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Stand development and growth in uneven-aged Norway spruce 
and multi-layered Scots pine forests in boreal Sweden 

Abstract 

The use of the selection system has always been a marginal part of Swedish forestry, and 

so has research about the system under Swedish conditions. However, the interest in 

Sweden for uneven-aged forest management has increased because of a rising concern 

for the ecological and aesthetical consequences from use of the dominating rotation 

forests system, which creates even-aged forest and has clear-cutting as primary 

harvesting method. 

In this thesis I have studied the possibilities and limitations of the selection system in 

Swedish boreal forests. Stand development, ingrowth and volume increment has been 

studied in both Norway spruce (Picea abies (L.) H. Karst.), and Scots pine (Pinus 

sylvestris L.) forests.  

My studies of uneven-aged Norway spruce show that 1) these forests have the capacity 

to spontaneously create and maintain an uneven-aged stand structure, 2) there is a 

positive relation between standing volume and volume increment, and 3) there is no clear 

relation between the level of ingrowth and stand density. 

My studies of multi-layered Scots pine forests show that 1) a multi-layered stand 

structure is more likely the result of size stratification and not of continuous ingrowth, 2) 

There is positive relation between standing volume and volume increment, and 3) that a 

low stand density is seems required for ingrowth to occur on a sustainable level.  

 

The results imply that for boreal Norway spruce forests, a high standing volume would 

be recommended when the selection system is applied, whereas for boreal Scots pine 

forest, uneven-aged management should be motivated by other values than stem 

production, e.g. aesthetical or ecological.    
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1 Introduction 

 
The rotation forest system, creating even-aged forests with clear-cutting as 

primary harvesting method, is the completely dominating silvicultural system in 

Sweden, and have been so for more than half a century (Lundmark et al. 2013). 

Concerns have however been raised about the consequences of the extensive use 

of even-aged forest management, on biodiversity and ecological values in the 

forest landscape (Niemilä 1997, Bengtsson et al. 2000, Matveinen-Huju and 

Koivula 2008) and voices have been raised by NGOs and scientists for changes 

in forest management toward an increasing proportion of the forest land 

managed with uneven-aged silviculture (Kuuluvainen et al. 2012, Rudberg 

2014).  

A general skepticism toward uneven-aged management in the forestry 

community (Axelsson and Angelstam 2011), partly based on misconceptions 

and results from historical use of high grading, is one reason for its limited use. 

Another reason is that the forest area with a tree species composition and stand 

structure suitable for uneven-aged management is scarce in the Swedish forest 

landscape (Anon 1992). The marginal use of the selection system and few 

long-term experiments have led to limited research possibilities and knowledge 

about uneven-aged forest management in Sweden. 

To evaluate and compare different management practices common terminology 

and definitions are required. The terminology in silviculture can however be 

both confusing and unclear, not least when it comes to silviculture in multi-

aged forests. The confusion is partly a result of differences in European and 

North American terminology (Troup 1928) but also due to the author’s 

background and education (O’Hara 2002) 

For the reader to get some clarity in the terminology a rough scheme was made 

in which I divided different terms and labels into three different groups; umbrella 

terms, management philosophies and silvicultural systems. This is not meant as 

an attempt to create a “final” defined terminology, but rather a terminology in 

the light of my own background and education.  

There are several umbrella terms for silvicultural practices that maintains and 

creates forests with more than one age class. “Uneven-aged silviculture” may 

be the most traditional one, defined by Helms (1998) as “silviculture creating a 
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forest with three or more age classes”. Some authors would however argue that 

also the size distribution needs to be taken into account when determining if a 

forest is uneven-aged or not. Two more comprehensive umbrella term is multi-

aged forests, which also includes forests with only two age classes (Helms 

1998), and multi-layered forests, defined as forests with two or more 

distinctive tree canopy layers (Dunster and Dunster 1996) Continuous cover 

forestry (CCF) is a term frequently found in more recently published literature 

(e.g. O’Hara 2002, MacDonald et al. 2010, Pukkala and Gadow 2012) but it is 

not clearly defined (Pommerening and Murphy 2004). The most simplified 

definition of CCF is “silviculture without clear-cutting”, which by this 

definition includes a wide range of forest structures and treatments. 

There are various forms of management philosophies that are more or less 

formalized, some internationally recognizable and some more endemic. Many 

of these have an ecological focus where forest management practices should 

mimic natural processes and/or aim to create natural forest structures. Pro Silva 

and New forestry are two rare examples. (cf. Franklin 1989, O’Hara 1998, Lähde 

et al. 1999, Gamborg and Larsen 2003). 

A silvicultural system can be described as a plan for management to produce a 

crop with sustained yield. Troup (1928) defined it as a process by which the 

crops constituting a forest are tended, removed and replaced by new crops, 

resulting in the production of stands of distinct form. He further pointed out three 

central parts of a silvicultural system: 

 

1. The regeneration method. 

2. The form of crop produced. 

3. The orderly arrangement of the crop.  

 

As for silviculture in general, the classification of silvicultural systems differs 

between authors and countries (cf. Nyland 1996, Troup 1928). In Swedish 

forestry mainly two silvicultural systems are recognized; the rotation forest 

system (even-aged forests) and the selection system (uneven-aged forests) 

(Albrektson et al. 2012). 

 

In the following text both ‘multi-layered’ and ‘uneven-aged’ are used.  Multi-

layered is defined as two or more distinctive tree canopy layers and uneven-aged 

as three or more age classes with a decreasing number of stems over diameter. 
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1.1 The selection system 
 

The selection system is a silvicultural system practiced in forests with uneven-

aged stand structure, i.e. with trees in all sizes mixed together within the forest 

and with a decreasing number of trees over diameter. 

The selection system is sometimes divided into two subgroups; single-tree 

selection system and group selection system (Hawkins 1962, Nyland 1996). In 

the group selection system, tree-groups are harvested, to create openings of 

sufficient size to promote regeneration of less shade tolerant species, thus 

creating small even-aged patches of regeneration (Hawkins 1962). How large 

the patches can be before being considered as a separate stand and thereby as a 

clear-cut is however unclear (Hawkins 1962, O’Hara 2014). In the following text 

the term “selection system” refer to the single-tree selection system. 

1.1.1 Stand structure and selection cutting 

A classical characteristic for forests managed with selection system (selection 

forests) is the inversely J-shaped diameter distribution, which Liocourt (1898) 

was one of the first to describe (Fig. 1).  

 
Figure 1. Principle figure displaying an inversely J-shaped diameter distribution. 
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The slope of Liocourt’s diameter distribution can be described mathematically 

by a constant, the q-factor, calculated as the number of trees in a diameter class 

divided with the number of trees in the next larger class (Schaeffer et al. 1930) 

The number of stems in each diameter class is however also dependent on the 

class width used, therefore the class width is needed when interpreting the stand 

structure using the q-factor. Diameter distributions found in uneven-aged forest 

can also been described with a negative exponential equation (Meyer 1933) and 

Weibull function (Bailey and Dell 1973). 

An inversely J-shaped diameter distribution may be a prerequisite for sustainable 

selection system management, but it is not an evidence that the forest has been 

managed with the selection system, or is even suitable for such management. 

Both the spatial scale (e.g. stand level or landscape level) and time scale 

(temporal or permanent) need to be considered before any conclusions can be 

drawn on the basis of the shape of the diameter distribution (Schütz 2002).  

The height distribution in a selection forest is often similar to the diameter 

distribution, with one exception. The height distributions usually have an 

accumulation of trees in the highest height classes. The reason for this is that 

height growth among large trees levels off while they continue to grow in 

diameter (Indermühle 1978). 

Selection cutting can be defined as a thinning from above in an uneven-aged 

forest stand in order to harvest yield and nourish and shape the forest stand 

(Fischer 1960, Nyland 1996). It is not confined to a certain area of the forest, but 

instead the cuttings are distributed all over it, in such a manner that an uneven-

aged stand structure is maintained (Troup 1928). Selection cutting is sometimes 

believed to be performed in order to regenerate the stand, but this is not correct 

and it should not be considered as a regeneration method (Fischer 1960).  

1.1.2 Regeneration and ingrowth 

Regeneration in selection forests is not limited to a certain “regeneration phase”, 

nor to a certain spatial area, and no specific regeneration operations are 

conducted. Instead regeneration is continuous over time, and distributed over the 

whole forest area (Troup 1928). 

Trees that are harvested and lost through mortality must eventually be replaced 

by ingrowth. The survival and growth of established seedlings and saplings are 

therefore crucial for long term sustainability of the system (Lundqvist 1995). 

Growth among seedlings and saplings in boreal uneven-aged forests is very slow 

(Saksa and Valkonen 2011) and it often takes 35-60 years, or even up to 100 

years, for a seedling to reach 1.3 m in height (Lundqvist 1993, Eerikäinen et al. 
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2014). Therefore, trees that are about to be harvested a 100 years from now, need 

to be present in the stand today.  

1.1.3 Growth and yield 

From the experiments done in Fennoscandia, the general conclusion is that there 

is a positive relation between standing volume and volume increment in uneven-

aged Norway spruce forests, such that the volume increment increases over 

standing volume to a certain level of stand density, whereafter it becomes more 

or less constant (Näslund 1942, Böhmer 1957, Andreassen 1994, Lundqvist 

1994). Such a relation between stand density and growth has also been reported 

from other parts of the world and with other tree species (Murphy and Shelton 

1994, Groot 2002, Lohmander and Limaei 2008). To sustain a high sustainable 

production it is, therefore, important that the residual stand density after each 

harvest operation is kept on an acceptably high level.  

1.1.4 Tree species 

In the selection system seedlings, saplings, and small trees need to have the 

capability to survive and grow under the canopy of larger trees in order to supply 

a sufficient ingrowth (Hawkins 1962). Therefore, shade tolerant species are 

required for sustainable selection system management with high long-term 

growth and yield. 

 

However, there are several examples were shade-intolerant species are managed 

with selection cuttings, and display more or less uneven-aged stand structures 

(Loewenstein et al 2000, Shelton and Cain 2000, Orois and Soalleiro 2002). 

Success with selection management in forests consisting of shade-intolerant 

species, or a mix of shade-intolerant and shade-tolerant species, requires that the 

stand density is reduced to a level were regeneration and ingrowth can occur 

(O’Hara 1998). This requires a compromise between a stand density maximized 

for growth and yield, and conditions for sufficient regeneration and ingrowth 

(Oliver and Larson 1996, Shelton and Cain 2000, Schütz 2002). A potential 

problem with selection management in forests consisting of shade-intolerant 

species is invasion and increasing dominance of shade-tolerant species (O’Hara 

1998, Shelton and Cain 2000, Liang et al 2005). This is a problem that can be 

both costly and time consuming to avoid (O’Hara 1998). 
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1.2 The history of regulated forestry and the selection system in 
Sweden    



Dominating management practice in Swedish forestry was for centuries a kind 

of selective cuttings, with farmers extracting fire wood, timber and wood for 

house hold needs (Arpi 1959, Kardell 2004, Enander 2007), with little concern 

about reforestation and future yield.   

The first regulated silvicultural system to be introduced was the rotation forest 

system. It began in the southern and central parts of Sweden, and did not become 

more widely used until the middle of the 19th century, and then mainly in state 

and corporate owned forests (Wahlgren and Schotte 1928; Kardell 2004). 

Swedish forest research was in limited until the beginning of the 20th century, 

and knowledge about forest management was to large extent obtained from 

Germany or by German foresters that came to the Sweden (Arpi 1959; Enander 

2007).  

At the end of the 19th century, influences from Germany resulted in criticism 

against the rotation forest system in Sweden, and instead a new form of forestry, 

with a more liberal cutting regime, was advocated. The new, preferred form of 

forest management was the selection system, which had begun to be defined and 

regulated by forest scientists in central Europe. A factor that contributed to the 

interest in Sweden for this new management practice was the forest regeneration 

law implemented in 1903. Profitability was low during the economic crisis in 

1920-1930, and by using selection cuttings, costs for artificial regeneration could 

be avoided (Enander 2007).  

However, the new silvicultural system, the selection system, was never really 

used or even fully understood in Sweden. Partial harvests, usually called 

selection management, were carried out in all types of stands, irrespective of 

initial stand structure or tree species (Arpi 1959, Enanader 2007). In reality, 

much of the harvests were simply exploitive cuttings and not what we today 

would characterize as a regulated silvicultural system. 

In most of northern and parts of central Sweden the use of the rotation forest 

system had been very limited during the 19th century. Instead the prevailing 

management practice had been diameter limit cuttings, providing timber for the 

expanding saw mill industry (Arpi 1959). The lack of tradition in using the 

rotation forest system made it easy to implement the new ‘selective’ 

management practice. After all, the difference between the prevailing diameter 

limit cuttings and the new ‘selective’ partial cuttings were small (Arpi 1959).  

With the expansion of the pulp industry, which made also smaller trees 

economically valuable, forests which had previously been subjected to diameter 
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limit harvests were now once again partially cut, resulting in depleted (Fig. 2), 

and sometimes almost cleaned forest stands (Enander 2007).  

 
 

Figure 2. Depleted stand after partial harvest around 1900. Photo: Holmgren, A. 

In the 1930s the opinion in the forest community once again turned towards the 

rotation forest system. The lack of regeneration, and the low yield in the 

partially cut (exploited) forests, raised concern among foresters and land-

owners (Arpi 1959). From the middle of the 20th century, the use of the rotation 

forest system increased rapidly, starting on corporate- and state-owned forest 

land, but soon also on private forest land (Arpi 1959). The rapid shift in 
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management practices towards the rotation forest system were partly a result of 

the mechanization that started after the Second World War. 

 

In conclusion the selection system, as the regulated and defined silvicultural 

system as we know it today, has only been used to a very limited extent in 

Sweden, and mainly by private land owners. 

1.3 Objectives 
 

To meet a growing concern about ecological and recreational values in the forest 

landscape, and with an increasing interest in uneven-aged forest management, 

more knowledge is needed about the possibilities and the limitations of the 

selection system.  

The main purpose of this thesis has been to study stand structure dynamics, 

competition, and productivity in uneven-aged Norway spruce forests and in 

multi-layered Scots pine forests in boreal Sweden. 

 

The objectives have been to evaluate: 

 

 If boreal uneven-aged Norway spruce forests have the capacity to 

spontaneously restore their stem density and restore/strive toward an 

uneven-aged stand structure after being heavily partially harvested 

(Paper I, Paper III). 

 

 If a positive relation between standing volume and volume increment 

can be found in uneven-aged Norway spruce and multi-layered Scots 

pine forests (Paper I, Paper II). 

 

 If a reduction in stand density is required in multi-layered Scots pine 

forests for abundant regeneration and subsequent ingrowth (Paper II). 

 

 If a multi-layered stand structure in Scots pine forests is a result from 

continuous regeneration and ingrowth, or size stratification within even-

aged cohorts (Paper II). 

 

 If individual tree growth in boreal uneven-aged Norway spruce forests 

is proportional to size, indicating a symmetric competition. (Paper III). 

 

 If individual tree growth in uneven-aged Norway spruce forest is 

significantly correlated with the surrounding basal area in the vicinity 
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of the tree (within a radius of 5 m), and the correlation decreases with 

increasing radius (10 and 15 m) (Paper III). 
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2 Materials and methods 

2.1 Paper I 
 

Seven partially harvested stands were included in the study, all of them situated 

in northern Sweden in the county of Västerbotten. Four stands were located at 

Granliden (Lat. 64,8° N, Long. 16,0° E) and three stands at Eriksberg (Lat. 65,0° 

N, Long. 15,8° E), altitudes ranging between 400 and 540 m a.s.l.  The time 

since last harvest varied among the stands, from 16 to 57 years before inventory. 

Norway spruce (Picea abies (L.) H. Karst.) was the dominating tree species (> 

90 % of total standing volume), with small additions of  deciduous tree species. 

The soils were moraine, the soil moisture was mesic, and the site productivity 

2.3-3.6 m3 ha-1 yr-1, estimated according to Hägglund and Lundmark (1981). 

Two circular plots (each with an area of 1000 m2) were inventoried in each 

stand. All trees with dbh (diameter at breast height, 1.3 m above ground) ≥ 5 cm, 

and all stumps deemed to originate from the last harvest, were calipered 

approximately 0.3 m above ground. On each circular plot, 2-4 sample trees were 

randomly chosen in each 2 cm diameter class, measured for height and had an 

increment core taken at breast height. For sample trees of Norway spruce height 

to first live branch, stump diameter and bark thickness were also measured. The 

inventories were carried out in the autumns of 1993 and 1994. 

Pre-harvest and historical stem density and stand structure were reconstructed 

from the increment cores (for more details about the reconstruction procedure 

see section 2.4). Ingrowth was calculated as the difference in number of stems 

between reconstructed years. Stem volume over bark was calculated with 

primary equations developed by Brandel (1990), using reconstructed stem 

diameter and the diameter-height relations generated from the sample trees. 

Secondary volume equations were then calculated for each stand with linear 

regression. 

2.2 Paper II 
 

Four Scots pine (Pinus sylvestris L.) dominated stands, two northern (Fig. 3) 

(Lat. 64° N) and two southern (Fig. 4) (Lat. 60° N) were included in the study. 

The stands were subjectively selected with the prerequisites that the stands 

appeared to have a multi-layered stand structure and that past management was 

known and recorded. Scots pine represented more than 90 % of the standing 

volume in all stands, with an addition of scattered Norway spruce (Picea abies 

(L.) H. Karst.) and birch (Betula pubescens Ehrh and Betula pendula Roth). The 
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site productivity, estimated from site characteristics according to Hägglund and 

Lundmark (1981), was 3.7 m3 ha-1 yr-1 in the northern stands, and 5.5 m3 ha-1 yr-

1 and 4.7 m3 ha-1 yr-1, respectively, in the two southern stands. 

All measurements were done in the autumn of 2013. Two circular primary 

plots (each with an area of 1256 m2) were deployed in each stand, and in the 

centre of each primary plot a secondary circular plot (area of 314 m2) was 

established. Within the primary plots all trees with dbh ≥ 4 cm were numbered 

and calipered. Total tree height, bark thickness and height to the first live branch 

were measured on 1-3 sample trees of Scots pine and Norway spruce 

respectively in each 2 cm diameter class. An increment core was also taken at 

breast height from each sample tree.  

In the secondary plots all coniferous (Scots pine and Norway spruce) saplings 

were recorded, and total height and the length of the last leading shoot (leader) 

was measured. For Scots pine saplings also total length of the last 5, 10 and 15 

leaders were measured, and age was estimated by counting whorls.  

Saplings were defined as trees > 0.5 m in height and < 4 cm dbh.  

Historical diameter and age distributions were reconstructed from the 

increment cores, 25 and 50 years back from the year of inventory (for more 

details about the reconstruction procedure see section 2.4). Ingrowth of trees and 

saplings was calculated as the net difference in number of trees/saplings between 

each reconstructed year. Stem volume over bark was calculated with primary 

equations developed by Brandel (1990), using reconstructed stem diameter and 

the diameter-height relations generated from the sample trees. Secondary stem 

volume equations were then calculated for each stand. 
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Figure 3. Stand N1 (above) and stand N2 (below). Photo: Martin A. Ahlström. 
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Figure 4. Stand S1 (above) and stand S2 (below). Photo: Erik Valinger. 
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2.3 Paper III 
 

The experimental site was located in the central part of Sweden (63.39 Lat., 

15.14 Long.) approximately 35 km north-east of Östersund at an altitude of 475 

m a.s.l. with Norway spruce (Picea abies (L.) H. Karst.) as the dominating tree 

species (>95 % of total standing volume). The stand structure was uneven-aged, 

displaying an inversely J-shaped diameter distribution. Standing volume ranged 

between 200 and 300 m3 ha-1. Soil moisture was mesic and site productivity was 

5.5 ha-1 yr-1, estimated from site characteristics according to Hägglund and 

Lundmark (1981). 

The experiment consisted of 8 quadratic primary plots, with a size of 0.25 ha, 

which were all measured before treatment. All trees with dbh >5 cm were 

calipered, and mapped (X, Y coordinates). Sample trees were measured for 

height. Treatments were thinning from above with three different thinning 

intensities, High (H), medium (M), low (L), and an untreated control (C), 

replicated in two blocks. Removed basal area was approximately 85 % in 

treatment H, 65 % in M, and 45 % in L.  

All thinned plots were re-calipered after treatment and also re-measured in 

2001, 2006 and 2011, in which also sample trees were measured for height, and 

new trees that reached a dbh > 5cm were mapped and calipered.    

Competition intensity was estimated with two different indices: surrounding 

basal area and surrounding number of neighbouring trees. The competition 

intensity was calculated for each focal tree using three different radii for the 

circular competition zones: 5, 10 and 15 m around the focal tree.  

Focal trees were all located within a quadratic 15×15 m area in the center of 

each primary plot, thus having more than 15 m from the focal tree to the edge of 

the primary plot.   

The focal trees were divided into two groups, small trees (dbh ≤17.6 cm) and 

large trees (dbh >17.6 cm). 

A linear regression model was used to evaluate the relation between 

individual tree growth and competition intensity. Linear regression was also 

used to evaluate the relation between individual tree growth and tree size. Tree 

mortality was calculated from 1991 to 2011 in treatment C and from 2001 to 

2011 in treatment L, M, and H. The shorter period (2001-2011) for thinned plots 

were chosen to avoid mortality caused by harvest induced damage after 

treatment. 
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2.4 Stand reconstruction 
 

A challenge for many forest researchers studying stand development, is the 

long time span between establishment and evaluation of the result of a field 

experiment. Stand reconstruction is a potential solution to that problem. By 

taking increment cores from a sufficient number of trees and measure the annual 

ring width, it is possible to reconstruct historical stand structures and estimate 

ingrowth and volume increment.   

2.4.1 Data analysis and calculations 

Before the increment cores were analysed, linear bark equations were 

calculated to be used when reconstructing historical diameters over bark. Data 

(dbh and bark thickness) from sample trees were used to calculate bark equations 

for Scots pine and Norway spruce, whereas double bark thickness for birch was 

calculated as 
1/10 of the dbh.    

Increment cores collected in the field were soaked in water for at least one 

hour before further analyses in the laboratory. This was done so that the 

increment cores would resume their original size after being dried during 

transportation and storage (cf. Eklund 1951). After swelling, the increment cores 

were planed and the ring widths measured in a WinDendro scanner (Regent 

instruments, Quebec, Canada) with a precision of 0.1 mm.  

The increment cores were pooled for each stand (Paper I) or treatment (Paper 

II) and for each 2 cm diameter class. The average ring width of the sample trees 

for each 2 cm diameter class and year were then calculated and used as the 

average for all trees in the same diameter class.  

Historical diameters over bark were constructed as: 

 

dt = d - 2(∑ 𝑤𝑖/(1 − 𝑐))𝑡
𝑖=1  

 

Where d is dbh, t is the number of years before the evaluation, wi is the 

calculated average annual ring widths, and c is the regression coefficient for the 

linear bark thickness equation.  

2.4.2 Stand reconstruction and tree mortality 

The stand reconstruction method also has a disadvantage, which need to be 

considered. When reconstructing a stand backward in time, only trees that is 

alive at the time when the increments cores were taken are included (Lundqvist 

2004). Trees that have died during the reconstruction period can in most cases 

not be accounted for, leading to an underestimation of the historical number of 

trees and standing volume. By underestimating the historical standing volume 
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the average volume increment for the whole reconstruction periods become 

overestimated. This is to some extent compensated by the volume growth of 

trees that died, since they also contributed to the total volume production while 

they were alive.  

The size of the estimation error when doing stand reconstructions is 

increasing with increasing mortality during the reconstructed period, which in 

most cases are correlated with the length of the reconstruction period. The length 

of the reconstruction period must therefore be adjusted to the mortality rate in 

the specific forest, if tree mortality has been substantial. If the reconstruction 

period is very long, records of mortality is required to get reliable results.   
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3 Results and discussion 
 

3.1 Norway spruce (Paper I and III) 
 

3.1.1 Stand structure development 

All partially harvested stands (Paper I) displayed diameter distributions that 

better resembled an inverted J at the time of the final inventory, than directly 

after harvest (Fig. 5). The uneven-aged diameter distributions (Paper III) in the 

untreated control plots (C) were maintained and thinned plots (H, M, and L) 

developed towards increased size heterogeneity during the observation period 

(Fig. 6, 7).  

 
 

Figure 5. Diameter distribution (Paper I) before (left), after (center) and at the final inventory (right) 

for each stand. Number 1-4 on the x-axis represent diameter classes D1-D4 which each represent 

¼ of the diameter range from 5 cm to the current maximum dbh in the stand.   
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These results were in line with Lundqvist (2004) who reported sub-alpine 

Norway spruce stands to be striving towards increased size heterogeneity after 

partial harvests. Spontaneously created uneven-aged stand structures have also 

been reported from studies in virgin Norway spruce forests (Hytteborn et al. 

1987, Hofgaard 1993, Linder et al. 1997, Svensson and Jeglum 2001) and in old-

growth Norway spruce swamp forests (Hörnber et al. 1995). 

This indicates that boreal Norway spruce forests, at low and medium fertile 

sites, can both maintain and restore an uneven-aged stand structure after being 

heavily partially harvested. 

 
Figure 6. Diameter distribution (Paper III)  block 1. 40 mm class width, 1991 before treatment 

(BT), 1991 after treatment (AT), and at last inventory 2011. In control (C), low (L), medium (M), 

and high (H) thinning intensity plots. 
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Figure 7. Diameter distribution block 2 (Paper III). For more details see figure 6.  

 

3.1.2 Growth and yield 

The positive relation (Paper I) between standing volume and volume 

increment in six out of seven stands (Fig. 8), was in line with several other 

studies in uneven-aged Norway spruce forests under boreal conditions e.g. 

Andreassen 1994, Lundqvist 1994 and Lähde et al. 2002. That thinning in 

general decreases the total production in a stand have also been pointed out by 

e.g. Smith (1986). 

However, our results differ from Lundqvist’s (2004) who found no clear 

relation between standing volume and volume increment in eight  uneven-aged 

Norway spruce stands subjected to partial harvests. The lack of relationship in 

Lundqvist’s study could possibly be explained by the intensive thinning regimes 
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in the past and by resulting small residual standing volumes (9-34 m3 ha-1) in the 

beginning of the study period. With such low standing volumes and volume 

increments, a relation between them may not be possible to find. 

 
Figure 8. Average annual volume increment in studied stands during each reconstructed five year 

period vs. standing volume at the beginning of each five year period.   

 

 

3.1.3 Competition 

We found a significant (p <0.05) positive relationship between tree size and 

individual tree growth for small trees (dbh <17.6 cm) whereas no such 

correlation were found among large trees (dbh ≥17.6 cm) with the exception for 

trees in treatment C (Paper III), (Fig. 9, 10).  
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Figure 9. Relation between dbh and tree basal area increment 1991-2011 in block 1.  
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Figure 10. Relation between dbh and tree basal area increment 1991-2011 in block 2. 

 

These results were generally in line with what Weiner (1990) hypothesized 

about competition for belowground resources (symmetric competition) with 

increasing growth over size among small trees and constant growth over size 

among larger trees. If growth instead would be limited by light, leading to 

asymmetric competition, we should have expected to see a size-growth 

relationship with a threshold size for additional growth, or an exponential-

shaped growth over all size classes, according to Weiner (1990).  
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The conclusion that the available amount of below ground resources in our 

study were the limiting growth factor corresponded with Tamm’s (1991) 

statement that growth in boreal forest are mainly limited by the available amount 

of nitrogen. Similar results have also been reported by Lundqvist (1994) who 

reported size symmetric competition in a boreal uneven-aged Norway spruce 

forest in northern Sweden. 

Individual tree growth in treatment C did, however, deviate from the other 

treatments in our study and from what Weiner (1990) hypothesised, by 

displaying an increasing growth over size over the whole tree size spectrum.  

Treatment C, block 2 (C2) had the highest stand density in our study and also 

the plot that most clearly displayed a size-growth relationship with increasing 

growth over size without tendency to level off. Schwinning and Weiner (1998) 

suggested that competition symmetry in a population is a continuum with a 

changing degree of symmetric and asymmetric competition as the resource 

availability for above- and below-ground resources are changing. A possible 

explanation for the size-growth relationship seen in C2 and to some extent in C1, 

could thereby be that competition on these plots start to shift from symmetric- 

to asymmetric competition as light becomes a limitation for small and medium 

sized trees when the stand density increases (cf. Weiner and Thomas 1986).  

 

The variable (Paper III) that best explained individual tree growth among 

small trees was tree size, which was significantly correlated with growth in all 

combinations of treatments and competition zones except for treatment H, radius 

5 m. Tree size was weaker as a predictor for individual tree growth among large 

trees, except for treatment C in which significant correlations were found.  

No significant correlation were found between individual tree growth and 

stem density. Significant correlation between individual tree growth and 

surrounding basal area was only found in two treatments (C and M) within a 

radius of 15 m, and only among small trees. 
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3.1.4 Ingrowth 

The mean ingrowth (Paper I) past 5.0 cm dbh were 13.3 stems ha-1 yr-1, 

varying from 7.9 to 23.0 stems ha-1 yr-1 between stands. This was on the same 

level as 3-33 stems ha-1 yr-1 past 8.5 cm dbh  and 5-17 above ha-1 yr-1 past 5 cm 

dbh reported from comparable studies in boreal uneven-aged Norway spruce 

forests (Lundqvist (1993, 2004).  

The positive relation between ingrowth and stand density that could be 

perceived in several stands was most likely an artefact and not a true relationship. 

Norway spruce saplings under the ingrowth threshold increased their growth 

when the stand density was decreased (Chrimes and Nilson 2005) by harvest, 

creating a “flush” of ingrowth (Lundqvist 1995). This conclusion was supported 

by the lack of such a relation in the earliest harvested stands, i.e. stands H37, 

H40, and H54. In these stands, the ingrowth “flush” had already passed and the 

accuracy with which the stand development could be reconstructed was not high 

enough to catch a “flush” of ingrowth so far back in time. 

The conclusion that no correlation was present between ingrowth and 

standing volume was in line with earlier studies in uneven-aged Norway spruce 

forests in Sweden (Lundqvist 1993, Lundqvist 2004). This result may be found 

rather strange since studies have shown that the height growth among Norway 

spruce seedlings/saplings increases with decreasing stand density in uneven-

aged forests (Golser and Hasenauer 1997, Chrimes and Nilson 2005, Eerikäinen 

et al 2014), which thereby would increase ingrowth. This assumption that 

ingrowth should increase seems indeed to be correct on basis of our results and 

simulations by Lundqvist (1995). The long-term ingrowth level was however 

not only a result of seedling/sapling height growth, but also of establishment rate 

of seedlings, and the mortality rate among seedlings/saplings under the ingrowth 

threshold (Lundqvist 1995). Reported results on the effect of stand density on 

both seedling establishment (Lundqvist 1991, Hofgaard 1993, Lundqvist and 

Fridman 1996, Saksa and Valkonen 2011) and seedling/sapling mortality 

(Lundqvist and Fridman 1996, Nilson and Lundqvist 2001) have been 

inconclusive. Instead other factors such as the amount of seed crops (Saksa and 

Valkonen 2011), the seedbed properties (Valkonen and Maguire 2005) and 

climate conditions (Kullman 1986) seems to have greater effect on seedling 

establishment. Also unfavourable weather conditions, abundance of damaging 

agents, and exposure to frost (Hofgaard 1993, Örlander and Karlsson 2000) 

seems to affect the mortality rate among seedlings/saplings more than stand 

density does. Harvest intensity and operating system during selection cutting is 

also a factor that have to be taken into consideration in terms of seedling/sapling 

mortality (Fjeld and Granhus 1998, Surakka et al. 2011). The combination of all 

factors effecting seedling/sapling growth, establishment and mortality makes 
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long-term ingrowth a complex process, in which stand density only constitutes 

as one factor.  

3.2 Scots pine (Paper II) 
 

3.2.1 Stand structure and ingrowth 

In 2013 all stands had diameter distributions that were more heterogeneous 

compared to the beginning of the reconstruction period in 1963 (Fig. 11). At the 

time both stand N2 and S2 had a majority of the trees in the two lowest diameter 

classes and S1 had most trees in the diameter class 30-40 cm. Only stand N1 had 

a diameter distribution in 1963 with a relatively even distribution of trees over 

size classes. 

 
Figure 11. Diameter distribution 1963, 1988, and at inventory 2013, with 4 cm diameter class width. 

Grey parts represents Norway spruce and black parts Scots pine. 

 

The age distributions for N2, S1, and S2 were quite homogenous, consisting 

of one or two main age classes. Also in terms of age distribution, N1 was 

standing out from the other stands, with a more uniform age distribution, 
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consisting of trees in the age span between 20 and 160 years. The wide age span 

in N1 was however partly from addition of Norway spruce that were the only 

tree species found in the age span between 20 and 60 years. 

 

Ingrowth of Scots pine saplings was highest at low basal area and decreased 

with increasing stand density, with no ingrowth in any stand when the basal area 

exceeded 13 m2 ha-1. Also for ingrowth of Scots pine trees there was a trend, 

although not as clear as for saplings, with decreasing number of stems growing 

into the tree stratum with increasing stand density. The mean annual ingrowth 

of Scots pine trees was 21.7 trees ha-1 yr-1 in S1, and between 1.6 and 3.1 trees 

ha-1 yr-1 in N1, N2, and S2. Stand S1 had a relatively high level of Scots pine 

tree ingrowth exceeding 20 stems ha-1 yr-1 the first half of the reconstruction 

period, with a flush of ingrowth (>90 stems ha-1 yr-1) around 1980. Also N2 had 

a period with increased ingrowth (exceeding 15 stems ha-1 yr-1) in the beginning 

of the reconstruction period, between 1960 and 1970. Ingrowth of Norway 

spruce trees mainly took place in the northern stands and was more continuous 

over time and stand density than ingrowth of Scots pine.  

 

The observed ingrowth dynamics in this study was in line with observed 

regeneration pulses followed by ingrowth flushes in old-growth Scots pine 

forests in Sweden (Zackrisson et al. 1995, Linder et al. 1997) and in Ponderosa 

pine forests in USA (Boyden et al. 2005). Regeneration pulses and subsequent 

flushes of ingrowth could, according to Zackrisson et al. (1995) and Boyden et 

al. (2005), be explained by favourable weather conditions whereas Linder et al. 

(1997) drew the conclusion that major disturbances (forest fires) were the main 

cause.  

The conclusions made by Zackrisson et al. (1995) and Linder et al. (1997) 

were, however, not supported by our results. If favourable weather would have 

been the main cause for regeneration pulses with following ingrowth flushes, we 

should have found such flushes not only in S1, but also in the other stands.  

The stands used in our study had no traces of major disturbances, like forest 

fires or severe storm damage, nor was there any records of such events during 

the last 100 years. However, forest operations had taken place in all stands 

during the last 100 years, and those could probably play a role as major 

disturbances. By that argument the flush of ingrowth in S1 most likely would 

have been a result of harvest in 1963, leaving only seed trees, and the more 

moderate flush in N2 from thinning done in 1947 and 1957.    

Annual height growth of Scots pine saplings increased over height with 

approximately 3 cm yr-1 for saplings <1 m to about 4-8 cm yr-1 for saplings taller 

than 2 m. Based on the observed height increment and the assumption that the 



37 

ingrowth threshold (4 cm dbh) corresponded to a height of 4 m, the estimated 

time for a sapling to grow from a height of 0.5 to 4 cm dbh would take 60-90 

years. 

 The overall poor correlation between diameter and age distributions, and the 

observed ingrowth flushes indicated that size heterogeneity in the studied multi-

layered Scots pine stands was mainly a result of size stratification among even-

aged cohorts, rather than from a continuous ingrowth.  

 

3.2.2 Growth and yield 

 

The northern stands (N1 and N2) had a periodic volume increment (PAI) that 

was more or less constant in relation to standing volume. In S1 volume increment 

increased over standing volume up to a standing volume of approximately 100 

m3, where after it levelled off. In S2 PAI was significantly positively correlated 

(p<0.05) with standing volume (Fig. 12). The mean annual volume increment 

(MAI) during the whole reconstructed period was 1.9, 2.6, 3.8, and 2.0 m3 ha-1 

yr-1, which corresponded to 50%, 70 %, 68%, and 44 % of the estimated site 

productivity in stands N1, N2, S1, and S2, respectively.  

 
Figure 12. Perodic mean annual volume increment against standing volume in the beginning of 

each 5 year period.  

The positive correlation between standing volume and PAI in the lower part 

of the volume range and decreasing correlation in the upper part was similar to 



38 

what have been reported from earlier thinning experiments in even-aged Scots 

pine stands (Montero et al. 2001, Mäkinen and Isomäki 2004). The PAI in even-

aged stands is however usually culminating at a level that is 1.5-2.0 times higher 

than the estimated site productivity where after it declines when approaching the 

estimated site productivity.  Only S1 had a PAI that briefly exceeded the 

estimated site productivity, whereas PAI culminated below the estimated site 

productivity in the other stands studied.  
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4 Conclusions and Management 
implications 

4.1 Norway spruce 
 

If boreal Norway spruce forests spontaneously strive toward an uneven-aged 

stand structure on low- and medium fertile sites, selection cutting would not be 

required in order to maintain a suitable stand structure. Removal of trees would 

not be necessary through the whole dbh range, but could instead be concentrated 

to the largest and most valuable trees. This would decrease the number of trees 

removed during each cutting cycle, decrease the harvesting cost per removed m3 

and make management more profitable. 

Without conclusive evidence that long-term ingrowth would suffer from a 

high stand density, and with a positive correlation between standing volume and 

volume increment, a high standing volume would be recommended when the 

selection system is applied in boreal Norway spruce forests. In practical 

management this would require a balance between the length of the cutting 

cycles, and cost of each selection cutting. Long cutting cycles with heavy harvest 

intensity in each operation would decrease the harvesting cost per m3, but would 

also reduce total production in the stand. With short cutting cycles less standing 

volume would be removed at each harvest operation, a high standing volume 

and volume increment would thus be maintained, but harvesting cost would 

become higher per m3. 

4.2 Scots pine 
 

If multi-layered stand structures in Scots pine forests are created by size 

stratification, and not continuous ingrowth, they will not be sustainable in the 

long run without human interference. To maintain a heterogeneous stand 

structure, a continuous ingrowth would be needed. Even if ingrowth would not 

have to be annual, recurring flushes of new trees growing into the tree stratum 

would be required. This would only be possible after heavy reductions of the 

stand density, in order to secure the establishment, survival, and growth of 

seedlings and saplings. 

With a positive correlation between standing volume and volume increment 

in multi-layered Scots pine forest, a reduction in stand density to a level were 

ingrowth would occur, would also heavily reduce the total volume production.  
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For selection management to be an optimal choice of management in Scots 

pine forests, other values, e.g. aesthetical or ecological would have to be 

sufficiently important to compensate for the heavy losses in volume production. 
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