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Impacts of Pine and Eucalyptus Plantations on Carbon and 
Nutrient Stocks and Fluxes in Miombo Forest Ecosystems 

Abstract 
Knowledge of how commercial pine and eucalyptus plantations affect soil 
carbon and nutrient status is important in Mozambique, where incentives are 
available to increase the area of forest plantations and also to conserve mature 
miombo forests. Tree species growing on similar sites may affect ecosystem 
carbon differently if they allocate carbon to aboveground and belowground 
parts at different rates. Moreover, changes in ecosystem carbon and nutrient 
status are closely correlated. This thesis examined the effects of first-rotation 
(around 34 years old) commercial plantation of Pinus taeda L. (Loblolly pine), 
Eucalyptus grandis Hill ex. Maiden and Eucalyptus cloeziana F. Muell in 
Mozambique on carbon and nutrient stocks, carbon fluxes (CF) and net 
primary production (NPP) compared with adjacent miombo forests. 

At three study sites (Penhalonga, Inhamacari, Rotanda) in the Western 
Highlands of Manica Province, Mozambique, plots of Pinus taeda, Eucalyptus 
grandis and mixed-deciduous miombo species were delineated to investigate 
soil carbon and nutrient status (0-10, 10-30, 30-50 cm depth). Additional plots 
with these three stand types were established at Inhamacari to determine 
aboveground and belowground carbon stocks, CF and NPP. Aboveground 
carbon stocks were estimated using allometric biomass equations (ABEs) 
developed in this thesis, while belowground biomass was estimated using root-
shoot ratio values from the literature.  

Tree carbon stocks, net annual rate of carbon accumulation by trees, carbon 
allocation to litterfall and to fine root production and NPP were all 
significantly higher in Pinus taeda and Eucalyptus cloeziana plantations than 
in Miombo forest. Total (0-50 cm) soil carbon stocks, but not total soil nitrogen 
stocks, increased significantly following Pinus taeda and Eucalyptus grandis 
plantation. However, soil nitrogen stocks were higher in the top 10-cm layer of 
plantation soil than Miombo forest soil. Plantation of Pinus taeda had no effect 
on soil acidity, but Eucalyptus grandis increased soil pH (10-50 cm) and 
reduced total stock of extractable soil phosphorus (0-50 cm). 

Thus overall, after around 34 years, tree carbon stocks, aboveground and 
belowground carbon fluxes, total carbon stocks and NPP were higher in 
commercial plantations than in natural Miombo forest. The commercial 



plantations affected soil acidity and soil nutrient status differently, apart from 
total soil N stocks. Another novel contribution of the present work was 
development of ABEs for high-altitude Miombo forests and commercial 
plantations of Pinus taeda, Eucalyptus cloeziana and E. grandis in 
Mozambique.  
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1 Introduction 
This thesis investigated the effects of approximately 34-year-old plantations of 
P. taeda, E. grandis and E. cloeziana on carbon and nutrient stocks and fluxes 
following conversion of miombo forest in the Western highlands of Manica 
province, Central Mozambique. A first generation and first rotation of large-
scale commercial forest plantations in Mozambique was studied. 

Knowledge of how commercial pine and eucalyptus plantations affect 
carbon and soil nutrient status is of particular importance in Mozambique, 
since incentives both to increase the area of forest plantations and to conserve 
mature miombo forests are available, under the National Strategy for 
Reforestation (NSR) (MINAG, 2009) and the REDD+ mechanism (Reducing 
Emissions from Deforestation and Forest Degradation), under the United 
Nations Framework Convention on Climate Change (UNFCCC)  (IPCC, 
2006). Commercial plantations are being promoted in Mozambique for 
industrial, social and environmental purposes. Through the NSR, Mozambique 
aims at establishing 1 million ha of commercial forest by 2030 (MINAG, 
2009), which is more than a 10-fold increase in area from the current situation.  

Forest plantations generally use degraded native forests, including thickets 
and degraded agricultural land (Coetzee and Alves, 2005; Maússe-Sitoe et al., 
2016; MINAG, 2009). However, it is widely admitted that the expansion of 
forest plantations in Mozambique may also involve direct conversion of non-
degraded forests (Indufor, 2012; Nhantumbo and Salomão, 2010), including 
mature miombo forest. 

Miombo is a colloquial term used to describe natural forest dominated by 
the genera Brachystegia, Julbernardia and/or Isoberlinia (Chidumayo, 2014; 
Frost, 1996). It is the most extensive tropical seasonal woodland and dry forest 
formation in Africa and occurs in regions with mean annual rainfall ranging 
from 650 to 1400 mm, from lowlands up to 1200 m a.s.l. (Campbell et al., 
1996). Miombo forest occurs in 11 African countries, but mostly in 
Mozambique, Angola, Democratic Republic of Congo, Zimbabwe, Zambia, 
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Malawi and Tanzania. In this thesis, degraded miombo forest (or ‘high 
utilisation forest’ according to Jew et al. (2016), was defined as forest on soil 
with reduced capacity to store carbon as a result of anthropogenic changes 
(adapted from Thompson et al., 2013). This definition also denotes a reduction 
in forest cover while still remaining a “forest” (Tavani et al., 2009). The main 
causes of degradation are selective and unsustainable logging, agriculture and 
fuelwood gathering, including fuel for charcoal production (see Jansen et al., 
2008; Sitoe et al., 2012; Thompson et al., 2013). These causes are intrinsically 
connected and generally result in a landscape characterised as “agriculture 
mosaic with forest” (Sitoe et al., 2012). 

1.1 Tree species effects on the carbon balance and nutrient 
cycling of forest ecosystems 

The carbon balance of forest ecosystems is determined by the balance between 
carbon gained in net primary production (NPP) and carbon losses by 
decomposition and other export fluxes. Forest NPP includes carbon acquisition 
in biomass and litter production in litterfall and root turnover (see Clark et al., 
2001a; Malhi et al., 1999). Thus, at the ecosystem scale, there is both a 
biomass and soil component of the total carbon balance.  

Different tree species growing on similar sites may alter net ecosystem C 
fluxes as a result of different growth rates and aboveground and belowground 
allocation patterns. The strong role of these biological processes in regulating 
carbon stocks and fluxes in forest ecosystems is widely demonstrated in the 
literature (Chapin III et al., 2011; Coleman et al., 2004; Hu et al., 2016; 
Lehtonen et al., 2016; Ågren and Andersson, 2011).  

A meta-analysis of afforestation by Li et al. (2012) concluded that soil C 
stocks increased after plantation of hardwood species such as Eucalyptus, but 
did not change with softwood species such as Pinus. The increase in soil C 
stocks by Eucalyptus spp. occurred in both the organic horizon and the mineral 
soil, whereas Pinus spp. increased soil C stocks in the organic horizons, but 
generally depleted C stocks in the mineral soil, resulting in insignificant overall 
change (Li et al., 2012). Lower soil C stocks in the mineral horizon under 
Pinus spp. plantations could be a consequence of lower below-ground litter 
production compared with Eucalyptus spp. Li et al. (2012) also found that 
changes in stocks of soil C and nitrogen (N) correlate positively and have a 
similar temporal pattern, but that changes in soil N are detected at later age 
stages than changes in soil C. In general, changes in soil C stocks are detected 
30-40 years after plantation, whereas significant changes in soil N stocks 
appear from around 50 years after plantation. One main cause of the strong 
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positive correlation between changes in soil C and soil N is the fairly fixed 
stoichiometric relationship between C and N in plant litter, a relationship that 
also includes phosphorus (P). As with N, the relationship between soil C and 
soil P suggests that an increase in soil organic C is associated with increased 
stocks of soil P, dominated by P in organic form. This is partly because as soil 
C stock increases, P fixation in minerals decreases (Brady and Weil, 2008; 
Moody and Bolland, 1999). However, the correlation between C and P is 
generally weak (r: 40 to 57%; Hou et al., 2014). 

In highly weathered, leached and acidic soils, such as those in Mozambique, 
available soil P is typically low and is often the major growth-limiting factor, 
whereas N is not a limiting nutrient (Aggangan et al., 1996; Binkley, 1997; 
Högberg, 1986; Moody and Bolland, 1999). In highly weathered soils, the 
availability of P also depends on soil pH level. While the fixation of P is at its 
lowest, plant P availability is highest in the soil pH range 6-7 (Brady and Weil, 
2008; Chapin III et al., 2011; Hazelton and Murphy, 2007). Higher demand by 
tree species for nutrients may cause a reduction in plant-available P, 
particularly if forest growth results in soil acidification. Furthermore, lower 
soil pH and base saturation (BS) can be expected, as a result of higher 
accumulation of base cations by plants (Brady and Weil, 2008). In addition, 
increased stocks of soil C can be expected to increase the organic acidity, 
manifested in lower BS, lower pH and higher cation exchange capacity (CEC) 
of the soil (Berthrong et al., 2009).   

1.2 Net primary production 

Net primary production by forest trees includes the increment in aboveground 
and belowground biomass and the production of short-lived components such 
as fine roots and foliage. However, NPP measurements are often restricted to 
the aboveground production due to difficulties in estimating the belowground 
production (Clark et al., 2001a; Coleman et al., 2004). Net primary production 
differs widely among forest types (Malhi et al., 1999), depending on variations 
in climate (e.g. solar radiation, temperature, rainfall), stand structure (e.g. stand 
age, canopy architecture), soil conditions and disturbance regimes (Finér et al., 
2011a; Gillman et al., 2015; Gower et al., 2001; Huston and Wolverton, 2009; 
Pierre et al., 2016; Zhang et al., 2009).  

The increment in aboveground carbon in biomass can represent 40-70% of 
NPP of forest ecosystems, while litterfall and fine root production can account 
for 10-30% and 30-40% of NPP, respectively (Coleman et al. (2004); Chapin 
III et al. (2011). Estimating NPP belowground is a challenge (Clark et al., 
2001a). Besides fine root production, there are other components associated 
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with fine root activity that are mostly ignored, but may be of great significance. 
Such components may include root exudates/secretions (10-40% of NPP), root 
transfer to mycorrhizae (15-30% of NPP) and losses to herbivores and 
mortality (1-40%) (modified from Chapin III et al., 2011; Coleman et al., 
2004).  

However, reliable estimates of forest NPP require all components that 
contribute to total NPP to be quantified (see Clark et al., 2001a), or at least 
those that can be considered representative and/or very sensitive to a specific 
forest ecosystem. Such information on forest carbon dynamics can then be 
used to develop better policy decisions relating to forest production or 
conservation (Clark et al., 2001a).  

1.3 The rationale for the study 

There is a general need for better knowledge on how replacement of native, 
degraded miombo forest with plantations of Pinus and Eucalyptus affects 
carbon stocks and fluxes, including the nutrient status of soils. Improved 
knowledge in this area would increase the possibility to assess the effects on 
the carbon balance at the regional scale. Such knowledge is also needed to 
develop management practices for sustainable forest production. Miombo 
forests and Pinus and Eucalyptus spp. plantations occur in various climate and 
soil conditions in southern Africa. The Western Highlands of Manica province 
in Mozambique are characterised by a mountain miombo forest type that is 
different to lowland miombo forest types. For this and similar regions, there 
are knowledge gaps concerning the fundamental effects of a change from 
native forest and woodland to fast-growing Pinus and Eucalyptus plantations.  

Four of the most important questions are: 
 
1. What are the effects of a first rotation of Pinus or Eucalyptus plantation 

on the soil stocks of carbon, nitrogen and other nutrients and soil 
characteristics?  

2. Are there true tree species effects that can be separated from the 
influence of differences in management, such as better protection from 
fires in plantations? 

3. Are tree species effects on soil carbon stocks caused by differences in 
litter production or the quality (degradability) of the litter? 

4. Do the effects of plantations observed in the first rotation persist in the 
following rotations? 
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Besides understanding the fundamental effects of converting miombo forest 
to plantations, there is a need to estimate NPP and establish allometric biomass 
equations (ABEs) that can be used to estimate carbon stocks and fluxes at the 
regional scale when implementing forest measuring and monitoring systems 
for REDD+. Carbon flux data, otherwise known as emissions factors (EFs), are 
used to calibrate carbon models for predicting and mapping carbon stocks and 
changes in forest ecosystems at specific times, and to support the use of the 
gain-loss method, which is the most robust method for carbon accounting. 
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2 Thesis aims 
The overall aims of this thesis were to:   

1. Examine the effects of Pinus and Eucalyptus plantations on ecosystem 
carbon and nutrient stocks and fluxes and net primary production 
following conversion of ‘degraded’ miombo forests in Mozambique 
(Papers I and II).  

2. Develop biomass allometric equations for miombo, Pinus and 
Eucalyptus species for predicting and mapping carbon stocks at 
ecosystem level in Mozambique (Paper II).  

The specific aims of Papers I and II were to: 
 

 Quantify effects of first rotation, 34-year-old Pinus taeda and 
Eucalyptus grandis stands on soil carbon and nutrients stocks compared 
with “degraded” miombo forest ecosystem (Paper I). 
 

 Develop biomass allometric equations for accurate estimation of 
aboveground carbon stocks in Pinus taeda, Eucalyptus grandis, and E. 
cloeziana and miombo forests growing at high altitudes (Paper II). 

  
 Quantify the effects of 34-year-old Pinus taeda and Eucalyptus 

cloeziana plantations on aboveground and belowground carbon stocks, 
carbon fluxes and net primary production (NPP) compared with those in 
“degraded” miombo forest ecosystems (Paper II). 
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3 Material and methods

3.1 Study area 

The study area is located in the Western Highlands (1100-1700 m a.s.l.) in 
Manica Province, Central Mozambique (Figure 1). The study described in 
Paper I involved three study sites: Penhalonga forest (18°47’53’’S, 
32°47’24’’E) and Rotanda forest (19°34’50’’S, 32°54’07’’E), both managed 
by the IFLOMA company, and Inhamacari forest (18°56’40’’S, 32°42’43’’E), 
managed by the Machipanda Forest Research Centre of Eduardo Mondlane 
University. Only the Inhamacari site was used for the study described in Paper 
II.  

 
Figure 1. Location of the study sites, from South to North: Rotanda, Inhamacari, Penhalonga. 
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The Western Highlands region is part of the Cordillera of Chimanimani 

(African mountainous element), one of most important centres of mega-
biodiversity in Mozambique. The terrain of the region is mostly steeply sloping, 
with elevation ranging from 1100 to 1200 m a.s.l. The climate in the study area 
is temperate, with dry winters and warm summers (Cwb according to the 
Köppen-Geiger climate classification; (Peel et al., 2007). Mean annual 
temperature is 21.2 °C and mean annual precipitation 1300 mm, with a dry 
season during May-October (IIAM, 2007). The soils are weathered, nutrient-
poor and acid or moderately acid. The vegetation in the study area is 
dominated by dry miombo forest at high altitude and non-native commercial 
forest plantations. The area covered by these forest types is estimated to be 31 
000 ha and 21 000 ha, respectively, based on a forest inventory of Manica 
Province (Cuambe and Marzoli, 2006). Dominating species in the miombo 
forests are Brachystegia spiciformes Benth., Julbernardia globiflora (Benth.) 
Troupin, Pericopsis angolensis [Baker] Meeuwen, Uapaca kirkiana Müll. 
Arg., and Parinari curatellifolia Planch. ex Benth. Canopy cover of the 
miombo sites ranges between 10- 40% (see Cuambe and Marzoli, 2006), with 
mean total height of 12 m (field estimates).  

The planted forests included in this study are pure P. taeda, E. grandis and 
E. cloeziana stands established between 1977-1980 (see Adam et al., 1991). 
These species, except E. cloeziana, are also widely planted in the bordering 
countries (see Dube and Mutanga, 2015; FAO, 2001; Mujuru et al., 2014). The 
studied planted forests are part of the first generation of large-scale industrial 
forest plantations that have been established in the study area. The mean age of 
the planted forests was 34 years (± 6% uncertainty error) according to oral 
sources (senior staff of the Machipanda Research Centre and IFLOMA) and a 
SIDA evaluation report of the Mozambique-Nordic Agricultural Programme 
(MONAP) (Adam et al. (1991).To our knowledge, forest plantations received 
no fertiliser and no silvicultural treatments (pruning or thinning) since its 
establishment (A. Esequias, senior staff at Machipanda Forest Centre, 
personal communication, Sept., 2012). The plantations have been better 
protected against cutting, pruning and fires compared to the adjacent miombo 
forests. However, the miombo stands included in this study were relatively 
better protected and were less degraded compared to most other miombo 
forests of the region.  

3.1.1 Study design  

The sites used for the investigation of tree species effects on soils in Paper I 
(Inhamacari, Penhalonga and Rotanda) (Figure 1) were considered as blocks in 
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a randomised block design (n=3). At each site, one study plot (30 m x 30 m) 
was selected for each of three forest types/tree species: miombo, Pinus taeda 
and Eucalyptus grandis.  

Forest stands that fulfilled the following criteria were identified: (i) Forest 
stands of first-rotation plantation of P. taeda and E. grandis, located adjacent 
to miombo forests; (ii) forest plantations established on soil similar to miombo 
forest soil; (iii) forest plantations established on land with a former land similar 
that in the current miombo forest stands; and (iv) high canopy cover and high 
homogeneity in canopy cover and stem density. The study plots were identified 
in the field with the help of senior staff from IFLOMA (M. Mariano, personal 
communication, Oct. 2012) and Machipanda Forest Centre (A. Esequias, 
personal communication, Sept. 2012). Studies of forest type differences in 
biomass, growth and litter production (Paper II) were confined to the 
Inhamacari site, where Machipanda Research Centre provided logistics support 
to ensure monitoring of litterfall and other repeated measurements. Three plots 
(30 m x 30 m) of each forest type (miombo, Pinus taeda and Eucalyptus 
cloeziana) were selected for that study, following the same criteria (i)-(iv) as 
described above. Thus, the studies in Papers I and III shared one plot of 
miombo and one plot of P. taeda at Inhamacari (Figure 1).  

3.1.2 Study of soils (Paper I) 

Sample collection 
In each plot, diameter at breast height (DBH) was measured on all trees and 

the field with the help of a botanically skilled technician. Soil and litter mass 
were sampled using a grid sampling design involving 10 spots in each plot, in 
order to cover the expected variability in soil and litter mass. The litter layer 
was sampled within a 15 cm x 15 cm frame. Soil samples were collected with a 
steel corer (28 mm diameter) and soil cores were divided into depth sections 
(0-10, 10-30 cm) and pooled together to one sample per soil layer and main 
plot. For the deeper layers (30-50 cm), soil samples were collected from one 
soil pit in each plot. In total, nine soil samples were collected per vegetation 
type for chemical analyses (three sites x three soil layers). A forest and soil 
inventory was carried out.  

Laboratory analyses 
Soil analyses included total soil organic carbon (SOC) determined by the 
Walkley-Black method, and total soil nitrogen (Kjeldahl method according to 
Westerhout and Bovee (1985). Exchangeable base cations (Ca2+, Mg2+, K+ and 
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Na+) were analysed by extraction in ammonium-acetate, followed by 
determination using atomic absorption spectrophotometry. Exchangeable 
acidity (Al3+ + H+) was determined by a complexometric titration method and 
extractable phosphorus was determined according to the Bray (I) method. Soil 
pH was measured potentiometrically in a 1:2.5 soil:water solution according to 
Houba et al. (1989). In addition, soil texture was determined by mechanical 
analyses and the Robinson pipette method was used for determination of the 
clay content (Westerhout and Bovee, 1985). Laboratory work was based on the 
protocol by Houba et al. (1989). Soil analyses were performed at the Faculty of 
Agronomy and Forest Engineering (FAEF), University Eduardo Mondlane 
(UEM) in Mozambique. 

3.1.3 Study of forest stands (Paper II) 

Structural analysis and growth rate of forest stands 
In each of the nine study plots at Inhamacari, trees were individually marked 

2013, using a diameter tape with metric units. These measurements were 
repeated in July 2014. All individuals were identified to species level in the 
field with the help of a botanist. No mortality was observed during the 1.3 
years of forest monitoring. 

Litterfall 
Litterfall was collected continuously throughout one year (November 2012 to 
October 2013) using square litter traps (50 cm x 50 cm, approx. 20 cm deep). 
In each study plot, 15 litter traps were installed, giving in total 45 traps per 
forest type. Litterfall mass was collected monthly and pooled per plot. Dry 
mass of litterfall was determined after drying at 65°C by constant weight. 
Carbon content in litter was assumed to be 50% of dry mass (Grace et al., 
2006). The collected litterfall included tree foliage, reproductive parts (flowers, 

but excluded herbaceous material and branches >5 mm (see Clark et al., 2001a) 

Fine root production 
Fine roots were defined a (Lehtonen et al., 2016; 
McCormack et al., 2015). Annual production of fine roots in the top 15 cm of 
the soil and their carbon content were estimated using the ingrowth core 
method (Finér et al., 2011a; Jackson et al., 1996; Mainiero and Kazda, 2006). 
Ingrowth bags (150 mm long, 50 mm Ø) were made from nylon mesh, with 2 
mm mesh size. In each study plot, 5 soil cores (50 mm Ø) were taken with a 
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steel auger, all roots were removed and the root-free soil was placed in an 
ingrowth mesh bag, which was name-tagged, sealed and tucked into the 
sampling hole, after which the litter layer was replaced. The roots in these 
cores were used to estimate fine root biomass. After 7 months, the mesh bags 
were retrieved, soil sampling for root biomass was repeated and new ingrowth 
bags were installed and retrieved after 9 months. 

Roots within the bags were carefully separated from the soil manually, 
washed in a ~0.5 mm mesh sieve and oven-dried to constant weight at 65 oC. 
Live and dead roots were not separated owing to practical difficulties (Bledsoe 
et al., 1999; Ciais et al., 2011). Fine root turnover rate was calculated as the 
ratio between fine root production over 16 months divided by the fine root 
biomass at the first root sampling and 1.3 (time correction factor). The carbon 
content in fine roots was assumed to be 50%. The inverse of fine root 
production was considered an estimate of fine root longevity (residence time). 

3.1.4 Calculations 

Study of soils (Paper I) 
The soil study included calculations of effective cation exchange capacity 
(CECeff), base saturation (BS), SOC stocks, total soil nitrogen (N) and 
extractable phosphorus (P). CECeff was calculated from the sum of equivalent 
charges of base cations (Ca++, Mg++, K+, Na+) and exchangeable acidity (Al+++, 
H+) (Hazelton and Murphy, 2007). Base saturation was calculated from the 
sum of base cations divided by CECeff.  

The element stocks (SOC, N and P) per unit area and soil layer (Mg ha-1) 
were calculated by multiplying the bulk density (BD), soil layer thickness and 
the element concentration per unit dry mass. Total element stocks (Mg ha-1) 
were calculated as the sum of stocks in all layers in all layers (0-10cm + 10-
30cm + 30-50 cm depth) and plot level. Soil bulk density (g cm-3) was 
estimated per soil layer using a general pedotransfer function (Guo and 
Gifford, 2002; Paul et al., 2002; Post and Kwon, 2000). Assumptions made and 
a detailed description of bulk density determination is presented in Paper I. 

Calculation of mean relative difference (RD; Equation 1) was used to 
determine the magnitude of the impact of planted forests (P. taeda and E. 
grandis) on total SOC stock, total stock of extractable phosphorus (in the soil 
and whole tree) and total nitrogen stock (in the soil and whole tree). RD (%) =    100             ( Eq. 1) 

25 



Study of forest stands (Paper II) 
Aboveground carbon (AGC) stock (Mg ha-1) was calculated per forest type 
using allometric biomass equations (ABEs) developed. Trees for destructive 
sampling for biomass determination were taken within the Inhamacari study 
area, but outside the nine study plots, in order to avoid disturbance to the plot 
soil.  

Destructive sampling was carried out in January 2013 (Eucalyptus stands) 
and in June 2014 (miombo, Pinus stands). In both cases, trees were sampled in 
the period of peak foliage. A total of 30 trees were sampled in P. taeda stands, 
31 trees in Eucalyptus stands (E. cloeziana and some E. grandis) and 38 trees 
in miombo forest. The five dominant tree species in miombo forest were 
included (i.e. Brachystegia spiciformes, Julbernardia globiflora, Pericopsis 
angolensis, Uapaca kirkiana and Parinari curatellifolia).  

The following equations were developed to predict total aboveground 
biomass (in metric tons dry weight, tDW) from DBH (cm): 

For P. taeda plantations: tDW (   ) = 0.1942 .               (Eq. 2) 

(DBH range = 9 to 39, mean prediction error = 1%, precision = 99%). 

For E. cloeziana plantations:  tDW (   ) = 1.1547 .                 (Eq. 3) 

 (DBH range= 5 to 74, mean prediction error = 2.7%, precision = 97.3%).  

For miombo forest stands: tDW (   ) = 0.1397 .                 (Eq. 4) 

(DBH range= 4 to 36, mean prediction error = -0.5%, precision = 99.5%).  

The carbon stocks in aboveground biomass (Mg ha-1 yr-1), i.e. stems + 
branches + foliage, were calculated for individual trees in study plots by 
applying the DBH data to the ABEs (Equations 2-4) and adding up the carbon 
stock at plot scale. Growth increment, i.e. carbon accumulation in biomass 
following forest growth, was calculated as the difference between carbon 
stocks (Mg ha-1) of the two consecutive forest inventories, divided by the time 
interval (1.3 years).  

Coarse root carbon (CRC) stock (Mg ha-1), here defined as all roots >10 
mm diameter (Levillain et al., 2011), was estimated using root–shoot ratio 
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(RSR) values taken from the literature. For miombo forest, a mean RSR of 
0.48 was assumed, considering that the reported value varies between 0.40 and 
0.56 (see Chidumayo, 2014; Kachamba et al., 2016; Mokany et al., 2006; 
Mugasha et al., 2013; Ryan et al., 2011). For P. taeda and E. cloeziana 
plantations, a mean RSR value of 0.27 was used, given that it can vary between 
0.20 and 0.32 (see Cairns et al., 1997; IPCC, 2006; Mokany et al., 2006). No 
distinction was made between plantation forest species because RSR can be 
independent of tree type, i.e. angiosperm or gymnosperm (see Cairns et al., 
1997; Mokany et al., 2006). Net primary production was defined as the amount 
of carbon produced and lost by the three stand types during the one-year period 
of field monitoring (adapted from Clark et al., 2001a). In this context, NPP was 
considered equivalent to the sum of carbon fluxes of three components (Clark 
et al., 2001a): aboveground carbon increment (AGCI), carbon lost as litterfall 
(LFC) and carbon production by fine roots (FRP). The contribution of 
belowground increment in coarse roots to NPP was not included here due to 
the relatively large uncertainty of that estimate.Similarly to the soil study, 
mean relative difference (RD; Equation 1) was calculated in order to determine 
the magnitude of the impact of P. taeda and E. cloeziana on aboveground and 
belowground carbon stocks (i.e. AGC and CRC), carbon fluxes (AGCI, LFC 
and FRP) and net primary production (NPP). 

3.1.5 Statistical analyses  

For the soil study, the linear mixed-effects model in R package lme4 (Bates et 
al., 2014) and two-way analysis of variance model was used to evaluate the 
effect of the planted forests (P. taeda and E. grandis) on soil properties 
compared with miombo forest. For the study of forest stands, the linear model 
in R package lm (RCoreTeam, 2014) and one-way analysis of variance was 
used.  

In both cases, pair-wise comparisons were performed based on Tukey’s 
post hoc test, with P value adjusted using the single-step method and 

(Bretz et al., 2010). The P 
values from the model were extracted using R package multcomp (Bretz et al., 
2010). Results for Z-test, T-test and F-test are presented in Chapter 4 of this 
thesis. When the F-test value is presented, the three stand types did not differ 
significantly, while when Z-test and T-test values are presented this indicates 
that pair-wise comparisons were performed and that significant differences 
between the three vegetation types occurred. Biomass allometric equations 
were fitted using R package nlstools (Baty et al., 2015). All statistical analyses 
were carried out using R statistical software, version 3.0.3 (RCoreTeam, 2014). 
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4 Results and Discussion 

4.1 Comparison of carbon stocks  

Carbon stocks in the soil (SOC, Paper 1) and in the biomass (Paper II) of 
different forest types are summarized in Figure 2. However, it should be kept 
in mind that the SOC data were mean values from three sites, whereas the 
biomass stocks were only measured on one location, Inhamacari. Further, SOC 
stocks of Eucalyptus were measured in E. grandis stands on all three locations, 
whereas the biomass of Eucalyptus included only data on E. cloeziana stands 
from plots in Inhamacari. The carbon stocks in the litter layer of E. grandis and 
E. cloeziana stands in Inhamacari were almost the same (data not shown), but 
SOC stocks were much lower in the study plot with E. cloeziana.   

In miombo forest and Pinus plantation (Figure 2), SOC accounted for 78% 
and 50%, respectively, of the total carbon stocks in biomass and soil. In 
contrast, in the Eucalyptus plantations, aboveground carbon in biomass was the 
largest stock, which accounted for 46% of total carbon budget and was slightly 
greater than SOC stock (41% of total carbon stock).  

Pinus and Eucalyptus 
on carbon stocks, increasing the carbon stocks in both biomass and soil (AGC, 
CRC and SOC) compared with miombo forest (Figure 2). The magnitude of 
the effect of plantation was clearly higher on aboveground carbon stocks than 
on soil carbon stocks.  

Aboveground carbon stock was 563% (or 106 Mg C ha-1) larger in P. taeda 
and 875% (or 156 Mg C ha-1) larger in E. cloeziana plantation than in miombo 
forest (16 Mg C ha-1). A similar effect, but at a lower level, was observed for 
SOC stocks, which were 55% larger in P. taeda (or 135 Mg C ha-1) and 60% 
larger in E. grandis (or 139 Mg C ha-1) than in miombo forest (87 Mg C ha-1).  
Assuming a steady state stock of soil carbon in miombo forest over 34 years, 
the net accumulation of SOC was 1.41 Mg ha-1 yr-1 in P. taeda stands and 1.53 
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Mg ha-1 yr-1 in E. grandis stands. These estimates were within the range of 0-
3.3 Mg ha  yr  reported by Post and Kwon (2000), but higher than the 0.15-
0.75 Mg ha-1 yr-1 reported by Li et al. (2012).  

The higher aboveground carbon stocks in planted forest compared with 
miombo forests were reflected in higher basal area in the plantations (Paper II). 
Increases in aboveground C stocks are often correlated with increased SOC 
(e.g., Hansson et al., 2013; Wang et al., 2009), and this was also the case in this 
Thesis. 

 
Figure 2. Pattern of allocation of carbon stocks to aboveground and belowground systems in 
miombo, Pinus and Eucalyptus stands. Soil organic carbon stocks are mean values from three 
locations of miombo, Pinus taeda and E. grandis forests (Paper I). Carbon stocks in tree biomass 
are from on miombo, P. taeda and E. cloeziana forests in Inhamacari (Paper II).  
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4.2 Comparison of carbon fluxes 

The carbon fluxes in biomass increment and aboveground litterfall were 
significantly higher in the plantations than in the miombo forest and there was 
also a difference (  0.05) in fine root production in E. cloeziana compared 
with miombo (Table 1, Figure 3). Mean value of fine root production was 53% 
higher in P. taeda than in miombo, but the difference was not significant (T-
value = 2.89; P= 0.06).  

The Pinus and Eucalyptus plantations allocated most of their carbon to 
stand growth (5.9 and 8.3 Mg C ha-1 yr-1, respectively), whereas miombo forest 
stands showed the opposite, with more carbon allocation to litterfall (2.3 Mg C 
ha-1 yr-1) (Figure 3). In forest plantations at similar sites elsewhere (annual 

-1), the mean annual rate of carbon allocated 
to stand growth is reported to range between 5.5 and 8 Mg ha  yr-1 (IPCC, 
2006), which is comparable to the rate found in Pinus and Eucalyptus 
plantations in this thesis.  

 
Figure 3. Carbon fluxes and pattern of allocation of net primary production (NPP) to 
aboveground and belowground systems in miombo, Pinus and Eucalyptus stands (Paper II). 
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The mean rate of carbon allocation to stand growth observed in miombo 
trees (1.49 Mg C ha  yr-1 ) showed good agreement with the ranges reported in 
global reviews, of 0.3-3.8 Mg C ha yr-1 (Clark et al., 2001b)  and 1.61-3.99 
Mg C ha  yr-1 (Luyssaert et al., 2007). However, it was slightly higher than the 
0.1-0.9 Mg C ha  yr-1 reported for miombo forests elsewhere in Africa (Lupala 
et al., 2014; Williams et al., 2008). 

In this thesis, there was a consistent and increasing trend in carbon in 
litterfall and fine root production with increasing aboveground and coarse root 
carbon stocks. The general claim of a strong positive relationship between tree 
biomass and fine root production (see Lehtonen et al., 2016; Raich et al., 2014) 
was confirmed in this study. As demonstrated by e.g. (Hu et al., 2016; 
Lehtonen et al., 2016; Li et al., 2012), fine root production and litterfall are 
important drivers in explaining SOC changes. In this thesis, the increased SOC 
stocks in planted forests were correlated with higher litter production (Figures 
2 and 3).  

4.3 Net primary production 

Net primary production is influenced by a number of factors, which poses 
challenges when comparing data from different sites. In this study, the 
contribution of net increment in aboveground biomass in Pinus and Eucalyptus 
plantation (57 and 64%, respectively; Figure 4) lay within the range of 40-70% 
of NPP compiled from different sources (Chapin III et al., 2011; Coleman et 
al., 2004; Ågren and Andersson, 2011). The value found here for net increment 
in aboveground biomass of miombo forests was 34% of NPP, which is 
relatively low.  

Carbon allocation to litterfall may account for 10-30% of NPP in forest 
ecosystems (see Chapin III et al., 2011; Clark et al., 2001a; Coleman et al., 
2004; Yang et al., 2007). The contribution of litterfall in Eucalyptus plantations 
(30% of NPP) showed excellent agreement with the cited range, but litterfall in 
the Pinus plantations and miombo forest was higher, 53% and 36% of NPP, 
respectively.  

The proportion of C allocated to fine roots can vary between 30 and 40% of 
NPP (see Chapin III et al., 2011; Coleman et al., 2004; Lehtonen et al., 2016). 
The proportion of fine root production was much lower in this thesis for all 
forest types, and ranged from 6-12% of NPP in Eucalyptus (E. cloeziana) and 
Miombo stands, with Pinus intermediate (7% of NPP). The main cause of this 
was probably that fine root production was only measured in the top 15 cm of 
the soil. Soil profiles dug out at the study site indicated that this soil layer 
probably included fine roots of great importance to nutrient and water uptake, 
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but the root system in all forest types was probably very deep, at least more 
than 2 m. For example, Laclau et al. (2013) demonstrated that young E. 
grandis plantations in Brazil had rooting depths down to 10 m in a sandy soil.  

Thus total fine root biomass and production is unknown, but probably 
significantly larger than estimated here. The fine root longevity observed here 
was similar to that reported for tropical forests in South Ecuador by Graefe et 
al. (2008). Further, the contribution of increment in coarse roots to NPP was 
not included due to uncertainties in root-shoot ratios (literature values). If 
estimates of growth in coarse roots would be included in NPP, it would have 
increased estimates of NPP in miombo forests more than the plantations. 
Consequently, values of belowground NPP were probably underestimated for 
all forest types examined in this thesis.  

 
Figure 4. Carbon flux and net primary production (NPP) in miombo, Pinus taeda and Eucalyptus 
cloeziana stands. NPP is the sum of three components; aboveground carbon increment (AGCI), 
carbon lost as litterfall (LFC) and carbon production by fine roots (FRP) (Paper II). 
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4.4 Effects on Nitrogen and Carbon-to-Nitrogen ratio (Paper I) 

In contrast to SOC, there were non-significant effects of stand type on total soil 
N stock (0-50 cm layer). Total stock (0-50 cm layer) of nitrogen (N) did not 
differ between Miombo and planted forests (F=0.74; P>0.1). It ranged from 5.9 
Mg ha-1 in Miombo forest to 7.0 Mg ha-1 in E. grandis, with P. taeda 
intermediate (6.7 Mg ha-1). The findings agrees with the observation by Li et 
al. (2012) that a longer time (~50 years) is needed to detect significant 
increases in soil N than increases in SOC following plantation. However, soil 
nitrogen stocks were higher in the top 10-cm layer of plantation soil than 
miombo forest soil. 

However, this study estimated an average accumulation rate of 
approximately 32 kg N ha-1 yr-1 by Pinus and Eucalyptus plantation, which was 
a substantial accumulation rate of total soil N stocks compared to Miombo. The 
estimates of total N stocks (0-50 cm) for Miombo forest and plantation of P. 
taeda in this study were similar to those reported by Mujuru et al. (2014) in 
Zimbabwe, namely: 5 Mg N ha-1 in Miombo sites and 7.5 Mg N ha-1 in P. 
patula plantation.  

The mean value of the C/N ratio (0-50 cm) was 15, 21 and 22 for Miombo, 
E. grandis and P. taeda soils, respectively. In a study in Zimbabwe, Mujuru et 
al. (2014) reported a mean C/N ratio of 13 and 17 in the 0-60 cm soil layer of 
miombo forest and 30-year-old P. patula, respectively. In contrast, King and 
Campbell (1994) reported higher values for stands in Zimbabwe: a C/N ratio of 
21 in miombo forest, 22 in P. patula and 26 in E. grandis stands. It can be seen 
that the findings in this study, falls between the C/N ratios reported by those 
two studies. 

4.5 Effects on soil pH and extractable Phosphorus 

Eucalyptus grandis plantation increased soil pH and reduced extractable soil P 
in this study. Extractable phosphorus (P) stock (Figure 5) was 22% lower in E. 
grandis soils (0-50 cm) than Miombo (Z=-  0.01). Miombo and Pinus 
soils did not differ significantly in this respect. Extractable P stock in E. 
grandis was also significantly lower than P. taeda  0.001).  

In both the E. grandis and P. taeda plantation, extractable P and SOC were 
strongly (t=10.44; degrees of freedom=  0.001) and positively correlated 
to each other (Pearson's r = 0.97). The significant positive correlation between 
SOC and P found in the planted stands, but not in miombo forest, was not 
surprising, since an increase in soil organic C should be associated with 
increased availability of P (Brady and Weil, 2008; Moody and Bolland, 1999; 
Rashidi and Seilsepour, 2008). 
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Figure 5. Patterns of allocation of phosphorus (P) to aboveground and belowground systems in 
miombo, Pinus taeda and Eucalyptus cloeziana stands (Paper I). 

Higher demand by tree species for nutrients may cause a reduction in plant-
available P, particularly if forest growth results in soil acidification. Available 
soil P in the studied soils, i.e. highly weathered, leached and acidic soils is 
typically low P limitations for plant growth and P limitation can be expected 
(Aggangan et al., 1996; Binkley, 1997; Högberg, 1986; Moody and Bolland, 
1999).  

In highly weathered, leached and acidic soils the availability of P also 
depends on soil pH level. The effect of E. grandis plantation on soil pH, i.e. 
pH: 0.6-0.8 pH units higher, was a significantly large impact relative to 
adjacent Miombo soils. The effect of E. grandis plantation on soil pH was the 
opposite to that of P. taeda (Data not shown).  

The combination between nutrient depletion from the soil in to the tree 
components (stem, branches, and foliage) plus increased soil pH should be 
connected to the observed effects. Plant P availability is highest in the soil pH 
range 6-7 (Brady and Weil, 2008; Chapin III et al., 2011; Hazelton and 
Murphy, 2007), which is corresponds to findings in E. grandis plantation (pH: 
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. Plantation of Pinus taeda had no effect on soil acidity, but 
Eucalyptus grandis increased soil pH (10-50 cm) and reduced total stock of 
extractable soil P (0-50 cm).  

The estimated mean amount of P in above-ground biomass of E. grandis 
(67 kg ha-1) was of a similar magnitude to the apparent decline in P content in 
the soil compared with miombo forest (38 kg ha-1) (Figure 5). In contrast, there 
were no differences in soil P stocks between miombo forest and P. taeda 
plantations, while the amounts of P accumulated in the biomass of pines was 
substantial. This difference between stands of Pinus and Eucalyptus may 
derive from species differences in e.g. nutrient uptake capacity and 
mycorrhizal associations to roots.  

The results suggest that P. taeda has a greater capacity than E. grandis to 
utilise other P sources in the soil than measured by the extraction method used 
here. Another explanation is that extractable P depends on soil pH (Brady and 
Weil, 2008; Hazelton and Murphy, 2007), and organic P is an important source 
of plant P uptake in weathered soils. 
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5 Conclusions 
This thesis compared ecosystem carbon and nutrient status in soil following 
first-rotation Pinus and Eucalyptus plantation in a high-altitude region of 
Mozambique with the situation in adjacent native, mixed-species miombo 
forests.  

The main conclusions of the work were: 
 After around 34 years, tree carbon stocks, aboveground and 

belowground carbon fluxes and net primary production were higher in 
Pinus taeda and Eucalyptus cloeziana plantations than in miombo forest. 

 After around 34 years, total soil carbon stocks were higher in Pinus 
taeda and Eucalyptus grandis plantations than in miombo forest.  

 Nitrogen stocks in the top 10 cm soil layer soil were higher in the 
plantations than in miombo forest. 

 The Pinus taeda and Eucalyptus grandis plantations affected soil acidity 
and exchangeable soil nutrient status differently (0-50 cm). 

  Thus, plantation of Pinus taeda had no effect on soil acidity, but 
Eucalyptus grandis increased soil pH (10-50 cm) and reduced total stock 
of extractable soil phosphorus (0-50 cm).  

 Biomass allometric equations were successfully developed for 
aboveground biomass of high-altitude, mixed-species miombo forests, 
plantations of Pinus taeda and plantations of Eucalyptus cloeziana and 
E. grandis in Mozambique.  

 The allometric biomass equations developed predicted aboveground 
 97%, mean 

prediction error: -3 to 1%).  
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6 Further work 
This licentiate thesis was produced as part of a PhD thesis project.  More data 
and material have been gathered within the project and are intended for the 
following planned publications: 

1. A study of decomposition rate of foliage litter in miombo, Pinus taeda and 
Eucalyptus cloeziana stands. Foliage litter was collected and used for a 
litter-bag study of decomposition rate. The field study was run for two 
years. Temperature in the topsoil was monitored daily in different forest 
stands. The mass loss data will be analysed using the Q-model to predict 
long-term carbon dynamics in litter. Litterfall data will be used to predict 
the long-term consequences for carbon dynamics in the soil. 

2. Prediction of aboveground carbon stocks in miombo forest at landscape 
scale in the Central region of Mozambique. Three potential biomass 
allometric equations have been developed for a wider geographical area 
characterised by diverse miombo ecosystems in different stages of 
degradation. Landscape-scale carbon prediction is of interest for 
implementing forest measuring and monitoring systems for the REDD+ 
mechanism at sub-national level. In addition, some equations have been 
developed for predicting aboveground carbon based on stem diameter 
measurements at the root collar, to allow estimation of biomass lost in 
forest degradation. To the best of my knowledge, no similar models have 
been proposed elsewhere except those using remote sensing technologies. 

3. An analysis of how traditional uses of miombo forests are linked to forest 
degradation in the Central region of Mozambique. The study will involve 
structural analysis of tree species individually and forest ecosystems as a 
whole. Tree species with high traditional value locally and which are highly 
threatened as a result of overexploitation have already been identified. The 
findings in the study will allow the impacts of traditional uses on the 
conservation status of individual tree species to be determined. 
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