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Energy Efficiency and Firm Performance: Evidence from Swedish 
Industry 

Abstract 
This thesis sheds light on different aspects of the performance of Swedish industrial 
firms. To this end, the analysis defines and measures energy efficiency in an economic 
context, as well as investigating the implicit relationships between energy efficiency 
and other firm performance metrics – productivity and environmental performance. 
Paper I estimates energy efficiency using a “true” random effects stochastic frontier 
model. The presence of energy inefficiency indicates the potential for energy 
consumption reduction. Paper II includes undesirable outputs when measuring energy 
efficiency in a non-parametric model approach. To assess the impacts of efficiency 
determinants, a double bootstrap procedure is adopted for the second-stage regression 
analysis. Paper III investigates firm performance in three dimensions – productivity, 
energy efficiency, and environmental performance. A panel vector auto-regression 
model is utilized to examine the causal and dynamic relationships between the three 
dimensions of firm performance and the environmental investment. The overarching 
conclusion from the thesis is that there is considerable potential to improve energy 
efficiency in Swedish industrial firms. It is very likely that the permit price of the EU 
emissions trading system for CO2 and the Swedish CO2 tax rate were too low to create 
incentives to improve energy efficiency. A firm strategy that emphasizes energy 
efficiency improvements is also likely to save costs and be beneficial for overall 
productivity in later periods. Environmental performance comes at a cost in terms of 
lower productivity, and thus the results cannot corroborate the win-win outcome 
postulated by the so-called Porter Hypothesis. 
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1 Introduction 
Energy efficiency reveals a firm’s operating ability to use and allocate energy 
input efficiently in a production process. The efficient use of energy is 
important for improving the competitiveness of industrial firms: it helps to 
reduce energy consumption and energy costs, and to reduce carbon emissions. 
As stated by the IEA (2014), energy efficiency is widely recognized as the 
most cost-effective approach to addressing energy-related issues and increases 
in competitiveness. The Swedish energy and climate policies set ambitious 
energy efficiency and carbon emissions reduction targets, and they set 
improvements in energy efficiency as a strategic priority. The topic of this 
thesis focuses on issues related to energy efficiency, environmental 
performance, and productivity in Swedish industrial firms. 

Swedish industry is important to the nation’s economic growth (Nauclér, 
Tyreman, & Roxburgh, 2012). In 2012 it contributed about 15% of the GDP, 
while industry also accounts for about 40% of Swedish final energy 
consumption (Swedish Energy Agency, 2013). The greatest use of energy in 
Swedish industry (more than 160 TWh) occurred in 1974, but subsequently the 
energy consumption has not reached these levels and the consumption has been 
relatively stable. Electricity (mainly generated by hydro and nuclear power) 
and biomass are the main sources of energy for Swedish industry, and their 
consumption levels have increased considerably over the years. The proportion 
of electricity consumed has increased from 21% (in 1971) to 35% (in 2013), 
whereas the percentage of energy generated from biomass has increased from 
21% (in 1971) to 38% (in 2013). District heating, on average, accounts for 
about 3% of the total energy consumption. After the oil crisis of the 1970s, the 
proportion of energy from petroleum products gradually decreased, from 48% 
in 1971 to 7% in 2013. The total consumption of petroleum products, coal, and 
gas still accounted for about 23% of the total energy consumption in 2013 and 
this consumption is the major contributor (contributing about 80%) to the 
country’s carbon emissions (Swedish Energy Agency, 2015).  

According to the Germanwatch Climate Change Performance Index (CCPI) 
2016, Sweden ranked sixth among the 58 top CO2-emitting nations that take 
actions on climate protection (Germanwatch, 2016). This can mostly be 
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attributed to Sweden’s advanced technology, a properly designed climate and 
energy policy scheme and a well-developed awareness of energy and 
environmental issues. The Swedish climate and energy policies are more 
ambitious than the EU triple 20 targets:1 1) reduce greenhouse gas (GHGs) 
emissions by 40% compared with the 1990 level; 2) increase the share of 
renewable energy to at least 50%; and 3) improve energy efficiency by 20% 
with respect to the 2008 level.  

Sweden has a long history of levying energy and emissions taxes. The 
Swedish energy tax was initiated in the 1950s. Later on, in 1991, a carbon 
dioxide tax was introduced and Sweden became one of the first countries to 
impose a tax on carbon (Marchal et al., 2012). The rates of energy tax vary 
according to the type of fossil fuel, and the statutory carbon dioxide tax rate 
was initially 0.25 SEK/kg CO2 emitted. Swedish industrial firms were 
exempted from the energy tax and they were only charged at 50% of the 
statutory carbon dioxide tax level. Energy-intensive firms were charged at an 
even lower carbon dioxide tax rate. In the subsequent 1993 tax reform, both 
energy and carbon tax rates were raised considerably, but industrial firms were 
still exempted from the energy tax, and they paid only 25% of the general 
carbon dioxide tax. The tax system was reformed again in 1997, and industrial 
firms then paid 50% of the general carbon dioxide tax. Since then, the statutory 
carbon dioxide tax rate has been increased, from 0.37 SEK/kg CO2 emitted in 
2000 to 1.01 SEK/kg CO2 emitted in 2008. However, the taxes for Swedish 
industry were reduced to 20% of the statutory tax rate (Swedish Energy 
Agency, 2012). Additionally, industrial firms can apply for a tax refund if their 
tax bill exceeds 0.5% of their value added tax. Energy-intensive industrial 
firms were exempt from the carbon tax if their tax payment would exceed 0.8% 
of their value added tax (Brännlund et al., 2014). In 2009 the Swedish 
Parliament approved Bill 2009/10:41 on the carbon dioxide tax for the years 
2010, 2011, 2013 and 2015. Under this new taxation scheme, sectors that do 
not participate in the EU ETS (e.g., agriculture, forestry, etc.) are subject to the 
full statutory carbon dioxide tax rate, and the number of tax exemptions for 
domestic industry sectors has been reduced considerably (IEA, 2013). 

In 2004, the energy tax exemption on electricity was removed. A levy of 
0.005 SEK per kilowatt-hour electricity consumption was made on energy-
intensive industrial firms, which is in accordance with the EU’s Energy Tax 
Directive. According to the Council Directive No. 2003/96/EC, these industrial 
firms can be exempted from paying the energy tax on electricity consumption 
if they can provide evidence of energy efficiency improvements. 
Correspondingly, an energy efficiency improvement program (PFE) targeting 
Swedish energy-intensive industrial firms was launched in 2005. The program 
is voluntary and firms participating in it receive a full rebate of their energy tax 

                                                        
1 The EU triple 20 targets aim to increase energy efficiency by 20% and reduce greenhouse 

gases emissions by 20%, compared to the 1990 levels. The targets also intend to increase the 
share of renewable energy to at least 20% of the total energy consumption. 
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on electricity consumption. The program is intended to generate the same 
effect as the energy tax, through improving the efficiency of electricity 
consumption. The program was set up with a five-year cycle mechanism. Firms 
that wish to continue their participation must apply all the energy efficiency 
improvement measures that have been identified and that have a payback time 
of less than three years (Swedish Energy Agency, 2012). This program is 
currently in its last five-year period, and will end in 2017.  

In the sample period of this study, 2000-2008, the main change in policy in 
this area at the EU level was the introduction of the EU ETS in 2005. In 
principle all energy-intensive industry sectors are covered by the EU ETS. 
These energy-intensive businesses include oil refineries, steel works and the 
producers of iron, aluminum, metals, cement, lime, glass, ceramics, pulp, 
paper, cardboard, acids, bulk organic chemicals, etc. Some small installations 
can be excluded from the system if they can use other measures to reduce their 
emissions by the same amount. The EU ETS aims to reduce emissions from the 
included sectors before 2030 by 43% from the 2005 level. 

The EU ETS works with a ‘cap and trade’ approach. This unique approach 
provides firms with the opportunity and flexibility to cut their emissions in the 
most cost-effective way (European Commission, 2013). A cap, or limit, is 
placed on the overall number of emission allowances at the Member State level 
according to national allocation plans. Within the cap, firms can buy and sell 
emission allowances as needed. One emission allowance is equivalent to one 
ton of CO2. At the end of each year, if a firm cannot show it has enough 
allowances to cover all its emissions it is heavily fined. Alternatively, if a firm 
has spare allowances because it has reduced its emissions, it can keep the 
allowances to cover future needs or it can sell them to another firm that needs 
extra allowances. The cap is reduced annually, so that the total amount of 
emissions should also decline each year. Currently, the cap is being decreased 
by 1.74% per year. From 2021, it is expected to be decreased by 2.2% 
annually, in order to attain the goal of a 43% reduction in carbon emissions by 
2030 at the EU level (European Commission, 2014).  

In the first trading period (2005-2007), only power plants and energy-
intensive industries were included in the system. The emission allowances 
were distributed by free allocation. In the second period (2008-2012) the total 
number of emission allowances was reduced by 6.5% from the 2005 level. For 
the third trading period (2013-2020), the system has been significantly 
changed. A single EU-wide cap replaces the national caps of the previous 
system. The mechanism for the free allocation of emission allowances will be 
progressively replaced by an auction system. Furthermore, the system will 
cover more sectors and some other types of GHGs. 
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2 Objectives 
This thesis consists of three papers that deal with issues related to energy 
efficiency and firm performance. It attempts to seek empirical answers to the 
following questions:  

1) How can energy efficiency be appropriately defined and measured 
on a foundation of economic theory? What is the potential for 
energy efficiency improvement in Swedish industrial firms?  

2) What factors influence energy efficiency? In particular, what are 
the impacts of the EU ETS and the Swedish carbon dioxide and 
energy taxes on energy efficiency?  

3) How do three dimensions of firm performance – productivity, 
energy efficiency and environmental performance – affect each 
other, and how do they interact with environmental investment?  
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3 Methodology 
This section describes the methodology used in this thesis. Section 3.1 briefly 
introduces the concepts of energy efficiency and firm performance. The 
measurements of energy efficiency and firm performance are presented in 
section 3.2 and section 3.3 respectively. Section 3.4 describes the data.   

3.1 Energy efficiency and firm performance 

 
Energy intensity has been widely used as a proxy for energy efficiency. For 
industrial firms, energy intensity is the ratio of energy input to value added 
produced (see, e.g., Bhattacharyya, 2011).2 Using this concept, improvements 
in energy efficiency can be achieved by lowering energy intensity. Using 
energy intensity as a proxy for energy efficiency may be misleading, as energy 
intensity depends on factors not related to efficiency, such as different weather 
conditions, management culture etc. Further, energy intensity may be a bad 
proxy for the variation in energy efficiency across industries/firms, since 
energy demand (input) in production may vary as a result of different factors 
such as what exactly is produced, what restrictions the firms are facing, 
different technologies, etc. In an attempt to overcome these issues, energy 
efficiency in this thesis is defined using production economics, as advocated 
by, for example, Evans, Filippini, and Hunt (2013).  

In production theory, the word “efficiency” often refers to productive 
efficiency, which can be measured from two aspects: input-oriented and 
output-oriented efficiency. In the input-oriented case, inefficiency implies how 

                                                        
2 Patterson (1996) proposes multiple ways to calculate the energy intensity: energy intensity 

could be a thermodynamic indicator (energy inputs and outputs measured in thermodynamic 
units), a thermodynamic–physical indicator (energy inputs and outputs measured in 
thermodynamic and physical units respectively), a thermodynamic–economic indicator (energy 
inputs and outputs measured in thermodynamic and economic units respectively), or an economic 
indicator (energy inputs and outputs measured in economic units).  



 14 

much inputs could be reduced given the output level and technology (energy 
efficiency in this thesis is defined in this context). In the output-oriented case, 
inefficiency indicates how much more output can be produced given the input 
quantities and technology (productivity in paper III is defined in this context). 
Moreover, if prices are known, the concept of productive efficiency can be 
extended to revenue, profit or cost efficiency (see details in, e.g., Kumbhakar 
and Lovell, 2000).  

 

 
Figure 1. Illustration of energy efficiency  

An intuitive definition of input-oriented energy efficiency can be traced 
back to Farrell (1957)’s radial efficiency. As shown in Figure 1, a firm utilizes 
energy input (E) and non-energy input3 (X) to produce output. The output 
isoquant curve (IQ) defines a benchmarking frontier: firms located on the IQ 
line are technically efficient and produce Q0 units of output. Assume there is a 

                                                        
3 Non-energy inputs could be capital, labor, material, etc.  
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firm A that uses an amount EA of energy input and an amount XA of non-
energy input and produces an amount Q0 of output. Firm A is technically 
inefficient because it lies above the IQ curve. According to Farrell (1957), the 
technical efficiency of firm A is calculated as 0A’/0A.  

When considering production costs, the measurement of efficiency is 
slightly different. The isocost line (IC) is introduced on this occasion. Assume 
there is another representative firm A** that is located on the IQ line and that 
the IC line is tangential to the IQ line at point A**.4 Thus, firm A** can 
produce an amount Q0 of output by using the minimum cost or, in other words, 
firm A** is technically and allocatively efficient. Firm A has both technical 
and allocative inefficiencies. The overall productive efficiency of firm A is 
calculated as 0A’’/0A, where 0A’/0A is the technical efficiency and 0A’’/0A’ 
is the allocative efficiency.5 Improving the overall productive efficiency of 
firm A is equivalent to moving from point A to point A**: the consumption of 
energy input will decrease from EA to EA** whereas the consumption of non-
energy input will increase from XA to XA**.6  
     The discussion above is about Farrell’s (1957) radial measurement of 
technical and allocative efficiency. In this context, the measurement of 
efficiency is based on a proportional reduction of energy and other inputs. 
Kopp (1981) introduces the concept of non-radial input specific efficiency. 
Using this concept, energy specific efficiency measures the potential reduction 
of energy consumption when output and non-energy inputs are fixed. In Figure 
1, the non-radial energy specific efficiency of firm A is calculated as the ratio 
0EA*/0EA. It denotes the distance from the energy consumption level of firm A 
to the technically efficient energy consumption level. The definition of energy 
efficiency in paper II and paper III is grounded in this concept.  

Schmidt and Lovell (1979) and Kumbhakar and Lovell (2000) further 
develop this concept of non-radial input specific efficiency to take costs into 
account. In this context, the optimal energy demand is derived from a given 
technology subject to a cost minimization constraint. The presence of energy 
inefficiency is denoted by the gap between the observed energy consumption 
and the derived optimal energy demand. Energy efficiency in paper I is defined 
according to this concept. 

Combs, Crook, and Shook (2005) review 238 articles in the Strategic 
Management Journal published during the period 1980 to 2004 and find that 
nearly 82% of them use some type of financial indicator to represent firm 
performance. A financial indicator, such as return over assets or stock price, 
depicts only a part of firm performance. Paul and Siegel (2006) argue that the 
measurement of firm performance lacks a theoretical foundation in economics. 

                                                        
4 The slope of the isocost line is determined by the ratio of input prices. 
5 This implies a relationship: overall productive efficiency = technical efficiency*allocative 

efficiency. 
6 This may happen when firm A installs a new device that optimizes energy consumption as 

well as improving production. 
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In the light of these arguments, paper III investigates firm performance over 
three dimensions – productivity, energy efficiency, and environmental 
performance – and grounds the metrics in production theory.  

The metrics of firm performance are defined using the Malmquist index of 
Färe, Grosskopf, Lindgren and Roos (1989). They are the geometric mean of 
two Caves et al.’s (1982a, 1982b) indexes, and they represent changes of 
productivity/energy efficiency/environmental performance between two 
periods. The index of Caves et al. (1982a, 1982b) is the ratio of within period 
and cross period distance functions. The distance function is defined according 
to Shephard (1970), and is the reciprocal of Farrell (1957)’s radial 
measurement. For instance, for productivity, the within period distance 
function measures the radial distance of an output observation for time period t 
to the best practice technology frontier for the same time period, whereas the 
cross period distance function measures the radial distance of an output 
observation for time period t to the best practice technology frontier for the 
time period t+1. In this context, the productivity indicates the potential increase 
of outputs, given the level of inputs. Likewise, energy efficiency indicates the 
potential reduction of energy inputs, given the level of outputs and non-energy 
inputs. Environmental performance indicates the potential reduction of 
undesirable outputs, given the level of outputs and inputs. 

3.2 Measurement of energy efficiency 

 
In the energy efficiency literature there are two widely used approaches. One is 
stochastic frontier analysis (SFA), which uses econometric models to estimate 
a frontier and measure efficiency. The other is data envelopment analysis 
(DEA), which calculates efficiency by solving mathematical programming 
models. The following sections will discuss these two approaches further. 

3.2.1 Stochastic Frontier Analysis 

 
Paper I uses the SFA method to carry out the analysis. SFA originated in two 
seminal papers: Meeusen and van den Broeck (1977) and Aigner, Lovell and 
Schmidt (1977). The main advantage of using SFA is that statistical noise and 
energy efficiency can be distinguished. Hence, for example, omitted variables 
are more likely to be captured by the statistical noise term, and the estimated 
efficiency would potentially be close to the “real” level. Most commonly, the 
statistical noise is assumed to have normal distribution, whereas the 
inefficiency component is assumed to be a one-sided, non-negative 
distribution. The half normal and exponential distributions are usually assigned 
to the inefficiency component, since they are single-parameter distributions 
and can be easily estimated using the maximum likelihood estimation (MLE) 
procedure. There are a few studies that adopt more flexible but complex 
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distribution assumptions. For instance, Stevenson (1980) proposes a gamma 
and a truncated normal distribution, and Lee (1983) proposes the four-
parameter Pearson family of distributions. In paper I, the statistical noise term 
is assumed to have normal distribution and the energy inefficiency component 
is assumed to have truncated normal distribution.  

When using a panel dataset in the empirical analysis, it is necessary to 
consider issues such as heterogeneity. Paper I therefore adopts Greene’s 
(2005a, 2005b) ‘true’ random effects (TRE) model. This is a stochastic frontier 
model with a firm-specific random term that captures time-invariant cross-firm 
heterogeneity. A crucial assumption is that the time-invariant term is not 
correlated with any other term in the model. One issue with the TRE model is 
that any time-invariant (energy) inefficiency will be captured by the 
“heterogeneity” term rather than the time-variant inefficiency term.7 
Nevertheless, as explained by Greene (2005a, 2005b), this is an empirical 
question, and whether the time-invariant effects really belong to the 
inefficiency is debatable. Another issue is the parameter identification of the 
three-part disturbance. A maximum simulated likelihood estimation is 
therefore utilized: averaging the likelihood function over sufficient draws from 
the distribution of the time-invariant term will generate an adequately accurate 
estimate of the integral form of the likelihood function and allow for 
identification of the parameters. Paper I adopts this algorithm.   

Energy efficiency in paper I is obtained by estimating a single energy 
demand frontier (see, e.g., Filippini and Hunt, 2011).8 In this case the estimated 
energy efficiency potentially includes both technical and allocative 
inefficiencies. However, as discussed by Schmidt and Lovell (1979), the sign 
of allocative inefficiency can be either positive or negative, which corresponds 
to whether the observed input is overused or underused. Thus, if the allocative 
inefficiency is negative and its absolute value is larger than the positive-
definite technical inefficiency, this would imply that the observed energy 

                                                        
7 The TRE model is very similar to Kumbhakar and Hjalmarsson’s (1993) random effects 

model. In their paper, Kumbhakar and Hjalmarsson obtain the estimator in two steps. First, the 
parameters of the variables in the frontier are estimated using within groups OLS or feasible two-
step GLS. Second, the MLE is adopted to estimate the variances of the statistical noise and 
inefficiency. According to Kumbhakar and Lovell (2000), the advantage of this procedure is that 
there is no need to impose the distribution assumption until the MLE step. One issue with this 
method, similar to the issues with Greene’s (2005a, 2005b) method, is that any time-invariant 
component of technical inefficiency is captured by the fixed effects rather than the real 
inefficiency term. See the detailed discussions in Heshmati and Kumbhakar (1994) and 
Kumbhakar and Heshmati (1995). 

8 Schmidt and Lovell (1979) and Kumbhakar and Lovell (2000) obtain the input-specific 
technical and allocative efficiencies separately by estimating the cost frontier together with all the 
input demand frontiers. This approach satisfies the theoretical restriction imposed by production 
theory, i.e., it measures the technical and allocative efficiencies of firm A** in Figure 1. 
Additionally, the estimation of the system equations (cost frontier and input demand frontier) 
allows the allocative efficiency to be different for each input.  
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consumption is underused, or in other words that the actual energy 
consumption level is even lower than the optimal energy demand level. This 
can be illustrated in Figure 1. Assume there is an inefficient firm B that 
consumes an amount EB of energy. Obviously, EB is smaller than EA** (the 
optimal energy demand level). Improvement in the energy efficiency of firm B 
requires a reduction in the non-energy input, but an increase in the energy 
input. This result is somehow counterintuitive, since the intention of energy 
efficiency measurement is to identify the potential energy saving possibilities. 
Nevertheless, the case mentioned above will be identified as “wrong-
skewness” in the empirical estimation, since the energy inefficiency 
component9 in the model of paper I is always positive-definite. That is, if there 
is a valid estimate of the inefficiency components, this indicates that the energy 
inefficiency is either merely technical inefficiency, or contains both technical 
and allocative inefficiencies but with the former being dominant. Thus, the 
interpretation of the potential improvement in energy efficiency (indicated by 
the estimated energy efficiency) in paper I would stay in line with the notion of 
energy conservation; that is, improving energy efficiency would imply 
reducing energy consumption. 

3.2.2 Data Envelopment Analysis 

 
DEA, introduced by Charnes, Copper, and Rhodes (1978), utilizes the linear 
programming technique to measure the relative efficiency of a set of Decision 
Making Units (DMUs). A main advantage of using the DEA approach is that it 
does not require a particular functional form for the technology frontier to be 
specified. Thus, the model misspecification problem could be avoided. 
Additionally, there is no need to impose any distributional assumptions on a 
DEA model. This property highlights a disadvantage of the DEA approach 
compared with the SFA method: the estimated efficiency potentially includes 
statistical noise.  

There are quite a number of studies that use DEA to estimate energy 
efficiency: see, for example, Ramanathan (2000), Hu and Wang (2006), 
Azadeh, Amalnick, Ghaderi, and Asadzadeh (2007), Mukherjee (2008a, 
2008b), Shi, Bi, and Wang (2010), and Bloomberg, Henriksson, and Lundmark 
(2012). However, none of these studies takes into account undesirable outputs. 
Undesirable outputs are the by-products of desirable outputs in a production 
process. Paper II therefore adopts the joint production framework of Färe, 
Grosskopf, and Pasurka (1986) and Färe et al. (1989), which includes both 
desirable and undesirable outputs, to estimate energy efficiency. Most of the 
previous studies that consider the undesirable outputs, however, focus on the 
estimation of overall productivity. The work by Zhou and Ang (2008) is 

                                                        
9 The energy inefficiency component includes both technical and allocative inefficiencies. 
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probably the first to use a joint production DEA model to estimate energy 
efficiency.10  
     The issue regarding the so-called weak disposability assumption of the joint 
production framework is worth noting. The weak disposability assumption 
applies to desirable and undesirable outputs, meaning that it is costly to dispose 
of undesirable outputs and that desirable and undesirable outputs can only be 
reduced proportionally (Färe et al., 1986, 1989). Nevertheless, Coelli, Lauwers, 
and van Huylenbroeck (2007), Førsund (2009) and Murty, Russell, and 
Levkoff (2012), for example, have pointed out that the weak disposability 
assumption seems to be inconsistent with the material balance principle. The 
weak disposable technology allows decrease of both desirable and undesirable 
outputs while keeping the input constant, which is not compatible with the 
material balance principle.  

However, as Coelli et al. (2007) mentioned, the violation issue does not 
exist if the desirable outputs contains zero bad material. For example, if the 
electricity is generated using coal, the desirable output (i.e., electricity) 
contains no bad material (such as sulfur). Another exceptional condition that 
satisfies the material balance principle is that the abatements are made on 
undesirable outputs (see e.g., Førsund, 2009; Murty et al., 2012). In papers II 
and III, where the weak disposability assumption has been imposed, the 
desirable output does not contain any SO2 or NOX. Further, the SO2 and NOX 
are measured after abatement. Therefore, the weak disposability assumption in 
this thesis does not violate the material balance principle.  

3.3 Measurement of firm performance 

 
Productivity measurement is an important research topic in DEA. A commonly 
adopted productivity measurement in the DEA literature is the Malmquist 
productivity index, which was introduced by Caves et al. (1982a, 1982b). This 
index was further developed in the context of performance assessment by Färe 
et al. (1989). It measures the productivity change over time and can be 
multiplicatively decomposed into technological change and efficiency change 
components. Färe et al. (1989) integrated Farrell (1957)’s efficiency 
measurement into Caves et al.’s (1982b) productivity measurement to construct 
a Malmquist productivity index based on DEA.  

The metrics of firm performance in paper III are calculated using Färe et al. 
(1989)’s Malmquist type of indexes of productivity, energy efficiency and 
environmental performance. DEA models are utilized to calculate the distance 
functions that make up the Malmquist indexes. The distance functions for 
                                                        
10 In their model, however, each energy input is reduced at different proportion. Hence the 
substitutability between energy inputs would also be captured in the energy efficiency estimation. 
In paper II, the reduction proportion of the reduction of each energy input is the same, which 
guarantees a pure technical energy efficiency estimate.  
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productivity and energy efficiency are constructed according to Shephard 
(1970), and the distance function for environmental performance is constructed 
according to Tyteca (1997), who adopts Färe et al.’s (1986, 1989) joint 
production framework.11 The distance functions are calculated within and 
across periods. The within period distance function estimates the 
productivity/energy efficiency/environmental performance in time period t (or 
t+1) using the technology of time period t (or t+1); whereas the across period 
distance function estimates the productivity/energy efficiency/environmental 
efficiency in time period t (or t+1) using the technology of time period t+1 (or 
t). According to Färe et al. (1989), a Malmquist index that is greater than, less 
than or equal to 1 indicates, respectively, progress, regress or no change in 
productivity/energy efficiency/environmental performance.  

The Malmquist index can be calculated in other ways. For instances, the 
index can be calculated using Aigner and Chu (1968)’s parametric linear 
programming approach, or Fecher and Perelman (1989)’s econometric 
approach. It would be of interest to apply these methods in future research. 

3.4 Data overview 

 
The empirical analyses in this thesis are carried out using a firm-level panel 
dataset that includes 14 Swedish industrial sectors and covers the years 2000 to 
2008. The 14 sectors are pulp and paper, iron and steel, chemical, stone and 
mineral, mining, machinery, fabricated metal products, rubber and plastic, 
electro, motor vehicles, printing, wood products, textiles, and food. The three 
largest energy-consuming sectors in Swedish industry are the pulp and paper, 
iron and steel, and chemical sectors. By 2013, they consumed 51%, 16% and 
9% of the industry’s final energy, respectively (Swedish Energy Agency, 
2015). The data for the variables used in the empirical analyses are collected 
and offered by Statistics Sweden (Swedish: Statistiska centralbyrån, SCB). All 
monetary values are in 2008 SEK. 

The dataset contains information about non-energy inputs (labor and 
capital), energy inputs (electricity, coal, oil, gaseous fuel, biofuel, district 
heating), produced output (indexed), and undesirable outputs (CO2, SO2, NOX). 
The capital stocks are calculated using gross investment data (excluding 
investments in buildings) and the perpetual inventory method.12 The wood and 
the pulp and paper sectors use a considerable amount of biofuel, but for most 

                                                        
11 Kumbhakar and Tsionas (2016) propose a novel approach that uses a SFA method to 

estimate environmental efficiency. A by-production framework, which comprises both desirable 
and undesirable production technologies, is utilized to analyze an environmental production 
process. Thus, the environmental efficiency measurement is well grounded in production theory. 
Additionally, there is no need to impose the weak disposability assumption.  

12 The capital depreciation rate is assumed to be 0.087 for all firms and sectors in 
manufacturing, as suggested in King and Fullerton (1984) and Bergman (1996).  
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sectors this fuel is insignificant or not used at all. Produced output is derived 
from sales data, and is calculated as sales divided by a sector-specific Producer 
Price Index (PPI). The dataset also contains information about policy and 
policy-related measures: Swedish carbon dioxide and energy taxes; the EU 
ETS (identification of participation); R&D; and environmental investment in 
air pollution. The dataset covers the first trading period and the first year of the 
second trading period of the EU ETS (2005-2008). The carbon tax for Swedish 
industrial firms that are included in the EU ETS has been gradually phased out 
since 2008. In the first trading period, however, the carbon tax was still 
functional. 

The empirical analyses in papers I to III, however, are carried out using 
different sample periods for the dataset. Paper I uses the period from 2000 to 
2008, which contains data on 4,297 firms. Paper II utilizes the sample that 
covers the years 2001-2008, which contains data on 3,066 firms. The reason 
for choosing these sample periods is that the R&D variable, which is 
considered as an energy efficiency determinant factor in the regression 
analysis, only has observations from 2001 onwards. Paper III uses the dataset 
covering the years 2002-2008, which contains data on 517 firms. The reason 
for choosing this sample period is that the environmental investment data have 
been collected since the year 2002. The rather small number of observations in 
the sample is due to the “two consecutive years” selection criterion for the 
Malmquist index calculation. 
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4 Conclusion and future research 
The main result is that there is considerable potential to improve the energy 
efficiency of Swedish industrial firms over the sample period studied. The EU 
ETS and the Swedish carbon dioxide tax do not seem to create any significant 
energy-saving incentives. This is partly due to the relatively low permit price in 
the period of study. Also, the effective carbon dioxide tax rate, after 
exemptions and other special rules, may have been too low to incentivize 
energy conservation. The Swedish energy tax, on the other hand, significantly 
motivated energy efficiency improvements. The results also show that sectors 
that consume a relatively small amount of energy tend to have lower energy 
efficiency, which suggests that the relevant policies should not ignore these 
sectors. Finally, it is found that a managerial strategy that emphasizes energy 
efficiency improvements is likely to start a positive chain of events: it 
facilitates productivity growth, reduces the environmental burden, and leads to 
environmental investments. However, for the environment–productivity 
relationship, it is hard to achieve the “win-win” outcome that has been 
suggested by Porter and van der Linde (1995). The analysis shows that being 
more environmentally efficient comes at the cost of lower productivity in the 
next period.  

Measuring energy efficiency has been the core of this thesis. Another 
interesting topic in the energy efficiency area is the rebound effect. The 
rebound effect is the phenomenon of the expected energy saving targets 
eventually being partially or fully offset. It occurs because the energy 
efficiency improvements make energy relatively cheap, and therefore create 
incentives to consume more energy. In this context, the energy saving targets 
would be challenged by improved energy efficiency. Future research could be 
carried out to measure the magnitude of the rebound effect in Swedish 
industry, and the results would be expected to allow some policy implications 
to be drawn, such as whether the energy efficiency policy is effective.  
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5 Summary of the papers 
This thesis contributes to the literature on energy efficiency and firm 
performance. It is the first study to measure firm-level energy efficiency across 
the whole Swedish industry and to assess the impacts of climate and energy 
policies such as the EU ETS, the Swedish carbon dioxide and energy taxes, etc. 
It is also the first study to provide a comprehensive Swedish industrial firm 
performance measurement, and to examine the causal and dynamic 
relationships between firm performance and environmental investment. A 
summary of the papers is presented below. 

5.1 Industrial energy demand and energy efficiency – Evidence 
from Sweden (Paper I) 

 
The main objectives of this paper are: 1) measuring energy efficiency; and 2) 
assessing the impacts of efficiency determinants. The concept of an input 
demand frontier suggested by Schmidt and Lovell (1979) and further described 
in Kumbhakar and Lovell (2000) is utilized to represent the energy demand at 
the firm level. Accordingly, energy demand frontiers for fuel and electricity are 
derived from a Cobb-Douglas (C-D) production frontier by minimizing the 
cost. The derived frontiers therefore define an optimal fuel/electricity demand 
at the least cost of a best-practice technology. In this framework, energy 
efficiency is encompassed in the demand frontier, and the estimated energy 
efficiency indicates how far energy can be further reduced for the given levels 
of output and non-energy inputs. The empirical demand frontier is formulated 
following Filippini and Hunt (2011). It is a conditional energy demand 
function that defines the minimum levels of energy input required to produce a 
certain amount of output, given a C-D technology and input quantities and 
prices. The derived energy demand frontier inherits the properties of a C-D 
production frontier. The rationale for specifying a C-D production frontier is 
the ease of tractability and of the interpretation of estimates. Also, the C-D 
specification has the merit of simplicity in deriving the demand frontier 
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(Kumbhakar & Lovell, 2000). A time trend term is included to capture the 
Hicks-neutral technological change. 

A conditional energy inefficiency component of the demand frontier 
describes the impacts of energy efficiency determinants. The Battese and 
Coelli (1995) single-stage approach is utilized to obtain the estimates of energy 
efficiency and the efficiency determinants simultaneously. 

The empirical analysis is carried out using a firm-level, industry-wide panel 
dataset containing 4,297 Swedish industrial firms for the period 2000 to 2008. 
Given the technical heterogeneity across sectors, the analysis is carried out in 
each sector separately. Greene’s (2005a, 2005b) “true” random effects SFA 
model is adopted to capture time-invariant heterogeneity across firms. Thus, 
the estimated energy efficiency is time-variant and firm-specific. This is the 
first study in the SFA literature to analyze firm-level, industry-wide energy 
efficiency and the impacts of efficiency determinants.  

The energy efficiency estimates for Swedish industrial firms indicate that 
there is considerable potential to improve fuel/electricity efficiency, and 
particularly fuel efficiency. This implies that energy conservation policy has 
had a larger impact on electricity use, and leaves fewer possibilities for further 
improvement. The results for the efficiency determinants show that the EU 
ETS has had a positive but not significant impact on energy efficiency 
(especially on fuel efficiency) in many sectors. One possible explanation for 
this non-significant impact could be that the ETS permit price was too low to 
motivate energy-saving efforts during the period of the study. The results also 
indicate that firm size matters. Middle- and large-sized firms, compared to 
small-sized ones, tend to use fuel/electricity more efficiently.  

A correlation test between energy efficiency and energy intensity suggests 
that the latter is not a good proxy for the former, which is consistent with the 
conclusions in Filippini and Hunt (2011, 2012) and Filippini, Hunt, and Zoric 
(2014). In fact, the correlation test results imply that decreases in energy 
intensity can be at best be related to small increases in energy efficiency.  

5.2 Energy efficiency in Swedish industry: A firm-level data 
envelopment analysis (Paper II) 

 
The main purpose of this article is (again) to measure energy efficiency in 
Swedish industrial firms. A non-parametric approach that considers both 
desirable and undesirable outputs is adopted to estimate energy efficiency. In 
addition, the study, as for paper I, also focuses on investigating the impacts of 
energy efficiency determinants. 
     The empirical analysis is carried out in two steps. In the first step, firm-level 
energy efficiency is estimated by sector and by year using DEA techniques. 
The measurement of energy efficiency is grounded in Farrell (1957), who 
estimates the maximum possible proportional reduction of energy inputs to 
produce the given level of outputs without requiring any additional amount of 
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other inputs. To take into account undesirable outputs, the DEA model is 
formulated according to the joint production framework proposed by Färe et al. 
(1986, 1989). In the second step, the impacts of efficiency determinants are 
evaluated by regressing the DEA efficiency scores on a set of explanatory 
variables. Since the efficiency scores are calculated rather than observed, and 
moreover there is a serial correlation issue in relation to the calculated scores, a 
modified input-oriented double bootstrap procedure based on that of Simar and 
Wilson (2007) is employed to yield consistent regression estimates and provide 
valid inferences. 

With a panel dataset consisting of 3,066 firms in 14 Swedish industry 
sectors for the period 2001-2008, it is possible to assess firm-specific energy 
efficiency for the whole industry. The energy efficiency is calculated based on 
separate frontiers for each sector and for each year. The regression analysis is 
carried out at the industrial level. There are two reasons for having a single 
regression model. The first is that for some sectors such as textiles, there are no 
ETS firms at all. The second reason is that if the regressions were carried out 
separately, the coefficient estimates might have opposite signs in different 
sectors, thereby increasing the complexity of explaining the effect of policy 
measures (this is a different approach to that followed in paper I). In the single 
regression model, sector and year dummy variables are included to capture the 
heterogeneity across sectors and years. 

The contributions of this paper can be described from two aspects. One is 
that it is the first study to measure firm-level industry-wide energy efficiency 
by using a joint production framework DEA model. The other is that it is the 
first study to evaluate the impacts of energy efficiency determinants in the 
second-stage regression analysis by utilizing a modified, input-oriented version 
of Simar and Wilson’s (2007) double bootstrap procedure. Estimates of energy 
efficiency show that there is considerable potential to improve energy 
efficiency in Swedish industry, as is also shown in paper I. It is noteworthy that 
the industries that consume less energy have lower energy efficiency. To 
achieve the ambitious Swedish energy efficiency improvement target, a policy 
implication would be that some attention should be paid to the less energy-
dependent industrial sectors. The results of the regression analysis show that 
the EU ETS and the Swedish carbon dioxide tax have had a positive impact on 
energy efficiency, but not a significant one. The moderate impact is likely to 
have been due to the fairly low ETS permit price and carbon dioxide tax rate, 
and the small share of fossil fuel (about 30%) used for energy in industry. This 
result indicates that if the EU ETS or the carbon tax (or both) are to be used as 
an instrument to motivate industrial firms to improve energy efficiency, the 
actual price that is placed on the fossil energy must be sufficiently high for 
incentives to be created. The insignificant impact of the EU ETS corroborates 
the finding in Lundgren et al. (2016) (paper I). Last but not least, large-sized 
firms, compared with small-sized ones, tend to have higher energy efficiency, 
as was also found in paper I. 
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5.3 Environmental investment and firm performance: A panel 
VAR approach (Paper III) 

 
This paper seeks empirical answers to the question of how three dimensions of 
firm performance – productivity, energy efficiency and environmental 
performance – interact with environmental investment. More specifically, 
would improvement in energy efficiency foster productivity growth? Are 
energy efficiency enhancement and environmental performance improvement 
positively associated? Do environmental investments – driven by regulation 
and/or corporate social responsibility (CSR) – facilitate productivity growth? 

To answer these questions, the analysis assesses firm performance using 
Malmquist-type indexes. Thus, metrics of firm performance are well grounded 
in production theory, and represent changes in productivity, energy efficiency 
and environmental performance. In the second step, a panel vector auto-
regression (pVAR) model is utilized to examine the causal and dynamic 
relationships. The estimated Malmquist indexes are corrected using Simar and 
Wilson’s (1999) bootstrap procedure, and then used in the regression analysis. 
This paper is the first study to investigate causal and dynamic linkages between 
three dimensions of firm performance and environmental investment, at firm-
level and across all industry sectors.  

The empirical analysis is carried out using a panel dataset for Swedish 
industry that contains 1,966 observations for 517 firms for the period 2002-
2008.  

Regarding the firm performance measurements, the results show that during 
the periods studied, on average, the productivity of Swedish industrial firms 
improved in many consecutive years but that the growth rates were moderate. 
Variations in energy efficiency and environmental performance were relatively 
small. Regarding the estimation results of the regression analysis, one finding 
is that environmental performance and energy efficiency are positively 
associated. Another finding is that a previous increase in environmental 
investment induces a current energy efficiency improvement, signifying that 
such investment may primarily be directed towards conserving energy. What is 
more, energy efficiency and productivity are also positively associated. In 
particular, energy efficiency in the previous period seems to facilitate current 
productivity growth, emphasizing the potential cost-saving value of energy 
conservation.  

Furthermore, the results show that improving environmental performance 
and/or increasing environmental investment – which could be driven either by 
environmental regulation or by CSR – is not free, and will, at the very least, 
generate a burden for productivity growth in the next period. In particular, if 
this improvement in environmental performance and/or increase in 
environmental investment is induced by environmental regulation, the result 
does not support the Porter Hypothesis. Finally, an increase in environmental 
investment in the previous period improves current energy efficiency, and, in 
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turn, the improved energy efficiency will tend to boost productivity, 
environmental performance and investment in the next period. As a 
consequence, it is possible to plan an effective environmental investment 
strategy that could facilitate productivity if channeled via cost-saving energy 
efficiency improvements.  

The main conclusions are, from a management perspective, that a 
managerial strategy that emphasizes improvements in energy efficiency is 
likely to start a positive chain of events; and, from a policy perspective, that the 
anticipated “win-win” outcome posited by Porter and van der Linde (1995) 
cannot be validated by the results. 
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keeping the “her room”, thanks for the long talk on the Story Bridge, thanks for 
sending me your groovy blusy demos. I like your two “little half-men”, I am 
glad to see you being a super Dad. Thanks for the “key” to the future. Örjan, it 
is so special to find someone that I can be myself with. Our episodes time, 
black guru session, pet program dreaming, snus talk, convexity teaching, fun-
working mode, sun therapy, dumpling day, palt day… Thank you for bringing 
these moments to me, and sharing them with me. You said time is infinite, and 
is one-dimension. I totally agree. All these moments are incredible and cannot 
be repeated. You are not the one to forget. You are special. 
      
Hit the road, S. Godspeed!  
Shanshan, 2016 March 26, Umeå 
 


