO4
3-↔  FeOPO3H2

½- + H2O (0.5,-0.5,0) 30.22 

2FeOH½- + 2H+ + AsO4
3-↔  Fe2O2AsO2

2- + 2H2O (0.47,-1.47,0) 27.36 

2FeOH½- + 3H+ + AsO4
3-↔  Fe2O2AsOOH- + 2H2O (0.58,-0.58,0) 32.42 

FeOH½- + 3H+ + AsO4
3-↔  FeOAsO3H2

½- + H2O (0.5,-0.5,0) 29.5 

a
The change of charge in the surface plane (o-plane), 1-plane (b-plane) and 2-plane (d-plane), respectively. 

b
Two or three numbers indicate binding to sites with different affinity, the percentages of which are within brackets (cf. text).  
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The model with ternary complexes was also able to simulate the effect of 

lead(II) and cadmium(II) on phosphate sorption at high Me/Fe ratio (Figure 2 

in Paper I and Figure 2 in Paper II). 

The results from geochemical modelling combined with the EXAFS results 

strongly indicate that ternary complexes on the ferrihydrite surface can explain 

the enhanced sorption of lead(II), copper(II) and cadmium(II) in the presence 

of phosphate. 

5.2 Arsenate sorption to ferrihydrite and poorly crystalline 
aluminium hydroxide 

5.2.1 Arsenate and phosphate adsorption on pure sorbents 

Although the ferrihydrite (here denoted Fh) and the poorly crystalline 

aluminium hydroxide (here denoted Alhox) were prepared by very similar 

procedures, Alhox was indicated to have a greater sorption capacity than Fh 

(Figure 2 in Paper IV).  

With similar amounts of arsenate and phosphate added per mol iron 

(58 mmolAs molFe
-1

 and 50 mmolP molFe
-1

), Fh adsorbed 54 mmolAs molFe
-1

 and 

44 mmolP molFe
-1

 (i.e. 93 and 88%, respectively). In the corresponding Alhox 

sample, 100% of both anions were adsorbed. When more phosphate was 

added, it competed strongly with arsenate for sorption sites (Figure 8).  

5.2.2 Arsenate and phosphate adsorption on mixed sorbents 

In samples with both sorbents, arsenate sorption generally increased with a 

higher proportion of Alhox in the samples (Figure 8a). Arsenate sorption in the 

pure ferrihydrite system deviated from this pattern; here the sorption was 

higher than in Alhox-containing samples when 200 mmolP molFe+Al
-1 

were 

added. Sorption of phosphate increased with higher Alhox content (Figure 8b). 

Even with 200 mmolP molFe+Al
-1 

added, most of the phosphate was adsorbed in 

samples with ≥50% Alhox. 

Linear combination fitting of results from XAS spectroscopy revealed that 

more arsenate and phosphate was adsorbed to Alhox than Fh in samples with 

both sorbents when only arsenate or phosphate was added (Paper IV, Figure 7). 

At 50% Alhox content, about 65% of the arsenate was adsorbed to Alhox and 

the phosphate association with Alhox was even stronger. At 50% Alhox 

content, 85% of the phosphate was adsorbed to Alhox. This is in line with 

higher sorption capacity of Alhox, but also indicates higher affinity for 

sorption of phosphate than arsenate to Alhox. 
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Figure 8. Sorption of arsenate and phosphate on mixed sorbents. 58 mmolAs molFe+Al

-1
 added in all 

samples: a) percentage of adsorbed arsenate, b) percentage of adsorbed phosphate. 

 

A stronger affinity of phosphate for Alhox should result in stronger 

competition with arsenate for sorption sites on Alhox than on Fh. In spite of 

this, a comparison between the LCF results for arsenic EXAFS spectra and the 

calculated adsorption if arsenate were to be equally distributed between Alhox 

and Fh (in proportion to their molar concentration in the sample) showed that 

more arsenate than expected from equal distribution was generally adsorbed to 

Alhox (Figure 9). A higher surface area of Alhox could be the explanation. An 

additional reason could be enrichment of aluminium on the surface of Fh 

particles. This may be relevant if the concentration of aluminium is between 20 

and 80% on a molar basis (Liu & Hesterberg, 2011; Harvey & Rhue, 2008; 

Anderson & Benjamin, 1990). 

Two samples deviated from the general pattern in Figure 9a, namely those 

with the highest content of Alhox and the highest additions of phosphate, in 

which equal amounts of arsenate were adsorbed to Alhox and Fh. This might 

be explained by formation of discrete aluminium hydroxide particles at high 

Al/Fe-ratio (Liu & Hesterberg, 2011; Harvey & Rhue, 2008). That is, if the 

tendency of aluminium to enrich at and partly cover the ferrihydrite surface 

decreases when discrete Alhox particles are formed.  

Results from LCF analysis of P K-edge XANES for samples with 50% 

Alhox, 50% Fh revealed that a larger percentage of phosphate was adsorbed to 

Alhox in all samples (Figure 9b). The percentage adsorbed to Alhox increased 

with an increasing proportion of arsenate in the samples, i.e. arsenate competed 

more strongly for sorption sites on Fh than Alhox. 
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Figure 9. a) Results from LCF of As EXAFS showing the percentage of added arsenate adsorbed 

to Alhox at different Alhox:Fh ratios and phosphate additions. The dashed lines are percentage of 

arsenate adsorbed to Alhox (proportional to Alhox content) if arsenate was adsorbed equally to 

Alhox and Fh (0 and 50 mmolP molFe+Al
-1

 additions overlay due to 100% sorption of arsenate). b) 

Results from P K-edge XANES spectroscopy showing percentage of adsorbed phosphate as a 

function of the proportion of arsenate in the samples. 

5.3 Zero-valent iron stabilisation of copper and arsenic 

5.3.1 Leachable copper and arsenic 

In general, less copper and arsenic were desorbed from the ZVI-treated soils 

than the untreated soils. At the original soil pH, the dissolved copper 

concentration was 70% lower in CuZVI than CuUNT. A higher concentration 

of soluble copper at low pH in the ZVI-treated soil (Figure 1, Paper III) can be 

explained by a combination of higher copper concentration and lower SOM 

concentration in this sample compared with CuUNT. Arsenic was more soluble 

at high pH. At the original soil pH (about 8), dissolved arsenic was reduced by 

50% in AsZVI compared with AsUNT, whereas at pH 5 dissolved arsenic 

decreased by 95% as a result of ZVI stabilisation. 

The multisurface geochemical model accurately predicted the measured 

concentrations of copper (Figure 1, Paper III), especially bearing in mind that 

generic parameters and ‘standard’ assumptions were used in the model setup. 

The dissolved arsenic concentration was generally somewhat underestimated 

by the model, but the pH dependence was replicated (Figure 10). 
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5.3.2 Immobilising mechanisms 

Simulations of copper partitioning in the soil predicted that copper was 

primarily associated with SOM within the whole pH range in CuUNT, whereas 

there was a shift towards sorption to iron and aluminium (hydr)oxides in 

CuZVI, especially at high pH (Figure 2 in Paper III). Arsenic was predicted to 

bind to iron and aluminium (hydr)oxides in both untreated and ZVI-treated 

soil. 

The predicted immobilisation mechanisms were confirmed by analysis of 

EXAFS spectra. Copper was primarily bound to organic matter in CuUNT. The 

Cu···C distance (~2.8 Å) and multiple scattering paths found are in agreement 

with binding in a copper(II)-chelate ring structure known to be important in 

soils (Strawn & Baker, 2009; Karlsson et al., 2006). Copper in the ZVI-treated 

soil was primarily bound to iron as inner-sphere bidentate complexes (Cu···Fe 

~3.0 Å), the same complex as used for copper sorption to ferrihydrite in the 

multisurface model based on the findings in Paper I.  

Arsenic was present as arsenate in both soil samples, as confirmed by the 

position of the peak of the arsenic absorption edge at about 11,875 eV. 

Evaluation of arsenic EXAFS spectra indicated bidentate bonding to both iron 

and aluminium (hydr)oxide surfaces in AsUNT. In AsZVI binding to iron 

(hydr)oxide surfaces dominated. Both the As∙∙∙Fe (3.4 Å) and the As∙∙∙Al 

distances (3.2 Å) found were close to the values reported in earlier studies, 

with an As∙∙∙Fe distance of 3.3-3.4 Å (Sherman & Randall, 2003) and an 

As∙∙∙Al distance of 3.1-3.2 Å (Xiao et al., 2015; Arai et al., 2001). In the 

scenario modelling, the sorption to both iron and aluminium (hydr)oxides was 

simulated by the same bidentate complex. This simplification was supported by 

the spectroscopic results. 

Arsenate sorption to both aluminium and iron (hydr)oxides in AsUNT and 

mostly to iron (hydr)oxides in AsZVI is consistent with estimates of reactive 

iron and aluminium (hydr)oxides in the soils. Oxalate extraction indicated one-

third iron and two-thirds aluminium (hydr)oxides in AsUNT, while the 

relationship was the opposite, two-thirds iron and one-third aluminium 

(hydr)oxides, in AsZVI. It is well known that arsenate adsorbs strongly to both 

aluminium and iron (hydr)oxides in soil (Hopp et al., 2008; Manning, 2005). 

Overall, the interpretation of EXAFS results confirmed the contaminant 

distribution predicted by the multisurface model: copper was primarily bound 

to organic matter in CuUNT but to iron (hydr)oxides in CuZVI, while arsenic 

was associated with aluminium and/or iron (hydr)oxides in both samples. 
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5.3.3 Scenario modelling 

The multisurface model was able to predict both the copper and arsenic 

concentrations in solution and the speciation in the solid phase at the original 

soil pH (Paper III). It was therefore assumed that the most important retention 

processes were included and the model was used to investigate key soil factors 

affecting ZVI stabilisation. 

Critical parameters for copper immobilisation include the content of organic 

matter, the amount of added ZVI and the pH. To investigate the influence of 

these parameters on copper retention, model calculations were made with 

different organic matter contents (0.5 or 2% organic carbon) and ZVI additions 

(1 or 2% ZVI). All other parameters were kept the same in the six simulations. 

The results showed that stabilisation of copper with ZVI would be most 

effective in soils with pH above 6 and that the immobilising effect is greater 

for soils that are relatively low in organic matter (Figure 10). 

Experimental data for arsenate were simulated more accurately by 

decreasing the amount of adsorbing iron/aluminium (hydr)oxide surfaces 

compared with the amount calculated based on oxalate extraction (Figure 10). 

This might reflect a tendency for oxalate to overestimate the amount poorly 

crystalline iron/aluminium (hydr)oxides in this soil. The explanation could also 

be differences between the properties of the freshly precipitated ferrihydrite   

 

 
Figure 10. Scenario modelling of ZVI-treated soils. a) Simulation of dissolved copper(II) at 

different contents of organic matter and different additions of ZVI. Total copper in the simulation 

was 100 µmol L
-1

. b) Dissolved arsenic. Symbols are experimental data. Dashed lines are 

simulations with 30% or 50% less adsorbing iron and aluminium (hydr)oxide surfaces. Dotted 

lines are simulations without phosphate present. Total arsenic in the simulation 120 µmol L
-1

 for 

AsUNT and 140 µmol L
-1

 for AsZVI. 
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that was used to set up the SCM and the properties of the adsorbing iron and 

aluminium (hydr)oxides in the soil (e.g. PZC, surface area). There may also be 

a need to compensate for ageing processes affecting the sorption capacity of 

iron and aluminium (hydr)oxides (Stegemeier et al., 2015) and/or blocking of 

sorption sites by e.g. humic substances (Gustafsson, 2006).  

Simulations of how phosphate affects the arsenate sorption indicated an 

increase in arsenate sorption when phosphate was removed from the system. 

There was about 10-fold more phosphate than arsenate in the supernatant of 

batch experiments. When phosphate was ignored in the modelling, arsenate 

concentrations in the supernatant were very much underestimated (Figure 10). 

5.4 Phosphate effects on sorption of lead(II), copper(II) and 
cadmium(II) to podzolised soils  

5.4.1 Soil properties 

The sampling sites were chosen to represent varying content of organic matter 

as well as iron and aluminium (hydr)oxides. All samples had a rather low pH, 

which is typical for Swedish coniferous forest soils (Table 5). At the original 

soil pH, dissolved phosphate was only detected in batches with the Tärnsjö and 

Alnö soils. This does not necessarily mean that these soils have the highest 

content of phosphorus. Tärnsjö and Alnö had the lowest content of iron and 

aluminium (hydr)oxides and therefore probably lower sorption capacity than 

the other soils. As expected, the concentrations of organic carbon and 

iron/aluminium (hydr)oxides were much lower in the C-horizons than the B-

horizons.  

5.4.2 Metal sorption 

The added metal concentrations differed between soil samples (see Table 3). 

The cadmium(II) addition was 10-fold lower than that of lead(II) and 

copper(II), reflecting the lower Swedish guideline value for cadmium in 

contaminated soils.  
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Table 5. Properties of the forest soils included in the sorption experiments. 

Site Location Hori Soil 
 

Org. C Alox
b
 Feox

b
 Alpyr

b
 Fepyr

b
 Al+Fe

c
 Clay

d
 DOC

e 
PO4-P

f 

 (Lat, Long) zon pH
a
 (%) (mmol kg

-1
 dw)  (%)

 
(mg L

-1
) (µg  L

-1
) 

Risfallet 60.34344
o
N 

16.21171
o
E 

Bs 4.24 2.30 265 151 168 86 248 7.0 4.2 <1 

 C 4.36 0.25 85 12 44 7 53 4.2 0.8 <1 

Tärnsjö 60.13712
o
N 

16.92145
o
E 

B 4.88 0.73 118 45 65 15 98 1.9 1.6 3.3 

 C 5.15 0.04 31 18 9 3 40 0.6 1.6 1.2 

Kloten 59.90926
o
N 

15.25346
o
E 

Bs 4.73 2.56 647 144 280 70 511 4.0 1.8 <1 

 C 4.55 0.17 75 9 37 6 47 2.2 0.7 <1 

Risbergs-

höjden 

59.71853
o
N 

15.04866
o
E 

Bs 4.39 2.58 534 119 175 29 478 4.0 4.2 <1 

Alnö 64.44979
o
N 

17.44006
o
E 

B 

C 

4.98 

5.07 

0.39 

0.09 

64 

31 

93 

50 

39 

12 

25 

9 

118 

69 

2.1 

2.2 

1.8 

1.1 

8.5 

<1 

a
In 0.01 M CaCl2, see Methods section 

b
Subscripts ox and pyr denote oxalate-extractable and pyrophosphate-extractable, respectively 

c
Calculated amount of adsorbing minerals; Feox+Alox-Alpyr 

d
Clay fraction, d<0.002 mm 

e
Meaured in batch experiments. Values at pH close to 4.5. 

f
This value refers to PO4-P dissolved in 30 ml 0.01 M NaNO3 at soil pH. 
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Copper(II) and lead(II) showed similar sorption to the B-horizon soil 

(Figure 11), with both being 100% removed from solution at about pH 5 and 

higher. Less copper(II) was adsorbed at low pH in the soils with lower organic 

matter content, reflecting the high affinity of copper(II) to organic matter. As 

evidenced in the ferrihydrite experiments (Paper I) copper(II) also has a lower 

affinity to iron (hydr)oxides at low pH compared with lead(II). Consistent with 

the high concentrations of DOC in Risfallet B, copper(II) and lead(II) in 

solution increased at high pH for this soil. A lower percentage of cadmium(II) 

was retained in the soil B-horizon, despite lower added concentrations (Figure 

11c, note the scale on the y-axis). A larger fraction of all metals was found in 

the soil solution in the C-horizon. 

The greatest effect of phosphorus addition could be expected in soils with 

high levels of iron (hydr)oxides and with a low content of organic matter. 

Although the B-horizons had much higher content of extractable iron and 

aluminium (Table 5), iron and aluminium (hydr)oxides are potentially more 

important in the C-horizons, as these are often very low in organic matter. 

However, phosphate addition had no obvious effect on the dissolved 

concentrations of any of the metals in the soils investigated. Dissolved 

cadmium(II) concentrations were somewhat lower at about pH 5 in Kloten B 

when phosphate was added, but the difference was very small. Kloten B had 

the highest content of adsorbing surfaces (calculated as Feox+Alox-Alpyr). 

Ternary cadmium(II)-phosphate-iron complexes are expected to form at this 

pH, but it could not be confirmed that this caused the observed difference. 

The reasons why phosphate did not enhance the sorption in the soil 

experiments, despite a large influence in the pure ferrihydrite systems, may 

include the following: i) The metals were mainly bound to organic matter and 

therefore not much affected by phosphate, ii) the added phosphate did not 

affect the sorption simply because the added amount was small in comparison 

with the amount of adsorbed phosphate already present in the soil and iii) the 

added phosphate was too low in relation to the amount of iron (hydr)oxide 

surfaces in the soils and therefore had a small influence on the sorption of iron 

(hydr)oxides. In relation to the third point, it should be noted that the P/Fe ratio 

expressed as added phosphate in relation to Feox in soils was much lower than 

the P/Fe ratio in the batch experiments with ferrihydrite. The importance of the 

first point was supported by spectroscopic measurements at the cadmium       

K-edge (section 5.4.3).  
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Figure 11. Sorption of lead(II), copper(II) and cadmium(II) to Swedish forest soils with and without addition of phosphate. a) Lead(II) to B-horizon,                    

b) copper(II) to B-horizon, c) cadmium(II) to B-horizon, d) lead(II) to C-horizon, e) copper(II) to C-horizon and f) cadmium(II) to C-horizon. 
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The fact that the strong enhancement of sorption identified for pure 

ferrihydrite systems could not be observed in the studied soils does not exclude 

enhancement of metal sorption by phosphate in other soils. This could still be 

expected in soils with a higher proportion of iron (hydr)oxides to organic 

matter, especially if more phosphate is added than in this study. Further 

evaluation of the results from this study by e.g. geochemical modelling could 

increase the understanding of the retention processes.  

5.4.3 Cadmium coordination two B-horizons 

EXAFS spectra collected at the cadmium K-edge permitted closer evaluation 

of cadmium(II) binding mechanisms in the B-horizons of Kloten and Risfallet. 

The EXAFS spectra for cadmium(II) adsorbed to Kloten B (X2, X6, X7 in 

Figure 12) and Risfallet B (Y2 and Y7 in Figure 12) were very similar in 

shape, regardless of whether phosphate or arsenate was added or not. They also 

resembled the spectrum for cadmium(II) adsorbed to fulvic acid (Cd-FA), 

indicating that the cadmium(II) was bound in a similar way in all these 

samples. A spectrum for cadmium(II) adsorbed to ferrihydrite (H7 in Figure 

12) had a slightly different shape, for example at k 7-8.  

 

 
Figure 12. EXAFS spectra of soil samples and standards. Lines are measured spectra, dashed 

lines are model fits. 
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Model fits of EXAFS spectra showed that cadmium(II) was coordinated to 

six oxygens in the first shell of all samples (Table 6). Evaluation of WT of the 

spectra (not shown) did not suggest any binding to heavy elements (i.e. iron) in 

higher shells. Second shell contributions were modelled with 1.5 carbon atoms 

between 3.09 and 3.16 Å, the same Cd···C distance as identified by Karlsson et 

al. (2005) for cadmium(II) binding in organic soils. 

The sorption of cadmium(II) in the soil samples was evidently dominated 

by inner-sphere complexes to oxygen-containing groups on organic matter at 

the ambient pH values. Cadmium(II) has been shown to bind even more 

strongly to sulphur in thiol groups of soil organic matter (Karlsson et al., 

2005), but there was no discernible Cd···S distance in the soil samples or Cd-

FA in the present study. Sulphur groups are less abundant than oxygen groups 

on organic matter: the ratio is about 1:100 in natural organic matter (Karlsson 

et al., 2005). At the relatively high cadmium(II) concentrations used in this 

study binding with oxygen groups dominated. This is probably the most 

common situation in cadmium(II)-contaminated soils. 
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Table 6. Cadmium(II) K-edge EXAFS of B-horizons and standards. Summary of shell fit results
a
. 

Parameters in italics were constrained during fitting 

Sample
b 

Path CN R (Å) σ
2
 (Å

2
) ΔE (eV) S0

2
 R (%) 

X2 Kloten Cd–O 6 2.28 (0.01)  0.010 (0.000)  1.92 (0.81)  0.90 0.48 

100 µM Cd Cd···C 1.5 3.13 (0.04)  0.018 (0.005)    

pH 6.12 Cd–O–O
c 

18 4.71 (0.06) 0.020  k-range 3.5-9.5  

X6 Kloten Cd–O 6 2.28 (0.01) 0.010 (0.000)  2.19 (0.63) 0.90 0.33 

100 µM Cd Cd···C 1.5 3.16 (0.03)  0.012 (0.004)    

500 µM P
 

Cd-–O–O
c 

18 4.79  (0.05) 0.020     

pH 5.85 
 

   k-range 3.5-9.5  

X7 Kloten Cd–O 6 2.27 (0.01) 0.012 (0.000)  1.92 (0.74) 0.90 0.33 

100 µM Cd Cd···C 1.5 3.09 (0.04)  0.014 (0.004)    

500 µM As Cd–O–O
c
 18 4.65 (0.06) 0.020    

pH 6.15     k-range 3.5-9.5  

Y2 Risfallet Cd–O 6 2.28 (0.01) 0.009 (0.000) 2.54 (0.78)  0.90 0.49 

100 µM Cd Cd···C  1.5 3.15 (0.04) 0.013 (0.005)    

pH 5.64 Cd–O–O
c
 18 4.70 (0.06) 0.019 k-range 3.5-9.5  

Y7 Risfallet Cd–O
 

6 2.28 (0.00) 0.009 (0.000) 2.11 (0.49)  0.90 0.20 

100 µM Cd Cd···C 1.5 3.15 (0.02) 0.008 (0.002)    

500 µM As Cd–O–O
b
 18 4.73 (0.04) 0.019    

pH 6.15        

Cd(aq)  Cd–O
 

6 2.27 (0.006) 0.008 (0.000) 2.87 (0.58)  0.65 0.70 

Cd(NO3)2 Cd–O–O
c
 18 4.40 (0.033) 0.017    

0.5 M Cd-O···O
d
 24 3.70 (0.10) 0.025 k-range 3-10  

Cd(aq)  Cd–O 6 2.27 (0.01) 0.008 (0.000) 0.70 (0.62) 1 0.66 

Cd(NO3)2 Cd–O–O
c
 18 4.43 (0.03) 0.017    

15 mM Cd–O···O
d
 24 3.72 (0.10) 0.025 k-range 3-10  

Cd-FA Cd–O 6 2.27 (0.005) 0.007 (0.000) 1.57 (0.64) 0.80 0.39 

8 mM Cd Cd···C
 

2 3.12 (0.03) 0.013 (0.04)    

8 g L
-1

 FA Cd–O–O
c
 18 4.67 (0.05) 0.014    

pH 6.32     k-range 3.4-10 

a
CN = Coordination number; R =Atomic distance; σ2 = Debye-Waller factor; ΔE = Energy shift parameter; 

S02 = Passive amplitude reduction factor; R=R-factor = goodness-of-fit parameter of the Fourier Transform; 

sum of the squares of the differences between the data and the fit at each data point, divided by the sum of the 

squares of the data at each corresponding point. In general, R-factor values less than 5% are considered to 

reflect a reasonable fit. Uncertainties of fitted parameters as given in Artemis (Ravel & Newville, 2005). 
b
Added concentrations of cadmium(II), phosphate and arsenate are listed below sample name. 

c
The σ

2
 (Å

2
) of Cd-O-O (multiple scattering paths) was defined as 2*σ

2
 (Å

2
) for the Cd-O paths. 

d
For each sample the σ

2
 (Å

2
) of Cd-O···O (multiple scattering paths) was defined as 3*σ

2
 (Å

2
) for the Cd-O 

paths. 
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Conclusions 

The main conclusions of this thesis can be summarised as follows: 

 

 Phosphate increases the sorption of lead(II), copper(II) and 

cadmium(II) to ferrihydrite. In systems without phosphate, the metals 

are primarily adsorbed as inner-sphere bidentate complexes to the 

ferrihydrite surface. The increase in sorption due to phosphate cannot 

be explained solely by electrostatic interactions. Inclusion of ternary 

complexes consistent with EXAFS measurements into the CD-MUSIC 

model can successfully simulate the enhanced sorption. These ternary 

complexes include the metal ion, two surface groups and the 

phosphate ion. 

 

 Phosphate is more strongly bound to surface sites on poorly crystalline 

aluminium hydroxide (Alhox) than on ferrihydrite. Phosphate is also 

more strongly adsorbed to Alhox than arsenate. Consequently, 

phosphate competes more strongly with arsenate for sorption sites on 

the surface of Alhox than on ferrihydrite.  

 

 The effect of ZVI amendments on copper and arsenic solubility is 

long-lasting. Copper and arsenic are stabilised by inner-sphere 

complexation to iron (hydr)oxides 6 and 15 years after ZVI addition. 

Model simulations show that copper immobilisation is most effective 

at high pH (>6) and a low content of organic matter. Arsenate 

retention is less dependent on the pH value, but competition with 

phosphate must be taken into account in the model, as otherwise the 

sorption might be greatly overestimated.  
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 Addition of phosphate did not affect lead(II), copper(II) or 

cadmium(II) sorption to B- and C-horizons of podzolised soils at 

moderate levels of contaminants and phosphate. The reasons may be 

high binding to organic matter and low addition of phosphorus, e.g. 

binding to organic matter dominated cadmium speciation in two B-

horizons studied here. This does not rule out that phosphate could 

increase sorption in soils with a higher content of iron (hydr)oxides 

compared with organic matter at higher additions of phosphate. 
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Implications and future research 

A better understanding of metal and arsenic sorption mechanisms in soils and 

other matrices improves the quality of risk assessments and enables a more 

cost-effective and safe design of remediation solutions. It also opens the way 

for development of modelling tools that can be used to understand and predict 

the fate of contaminants under different environmental conditions. 

In the work presented in this thesis, phosphate greatly increased sorption of 

lead(II) and cadmium(II) to ferrihydrite, while copper(II) sorption was less 

affected. On the other hand, moderate phosphate additions did not affect the 

sorption of these metals in soil at moderate contamination levels. This implies, 

for example, that addition of phosphate in order to increase the fertility of a 

contaminated soil as part of a remediation option would not increase, but 

possibly decrease, the mobility of lead, copper and cadmium.  Knowledge of 

the sorption mechanisms could also be utilised in development of reactive 

materials for remediation of contaminated soils or waters. The surface 

complexation model would be a valuable tool in such development work. 

This thesis also showed that phosphate decreases the sorption of arsenate 

more on poorly crystalline aluminium hydroxide than on ferrihydrite. 

Consequently, care has to be taken when adding phosphate to arsenate-

contaminated soils, especially soils rich in aluminium. More knowledge about 

the effects of phosphate on arsenate sorption/desorption in aluminium-rich 

soils is needed. It would be useful to parameterise hydroxy-aluminium  and 

aluminiosilicate minerals that are common in soils in the CD-MUSIC model, 

as well as assemblages of iron and aluminium minerals. 

The geochemical model developed and used for scenario modelling in 

Paper III exemplifies the power of state-of-the-art geochemical models in the 

design of remediation solutions and prediction of contaminant mobility. A 

limiting factor in application of in situ technologies is often uncertainty about 

the long-term performance and the use of geochemical models can permit more 
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confident assessment. To assess other contaminants and stabilising 

amendments, new models need to be developed.  

The overestimation of arsenate sorption in soil in the model simulation in 

Paper III highlights a knowledge gap. Interactions between iron and aluminium 

(hydr)oxides and organic matter are not described in the model. More insights 

into ageing effects of stabilised soils are also needed, e.g. concerning the extent 

to which contaminants are incorporated in the matrix or released. Explaining 

and quantifying these interactions and, if possible, including them in a 

geochemical model is an interesting area for future research. 
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