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Asymptotic Behavior of Bayesian
Nonparametric Procedures

Abstract
Asymptotics plays a crucial role in statistics. The theory of asymptotic con-
sistency of Bayesian nonparametric procedures has been developed by many
authors, including Schwartz (1965), Barron, Schervish and Wasserman (1999),
Ghosal, Ghosh and Ramamoorthi (1999), Ghosal, Ghosh and van der Vaart
(2000), Shen and Wasserman (2001), Walker and Hjort (2001), Walker (2004),
Ghosal and van der Vaart (2007) and Walker, Lijoi and Prunster (2007). This
theory is mainly based on existence of uniformly exponentially consistent tests,
computation of a metric entropy and measure of a prior concentration around
the true value of parameter. However, both the test condition and the metric
entropy condition depend on models but not on prior distributions. Because
a posterior distribution depends on the complexity of the model only through
its prior distribution, it is therefore natural to explore appropriate conditions
which incorporate prior distributions. In this thesis we introduce Hausdorff
α-entropy and an integration condition, both of which incorporate prior dis-
tributions and moreover are weaker than the metric entropy condition and the
test condition, respectively. Furthermore, we provide an improved method
to measure the prior concentration. By means of these new quantities, we
derive several types of general posterior consistency theorems and general
posterior convergence rate theorems for i.i.d. and non-i.i.d. models, which
lead to improvements in a number of currently known theorems and their ap-
plications. We also study rate adaptation for density estimation within the
Bayesian framework and particularly obtain that the Bayesian procedure with
hierarchical prior distributions for log spline densities and a finite number of
models achieves the optimal minimax rate when the true density is Hölder-
continuous. This result disconfirms a conjecture given by Ghosal, Lember and
van der Vaart (2003). Finally, we find a new both necessary and sufficient
condition on Bayesian exponential consistency for prior distributions with the
Kullback-Leibler support property.
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Summary of Papers

Asymptotics is known as one of the most important properties of statistical
procedures. For a statistical procedure, lack of consistency might lead to
seriously incorrect inferences, and this is true in a Bayesian setting as well.
The asymptotic behavior of Bayesian nonparametric procedures has been the
focus of a considerable amount of research during past three decades, see for
instance Schwartz [11], Barron, Schervish and Wasserman [1], Ghosal, Ghosh
and Ramamoorthi [5], Ghosal, Ghosh and van der Vaart [6], Ghosal and van
der Vaart [10], Shen and Wasserman [12], Walker [13], Walker and Hjort [14]
and Walker, Lijoi and Prunster [15]. Let

(
X(n),A(n), P

(n)
θ : θ ∈ Θ

)
for n =

1, 2, . . . be a sequence of statistical experiments with observations X(n), where
the parameter set Θ is assumed to be independent of the index n. Suppose
that the distribution P

(n)
θ for each θ ∈ Θ admits a density p

(n)
θ relative to

some σ-finite measure µ(n) on X(n). Denote by θ0 the true value of parameter
of the distributions which generate the observations X(n) for all n. For each
statistical experiment

(
X(n),A(n), P

(n)
θ : θ ∈ Θ

)
, we let Πn stand for a prior

distribution on Θ and let Πn( · |X(n)) stand for the corresponding posterior
distribution given by the Bayes theorem

Πn

(
A

∣∣X(n)
)

=

∫
A p

(n)
θ (X(n))Πn(dθ)

∫
Θ p

(n)
θ (X(n))Πn(dθ)

for each measurable subset A in Θ. Observe that one can of course take a
common prior Π on Θ for all n, but to increase the scope of applicability, we
assume here that the prior Πn may depend on n. In the case that X(n) is
a random vector (X1, X2, . . . , Xn) with independent variables Xi, where n is
the sample size and each Xi is generated from a density pθ,i relative to some
σ-finite measure µi on (Xi,Ai), then P

(n)
θ is usually chosen to be the joint dis-

tribution with the product density p
(n)
θ (X(n)) =

∏n
i=1 pθ,i(xi) relative to the

direct product measure µ(n) = µ1×µ2×· · ·×µn on X(n) = X1×X2×· · ·×Xn.
The posterior distribution Πn( · |X(n)) is said to be consistent almost surely
(respectively, in probability) at the true parameter θ0 if for any open neighbor-
hood A of θ0, Πn( A |X(n)) tends to one as n →∞ almost surely (respectively,
in probability ) under the distribution governed by θ0. For a consistent pos-
terior distribution, the rate of convergence is measured by the size of the
smallest shrinking balls around the true parameter on which the posterior
masses tend to one as the index n increases to infinity. An early work on
consistency of posterior distributions is due to Doob [3], who proved under
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a very mild condition that for any given prior distribution, the posterior dis-
tribution is consistent at each true parameter except possibly on a set with
zero prior mass. Since the exceptional set for the true parameter can be
dense everywhere on the parameter space, Doob’s result actually cannot pro-
duce any information on posterior consistency at a given parameter. In fact,
Freedman [4] and Diaconis and Freedman [2] have demonstrated that a prior
distribution having positive mass on all weak neighborhoods of the true pa-
rameter cannot imply the weak consistency of the posterior distribution, in
which the open neighborhood A of the true parameter is induced by weak
topology. A well known sufficient condition on consistency of posterior dis-
tributions was found by Schwartz [11]. Her result implies that if the true
parameter is in the Kullback-Leibler support of a prior distribution in the
setup of i.i.d. observations then the posterior distribution accumulates in any
given weak neighborhood of the true parameter when the sample size is large
enough. However, in many applications like density estimation it is natural
to ask for the almost sure consistency of Bayesian procedures with respect to
some important metrics such as the Hellinger metric and the Lp-norm. Unfor-
tunately, it is known that the condition on the Kullback-Leibler support of the
true parameter relative to prior distribution is not enough to guarantee the
almost sure consistency of the posterior distribution with respect to general
topologies. Some additional restrictions must be needed to obtain a positive
result. Many people, including Barron, Schervish and Wasserman [1], Ghosal,
Ghosh and Ramamoorthi [5], Ghosal and van der Vaart [10], Schwartz [11],
Shen and Wasserman [12] and Walker [13], have made great contributions in
this direction. The main currently known approach in the study of consistency
and convergence rates of Bayesian nonparametric procedures consists of (1)
computing a metric entropy which in fact puts appropriate size restrictions
on the model, (2) checking the existence of uniformly exponentially consistent
tests for testing the true parameter, against the intersection of some suitable
sieve and any small neighborhood of each another parameter, and (3) measur-
ing one type of prior concentration which depends on the prior mass assigned
to suitable neighborhoods of the true parameter. Both the metric entropy
condition and the test condition depend on models but not on prior distribu-
tions. Since a posterior distribution depends on the complexity of the model
only through its prior distribution, it is therefore natural to explore conditions
which incorporate prior distributions.

This thesis aims at developing a better approach to handle asymptotic
behavior of Bayesian nonparametric procedures. Our results imply that both
the metric entropy condition and the test condition can be improved by means
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of our weaker and prior-incorporating conditions. We also provide an improved
method to measure prior concentration around the true parameter. These lead
to improvements in a number of general posterior consistency theorems and
general posterior convergence rate theorems for i.i.d. and non-i.i.d. models and
their applications. Our main tools are the Hausdorff α-entropy, an integration
condition and an improved method to measure the prior concentration, which
are introduced and studied in Papers IV, I and II respectively. Throughout
this thesis we shall adopt the convention that log 0 = −∞ and 0/0 = 0. We
introduce

The Hausdorff α-Entropy (Paper IV). Let α ≥ 0 and Θn ⊂ Θ. For δ > 0,
the Hausdorff α-entropy J(δ,Θn, α,Πn, dn) of Θn relative to a given prior Πn

and a semimetric dn on Θ is defined as

J(δ,Θn, α,Πn, dn) = log inf
N∑

j=1

Π(Bj)α,

where the infimum is taken over all coverings {B1, B2, . . . , BN} of Θn and N
may take ∞ such that each Bj is contained in some dn-ball

{θ ∈ Θ : dn(θ, θj) < δ}

of radius δ and center at θj.

The Hausdorff α-entropy J(δ,Θn, α,Πn, dn) is a decreasing function of α
in [0,∞). We have that J(δ,Θn, 1, Πn, dn) = Πn(Θn) and J(δ,Θn, 0, Πn, dn) is
precisely equal to the metric entropy with respect to dn. The metric entropy
does not incorporate the prior Πn and has been widely used by many authors in
their study of asymptotics of Bayesian nonparametric procedures. Clearly, the
Hausdorff α-entropy with 0 < α < 1 is much smaller than the metric entropy.
For convenience we call the constant C(δ, Θn, α, Πn, dn) := eJ(δ,Θn,α,Πn,dn) for
the Hausdorff α-constant of the set Θn. Given 0 ≤ α ≤ 1 and Θn ⊂ Θ, we
obtain

C(δ,Θn, α,Πn, dn) ≤ Πn(Θn)α N(δ,Θn, dn)1−α,

where N(δ,Θn, dn

)
stands for the minimal number of balls of dn-radius δ

needed to cover Θn and is usually called for the covering number of Θn. Our
results show that one can replace the metric entropy by the Hausdorff α-
entropy (or equivalently, the covering number is replaced by the Hausdorff
α-constant) to study Bayesian asymptotics.
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Denote by R
(n)
θ (X(n)) = p

(n)
θ (X(n))

/
p
(n)
θ0

(X(n)) the likelihood ratio of ob-

servations X(n) from the statistical experiment (X(n),A(n), P
(n)
θ : θ ∈ Θ). For

i.i.d. observations X(n) = (X1, X2, . . . , Xn) generating from the density fθ0 ,

one has a simple expression R
(n)
θ (X(n)) =

n∏
i=1

{
fθ(Xi)/fθ0(Xi)

}
. Now we define

An Integration Condition (Paper I). Let {dn} and {en} be two sequences of
semimetrics on Θ. For some α ∈ (0, 1) there exist constants K1 > 0, K2 > 0
and K3 ≥ 0 such that the inequality

P
(n)
θ0

(∫

θ∈Θ1: dn(θ,θ0)>ε
R

(n)
θ (X(n))Πn(dθ)

)α

≤ K1 e−K2nε2
C(ε, {θ ∈ Θ1 : dn(θ, θ0) > ε}, α, Πn, en)K3

holds for any ε > 0, Θ1 ⊂ Θ and for all n large enough.

The integration condition is weaker than the classical condition on exis-
tence of uniformly exponentially consistent tests, which states that for every
n, ε > 0 and θ1 ∈ Θ with dn(θ1, θ0) > ε there exists a test φn such that

P
(n)
θ0

φn ≤ e−nε2
and inf

θ∈Θ: en(θ,θ1)<ε
P

(n)
θ φn ≥ 1− e−nε2

.

Another advantage of this integration condition is that it holds automatically
for certain interesting classes of metrics and can moreover be helpful in con-
structing priors which lead to good properties of the posteriors. We found
that the classical test condition can be replaced by the integration condition
in study of Bayesian asymptotics.

Denote by ||g||p =
( ∫ |g|p)1/p the standard Lp-norm of g. The Hellinger

distance H(f0, f) = ||√f0−
√

f ||2 times the supremum norm of the ratio f0/f
was suggested by Ghosal, Ghosh and van der Vaart [6] and adopted by many
people to measure the prior concentration in order to ensure the almost sure
convergence of posterior distributions. In Paper II we instead use the following
modification of the Hellinger distance.

An Improved Prior Concentration Rate (Paper II). A sequence {εn}∞1
of numbers decreasing to zero is called for a prior concentration rate for the
density space F if there exists a constant c > 0 such that the prior mass of
the subset {f ∈ F : H∗(f0, f) ≤ εn} exceeds e−cnε2

n for all n, where H∗(f0, f)

stands for
∣∣∣∣(√f0 −

√
f)

(
2
3

√
f0

f + 1
3

)1/2∣∣∣∣
2
.
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Since the inequalities H∗(f, g) ≤ ∣∣∣∣f/g
∣∣∣∣1/4

∞ H(f, g) ≤ ∣∣∣∣f/g
∣∣∣∣
∞H(f, g) hold

for all density functions f and g, it would be better to adopt the quantity H∗
instead of that suggested by Ghosal, Ghosh and van der Vaart [6]. Particularly,
the supremum norm of such a ratio may become infinite in some cases, whereas
the quantity H∗ works very well.

The first three papers of this thesis deal with rates of convergence of pos-
terior distributions, and the last three ones deal with consistency of posterior
distributions in the setup of i.i.d. observations. Let me now briefly summarize
the main results of these papers.

Paper I

In Paper I we supply the prior-dependent integration condition to establish
general posterior convergence rate theorems for observations which may not be
independent and identically distributed. The classical condition on the exis-
tence of uniformly exponentially consistent tests for testing the true parameter
against each small neighborhood of other parameters has been widely adopted
in the study of asymptotics of Bayesian nonparametric procedures. Note that
a posterior depends on the complexity of the model only through its prior.
As far as the Bayesian approach is concerned, it would be natural to explore
alternative and appropriate conditions which incorporate priors. In this paper
we use an integration condition together with the Hausdorff α-entropy, intro-
duced in Paper IV, to study convergence rates of posteriors. The integration
condition and the Hausdorff α-entropy both incorporate priors. Moreover, the
integration condition is weaker than the existence of uniformly exponentially
consistent tests and holds automatically for certain classes of metrics used to
describe rates of convergence. The integration condition is also useful in con-
struction of priors which yield the optimal rates of convergence. These lead
to improvements of several existing theorems. For instance, we establish the
following posterior convergence rate theorem.

Theorem 1. Suppose that the integration condition holds and that εn > 0,
n ε2

n ≥ c0 log n for all large n and some fixed constant c0 > 0. Suppose that
there exist a constant c1 < K2 and a sequence of subsets Θn on Θ such that

C(jεn, {θ ∈ Θn : jεn < dn(θ, θ0) ≤ 2jεn}, α,Πn, en)K3 ≤ ec1j2nε2
n Πn

(
Wn(θ0, εn)

)α

for all sufficiently large integers j and n, where

Wn(θ0, εn) =
{
θ ∈ Θ : H∗(p

(n)
θ0

, p
(n)
θ ) ≤ √

nεn

}
.

Then for each r large enough we have that
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Πn

(
θ ∈ Θn : dn(θ, θ0) ≥ r εn|X(n)

) −→ 0

almost surely as n →∞. If furthermore there exists c2 > 1
c0

such that

∞∑

n=1

en ε2
n (3+2c2) Πn(Θ \Θn)
Πn

(
Wn(θ0, εn)

) < ∞,

then there exists a constant b > 0 such that for each large r and all large n,

Πn

(
θ ∈ Θ : dn(θ, θ0) ≥ r εn|X(n)

) ≤ e−bnε2
n almost surely

which tends to zero as n →∞.

Under an appropriately weaker condition we obtain an analogue of Theo-
rem 1 for the in-probability posterior convergence. We also establish a poste-
rior convergence rate theorem for general Markov processes, which is an ex-
tension of a theorem for stationary α-mixing Markov chains given by Ghosal
and van der Vaart [10]. As an application we improve on the posterior rate
of convergence for a nonlinear autoregressive model given by Ghosal and van
der Vaart [10]. Many authors have studied Bayesian convergence rates for the
Gaussian white noise model and constructed some interesting priors to get
the optimal convergence rates of posteriors. Now our theorems is applied to
extend their results to multi-normally distributed observations which may not
be independent.

Paper II

Paper II deals with convergence rates of posteriors for i.i.d. data. Our
main tools are an improved method to measure prior concentration around
the true density f0 in the density space F and the Hausdorff α-entropy given
in Paper IV. We present several types of general posterior convergence rate
theorems. One of the main results is the following theorem.

Theorem 2. Let {ε̄n}∞n=1 and {ε̃n}∞n=1 be two positive sequences such that
n min(ε̄2

n, ε̃2
n) → ∞ as n → ∞. Suppose that there exist constants c1 >

0, c2 > 0, c3 ≥ 0, 0 ≤ α < 1 and a sequence {Gn}∞n=1 of subsets on F such that
∞∑

n=1
e−n ε̃2

n c2 < ∞ and

(1)
∞∑

n=1
C(ε̄n,Gn, α,Π,H) e−n ε̄2

n c1 < ∞,

(2)
∞∑

n=1
en ε̃2

n (3+3c2+c3) Π(F \ Gn) < ∞,
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(3) Π
(
f ∈ F : H∗(f0, f) ≤ ε̃n

) ≥ e−n ε̃2
n c3 .

Then for εn = max(ε̄n, ε̃n) and each r > 2 +
√

2(3α+2αc2+αc3+c1)
1−α , we have

Π
(
f ∈ F : H(f0, f) ≥ rεn

∣∣ X1, X2, . . . , Xn

) −→ 0

almost surely as n →∞.

Theorem 2 strengthens several theorems on posterior convergence rates in
Ghosal, Ghosh and van der Vaart [6], Shen and Wasserman [12] and Walker,
Lijor and Prunster [15]. We apply our results to some statistical models in-
cluding Bernstein polynomial priors, priors based on uniform distribution, log
spline models and finite-dimensional models. We obtain some improvements
on known results for these models.

Paper III

Paper III deals with rate adaptation for density estimation within the
Bayesian framework. Given a collection of models, from the Bayesian point of
view it is natural to put a prior on model index and let the resulting posteriors
determine a good single model. A rate-adaptive posterior achieves the rate of
convergence provided by the best single model from the collection. We study
convergence rates of Bayesian procedures for hierarchical priors, consisting of
prior weights on a model index set and priors on each individual density model.
More detailedly, for each positive integer n, denote by In a countable index
set. Let Πn,γ be a probability measure on a subset Pn,γ of the density space
for each γ ∈ In and let {λn,γ : γ ∈ In} be a discrete probability measure on
In. We get an overall prior Πn defined by

Πn =
∑

γ∈In

λn,γ Πn,γ .

Assume that for a given true density f0 there exists a best model Pn,βn

equipped with a prior Πn,βn such that the optimal posterior rate is εn,βn .
An interesting problem is to find conditions ensuring that the posterior dis-
tribution Πn

(· ∣∣X1, X2, . . . , Xn

)
achieves the same rate of convergence as we

only use the best single model Πn,βn for this f0. Ghosal, Lember and Van der
Vaart [7][8] have proved in-probability results. When applying to log spline
densities with a finite number of models, their result leads to adaptation up
to a logarithmic factor and it was shown in [8] that the additional logarith-
mic factor in the convergence rate can be removed by choosing special prior
weights λn,γ . Now we establish an almost sure assertion. Denote

Wn,γ(ε) =
{
f ∈ Pn,γ : H∗(f0, f) ≤ ε

}
,
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An,γ(ε) =
{
f ∈ Pn,γ : d(f0, f) ≤ ε

}
,

I1
n = {γ ∈ In : εn,γ ≤

√
Hεn,βn},

I2
n = {γ ∈ In : εn,γ >

√
Hεn,βn}.

Then we have

Theorem 3. Suppose that there exist positive constants H ≥ 1, K ≥ 1,
Eγ , µn,γ , B, G, J, L, C and 0 < α < 1 such that 1− α > 18α(3B2 + 2CB2 +
L), nε2

n,βn
≥ (1 + 1

C ) log n, supγ∈I1
n

Eγε2
n,γ ≤ Gε2

n,βn
, supγ∈I2

n
Eγ ≤ G and

∑
γ∈In

µα
n,γ = O(eJnε2

n,βn ). Let r be a constant with r ≥ 18(C+J+G)
1−α−18αL−54αB2−36αCB2

+
√

H + 1
B + 1 such that

(1) N
(

ε
3 , An,γ(2ε), d

) ≤ eEγnε2
n,γ for all γ ∈ In and ε ≥ εn,γ ,

(2)
λn,γ Πn,γ

(
An,γ(jεn,γ)

)

λn,βn Πn,βn

(
Wn,βn(εn,βn )

) ≤ µn,γ eLj2nε2
n,γ for all γ ∈ I2

n and j ≥ r,

(3)
Πn,γ

(
An,γ(jεn,βn)

)

Πn,γ

(
Wn,γ(BKn,γεn,βn )

) ≤ µn,γ eLj2nε2
n,βn for all γ ∈ I1

n and j ≥ Kn,γ ,

where 1+Kn,γ stands for the least integer but larger than r such that
An,γ

(
(1 + Kn,γ)εn,βn

) 6= ∅,

(4)
∞∑

n=1

∑
γ∈I2

n

λn,γ Πn,γ

(
An,γ(rεn,γ)

)
e
(3+2C)nε2n,βn

λn,βn Πn,βn

(
Wn,βn(εn,βn)

) < ∞.

Then
Πn

(
f : d(f, f0) ≥ rεn,βn

∣∣ X1, X2, . . . , Xn

) −→ 0

almost surely as n →∞.

As an application of Theorem 3 to log spline densities with finitely many
models, we successfully take away the logarithmic factor without using any
special prior weights λn,γ and hence for a true density in the Hölder space
Cγ [0, 1] the posterior Πn

(· ∣∣X1, X2, . . . , Xn

)
attains the optimal rate of con-

vergence in the minimax sense, which is well known to be n−γ/(2γ+1). This
disconfirms a conjecture given by Ghosal, Lember and van der Vaart [7]. We
moreover study consistency of posteriors of the model index and give a suffi-
cient condition ensuring that the posteriors concentrate their masses near the
index of the best model.
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Paper IV

In Paper IV we introduce the Hausdorff α-entropy to study the strong
Hellinger consistency of posteriors for i.i.d. observations. By means of the
Hausdorff α-entropy, we obtained

Theorem 4. Let ε > 0. Suppose that the true density f0 is in the Kullback-
Leibler support of Π and suppose that there exist 0 ≤ α < 1, 0 < δ <
ε (1−α)

7 , c1, c2 > 0, 0 < β < ε2

4 , and a sequence {Gn}∞n=1 of subsets of the
density space F such that each Gn is contained in ∪∞j=1Gnj. If

(i) Π
(
F \ Gn

)
< c1 e−n c2 ;

(ii)
∞∑

j=1
N(δ,Gnj ,H)1−α Π(Gnj)α < en β for all large n,

then
Π

(
f ∈ F : H(f0, f) ≥ ε

∣∣X1, X2, . . . , Xn

) −→ 0

almost surely as n →∞.

Theorem 4 contains several general posterior convergence theorems given
by Barron, Schervish and Wasserman [1], Ghosal, Ghosh and Ramamoorthi
[5] and Walker [13] as special cases. As applications we show that our theorem
leads to improvements of some known results for some mixture models.

Paper V

Paper V deals with characterizations of exponential consistency of poste-
riors for i.i.d. observations. Recall that the true density is said to be in the
Kullback-Leibler support of a prior if the prior mass on each Kullback-Leibler
neighborhood of the true density is positive. It was proved in Freedman [4] and
Diaconis and Freedman [2] that the Kullback-Leibler support condition can-
not ensure the consistency of the posterior distribution. Many authors have
obtained sufficient conditions for consistency of posteriors, see, for instance,
Schwartz [11], Barron, Schervish and Wasserman [1], Ghosal, Ghosh and Ra-
mamoorthi [5], Walker [13], Xing and Ranneby in Paper IV. The approaches
of Barron et al. [1] and Ghosal et al. [5] are to construct suitable sieves and
to compute metric entropies. Their works were discussed in great detail in the
monograph of Ghosh and Ramamoorthi [9], see also the nice review of Wasser-
man [16]. Walker’s result [13] relies upon summability of squareroots of prior
probability of suitable coverings. Xing and Ranneby in Paper IV used the
Hausdorff α-entropy to deal with the problem. All these results on posterior
consistency are in fact to establish sufficient conditions on exponential consis-
tency of posteriors under the Kullback-Leibler support condition. However,
given the Kullback-Leibler support condition, much less is known about both
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necessary and sufficient conditions on exponential consistency of posteriors.
We obtain one type of both necessary and sufficient conditions for Bayesian
exponential consistency.

Theorem 5. Let d be a semimetric on the density space F and let ε be a
positive constant. If the true density f0 is in the Kullback-Leibler support of
Π, the following statements are equivalent.
(i) There exists a constant β1 > 0 such that

P∞
f0

{
Π

(
f ∈ F : d(f, f0) ≥ ε

∣∣X1, X2, . . . , Xn

)
> e−nβ1 infinitely often

}
= 0.

(ii) There exist constants 0 < α1 ≤ 1, β2 > 0 and a sequence {Dn}∞1 of
sets Dn ⊂ Xn with P∞

f0
(lim supDn) = 0 such that

Ef0

(
1Xn\Dn

∫

{f∈F:d(f,f0)≥ε}
Rn(f)Π(df)

)α1 ≤ e−nβ2 for all large n,

where Ef0 stands for the expectation with respect to X1, X2, . . . , Xn

and 1Xn\Dn
denotes the indicator function of Xn \Dn.

(iii) For each 0 < α ≤ 1 there exist a constant βα > 0 and a sequence
{Dn}∞1 of sets Dn ⊂ Xn with P∞

f0
(lim sup Dn) = 0 such that

Ef0

(
1Xn\Dn

∫

{f∈F:d(f,f0)≥ε}
Rn(f)Π(df)

)α
≤ e−nβα for all large n.

(iv) There exist a constant β3 > 0 and a sequence {Dn}∞1 of sets Dn ⊂ Xn

such that P∞
f0

(lim supDn) = 0 and

∫

{f∈F:d(f,f0)≥ε}
P∞

f (Xn \Dn)Π(df) ≤ e−nβ3 for all large n.

An in-probability analogue of Theorem 5 is also established. As a conse-
quence of Theorem 5 we derive a new sufficient condition on Bayesian con-
sistency, which is weaker than the existing sufficient conditions. This makes
it possible to obtain posterior consistency without any computation of metric
entropy.

Paper VI

Bayesian consistency for i.i.d. data relies not only on the prior distribution,
but also on how the likelihood function behaves as the sample size increases.
So the size of likelihood function plays a key role in determining posterior
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consistency. In Paper VI we study Bayesian consistency by raising the like-
lihood function to a constant power α. A remarkable result of Walker and
Hjort [14] is that, if one adopts the square root of the likelihood function in
the calculation of posterior distributions, then the almost sure Hellinger con-
sistency of the resulting pseudoposterior distributions holds only under the
Kullback-Leibler support condition. They also proved that, by instead using
the likelihood function with some power 0 < α < 1, the almost sure consis-
tency of the pseudoposterior distributions Qα

n holds, but only with respect to
a related metric Hα(f, g) =

(
1 − ∫

gαf1−α
)1/2. We extend their result and

obtain the almost sure consistency of Qα
n with respect to Hellinger metric for

all 0 < α < 1, that is, we have

Theorem 6. Let H be the Hellinger metric on the density space F. If the
true density f0 is in the Kullback-Leibler support of the prior Π, then for each
ε > 0 we have that

Qα
n

(
f ∈ F : H(f, f0) ≥ ε

) −→ 0

almost surely as n →∞.

We moreover establish a sufficient condition ensuring almost sure Hellinger
consistency of posterior distributions. Our result implies a theorem in Barron,
Schervish and Wasserman [1].
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