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Local Baseline Knowledge for Conservation and Restoration of 
Degraded Ecosystems in Ecuador 

Abstract 

Deforestation and land-use changes are a major threats to native ecosystem in many 

tropical countries, including Ecuador– one of the biodiversity hotspots in the world. In 

tropical Andean countries, natural ecosystems change over small spatial scales. Thus, 

conservation and restoration initiatives, strongly require ecological baseline 

information about local ecosystems history, spatial distribution, integrity, trophic 

interactions, successional dynamics, home range, health and as well as considering the  

local ethobiogical and ethnoecological knowledge. The present work was done in order 

to generate initial ecological base-line information in three locals and one sub-regional 

landscape. The major findings are: (1) ‘Forest Gap Phase Dynamic Reference Method’ 

inside three successional stages  in old grow reference forest and secondary forest 

regrowth, was able  to generate  baseline information about the  ecosystem structure, 

composition and biomass in a local Choco-Darien rainforest (NW Ecuador); (2) 

Traditional Ecological Knowledge showed good synergy with ecological science-based 

approaches (e.g. regeneration survey in forest gaps) to identify native tree species 

useful for human beings and wildlife; (3) Inter-crown pixel information from 

hyperspatial aerial imagery enabled identification of  54% of families, 53% of genera 

and 56% of species sampled from the ground with a high predictive success of primary 

and secondary forest indicators species; (4) The home range of endemic brown-headed 

spider monkeys (Ateles fusciceps) was evaluated in the NW of Ecuador, and it was 

found that this species is in critical danger of extinction, due high levels of hunting and 

habitat loss specially outside protected areas; (5) anthropogenic disturbances, mainly 

grazing, in an Andean páramo ecosystem equally affected the species composition of 

the grassland and bushland communities with marked changes in their soil properties. 

Overall, these and other methods and results can be used to generate “Local ecosystem 

base line information”, and initiate the idea of establishing a “Local ecosystem health 

centre” in each village, coordinated by natural and social science researchers, 

technicians and local population members, with a solid ecological background, who 

will be responsible to maintain available update information, coordinate or facilitate 

conservation and restoration efforts, as the establishment of ecological corridors, to 

reconnect local and sub regional  fragmented ecosystems.  
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1 Introduction 

1.1 General background 

Healthy ecosystems deliver essential goods and services for human society. 

Tropical forest ecosystems are well-recognized as biodiversity hotspots – 

housing 44% of all plant species world-wide and 35% of vertebrate species 

within an aggregate expanse of 2.1 million km2 or 1.4% of the Earth's land 

surface (Myers et al. 2000). Among the leading hotspots is the Tropical Andes, 

which spans from western Venezuela to northern Chile and Argentina, and 

includes large portions of Colombia, Ecuador, Peru, and Bolivia. According to 

Myers et al. (2000), this hotspot is the richest and most diverse, with 45 000 

plant species (20 000 being endemic) and 3 389 vertebrate species (1 567 being 

endemic). The Choco-Darien region in Western Ecuador is also one of the 

biodiversity hotspots, housing 9 000 plant species (1625 being endemic). 

Tropical forests also play a key role in climate regulation, hydrological cycle 

and soil conservation (Jobbágy and Jackson 2000, Valencia et al. 2004). It is 

estimated that tropical forests store 471 ± 93 Pg C, which is equivalent to 55% 

of the carbon stored in Earth’s forests (Pan et al. 2011).  

 

Deforestation and land-use change have been, and still are, major threats to the 

native ecosystem degradation and loss of ecosystem benefits such as water 

supplies and carbon sequestration in the tropical highlands and lowlands. 

During the period between 2010 and 2015, tropical forests are being lost at a 

rate of 5.5 M ha y-1 (Keenan et al. 2015). This destruction of tropical forests is 

accounted to high carbon losses both above and below ground. The greenhouse 

gas (GHG) emissions resulting from deforestation are estimated at 1.6 ± 0.4 Gt 

C y-1, which is about 27% of the global carbon that is released from fossil fuel 

combustion estimated to be 6 Gt C in 1990 (Malhi et al. 2002).  
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Three quarters of the emissions from deforestation are from the loss of 

aboveground biomass, and a quarter is due to soil C decomposition (Melillo et 

al. 1996, Malhi, Meir and Brown 2002, Houghton et al. 2001). In addition, CO2 

emissions from forest degradation increased significantly from 0.4 Gt CO2 yr-1 

in the 1990s to 1.1 Gt CO2 yr-1 in 2001–2010 (Federici et al., 2015). 

 

In Ecuador, deforestation and forest degradation has dated back to the colonial 

period when native forests were unscrupulously exploited for timber, which 

was later exacerbated by increasing human population (from 4 million in 1950 

to more than 16 million in 2016) and a poor forest development policy that 

promotes reforestation programs using exotic species (Mecham 2001, 

Sarmiento 2002, Farley 2007). In addition, a resettlement policy promoted by 

governmental institutions, especially in the Amazon and the Andean Choco 

Regions, between 1960 and 1990 has resulted in further clearance of the 

natural forests (Southgate, Sierra and Brown 1991, Sierra 2001, Perreault 2002, 

Laurance et al. 2004). Consequently, several conservation and restoration 

initiatives have been launched over the past few decades, which are highlighted 

in the subsequent section.  

1.2 Conservation and restoration initiatives in Ecuador 

Ecuador has been recognized globally as a ‘mega-biodiverse’ country which 

harbors various global conservation priorities (Dodson and Gentry 1991, Sierra 

et al. 1999), with its four natural regions (Costa, Andean, Amazonian and 

Galapagos), eight vegetation associations, 19 intermediate vegetation 

associations and 72 vegetation types (Sierra et al. 1999). This extraordinary 

diversity has attracted the attention of many international and national 

conservationists. The early days of conservation awareness resulted in the 

creation of spectacular national parks, notably the declaration of a National 

Park for several islands in the Galapagos between 1936 and 1939 (Black 1973). 

Non-governmental environmental organizations (NGOs) interested in nature 

conservation have flourished over time; the oldest being Charles Darwin’s 

foundation established in 1959 by the IUCN (International Union for 

Conservation of Nature) and UNESCO (the United Nations Educational, 

Scientific and Cultural Organization) to study and protect the Galapagos 

archipelago (Black 1973). This was followed by the establishment of nature 

foundation (Fundación Natura) in 1978 with the supports of the World Wildlife 

Fund (WWF) and IUCN for promoting the National Park System and urban 

conservation education program.  
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The mid-1980s marked the conservation movement known as the CONAIE 

(Confederation of Indigenous Nationalities of Ecuador) and the socio-political 

frame work “Sumak kawsay” (good living) formed the base for the 

establishment of  “PACHAKUTIK” (Pachakutik Plurinational Unity 

Movement) in Ecuador. Together with other Andean Countries, this represents 

a planetary-wide movement which seeks to respect and heal the Earth by 

reforming human relations at all levels so as to promote holistic maintenance  

of ecosystems and to secure a ecosystems for future generations (Mecham 

2001, Radcliffe 2012). In addition to the CONAIE framework, several 

foundations were set up, such as: CEDENMA (Ecuadorian Committee for 

Nature and Environment Defense), Maquipucuna, Jatun Sacha,  Amigos de la 

Naturaleza, Sociedad Francisco Campos,  Pedro Vicente Maldonado, Arcoiris, 

Amerindia, Aves y Conservación, Acción Ecológica, EcoCiencia, Mazán, 

Pachamama,  Antisana, ALLPA, Jocotoco, Cambugán, Ecominga (FUNAN 

2002, Justicia 2007, ECOLAP-MAE 2007, MAE 2007, Radcliffe 2012, Krause 

2013).  

 

By 1990s the number of social and environmental NGOs had already reached 

over 400 (Justicia 2007, ECOLAP-MAE 2007) and continue to grow over the 

past decades. The notable feature of some of the environmental organizations, 

was purchasing land and setting it aside for conservation purposes within a 

human-dominated landscape. However, this approach was later challenged by 

some as it fails to take into account the local communities socio-economic 

conditions. Organizations as: Fundación Maquipucuna, established in 1988, 

and Fundación Jatun Sacha stablish in 1989, together with other local 

communities and organizations, had been trying to promote at the local 

community level environmental education activities and the generation of 

alternatives as local ecotourism related activities, which is subsequently proven 

to be one of the most effective means to conserve natural ecosystems (Justicia 

2007). Today, Ecuador is the first country in the world to declare the rights of 

nature in its constitution through popular referendum in the year 2008 (articles 

71-74). The declaration guarantees the rights of natural ecosystems to exist, to 

be maintained and be respected their ecological and evolutionary processes and 

the need to find alternatives to restore degraded ecosystems (Becker, 2011, 

Radcliffe, 2012) 

 

Although the conservation movement in Ecuador has a relatively long history, 

active restoration of degraded ecosystems is still lagging behind. Most efforts 

to forest restoration involve planting of a few native and/or exotic species 

based on experiences elsewhere. However, the choice of tree species for 
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restoration planting can influence both the rate and trajectory of restoration 

processes and determine the success of the projects. Ideally, the species 

selected for restoration endeavors should tolerate the prevailing environmental 

conditions of the degraded site, and have diverse ecological importance and 

traditional economic and non-economic values. In areas where restoration 

practice is at its infancy stage, the lack of knowledge about suitable species is 

always a challenge. In recent years, this lack of knowledge has triggered 

interests among researchers and practitioners to look into rapid and reliable 

methods of generating information for establishing local reference ecosystem. 

This accentuates the need for defining a locally suitable landscape unit that can 

serve as reference and planning unit for conservation, productive and 

restoration purposes.  

 

Given the biological ecosystems and environmental degradation crisis and as 

well considering the potential to generate future conservation and restoration 

initiatives, the main question here is: How individuals and social groups, 

especially at the local landscape level, could possible contribute effectively to 

reduce the natural ecosystem degradation? In order to generate alternatives to 

face this problems, first it is needed: An integrate nature frame perspective, as 

the one that we are suggesting in (Figure. 1), in which the human population 

can be perceive that is one of the species, which are part of the inorganic and 

organic global and universal nature components, and part of it had been 

characterized by experts, from different disciplines and from different periods 

of time, considering different levels of organization and spatial distribution. In 

addition, each sub regional and local landscape has its own unique geoclimatic 

conditions, biological components and history (Figure 1). Thus, scale is an 

important issue in ecological studies, and from experience a local ecosystem 

analysis unit of 100 km2 seems reasonable, which in the case of Ecuador 

corresponds to an area higher to the average parish (administrative unit) at 

which collective landscape planning occurs.  
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Fig. 1. Integrated nature perspective considering different scales of biotic, abiotic and social 

levels of organization and the local landscape context in which one or several reference 

ecosystem could be present 

The spatial scale of analysis depends on the biological system and the study 

purposes under consideration (Andreasen et al. 2001, Kappelle et al. 2003). 

Classification schemes, such as the “Holdridge life zone system" or the 

"Köppen-Trewartha climate classification" (Holdridge 1967, Kottek et al. 

2006) codify spatial- and bio-climatic basis of the Earth’s broad-scale 

vegetation. A Holdridge life zone system applied in Ecuador (Figure. 2), found 

the presence of  24 to 25 life zones (Vivanco  et al. 1963, Cañadas 1983). 

These models are able provide important and valuable information for 

conservation and restoration efforts, but have certain limitations. In particular, 

they do not allow fine scale classification of local ecosystems within different 

latitudinal- and altitudinal ranges of environmental and biological processes 

that are present in sub regional  and  landscape scales (Harris 1973, Lugo et al. 

1999, Sierra et al. 1999, Bailey 2002, Kottek et al. 2006).  
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Fig. 2 Ecuadorian life zones map based in Holdridge bioclimatic zones (Vivanco et al. 1962). 

1.3 The need for local ecosystem base-line information 

The diversity of ecosystems in Ecuador coupled with changes in natural 

ecosystems over small spatial scales, particularly in areas with steep altitudinal 

gradients and marked microclimatic variability; mean it is paramount that the 

base-line information should be based on local ecosystem within the broader 

landscape. This locally relevant information can be generated in various ways. 

First and foremost, studying old growth primary ecosystems as forest remnants 

can provide sufficient information about its composition, structure, function 

and dynamics. Secondary regrowth is also a vital source of information about 

the potential of passive restoration (natural regeneration of degraded forests). 

There is ample evidence that shows the importance of secondary forests as 

templates for restoration and refuge of biodiversity in fragmented landscapes 

(Lamb, Stanturf and Madsen 2012, Lamb 2012).   
 

Important base-line information about a given local ecosystem should include 

the following indicators: spatial distribution, ecosystem components, 
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dynamics, trophic interactions and, health, as well as the local ethobiogical and 

ethnoecological knowledge (Table 1). For capturing this information, a new 

‘Forest Gap Phase Dynamic Reference Method’ was developed and tested in 

this thesis. Essentially, the method entails analyzing forest tree component 

integrity (structure, composition and biomass, and dynamics) inside three 

successional stages of old growth primary forest (gaps, intermediate and 

mature closed canopy) and secondary regrowth. Advances in remote sensing 

and GIS have made assessment of various aspects of ecosystems at a broader 

local and sub-regional landscape context for the study of a biological organism 

as mammals which are adapted to different forest ecosystems located in 

different altitudinal ranges of variation as the tropical  lowland rainforest and 

cloud forest. In this thesis, both satellite images and hyperspatial aerial imagery 

were employed to identify tree species and delimiting home range distribution 

of an endemic brown-headed spider monkey.  

Table 1. Factors and their indicators that should be considered during collection of baseline 

information about a given local reference ecosystem.  

Factor Indicators 

Abiotic 

Biotic integrity 

 

Dynamic 

Interactions 

Spatial distribution 

Geographic,  climate, site conditions 

Biological components structure,  

abundance, composition, biomass 

Internal dynamic processes and natural disturbances 

Trophic Food web interactions,  matter and energy flow 

Species, population/s distribution and home range/s 

Anthropic  Knowledge 

 

Conservation   

Human socio-economic history (Anthropic  induced  
disturbance) 

Ethno biological ( botanical, zoological) and ecological 
knowledge 

Social, Public, private conservation , restoration efforts 

Health  Signals and symptoms of  ecosystem, components health, 

vulnerability, sickness, damage, degradation, collapse,  

species extinction, presence exotic and invasive species 

 

Ethnic studies are used information about how local societies make sense of 

their surrounding environment, understand what is important to support their 

daily life which is part of their social identity (Cerón and Montalvo 1998, 

Becker and Ghimire 2003, Zarger and Stepp 2004). The social knowledge 

about their surrounding nature components including the local animal and 

plants  had been studied by some research disciplines: (1) Ethnobiology, which 

is referred to human cultures uses and relationships with biological organism 

as:  bacteria, fungi, plants and animals (Castetter 1944, Hunn 2007); (2). 

Ethnobotany, study the human cultures uses and relationships with plants  

(Acosta-Solís 1992, Cerón and Montalvo 1998, Cerón 2002, Palacios 2005, De 

la Torre, Muriel and Balslev 2006, De la Torre et al. 2008); (3). Ethnozoology, 
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study the human cultures uses and relationships with animals (Alves 2012) and 

(4) Ethnoecology, are related with the human cultural interaction and 

adaptation to their surrounding ecosystems (Mueller et al. 2010, Nabhan 2009, 

Ouma, Stadel and Okalo 2016, Becker and Ghimire 2003). In addition 

ethnoecological  studies, like the current one, can potentially generate 

information about the local communities members’ ecological knowledge, the 

local animal-plants interactions,  and other information which is an essential 

part of the local ecosystem baseline information and can be used to guide local 

and sub-regional conservation and restoration efforts considering human and 

wildlife needs.  

 

Furthermore, the contribution of traditional ethnoecological knowledge in 

conservation, generation of economical alternatives with low ecological impact 

has been well recognized and utilized over the past few decades (Gadgil, 

Berkes and Folke 1993, Berkes, Colding and Folke 2000, Lykke, Kristensen 

and Ganaba 2004). TEK had been defined as a “cumulative body of 

knowledge, practice, and belief, evolving by adaptive processes and handed 

down through generations by cultural transmission, about the relationship of 

living beings (including humans) with one another and with their 

environment”(Gadgil et al. 1993).  Unlike indigenous knowledge (focusing on 

particular ethnic group or indigenous people), TEK focuses more on a local 

culture and interactions with their biotic and abiotic environment (Gadgil et al. 

1993, Becker and Ghimire 2003, Nabhan 2009, Warren and Rajasekaran 

1993), ranging from cursory awareness about the social responsibility to 

maintain healthy ecosystems as a fundamental base for the maintenance of the 

social health, wellbeing and cultural values, norms and beliefs.  

 

Traditional ethnoecological knowledge is a dynamic process that co-evolves 

with the ecosystem and the needs of local communities, thus serving as an 

information base for a society, facilitating communication and decision 

making, and as a foundation for local institutions. However, its present or 

potential contribution in restoration ecology has not been well studied. As a 

result, the integration of traditional knowledge in restoration planning still 

remains undervalued in many parts of the world, including Ecuador. The 

general premise for the role of traditional ethnoecological knowledge in 

restoration is that traditional people often interact with a landscape at a much 

larger scale and over longer periods of time, thus it can provide valuable 

information relevant to restoration ecology in less time and at a lower cost.  

 

A recent review also demonstrates that traditional ethnoecological knowledge 

can contribute in process of ecological restoration, through species selection 

for restoration planting to monitoring and assessment of restoration outcomes 

(Uprety et al. 2012). Although all traditional practices and belief systems are 
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not always ecologically sound and adaptive due to changing conditions, 

becoming stagnant and irrelevant over time (Charnley, Fischer and Jones 

2007), there is supporting evidence that demonstrates the synergy between 

TEK and science-based approaches (Gadgil et al. 1993, Berkes et al. 2000, 

Becker and Ghimire 2003). Combining all these pieces of ecological and local 

population knowledge about their natural ecosystems components and 

interactions could be consider as part of the local natural ecosystem  restoration 

toolkit to guide practitioners in the future to restore degraded ecosystems.  
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2 Objectives 

The general objective of the studies presented in this thesis was to generate 

initial basic examples of three local and one sub-regional base-line information 

about Ecuadorian lowland rainforest ecosystem, a cloud forest and an Andean 

páramo which could be used to supports the generation of further information 

and monitoring process and as well as in future conservation and restoration 

efforts; thereby enhancing the generation of ecosystem benefices from the local 

to the global society. The studies focused on methodological aspects for 

generating the local relevant information and examining the legacy of previous 

event and as well as made the effort to predict the main performance of the 

studied ecosystem under different future scenarios, as the trophic catastrophic 

events as a stream period of wind, flooding, earthquakes etc. The specific 

objectives of the studies were: 

 

1. Evaluate the reference gap phase dynamics method as a snapshot 

approach to characterize local reference ecosystem components in 

Choco-Darien lowland rainforest in Ecuador (Paper-I);  

 

2. Examine the regeneration status in forest gaps in cloud forest remnants 

based in the use of the gap phase dynamics approach and to explore 

the importance of  traditional ethnoecological knowledge (TEK) to 

generate relevant information for restoration (Paper-II);   

 

3. Investigate the potential of very high resolution (VHR) proximal 

canopy remote sensing for taxonomic identification of trees and in 

primary and secondary forest remnants in a Ecuadorian Andean 

montane cloud forest (Paper-III);  
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4. Identify the sub-regional distribution and local home range average 

abundance of the remaining populations of the endemic critical 

endanger brown spider monkey (Ateles fusciceps) considering also 

other aspects as habitat suitability and hunting risk (Paper-IV); and 

 

5. Examine the legacy of anthropic disturbance (grazing) on the páramo 

ecosystem under grassland and bushland habitats and their associated 

changes in soil conditions (Paper-V).  
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3 Materials and Methods 

3.1 Study sites 

The studies were carried out in three ecosystems in Ecuador (MAGAP et al. 

2014), tropical lowland rainforest, Andean montane cloud forest and páramo, 

in five sites (Figure 3). The lowland rainforest, where local reference 

ecosystem attributes were characterized, is located between 0º20'867'' N, 

79º02'756'' W, in Imbabura (Garcia 160 Moreno Parish) and Esmeraldas (Eloy 

Alfaro Parish) provinces. This site is part of the Choco Darien landscape 

complex in the NW Ecuador, where the spatial distribution and local home 

range of brown-headed spider monkey was investigated as well. The mean 

annual rainfall is 2804 mm and the mean annual temperature is 24.8 °C (MAE 

2007). The forests, especially in Esmeraldas province, have been subjected to 

anthropic disturbance since 1959 period when network of roads and the train 

line were expand to this sub region.  

 

The montane cloud forests, where surveys of natural regeneration and 

ethobiogical and traditional ethnoecological knowledge were conducted, are 

located in Cosanga, Napo province on the East of the Andean cordillera 

(0°30'39" N, 77°50'39" W), whereas the site where taxonomic identification of 

trees in primary and secondary forest by hyperspatial imagery technique was 

conducted in a cloud forest, located in Santa Lucia Reserve in Pichincha 

province (0°7′30″ N, 78°40′30″ W) in wester Andean Ecuadorian. The annual 

rainfall average ranges in the studied cloud forest ranged from 2500 to 3500 

mm and the case of Cosanga the mean monthly temperatures range from 15-17 

°C; and the climate is best described as cool and rainy. The forest soil is 

dominantly Cambisol with spatial heterogeneity in water logged conditions.  
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The fieldwork in the páramo ecosystem was conducted in Píntag parish (0°24′ 

9″ N, 78°21′55″ W) located South East of the province of Pichincha within the 

Metropolitan District of Quito. It is part of the buffer zone of Antisana 

ecological reserve, endowed with the best provincial moors and the main 

source of water supply for south Quito. The Antisana ecological reserve is 

located in a biodiversity hotspot considered for Ecuador by the WWF. It 

contains almost half of the plant species known to exist in Ecuador, many of 

them unique to this region. The Píntag parish is about 2400-4500 m a. s. l and 

shared by the community of San Augustine. Its climate is clearly differentiated 

along an altitudinal gradient. The high altitude (3400-3900 m) is characterized 

by low temperatures, even below zero temperature, because of proximity to 

snowcapped Antisana. The mid altitude (3000-3400 m) has average 

temperature ranging between 20°C in the morning and 10°C in the night; while 

the low altitude (2700-3000 m) has average temperature ranging from 23°C in 

the morning to 13°C in the night. The South East of the Parish has a cold 

climate, while the north is a little bit warmer because of proximity to the 

Chillos Valley. 

    

Figure 3. Location of the study sites in Ecuador; 1: Páramo in Píntag Parish, 2: Cosanga in Napo 

province, 3: Choco Darien lowland and highland landscape, 4: Santa Lucia reserve in Pichincha 

province, and 5: Imbabura and Esmeraldas provinces. 
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3.2 Data collection and analyses   

3.2.1 Characterization of local reference forest ecosystem 

To characterize ecosystem structure and function, three old growth primary 

forest remnants and secondary regrowth were randomly chosen from a forest 

landscape unit of 100 km2 in Guayacanes, Tres de Septiembre and León Febres 

Cordero. Each selected area was on average 30 ha and divided into three sub-

blocks of 10 hectares each and within each sub-block six transect lines (150 x 

30 m) were established. The successional stages were assessed in forest 

patches inside the transect lines, or with at least 50% of the area inside the 

transect (Runkle 1992), and three stages were selected in the old growth 

primary forests: gap, intermediate high closed canopy and mature closed 

canopy. Once the inventory of the successional stages within each forest 

remnant were concluded, 27 biggest patches in the primary forests and 18 in 

secondary regrowth representing at the least 75% of characteristics of the 

succession stages were randomly selected. The area of each successional stage 

was 0.27 ha and the corresponding total area per primary forest remnant 

sampled was 3.24 ha. 

 

To facilitate data collection, three nested sample plots (5 m², 10 m² and 30 m²) 

were established in patches of each successional stage along four equal 

sections, starting from the northern direction and following the clockwise 

direction. In small plots (5 m²), all woody individuals from 50 cm to 5 m in 

height were identified and counted by species while in 10 m2 plots all woody 

species with ≥ 5 cm dbh were identified and the number of individuals of each 

species was counted. In 30 m2 plots, all woody species with dbh ≥ 10 cm were 

identified, and the dbh of all living woody stems, height to the first branch, the 

total tree height were measured. In the same plots, the number of standing and 

lying deadwood was recorded. The diameter and length of the standing and 

lying deadwood with more than 1 m length were measured. In case of 

deadwood trunks with central holes, the two opposite side of the trunk borders 

were measured and summed to obtain single diameter. For fallen logs, the 

length was measured at two or more sections in which the log was considered 

inside the respective plot. The decomposition stage of the deadwood was 

categorized into three classes: (1) initial (fresh bark and wood with visible 

natural color), (2) middle (bark and trunk appeared darker in color, begun to 

decompose and covered with moss, lichen, fungi) and (3) rotten or advanced 

stage (semi-soft and rotten wood with obvious signs of disintegration).  
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Aboveground biomass (AGB, kg) was estimated following the allometric 

equation developed by Chave et al. (2014), which is a generalized biomass 

equation that can be applied across different forest types, including both old 

primary and secondary forests (Chave et al. 2014). The allometric equation, a 

function of tree, diameter at breast height (dbh), tree height (H in m) and wood 

specific density (ρ in g/cm3), can be expressed as: 

 

AGB = 0.0673 × ρ (D2H)0.976 

 

Values for wood specific density were extracted from the global wood density 

database (Zanne et al. 2009). For species that lacked a direct measurement of 

specific density in that database, genus-level averages were used wherever 

possible. In few cases where the species was not represented in the data base 

up to genus level, a site average value of wood specific density was used.  

 

The below ground biomass (BGB) was also estimated using the following 

formula (Ravindranath and Ostwald 2008). 

 

BGB = Exp (-1.0587 + 0.8836 × ln(AGB)) 

 

Finally the two biomass components were summed up and then multiplied by 

0.47 to get an estimate of the carbon stock. 

 

Species richness and abundance of seedlings and trees, carbon stock, 

abundance of deadwood were computed for each plot, and General linear 

model Analysis of variance (ANOVA) was performed to examine difference 

among forest blocks and successional stages. Forest blocks (three primary 

forest remnants) and sub-blocks were treated as random factors and 

successional stages of the primary forests (gaps, intermedium high closed 

canopy, and mature closed canopy) and secondary succession in secondary 

regrowth as fixed factor. Means that exhibited significant differences among 

successional stages were compared using Tukey's test. 

 

3.2.2 Regeneration and traditional ethnoecological knowledge 

The regeneration survey in four montane cloud forest remnants was performed 

studying forest gaps, based on the use of the inventory method described 

above. In the center of each selected gap, a plot of 10 m × 10 m was 

established, and all woody species from 0.5-5 m in height was enumerated. 

Most of the species were identified in situ during the inventory, and those that 
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were difficult to identify in the field were collected and taken to the National 

Herbarium of Ecuador for identification by taxonomy experts. Voucher 

specimens were deposited at the same herbarium. The number of individuals of 

disturbance indicator species, Chusquea spp. (bamboo), was also counted in 

each gap during the inventory.  

 

Species richness and abundance of individuals were computed for each plot by 

growth habit (tree versus treelets), and two-way analysis of variance was 

performed to examine significant differences among cloud forest remnants and 

growth habits, considering the density of disturbance indicator species as a 

covariate. Means that exhibited significant differences were further compared 

using Tukey’s test. Linear regression analysis was performed to explore the 

relationship between population density of disturbance indicator species and 

species richness and abundance. 

 

For the survey of traditional ethnoecological knowledge, in-depth interviews of 

48 informants, who were randomly selected from a list of the Cosanga Cattle 

producers association, which has 102 members, was conducted. During the 

interview, the following data were gathered: demographic data of the 

informants, land use history, knowledge of native tree species and their uses 

for humans and wildlife, species recommended for planting and future land use 

plan. The interview about species and their uses was conducted in two-steps. 

First, open questions were posed to every informant to compile a list of species 

and their full knowledge of different uses (e.g., medicine, food, timber, wildlife 

habitat). In the subsequent interview, a list of 28 species together with photos, 

selected based on the survey of cloud forest remnants and group discussion 

with conservation experts, was presented to the informants, and the informants 

were asked whether they know the species and to mention their importance for 

human and wildlife utility.  

 

Data related to TEK were analyzed using descriptive statistics and quantitative 

indices. For each species, user-reports (UR), defined as the sum of number of 

informants (i) who mentioned the use of the species, s, in the use-category, u, 

was computed following Tardío and Pardo-de-Santayana (2008) as 

 

𝑈𝑅𝑠 = ∑ ∑ 𝑈𝑅𝑢𝑖.

𝑁

𝑖=1

𝑁𝐶

𝑢=1

 

 



29 

The socio-ecological importance of each tree species was compared using three 

quantitative indices: Relative Frequency of Citation (RFC), Relative 

Importance Index (RI) and Cultural Value index (CV), which are robust 

quantitative methods in ethno-botanical studies (Tardío and Pardo-de-

Santayana 2008, Reyes-García et al. 2007). Relative frequency of citation of a 

species (RFCs) was obtained by dividing the number of informants who 

mention the use of the species, also known as frequency of citation a species 

(FCs), by the number of informants participating in the survey (N) as expressed 

below: 

 

𝑅𝐹𝐶𝑠 =
𝐹𝐶𝑠

𝑁
 

 

Relative importance of a species (RIs) was computed by combining both 

frequency of citation and the number of use-categories (NU) using the 

following formula: 

 

𝑅𝐼𝑠 =
𝑅𝐹𝐶𝑠(𝑚𝑎𝑥) + 𝑅𝑁𝑈𝑠(𝑚𝑎𝑥)

2
 

 

RFCs(max) is the relative frequency of citation over the maximum, obtained by 

dividing FCs by the maximum value in all the species of the survey; i.e.,  

RFCs(max) = FCs/max (FC). RNUs(max) is the relative number of use-categories 

over the maximum, obtained by dividing the number of uses of the species by 

the maximum value in all the species of the survey; i.e., RNUs(max) = NUs/ max 

(NU).  

 

Cultural Value Index of a species (CVs) was computed by combining the 

number of different uses reported for the species (NUs), the relative frequency 

of citation of the species (FCs) and the sum of all the UR for the species (URui) 

relative to the sum of all the UR for the species (NC) and the total number of 

informant, N as follows: 

 

𝐶𝑉𝑠 = [
𝑁𝑈𝑠

𝑁𝐶
] × [

𝐹𝐶𝑠

𝑁
] × [∑ ∑ 𝑈𝑅𝑢𝑖/𝑁

𝑁

𝑖=1

𝑁𝐶

𝑢=1

] 

 

Theoretically, RFCs varies between 0, when nobody mentioned any use of the 

species, and 1 if all informants mention the use of the species. The RI index 
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varies from 0, when nobody mentions any use of the plant, to 1 in the case 

where the plant was the most frequently mentioned as useful and in the 

maximum number of use-categories. CVs reaches theoretical maximum value 

when all the factors reached their maximum; i.e., if all the informants mention 

the use of the species (FCs = N) in all the use-categories considered in the 

survey (NUs = NC), thus the first two factors would be equal to 1 while the 

third factor would vary from 0 to NC. 

3.2.3 Identification of trees using hyperspatial aerial imagery  

A remotely controlled helicopter, with Canon Power Shot A650 12.1 

megapixel digital camera (Canon, New York, NY, USA) with a remotely 

operated shutter mounted on a gimballed platform, was sent out on pre-

determined flight paths to capture proximal canopy aerial imagery across the 

survey area. As geo-markers, foil balloons were raised into the canopy and 

placed reflective foil markers at various prominent or significant locations in 

the sampling area and recorded their coordinates using a GPS (Garmin CSx60, 

Garmin International Inc., Olathea, KS, USA). The flights took place between 

11:00 and 14:00 hours to ensure that light conditions were similar for each 

group of images. Images were assessed for clarity and resolution, setting a 

maximum pixel size of 5 cm as a threshold for subsequent analysis. For the 

primary forest site, 17 aerial images were collected, covering a sampling area 

of 2.15 ha. Imagery for the secondary site covered an area of 2.47 ha for 

analysis. 

 

Laminated printouts of individual high-quality images were used to ground-

truth crowns in the imagery with crowns in the field. Ground-truth data were 

collected in both primary and regenerating secondary forest. Data for 1048 

trees were collected from the field, with trees representing 73 species, 58 

genera and 39 families. All samples were collected between altitudes of 1786 

m and 1966 m. Each selected tree was identified and tagged with an individual 

number, and the following measurements were taken: height and crown 

diameter, diameter at breast height (DBH), slope angle, aspect, phenology 

(flowering status of the tree crown), GPS coordinates and altitude. Where 

possible, we identified trees to species in the field; otherwise samples were 

taken to National Herbarium of Ecuador (QNCE) in Quito. We identified 

potential canopy indicator species of forest successional stage by their relative 

abundance in the two forest types for species that represented a minimum of 

5% of total samples. 
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With individual crowns represented across multiple images, a total of 396 

individual crown samples were used in the analysis. Crown samples in aerial 

imagery represented 41 species, 31 genera and 21 families. Species abundance 

differs between those identifiable in aerial imagery and species represented on 

the ground. We explored the raw and standardized data sets for comparative 

continuities in composition using linear redundancy analysis in CANOCO 

(Plant Research International, Wageningen, Netherlands). We then used the 

classification and regression tree modelling procedures in SPSS (SPSS 

statistics, v. l 17.0.0, 2008; SPSS Inc., Chicago, IL, USA).  

 

We chose tree-based classification methods as they generate decision tree 

outputs that closely resemble the traditional taxonomic keys used in botanical 

identification. For a model that provides a good fit, the decision tree generated 

allows a user (or algorithm) to identify the species of a new crown by 

following dichotomous or multi-way branches (nodes). Splitting decisions are 

based on values of crown image features that best explain the split at each 

level. We applied and compared the predictive ability of four tree growing 

methods: CHIAD, Exhaustive CHAID, CRT and QUEST. The CHIAD (chi-

squared automatic interaction detector) method uses multi-way splits based on 

adjusted significance testing (Bonferroni testing, p < 0.05; Kass 1980) and the 

canonical axes (RDA Monte Carlo permutation test).  

3.2.4 Mapping home range of brown-headed spider monkey  

The endemic brown-headed spider monkey (A. fusciceps) is catalogued as 

critical endangered species according to the UICN red list (Cuarón et al. 2008, 

Mittermeier, Reynolds and Rodrigues-Luna 1997). To determine its home 

range, first we identified remaining forest via a LANDSAT mosaic and then 

applied species-specific criteria to delineate remaining forest with potential to 

maintain a population of brown spider monkey. As home range information is 

not available for this species, a value close to the largest recorded for similar 

species in the Ecuadorian Amazon was taken (Pozo 2001).  

 

The sampled localities were selected from records of A. fusciceps collected 

between 1995 and 2008 (Tirira 1995–2008). By combining this historical 

distribution with ecological niche modeling and predicted hunting intensity, a 

species-specific landscape map was generated. In the forest under 

investigation, we conducted field surveys during the day (09:00–17:00 h), 

walking 4–6 km/d (day), depending on access to area and terrain. We walked 

on existing trails and transects with ≥3 people at 1–1.5 km/h to avoid 

disturbing primates. Every 500 m we played the standardized recorded 
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vocalization for 1 min, turning every 15 s to broadcast to the 4 points of the 

compass. We waited for 15 min at each point to record any responses to the 

stimulus. We estimated density by dividing the number of responses to 

playback at each site by the actual area sampled by playback. 

3.2.5 Grazing effect on the páramo ecosystem  

A reconnaissance survey was first made to get an impression of the internal 

variation of the entire study area; subsequently two broad zones of páramo 

vegetation types, grassland and bushland, were identified. The selected sites 

had visible signs of biotic disturbance, including removal of ground cover by 

grazing animals, and vegetation disturbance by local people through the 

collection of some fire wood, cutting and lopping of shrubs, and dead stumps. 

Within each vegetation community, two 1.0 ha plots were established based on 

overall altitude and slope. The plots in the grassland was located at 4027-4045 

m (with 20% slope) and 4081-4102 m (with 15% slope) elevation while that of 

the bushland were located at 3932-3959 m (with 27% slope) and 3962-4003 m 

(with 35% slope) elevation. Each 1.0 ha (Block) was further subdivided into 25 

subplots of 20 × 20 m for assessment of vegetation composition.  

 

The presence of herbs and woody plants were assessed within every second 

subplot for each 1-ha plot. All the new herbs and shrubs were identified, their 

diameter at breast height (dbh) in plants lower that 1.5 m the diameter 

measurement was perform around 75% of the  plants total high, which was 

measured by cross-calipering and their height was measured using a graduated 

pole. Bushes, herbaceous species and grass tussocks were studied within nested 

plots of 5 × 5 m2 and 2x2 m2 sub-quadrats which were placed at the corners of 

each 20 × 20 m2 subplot. We identified all species present and counted the 

number of individuals of herbaceous species. Voucher specimens of each 

species in the quadrat and sub-quadrat were collected, numbered, pressed and 

taken to the National Herbarium which belong to the Ecuadorian Museum of 

Natural Science for identification by comparing with identified plant 

specimens and storage. Nomenclature follows that of the published volumes of 

Latin America flora (Jorgensen and León-Yánez 1999, Ulloa and Neill 2005, 

León-Yánez et al. 2011).  

 

During the inventory, soil samples were collected from three below ground 

sub-plots within each plot at 0-5, 5-10, 10-25 and 25-50 cm using a soil-corer. 

The following soil properties were determined at the Laboratorio de Química 

Agrícola y suelos “Julio Penaherrera, Quito”: Organic matter was determined 

using the Loss-on-Ignition (LOI) method; Soil particle size distribution 
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according to the procedure described by Day (1965); Soil pH-value using a 

glass electrode connected to a Digital ion analyzer (Digital pH/mv Meter, 

Model 701A); Total nitrogen using Kjeldahl procedure; Available Potassium 

by atomic absorption spectrometry; and Available Phosphorus using Bray-1 

extract  (Olsen and Dean 1965). 

 

To characterize the floristic composition of grassland and bushland 

communities, species richness for each 1-ha plot was calculated. Similarity 

between vegetation communities was evaluated using Sørensen similarity 

index. Analysis of variance (ANOVA) was performed to examine significant 

differences in plot-wise species richness between and within vegetation 

communities. Two-way ANOVA was performed to examine significant 

differences in soil properties between vegetation communities and soil depth  
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4 Main results  

4.1 Local reference ecosystem attributes   

In the regeneration phase, a total of 132 species were recorded in all old growth 

primary lowland rainforest remnants; of which 55, 66 and 70 species were 

recorded in gaps, intermediate high closed canopy, mature closed canopy, 

respectively; while 59 species were recorded in secondary regrowth of 

disturbed forest. The species in the regeneration phase were represented by 723 

individuals; of which 149 were found in the gaps, 181 in mature closed canopy 

and 188 in the secondary succession of disturbed forest and 205 in intermediate 

high close canopy. For tree species with dbh > 5 cm, 227 tree species, 

distributed over 52 families, was recorded in the primary forests, with total 

abundance of 1602 individual trees. A complete list of species together with 

their number of individuals is presented in Annex 1.  

 

The total carbon stock of the old growth primary forest remnants was estimated 

to be 2112.5 t C/ha (with mean = 78 t C/ha) and that of secondary succession 

was 400.3 t C/ha (with mean 44.5 t C7ha). The total abundance of deadwoods 

was 725 pieces in the old growth primary lowland rain forest and 308 pieces in 

the regenerating forest. Overall, the abundance of lying deadwood was 

substantially higher (882 pieces) than the standing deadwood (151 pieces). 

With respect to decomposition state, 41% of the deadwoods were rotten, 32% 

in middle stage of decomposition and 27% in an initial stage of decomposition. 

At plot-level, species richness, abundance and carbon stock of trees with dbh > 

5 cm as well as abundance of deadwood varied significantly across 

successional stages (p < 0.05). Species richness, number of individuals and 

carbon stock per plot was higher in the intermediate high closed canopy than in 

the secondary succession plot of regenerating forests, whereas the abundance 
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of deadwood was higher in gaps and secondary succession plots than in 

intermediate high and mature closed canopy plots (Table 2).   

Table 2. Attributes of local reference ecosystems across different successional stages; where 

IHCC, MCC and SS stands for intermediate high closed canopy, mature closed canopy and 

secondary succession, respectively. For each ecosystem attribute, means across the row followed 

by different letter are significantly different. 

 

    Successional stage 

Attributes Gap  IHCC  MCC  SS 

Species richness 17 ± 2ab  21 ± 1a  16 ± 1a  14 ± 3b 

No. of individuals 25 ± 2a  34 ± 2b  25 ± 1a  28 ± 3a 

No. deadwood 38 ± 2a  2 ± 2bc  20 ± 2c  34 ± 6ab 

Carbon stock 76.5 ± 9.7ab 83.0 ± 6.3a 75.3 ± 10.1ab  44.5 ± 9.6b 

4.2 Traditional ethnoecological knowledge for local ecosystem 
restoration   

A total of 32 species was reported by the informants as socio-ecologically 

important, with number of uses of a species ranged from one to a maximum of 

five (Annex 2). The total use-report values were 105-188 for 11 species, 61-93 

for seven species and less than 50 for 14 species. Species with more than 25 

citation frequency for both human and wildlife uses included H. duquei, C. 

montanum, E. crassimarginata, O. insularis, S. prainiana, S. contortum, E. 

edulis, F. maxima and C. echinulatum. In addition, seven species, T. mollis, V. 

tomentosa, N. acutifolia, D. integrifolium, A. acuminate, W. macrophylla and 

A. latifolia, were frequently cited as important for various human uses. Among 

species useful for wildlife, C. echinulatum was cited as important for both food 

and habitat (perching and nesting grounds) for various birds and small 

mammals. Ranking of native tree species useful for both human and wildlife 

using different indices exhibited minor inconsistency (Table 3). The relative 

importance index (RI) and cultural value index (CV), which took into account 

multiplicity of uses (number of use-categories mentioned for a species) 

consistently ranked H. duquei, C. montanum, E. crassimarginata and S. 

contortum as the most socio-ecologically important species; while the relative 

frequency of citation (RFC), which considered the spread of knowledge of 

useful species among informants, consistently ranked two species only, H. 

duquei and E. crassimarginata, as the most important species as the other 

indices. Most of the species recommended for future planting by informants 

complemented the regeneration survey, in which were recorded 154 species in 

gaps of remnant cloud forests with 10 rarest species (6 stems/ha). 
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Table 3. Ranking of species useful for humans and wildlife in Cosanga using 

relative frequency of citation (RFC), relative importance index (RI) and 

cultural value index (CV). Species are arranging in decreasing order of CV and 

species ranking based on each index. 

             Indices               Ranking 

Species  RFC RI CV   RFC RI CV   

Hyeromina duquei    0.979 0.900 2.191   1 1 1   

Citharexylum montanum    0.740 0.878 2.036   6 2 2   

Eugenia crassimarginata  0.833 0.826 1.627   2 3 3   

Sapium contortum  0.698 0.756 1.105   7 4 4   

Ocotea insularis  0.833 0.726 0.923   2 6 5   

Vismia tomentosa  0.542 0.677 0.890   9 11 6   

Ficus maxima  0.583 0.698 0.792   8 7 7   

Ceroxylon echinulatum  0.469 0.739 0.767   11 5 8   

Delostoma integrifolium     0.375 0.691 0.753   14 9 9   

Erythrina edulis  0.771 0.694 0.723   4 8 10   

Alnus acuminata   0.354 0.681 0.701   16 10 11   

Tibouchina lepidota  0.510 0.561 0.424   10 15 12   

Alchornea pearcei    0.365 0.586 0.386   15 13 13   

Saurauia aff. Tomentosa  0.771 0.594 0.340   4 12 14   

Nectandra acutifolia  0.417 0.513 0.283   13 17 15   

Guarea kunthiana  0.323 0.565 0.242   17 14 16   

Inga aff. Acuminate  0.302 0.554 0.219   20 16 17   

Weinmannia macrophylla   0.323 0.465 0.176   17 21 18   

Trichilia septentrionalis  0.198 0.501 0.106   22 18 19   

Clusia lineata  0.167 0.485 0.087   23 19 20   

Oreopanax palamophyllus  0.156 0.480 0.080   24 20 21   

Turpinia aff. occidentalis   0.219 0.412 0.061   21 24 22   

Hedyosmum luteynii  0.323 0.365 0.060   17 25 23   

Cedrela montana  0.448 0.329 0.057   12 26 24   

Critoniopsis occidentalis    0.083 0.443 0.018   25 22 25   

Solanum cf. hypermegethes  0.042 0.421 0.005   26 23 26   

Miconia glandulistyla  0.042 0.221 0.001   26 27 27   

Jungleus (unidentified sp.)  0.021 0.211 0.000   28 28 28   

Morus insignes   0.010 0.105 0.000   29 29 28   

Nectandra sp.  0.010 0.105 0.000   29 29 28   

Musmus (unidentified sp.)  0.010 0.105 0.000   29 29 28   

Pandola (unidentified sp.)  0.010 0.105 0.000   29 29 28   
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The regeneration survey in forest gaps from four primary forest remnants 

showed significant differences (p < 0.05) in species richness and stem density 

among remnants of cloud forests and growth habits. The most important factor 

that influenced the regeneration of woody species was the abundance of 

bamboos (Chusquea sp.) – a well-known disturbance indicator species. 

Regression analysis revealed negative relationship between stem density of 

Chusquea and species richness (Fig. 4A) and abundance (Fig. 4B) of seedlings 

and saplings. Stem density of Chusquea explained 63% of the variation in 

species richness between plots (gaps), while it explained 48% of the variation 

in abundance of seedlings and saplings. 

 
Figure 4. Relationship between stem density of disturbance indicator species and species richness 

(A) and abundance (B) of seedlings and saplings recorded in gaps of remnant cloud forests. 

4.3 Identifying tree species composition by hyperspatial imagery 

The aerial imagery represented 54% of families, 53% of genera and 56% of 

species sampled from the ground. Ordination (redundancy analysis) confirmed 

that inherent continuities, based on crown metrics, correlated with traditional 

species, genus and family groupings. Data were best described by histogram 

means in the green band. The best predictive model (CRT) generated a 47% 

probability of correct species identification for 41 species – with similar 

success at genus and family level. Predictive ability was highly species 

specific, ranging from zero for some taxa to 93% for Cecropia gabrielis 

Cuatrec. From the crown metrics tested, we found the mean pixel intensity in 

the green band was most effective in predicting species and species grouping 

of tropical mountain trees. This metric integrates species-specific differences in 

leaf density of crowns and reflectance in the green waveband. High predictive 

success for indicators of primary (Cornus peruviana J.F. Macbr.) and 
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secondary forest (Cecropia gabrielis Cuatrec.) shows that VHR imagery can be 

used to identify species from pixel information to provide ecological 

information on successional status.  

 

For the raw data set, the nominal environmental descriptors were significantly 

correlated with the first and all canonical axes (RDA Monte Carlo permutation 

test, P < 0.001). The sum of all canonical eigenvalues (variance explained) 

ranged from 31.8% for species to 26.2% for genera and 16.6% for family 

groupings, indicating that greater variability was introduced when grouping 

species into higher taxonomic units. For species, the first axis explained 26.7% 

of the variance, with subsequent axes explaining the remaining 5.1%. For 

genera 21.9% of variance is explained by the first axis with 4.3% explained by 

remaining axes, and for family taxonomic groupings 11% is explained by first 

axis with 5.6% explained by subsequent axes.  

4.4 Home range of brown-headed spider monkey  

The potential historical North west sub-regional distribution of the brown-

headed spider monkey based on Max-Ent modeling provided a high predictive 

success rate (13 out of 17 localities successfully predicted as present) and a 

highly significant distribution model (p < 0.001) based on the classification of 

81% of the studied area. According to the model prediction, the remaining 

forest area capable of sustaining brown-headed spider monkey was 5872 km2, 

of which protected areas covered 2172 km2 while the unprotected forests 

covered an area of 3700 km2, but within this area only 989 km2 (23%) is under 

low hunting pressure and likely to maintain healthy population.  

 

To overcome problems of sampling at low primate density and in difficult 

mountain terrain we developed a field survey technique to determine presence 

and estimate abundance using acoustic sampling. For sites under low hunting 

pressure, density of primates varied with altitude. The number of 

individuals/km2 decreased from seven at 332 m a.s.l to one at 1570 m a.s.l. 

Playback field survey results showed that the mean minimum detectable 

density varies from 0.23 to 0.68 individuals/km2. With the exception of the 

community of Leon Febres Cordero, where hunting levels were thought to be 

high, we observed higher densities of primates at lower altitude. Additionally it 

was also found that in one of the studied localities even visually observed 

monkeys not answer the call, presumably because they are afraid of humans. 

Based on hunting buffers of 9 km radius for lowland settlements and 3 km 

radius for highland settlements, a forested area of 2711 km2, suitable for 



39 

brown-headed spider monkey was impacted by high levels of hunting. Of 

particular interest was an area of 989 km2 of unprotected forest, suitable habitat 

for brown-headed spider monkey, was relatively isolated from human 

populations and hunting pressure.  

4.5 Legacy of disturbance on páramo ecosystem 

The floristic composition of the bushland in San Agustín páramo was 

composed of 30 species, distributed over 16 families, while that of the 

grassland was composed of 33 species of 16 families. Overall, the two 

vegetation habitats exhibited a large similarity in species composition 

(Sørensen similarity index = 0.700-0.722); so also plots within each vegetation 

community (Sørensen similarity index = 0.811-0.840) despite differences in 

their positions on the páramo landscape (elevation and slope). However, there 

was a significant difference in mean species richness at plot level between 

vegetation communities (F[3, 92] = 30.48; p < 0.001). The mean species richness 

per plot was higher for both plots of the grassland than that of the bushland 

while the plots within each vegetation type were statistically similar in terms of 

species richness (Figure 5). 

 

Figure 5. Species richness (no. of species per plot) of grassland (GL-P1 and P2) and bushland 

(BL-P1 and P4) plots differing in elevation and slope. The values are 95% CI of means 

The soil textural fractions showed significant differences with respect to 

vegetation communities, soil depth or both, depending on the type of soil 

textural fraction; but no significant interaction effect was detected (Table zz). 

The proportion of the sand fraction was significantly (F[1, 40] = 7.38; p = 0.010) 

higher for grassland than the bushland; the proportion of the silt fraction was 
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significantly (F[1, 40] = 5.81; p = 0.021) lower for grassland than bushland and 

for lower soil depth (25-50 cm) than the upper 10 cm (F[3, 40] = 5.74; p = 

0.002); and the proportion of the clay fraction was significantly (F[3, 40] = 

19.61; p < 0.001) lower in the upper 10 cm soil depth than the lower soli depth. 

The organic matter content was significantly (F[1, 40] = 4.59; p = 0.038) higher 

for the bushland than the grassland, while it decreased significantly (F[3, 40] = 

25.92; p < 0.001) with soil depth (Table 4). 

Table 4. Soil textural fractions and organic matter content in relation to vegetation communities 

and soil depth (mean ± SE). Means for each main effect followed by different letter (s) are 

significantly different. 

Soil textural Soil  Vegetation community  Main effect 

fractions  depth (cm) Grassland Bushland  (soil depth) 

Sand (%)  0-5  36.5 ± 2.4 34.3 ± 1.2 35.4 ± 1.3a 

  5-10  36.7 ± 2.6 35.0 ± 1.4 35.8 ± 1.4a 

  10-25  38.3 ± 0.9 34.0 ± 2.0 36.2 ± 1.2a 

  25-50  41.5 ± 1.8 36.3 ± 0.8 38.9 ± 1.2a 

Main effect (vegetation) 38.3 ± 1.0a 34.9 ± 0.7b 

Silt (%)  0-5  62.3 ± 2.5 64.3 ± 1.2 63.3 ± 1.3a 

  5-10  61.7 ± 2.6 62.7 ± 1.5 62.2 ± 1.5a 

  10-25  58.0 ± 0.9 61.8 ± 1.7 59.9 ± 1.1ab 

  25-50  54.3 ±1.4  59.2 ± 1.2 56.8 ± 1.1b 

Main effect (vegetation) 59.1 ± 1.1a 62.0 ± 0.8b  

Clay (%)  0-5  1.3 ± 0.5  1.3 ± 0.3  1.3 ± 0.3a 

  5-10  1.7 ± 0.4  2.3 ± 0.2  2.0 ± 0.2a  

  10-25  3.7 ± 0.4  4.2 ± 0.4  3.9 ± 0.3b 

  25-50  4.2 ± 0.4  4.5 ± 0.8  4.3 ± 0.4b 

Main effect (vegetation) 2.7 ± 0.3a  3.1 ± 0.4a 

OM content (%)* 0-5  18.4 ± 2.2 22.8 ± 1.7 20.6 ± 1.5a 

  5-10  15.5 ± 0.7 15.7 ± 1.4 15.6 ± 0.8b 

  10-25  11.7 ± 0.9 12.7 ± 0.7 12.2 ± 0.5c 

  25-50  9.7 ± 0.5  11.6 ± 0.7 10.6 ± 0.5c 

Main effect (vegetation) 13.8 ± 0.9a 15.7 ± 1.1b 

* OM stands for organic matter 

 

Soil pH, total carbon and nutrient contents also showed significant variation 

with respect to the bushland and grassland, soil depth or both (Table 5). The 

soil pH was significantly higher (F[3, 40] = 4.59; p = 0.007) in the upper 5 cm 

soil depth of the bushland than other soil depths in both grassland and 

bushland. The total soil carbon content was significantly (F[1, 40] = 4.59; p = 

0.038) higher for bushland than grassland and significantly (F[3, 40] = 25.89; p < 

0.001) decreased with increasing soil depth. The total nitrogen content was also 

significantly (F[1, 40] = 4.38; p = 0.043) higher for bushland than grassland and  

significantly (F[3, 40] = 26.09; p < 0.001) decreased with increasing soil depth.  
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The available phosphorus didn’t differ significantly between vegetation types, 

but it was significantly (F[3, 40] = 26.09; p < 0.001) higher in the upper 5 cm soil 

depth than in the lower 10-50 cm soil depth. The concentration of potassium 

was significantly (F[1, 40] = 17.77; p < 0.001) higher for bushland than grassland 

soil, and it was significantly (F[3, 40] = 9.79; p < 0.001) higher in the upper 10 

cm soil depth than in the lower soil depth.  

Table 5. Soil nutrient contents in relation to vegetation communities and soil depth (mean ± SE). 

Means for each main effect followed by different letter (s) are significantly different. 

Soil   Soil  Vegetation community  Main effect 

nutrients  depth (cm) Grassland Bushland  (soil depth) 

Soil pH   0-5 9.74 ± 1.16 12.04 ± 0.88 10.89 ±0.78a 

   5-10 8.20 ± 0.39 8.29 ± 0.76 8.24 ± 0.41b 

   10-25 6.18 ± 0.45 6.69 ± 0.35 6.43 ± 0.28c 

   25-50 5.11 ± 0.25 6.14 ± 0.35 5.62 ± 0.26c 

Main effect (vegetation) 7.31 ± 0.49a 8.29 ± 0.56b 

Total C content (%)  0-5 9.74 ± 1.16 12.04 ± 0.88 10.89 ±0.78a 

   5-10 8.20 ± 0.39 8.29 ± 0.76 8.24 ± 0.41b 

   10-25 6.18 ± 0.45 6.69 ± 0.35 6.43 ± 0.28c 

   25-50 5.11 ± 0.25 6.14 ± 0.35 5.62 ± 0.26c 

Main effect (vegetation) 7.31 ± 0.49a 8.29 ± 0.56b 

Total N content (%) 0-5 0.92 ± 0.11 1.14 ± 0.08 1.03 ± 0.07a 

   5-10 0.78 ± 0.04 0.78 ± 0.07 0.78 ± 0.04b 

   10-25 0.59 ± 0.04 0.63 ± 0.03 0.61 ± 0.03c 

   25-50 0.49 ±0.02 0.58 ± 0.03 0.53 ± 0.02c 

Main effect (vegetation) 0.69 ± 0.05a 0.78 ± 0.05b  

Available P (ppm)  0-5 8.38 ± 0.70 8.57 ± 0.89 8.48 ± 0.54a 

   5-10 6.62 ± 0.60 5.03 ± 0.94 5.83 ±0.58ab  

   10-25 5.05 ± 0.83 5.18 ± 1.86 5.12 ± 0.97b 

   25-50 6.85 ± 2.42 2.67 ± 0.23 4.76 ± 1.32b 

Main effect (vegetation) 6.73 ± 0.68a 5.36 ± 0.67a 

Conc. K (cmol/g)  0-5 0.25 ± 0.01 0.32 ± 0.04 0.29 ± 0.02a 

   5-10 0.22 ± 0.02 0.31 ± 0.04 0.26 ±0.02ab 

   10-25 0.18 ± 0.01 0.24 ± 0.02 0.21 ±0.01bc 

   25-50 0.16 ± 0.01 0.21 ± 0.01 0.18 ± 0.01c 

Main effect (vegetation) 0.20 ± 0.01a 0.27 ± 0.02b 
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5 Discussion  

Terrestrial ecosystems are under constant disturbance by natural and 

anthropogenic forces (Turner et al. 2003). Generally, disturbance is defined as 

any relatively discrete event in time that disrupts an ecosystem, community, or 

population structure and changes resource availability as well as the physical 

environment (White and Pickett 1985). It is ubiquitous, inherent, unavoidable, 

and affect all levels of biological organization from individuals through 

ecosystems and landscapes with varying consequences at each hierarchical 

level. The series of earthquake that recently hit Ecuador is a good example of 

sudden and dramatic changes in ecosystems/landscape by natural disturbance 

forces. On the other hand, an inherent disturbance, such as natural tree fall, is a 

typical disturbance integral to a given forest ecosystem, resulting in subtle and 

gradual change in ecosystem structures and functions (Perera and Buse 2004). 

Natural disturbances are the primary causes of patchiness in ecosystems   

(Turner et al. 2003) and are evolutionary forces that have shape the adaptation 

of biota exposed to them.  

 

Thus, any attempt to generate information about reference ecosystem should 

take into account this natural ecosystem dynamics. In this regard, the proposed 

reference gap phase dynamic method is a useful approach to quickly generate 

essential baseline information for formulating ecologically sound conservation 

and restoration strategies. The results for the old growth primary forest also 

show that species richness, number of individuals and carbon stock per plot 

differ along successional stages; being higher in the intermediate high closed 

canopy than in the secondary regrowth plot. Owing to its effects on nutrient 

levels, light regimes, substrate types, and dominance patterns, a disturbance 

may favor increased colonization by some species while it disfavors others 

(Gibson and Brown 1991, Jonsson 1993). Forest succession theories 
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underscore that the positive effect of disturbance depends on its magnitude and 

availability of succession primers. According to the Intermediate Disturbance 

Hypothesis, too much disturbance leads to the loss of late successional species, 

whereas too little leads to the exclusion of species adapted to colonize 

ecosystems immediately after disturbance, thus  an intermediate disturbance 

regime enables community co-existence (Connell 1978, Molino and Sabatier 

2001, Sheil and Burslem 2003). Whereas the recruitment limitation hypothesis 

emphasizes that although disturbances in mature forests increase the choices of 

available niches, these would not necessarily be filled by the most adapted 

species, but rather by species whose propagules are sufficiently abundant at the 

right time and at the right place (Hubbell et al. 1999, Chazdon, Colwell and 

Denslow 1999). Overall, such functional adaptations underlie the mechanisms 

of ecosystem response to disturbance, which contribute to ecosystem 

resilience.  

 

In tropical Andes, characterized by altitudinal gradient and marked climate 

variability, areal imagery can be a valuable methodology to generate relevant 

information about successional stages. Our result has shown that relatively 

simple pixel distribution descriptors for the three visible (RGB) bands in VHR 

aerial imagery can provide information to predict the identification of 

taxonomic species and species groupings of trees. In addition, high rates of 

success for crown samples of Cornus peruviana J.F. Macbr. Both C. gabrielis 

and C. peruviana, which are indicators of primary and secondary forests; 

confirms that using relatively simple pixel descriptors can provide important 

ecological information on the successional status of Andean mountain forest 

within the altitudinal range investigated. A successful method of remote 

identification of tree species within a tropical forest canopy would allow rapid 

landscape-scale analysis of a number of forest characteristics that have been 

studied at smaller scales for many years, such as flowering patterns (Hubbell 

1980), and the mapping of distributional and diversity patterns (Gentry 1992).  

 

An understanding of forest composition would, in turn, enable more accurate 

assumptions to be made regarding habitat suitability (Hyde et al. 2005) in 

terms of quality, keystone species, fragmentation and their respective effects 

on the biodiversity of the forests (Hill and Curran 2003, Leigh Jr et al. 2004). 

The increased knowledge in these areas would enable more informed 

conservation planning and management (Margules and Pressey 2000, Pouliot 

et al. 2002). The advancement of drone technology may be an opportunity in 

the future to apply crown-level identification to survey the changing 

composition of large tracts of forest and monitor degradation of forests, for 



44 

example by identifying selective illegal logging of high-value or endangered 

timber species.   

 

Anthropogenic activities, such as land use change and unscrupulous 

exploitation of natural resources, are by far the major disturbance factors that 

dramatically alter ecosystem structure and function. For instance, increasing 

hunting pressure close to Cotacachi-Cayapas Ecological Reserve has restricted 

the potential home range of critically endangered but endemic brown-headed 

spider monkey. Also we found out that in the southern block of the study area 

the spider monkey is already locally extinct. Regrettably, we didn’t observe 

any brown-headed spider monkey in the southern block of the study area; 

suggesting that either the species is locally extinct or forced to migrate. 

 

In Ecuador, deforestation and forest degradation has dated back to the colonial 

period when native forests were unscrupulously exploited for timber, which 

was later exacerbated by increasing human population (from 4 million in 1950 

to more than 16 million in 2015) and wrong forest development policy that 

promotes reforestation programs using exotic species (Mecham 2001, 

Sarmiento 2002, Larrea 2006, Farley 2007). In addition, resettlement policy 

promoted by governmental institutions, especially in the Amazon and the 

Andean Choco Regions, between 1960 and 1990 has resulted in further 

clearance of the natural forests (Southgate et al. 1991, Sierra 2001, Perreault 

2002, Laurance et al. 2004). Consequently, several restoration initiatives have 

been launched by local community and private land owners, as well as non-

governmental and governmental organizations over the past few decades 

(FUNAN 2002, GADPC 2012, Gómez De la Torre 2011).  

 

However, most efforts to forest restoration involve planting of few native 

and/or exotic species based on experiences elsewhere due to lack of locally 

relevant knowledge about native species in the area. Emerging evidence shows 

that traditional ecological knowledge can fill crucial gaps in our ecological 

understanding (Mueller et al. 2010, Nabhan 2009, Ouma, Stadel and Okalo 

2016, Becker and Ghimire 2003). The results from the survey of TEK 

presented in this thesis also are consistent with the general premise that TEK 

can provide valuable information about the relationship between local people 

and their natural environments, which is relevant to restoration and 

conservation in less time and at a lower cost. The informants identified 32 

species that are culturally important; of which 25 species are reported to be 

useful as food for wildlife and three species as valuable perching and nesting 

grounds. Such information is vital for selection of native species for planting in 
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conservation zones, including corridors that connect forest remnants, as 

erecting bird perches facilitates seed dispersal along the landscape (Holl 1998, 

Shiels and Walker 2003).   

 

Human activities have not spared even the high altitude tropical alpine 

(páramo) ecosystem, despite its immense socio-ecological importance. The 

páramo ecosystem is an important component of the Andean biodiversity 

hotspots, housing the richest tropical mountain flora in the world (Smith and 

Cleef 1988, Luteyn and Churchill 1999, Hofstede et al. 2014); regulates 

hydrological cycle due to the high water retention capacity of páramo soils 

(Podwojewski and Poulenard 2000, Buytaert et al. 2006); and sequesters a 

large amount of organic C due to long and slow rate of decomposition of its 

thick layer of organic matter (Hribljan et al. 2016). 

 

Grazing represents the main land use practice in the Ecuadorian páramo 

(Sarmiento 2002, Podwojewski et al. 2002). In San Augustine area alone, 

around 200 cows and 100 horses are freely grazing in the páramo. Fire had 

been part of the land management practice in the páramo to improve grassland 

productivity (Schmidt and Verweij 1992, Suárez and Medina 2001). The 

legacy of these disturbances is apparent from the substantial decline in the 

number of plant species, the replacement of the tussock grass vegetation by 

short carpet grass vegetation, and an increase of bare land (Podwojewski and 

Poulenard 2000, Podwojewski et al. 2002). The results presented in this thesis 

also provide some insight about the grazing effect on soil properties; 

particularly the decline in the accumulation of organic matter and total soil 

carbon, which in turn may disrupt ecosystem functions – energy flow and 

nutrient cycling.  
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6 Conclusions and future research  

The studies presented in this thesis examined different approaches for 

generating base-line information about local reference ecosystem in Ecuador. 

Based on the findings the following conclusions can be drawn. (1) The 

proposed reference gap phase dynamic method is a useful approach to quickly 

generate baseline information about ecosystem components, functions and 

health at a local landscape level. This baseline information is vital before 

during and after passive or active restoration interventions in a specific 

landscape for planning future conservation actions, monitoring future changes 

in natural ecosystems; and comparing the state of several forest ecosystems 

within a landscape; thereby prioritizing restoration and conservation sites. (2) 

Secondary regrowth in gaps of disturbed cloud forests is limited by the 

rampant colonization of gaps by bamboo species and micro-habitat conditions 

created by topographic and soil conditions. (3) TEK can contribute to 

ecological restoration through species selection for restoration planting; and 

there is synergy between TEK and science-based approaches (e.g. regeneration 

survey); thus TEK can be an important entry-point to design locally adapted 

restoration interventions. (4) Simple pixel distribution descriptors for the three 

visible (RGB) bands in VHR aerial imagery can provide information to predict 

traditional taxonomic species and species groupings of trees, and to study 

successional stages. (5) Combining satellite image analysis and field survey 

using acoustic method, the home range of the endemic brown-headed spider 

monkey could be delimited; and to sustain a healthy population of this primate, 

the current home range within the ecological reserve needs to be expanded. (6) 

The Ecuadorian páramo vegetation communities are composed of largely 

similar species with few individuals; suggesting high grazing pressure that has 

spread from the relatively low elevation bushland to high elevation grassland. 

The soils of the páramo vegetation communities are composed of mainly sand 

with limited amount of organic matter. The soil C content, total N content and 
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K concentration in the soils of the páramo are regulated by microclimatic 

factors (low temperature) and the vegetation types through their influence on 

the rate and type of organic residue incorporated into the soil system.   

 

In light of these findings the following recommendations are made: (1) further 

studies are needed to generate baseline information related to ecosystem 

functions that are not addressed here using the RGPD-method so that the 

versatility of the method will be further improved; (2) attempts should be made 

to regulate the population density of bamboo to create more growing space for 

seedlings in gaps of cloud forests; (3) incorporation of TEK in conservation 

and restoration planning is vital, as the local people have a wealth of 

knowledge about their local ecosystems; (4) to maintain a healthy population 

of brown-headed spider monkey, conservation action should focus on 

unprotected lowland forest to the south and west of the Cotacachi-Cayapas 

Ecological Reserve, where hunting pressure is still low and population density 

of the species is the greatest; and (5) degraded páramo ecosystem should be 

prioritized for conservation to improve the potential of páramo soils to 

sequester more organic carbon and contribute to climate change mitigation. 

Finally, establishment of “Local ecosystems health center” in each local 

village or parish would be considered to advice and coordinate conservation 

and restoration efforts in the future as well as to serve as a source of locally 

relevant information. 
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Annex 1. A complete list of woody 
species recorded in Choco-Darien 
lowland rain forests, Ecuador. 

 

  

Woody species  Total No. individuals stems/ha 

Wettinia quinaria (O.F. Cook & Doyle) Burret 198 62 

Otoba novogranatensis Moldenke 84 26 

Non -identified species 26 72 23 

Guettarda hirsuta (Ruiz & Pav.) Pers. 57 18 

Theobroma gileri Cuatrec. 44 14 

Protium ecuadorense Benoist 42 13 

Cecropia obtusifolia Bertol. 40 13 

Cecropia garciae Cuatrec. 39 12 

Eschweilera caudiculata R. Knuth 39 12 

Gustavia dodsonii S. A. Mori 38 12 

Eschweilera rimbachii Standl. 29 9 

Vismia laterifolia Ducke 29 9 

Swartzia haughtii R.S. Cowan 25 8 

Gloeospermum grandifolium Hekking 24 8 

Lecythis ampla Miers 22 7 

Inga silanchensis T.D. Penn. 21 7 

Cordia aff. mexiana I.M. Johnst. 20 6 

Matisia malacocalyx (A. Robyns & S.  Nilsson) W.S. Alverson 19 6 

Prestoea acuminata (Willd.) H. E. Moore 19 6 

Bauhinia pichinchensis  Wunderlin 18 6 

Matisia longipes Little 18 6 

Otoba gordoniifolia (A. DC.) A. H. Gentry 18 6 

Carapa guianensis Aubl. 17 5 

Psychotria gentryi (Dwyer) C.M. Taylor 16 5 

Dussia lehmannii Harms 15 5 

Brosimum utile subsp. occidentale (Kunth) Pittier 14 4 

Tabernaemontana amygdalifolia Jacq. 14 4 

Posoqueria maxima Standl. 13 4 
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Virola reidii Little 13 4 

Cecropia sp.1  12 4 

Coccoloba obovata Kunth 12 4 

Geonoma cuneata H. Wendl.  ex Spruce 12 4 

Inga sapindoides Willd. 12 4 

Inga sp.2  12 4 

Discophora guianensis Miers 11 3 

Pachira patinoi (Dugand & Robyns) Fern. Alonso 11 3 

Agouticarpa williamsii (Standl.) C. Persson 10 3 

Faramea fragrans Standl. 10 3 

Guarea kunthiana A. Juss. 10 3 

Sapium stylare Müll. Arg. 10 3 

Coussapoa contorta Cuatrec. 9 3 

Grias peruviana Miers 9 3 

Inga spectabilis (Vahl) Willd. 9 3 

Licania celiae Prance 9 3 

Pouteria aff. collina (Little) T.D. Penn. 9 3 

Allophylus floribundus (Poepp.) Radlk 8 3 

Apeiba membranacea Spruce ex Benth. 8 3 

Conostegia aff. centronioides Markgr. 8 3 

Geissanthus longistamineus (A. C. Sm.) Pipoly 8 3 

Ossaea sp.  8 3 

Brosimum utile subsp. occidentale  7 2 

Cecropia hispidissima  Cuatrec. 7 2 

Tovomita nicaraguensis (Oerst., Planch. & Triana) L.O. Williams 7 2 

Brosimum utile subsp. occidentale C.C. Berg 6 2 

Guettarda platyphylla Müll. Arg. 6 2 

Inga carinata T.D. Penn. 6 2 

Inga lallensis Spruce ex Benth. 6 2 

Sorocea jaramilloi C.C. Berg 6 2 

Turpinia occidentalis (Sw.) G. Don 6 2 

Brosimum guianense (Aubl.) Huber 5 2 

Chrysochlamys dependens Planch. & Triana 5 2 

Guarea glabra Vahl 5 2 

Inga involucrata R.S. Cowan 5 2 
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Pouteria multiflora (A. DC.) Eyma 5 2 

Quararibea aff. asterolepis Pittier 5 2 

Sapium laurifolium (A. Rich.) Griseb. 5 2 

Symphonia globulifera L. f. 5 2 

Trichilia septentrionalis C. DC. 5 2 

Casearia arborea (Rich.) Urb. 4 1 

Chrysochlamys membranacea Planch. & Triana 4 1 

Conostegia montana (Sw.) D. Don ex DC. 4 1 

Conostegia sp.  4 1 

Croton tessmannii Mansf. 4 1 

Inga sp.1  4 1 

Matisia aff. malacocalyx  (A. Robyns & S.  Nilsson) W.S. Alverson 4 1 

Matisia grandifolia Little 4 1 

Matisia soegengii Cuatrec. 4 1 

Plinia sp.  4 1 

Ruagea glabra Triana & Planch. 4 1 

Tovomita weddelliana Planch. & Triana 4 1 

Virola sebifera Aubl. 4 1 

Alchornea grandis Benth. 3 1 

Alchornea sp.  3 1 

Andira macrotryrsa Ducke 3 1 

Apeiba membranaceae Spruce ex Benth. 3 1 

Carapa aff. guianensis Aubl. 3 1 

Caryodaphnopsis theobromifolia (A.H. Gentry) van der Werff & 

H.G. Richt. 

3 1 

Dacryodes cupularis Cuatrec. 3 1 

Dendrobangia boliviana Rusby 3 1 

Eschweilera pittieri R. Knuth 3 1 

Guatteria sp.1  3 1 

Hedyosmum scaberrimum Stand. 3 1 

Hernandia lychnifera Grayum & N. Zamora 3 1 

Hippotis stellata C.M. Taylor 3 1 

Inga acuminata Benth. 3 1 

Inga chocoensis Killip ex T.S. Elias 3 1 

Kutchubaea urophylla (Standl.) Steyerm. 3 1 

Maytenus macrocarpa (Ruiz & Pav.) Briq. 3 1 
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Nectandra guadaripo Rohwer 3 1 

Ossaea macrophylla (Benth.) Cogn. 3 1 

Randia armata (Sw.) DC. 3 1 

Sterculia apeibophylla Ducke 3 1 

Sterculia colombiana Sprague 3 1 

Abarema racemiflora (Donn. Sm.) Barneby & J.W. Grimes 2 1 

Bertiera sp.1  2 1 

Cecropia reticulata Cuatrec. 2 1 

Cestrum megalophyllum Dunal 2 1 

Conostegia aff. apiculata Wurdack 2 1 

Conostegia cf. montana (Sw.) D. Don ex DC. 2 1 

Cordia cf. mexiana I.M. Johnst. 2 1 

Eschweilera pachyderma Cuatrec. 2 1 

Eugenia florida DC. 2 1 

Ficus sp.  2 1 

Helicostylis tovarensis (Klotzsch & H. Karst.) C.C. Berg 2 1 

Inga sp.3  2 1 

Myrcia cf. splendens (Sw.) DC. 2 1 

Naucleopsis naga Pittier 2 1 

Ossaea brenesii Standl. 2 1 

Palicourea acanthacea Standl. ex C.M. Taylor 2 1 

Palicourea mexiae Standl. 2 1 

Palicourea sp.  2 1 

Perebea xanthochyma H. Karst. 2 1 

Phragmotheca mammosa W. S. Alverson 2 1 

Piper obliqum Ruiz & Pav. 2 1 

Pleurothyrium cinereum van der Werff 2 1 

Pleurothyrium sp.  2 1 

Poulsenia armata (Miq.) Standl. 2 1 

Pourouma aff. bicolor Mart. 2 1 

Pouteria cf. collina (Little) T.D. Penn. 2 1 

Rollinia pittieri Saff. 2 1 

Saurauia lehmannii Hieron. 2 1 

Siparuna gentryana Renner 2 1 

Sloanea sp.1  2 1 
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Stephanopodium angulatum (Little) Prance 2 1 

Stephanopodium longipedicellatum Prance 2 1 

Synechanthus warscewiczianus H. Wendl. 2 1 

Talisia macrophylla (Mart.) Radlk. 2 1 

Vismia gracilis Hieron 2 1 

Vismia sprucei Sprague 2 1 

Alchornea cf. grandis Benth. 1 0 

Alchornea cf. leptogyna Diels 1 0 

Andira inermis (W. Wright) Kunth ex DC. 1 0 

Beilschmiedia aff. costaricensis (Mez & Pittier) C. K. Allen 1 0 

Bertiera sp.2  1 0 

Brosimum utile (Kunth) Pittier 1 0 

Bunchosia aff. deflexa Triana & Planch. 1 0 

Bunchosia argentea (Jacq.) DC. 1 0 

Byrsonima ligustrifolia A. Juss. 1 0 

Calyptranthes sp.  1 0 

Cecropia sp.2  1 0 

Clarisia biflora Ruiz & Pav. 1 0 

Clusia lineata (Benth.) Planch. & Triana 1 0 

Clusia venusta Little 1 0 

Compsoneura mutisii A.C. Sm. 1 0 

Conostegia attenuata Triana 1 0 

Cordia aff.  lomatoloba I.M. Johnst. 1 0 

Cordia cf. lomatoloba I.M. Johnst. 1 0 

Cordia sp.  1 0 

Coussapoa herthae  Mildbr. 1 0 

Coussarea latifolia Standl. 1 0 

Cyathea delgadii Sternb. 1 0 

Drypetes sp.  1 0 

Elaeagia cf. karstenii Standl. 1 0 

Endlicheria aff. browniana Mez 1 0 

Endlicheria aff. browniana Mez   1 0 

Endlicheria aff. formosa A.C. Sm. 1 0 

Endlicheria formosa A.C. Sm. 1 0 

Eugenia aff. florida DC. 1 0 
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Eugenia cf. myrobalana DC. 1 0 

Eugenia sp.  1 0 

Faramea sp.  1 0 

Ficus brevibracteata W.C. Burger 1 0 

Ficus cf. brevibracteata W.C. Burger 1 0 

Ficus cf. cuatrecasana Dugand 1 0 

Ficus mutisii Dugand 1 0 

Fusispermum minutiflorum Cuatrec. 1 0 

Guarea sp.  1 0 

Guaripa aff. myrtiflora (Standl.) Lundell 1 0 

Guatteria amazonica R.E. Fr. 1 0 

Hedyosmum scaberrimum Standl. 1 0 

Henriettella verrucosa O. Berg ex Triana 1 0 

Hippotis stellata C. M. Taylor 1 0 

Hippotis stellata C.M. Taylor   1 0 

Hippotis stellata C.M. Taylor & Rova 1 0 

Inga aff.  coruscans Humb. & Bonpl. ex Willd. 1 0 

Inga aff. spectabilis (Vahl) Willd. 1 0 

Inga pezizifera Benth. 1 0 

Inga sp.4  1 0 

Inga venusta Standl. 1 0 

Inga villosissima Benth. 1 0 

Lozania mutisiana Schult. 1 0 

Matisia sp.  1 0 

Meliosma aff. occidentalis Cuatrec. 1 0 

Miconia brachybotrya Triana 1 0 

Mollinedia sp.  1 0 

Myrcia aliena Mc. Vaugh 1 0 

Naucleopsis sp.  1 0 

Nectandra aff. membranacea (Sw.) Griseb. 1 0 

Nectandra guadaripo  1 0 

Nectandra purpurea (Ruiz & Pav.) Mez 1 0 

Nectandra sp.  1 0 

Neea cf. spruceana Heimerl 1 0 

Notopleura sp.  1 0 
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Ocotea floccifera Mez & Sodiro 1 0 

Oenocarpus bataua Mart. 1 0 

Pleurothyrium cf. gigantum van der Werff 1 0 

Pourouma sp.1  1 0 

Pouteria aff. torta (Mart.) Radlk. 1 0 

Pouteria collina (Little) T.D. Penn. 1 0 

Pouteria sp.  1 0 

Psychotria allenii Standl. 1 0 

Pterocarpus aff. officinalis Jacq. 1 0 

Raulvolfia leptophylla Rao 1 0 

Rollinia sp.1  1 0 

Sapium marmieri Huber 1 0 

Sloanea sp.2  1 0 

Sloanea stipitata Spruce ex. Benth. 1 0 

Sterculia cf. colombiana Sprague 1 0 

Swartzia aff. haughtii R.S. Cowan 1 0 

Tabernaemontana panamensis (Markgr.,Boit. & L. Allorge 1 0 

Trema micrantha (L.) Blume 1 0 

Vantanea occidentalis Cuatrec. 1 0 

Virola aff. calophylla (Spruce) Warb. 1 0 

Vismia  aff. lateriflora Ducke 1 0 

Zanthoxylum aff. mauriifolium Reynel 1 0 

 1602  
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Annex 2. Frequency of citation (FC) of a species 
by use category (together with number of uses 
(NU) as well as overall FC and use-report (UR). 
TF = timber and furniture; PF = poles for fencing, 
MH = medicines and herbs, FO = fruits and 
ornamentals, FW = fuelwood, WF = food for 
wildlife, WH = habitat for wildlife. 

 

Species TF PF MH FO FW WF WH FC 

(human) 

FC 

(widlife) 

NU UR 

Hyeromina duquei   47 47 0 47 0 47 0 47 47 4 188 

Citharexylum 

montanum   

38 38 0 38 38 33 0 38 33 5 185 

Eugenia 

crassimarginata  

42 42 0 42 0 38 0 42 38 4 164 

Vismia tomentosa 43 43 0 0 43 9 0 43 9 4 138 

Delostoma 

integrifolium    

33 33 0 33 33 0 3 33 3 5 135 

Alnus acuminata  33 33 0 33 33 0 1 33 1 5 133 

Sapium contortum 33 33 0 0 33 34 0 33 34 4 133 

Ocotea insularis 44 44 0 0 0 36 0 44 36 3 124 

Ficus maxima 29 29 29 0 0 27 0 29 27 4 114 

Ceroxylon 

echinulatum 

20 20 0 20 0 25 25 20 25 5 110 

Erythrina edulis 0 31 0 31 0 43 0 31 43 3 105 

Tibouchina   mollis 0 44 0 44 0 5 0 44 5 3 93 

Alchornea latifolia   27 27 0 27 0 8 0 27 8 4 89 

Nectandra acutifolia 36 36 0 0 0 4 0 36 4 3 76 

Saurauia prainiana 0 0 0 35 0 39 0 35 39 2 74 

Guarea kunthiana 16 16 0 16 0 15 0 16 15 4 63 

Weinmannia 

macrophylla  

30 30 0 0 0 1 0 30 1 3 61 

Inga aff. acuminata 16 16 0 16 0 13 0 16 13 4 61 

Trichilia 

septentrionalis 

13 13 0 13 0 6 0 13 6 4 45 

Clusia lineata 14 14 0 0 14 2 0 14 2 4 44 

Cedrela montana 43 0 0 0 0 0 0 43 0 1 43 

Oreopanax 

palamophyllus 

14 14 14 0 0 1 0 14 1 4 43 
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Hedyosmum luteynii 0 0 19 0 0 12 0 19 12 2 31 

Turpinia aff. 

occidentalis  

10 10 0 0 0 11 0 10 11 3 31 

Critoniopsis 

occidentalis   

5 5 0 0 5 3 0 5 3 4 18 

Solanum cf. 

hypermegethes 

3 3 0 0 3 1 0 3 1 4 10 

Miconia glandulistyla 0 3 0 0 0 1 0 3 1 2 4 

Jungleus (unidentified 

sp.) 

1 0 0 0 0 1 0 1 1 2 2 

Nectandra sp. 1 0 0 0 0 0 0 1 0 1 1 

Morus insignes  1 0 0 0 0 0 0 1 0 1 1 

Musmus (unidentified 

sp.) 

0 1 0 0 0 0 0 1 0 1 1 

Pandola (unidentified 

sp.) 

1 0 0 0 0 0 0 1 0 1 1 

            

 


