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Highlights 

- Phosphate enhances the sorption of cadmium(II) to ferrihydrite. 

- Without phosphate present, cadmium(II) predominantly forms inner-sphere bidentate 

complexes with the ferrihydrite surface. 

- The enhanced sorption in systems with phosphate can to a significant extent be explained 

by the formation of a ternary surface complex. 
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Abstract 

Hypothesis 

Phosphate influences the sorption of metals to iron (hydr)oxides. An enhanced formation of 

inner-sphere complexes on the (hydr)oxide surface can be attributed to electrostatic interactions 

and/or to changes in metal coordination on the iron (hydr)oxide surface. Phosphate was expected 

to enhance cadmium(II) sorption on ferrihydrite. It should be possible to identify changes in 

cadmium(II) coordination upon phosphate addition by Extended X-ray absorption fine structure 

(EXAFS) spectroscopy and implement the identified complexes in a surface complexation 

model. 

  

Experiments 

The effect of phosphate addition on cadmium(II) sorption to ferrihydrite was studied by a series 

of batch experiments covering the pH range from 4 to 8. EXAFS spectroscopy was performed on 

ferrihydrite from the batch experiments at the cadmium(II) K edge. The identified surface 

complexes were incorporated in the Charge distribution multisite complexation (CD-MUSIC) 

model, and new surface complexation constants were optimized. 

  

Findings 

Without phosphate addition cadmium(II) formed inner-sphere bidentate complexes on the 

ferrihydrite surface. With phosphate there was an increased cadmium(II) sorption that could not 

be explained by electrostatic interactions alone. The enhancement was best explained by the 

formation of a ternary complex including cadmium(II), phosphate and ferrihydrite surface 

groups. 
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1. Introduction 

Cadmium is a toxic element. Cadmium has chemical properties similar to zinc, an essential 

nutrient, and a reason for its toxicity is probably the displacement of essential zinc in proteins 

[1]. Anthropogenic emissions during the 20th century has caused elevated cadmium 

concentrations in, for example, the humus layer of Swedish forest soils [2] and sites 

contaminated by historical industrial activities such as production of nickel-cadmium-batteries. 

The use of cadmium-containing phosphate fertilizers has led to increased cadmium levels in 

agricultural soils and crops. The average cadmium concentration in the Earth’s crust is 0.15 mg 

kg-1 [3] and the concentration in unpolluted natural water is usually <0.1 µg L-1 [4]. The World 

Health Organization drinking water guideline for cadmium is 3 µg L-1 [5]. 

To predict transport, bioavailability and toxicity of metals in soil it is crucial to 

understand their distribution between different soil compartments, especially as the total 

concentration of a metal in soil is usually not directly related to its mobility or uptake in 

organisms. Rather, mobility, bioavailability and toxicity are controlled by the speciation of the 

metal. Despite many studies on cadmium binding to soil and soil constituents [6] there are still 

important knowledge gaps regarding cadmium speciation in soil. The interactions between 

cadmium(II) and phosphorus in soils is one example. Several studies show a decreased cadmium 

mobility in soils after the addition of different forms of phosphate [7]. On the other hand an 

increase of cadmium mobility was the result of bone-meal addition to a contaminated soil [8]. At 

high concentrations of cadmium and phosphate the immobilization of cadmium is primarily due 

to the precipitation of cadmium phosphates [9]. At lower concentrations the major 

immobilization mechanism is probably increased sorption to soil constituents induced by the 

increase in negative surface charge caused by adsorbed phosphate, and possibly also the 

formation of surface complexes including both cadmium and phosphate [7]. In the case of the 
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increased cadmium mobility after bone-meal addition, the results could be explained by the high 

pH in the treated soil, which prevented the dissolution of apatite, and by cadmium(II) 

complexation with organic acids released due to the bone meal treatment [8]. 

It is well known that cadmium(II) forms strong complexes with both organic matter and 

metal (hydr)oxides [10-12]. Complexation to organic matter and soil (hydr)oxides is strongly 

pH-dependent and increases with increasing pH. Cadmium(II) forms inner-sphere complexes on 

iron (hydr)oxides. EXAFS (Extended X-ray absorption spectroscopy) investigations indicate the 

formation of bidentate edge-sharing complexes with Cd…Fe distance ~3.3 Å and bidentate 

corner-sharing complexes with Cd…Fe distance 3.5 Å or 3.7 Å [11, 13]. Parkman et al. [14] 

interpreted the presence of a 3.7 Å Cd…Fe distance as evidence for a monodentate complex. Both 

bidentate and monodentate complexes have been used in surface complexation models (SCM) to 

describe cadmium(II) sorption to ferrihydrite and goethite [15-17].  

The sorption of metals to iron (hydr)oxides often increases in the presence of phosphate 

[18, 19]. This is also true for sorption of cadmium(II) ions on iron (hydr)oxides [17, 20], but 

there is no consistency as to the causes of the enhancement. Venema et al. [17] attributed the 

enhanced cadmium(II) sorption to goethite to electrostatic effects and to the increasing 

importance of a monodentate complex after phosphate addition. Elzinga and Kretzschmar [21] 

identified ternary cadmium(II)-phosphate-hematite surface complexes by ATR-FTIR 

(Attenuated total reflectance Fourier transform infrared spectroscopy), but Collins et al. [22] 

excluded the formation of ternary cadmium(II)-phosphate-goethite complexes as they were not 

able to identify any Cd···P distances in their EXAFS analysis.  

In this work we studied the interactions between cadmium(II) and an iron (hydr)oxide 

(ferrihydrite) in the absence and presence of phosphate. The aims were to study how phosphate 

affects the sorption of cadmium(II) to ferrihydrite, to identify the cadmium(II) complexes formed 
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and to derive surface complexation constants. The cadmium(II) concentrations reflect 

slightly/moderately contaminated soils based on the Swedish classification of contaminated soils 

[23], and the results are important to understand how cadmium(II) interacts with iron (hydr)oxide 

surfaces in, for example, iron-rich cadmium(II)-contaminated soils.  

2. Materials and methods 

2.1 Ferrihydrite preparation 

2-line ferrihydrite was prepared using the method of Schwertmann and Cornell [24]. A solution 

containing 36 mmol L-1 Fe(NO3)3 and 12 mmol L-1 NaNO3 was brought to pH 8.0 through drop-

wise addition of 4 mol L-1 NaOH (prepared immediately before use). The resulting suspension 

was aged for about 16 h at 20oC. Ferrihydrite particles from such a suspension have earlier been 

examined by Fe K-edge EXAFS spectroscopy [25] and found to consist of 2-line ferrihydrite. 

After synthesis, the ferrihydrite suspension was back-titrated with 0.1 mol L-1 HNO3 to pH 4.6. 

The suspension was then stirred for about 30 min before starting the batch experiments, to avoid 

the presence of excessive CO2 in the suspensions. 

2.2 Batch experiments 

Series of 30 mL batches were prepared in 40 mL polypropylene centrifuge tubes. There were 

three series with cadmium(II) and ferrihydrite containing 3 mmol L-1 ferrihydrite and 0.3, 3 or 30 

µmol L-1 cadmium(II), and one series with 0.3 mmol L-1 ferrihydrite and 30 µmol L-1 

cadmium(II). The ionic strength and pH of the ferrihydrite suspensions were adjusted by adding 

appropriate amounts of NaNO3, HNO3 and/or NaOH (prepared the same day) to cover a pH 

range of about 4 to 8 and to give a final NO3
- concentration of 0.01 mol L-1. Additional series 

were prepared with addition of phosphate; 600 µmol L-1 to the systems with 3 mmol L-1 
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ferrihydrite, and 60 µmol L-1 to the systems with 0.3 mmol L-1 ferrihydrite.  Phosphate was 

added as NaH2PO4, directly followed by the addition of Cd(NO3)2 from an 1.5 mM stock 

solution. The samples were equilibrated on an end-over-end shaker, and shaken gently for 24 h at 

room temperature (21oC). They were then centrifuged for 20 min at about 3000g. The pH was 

measured on the unfiltered supernatant using a Radiometer combination electrode. The rest of 

the suspension was filtered using 0.2-µm single-use filters (Acrodisc PF, Pall Corporation, Ann 

Arbor, MI). Part of the filtered suspension was acidified (1% HNO3) and analyzed for Cd with 

inductively coupled plasma mass spectroscopy (ICP-MS) using a Perkin-Elmer ELAN 6100 

instrument (Perkin-Elmer Inc., Waltham, MA, USA). Dissolved phosphate concentrations were 

analyzed on filtered samples with the acid molybdate method using flow injection analysis 

(Aquatec-Tecator Autoanalyzer, Foss Analytical, Copenhagen).  

 Two additional series of batches were prepared and analyzed in the same way except that 

the phosphate was replaced by arsenate. The purpose was to verify that arsenate and phosphate 

affect the cadmium(II) sorption in the same way. If so, arsenate could be used as an analogue for 

phosphate in some EXAFS measurements to facilitate the interpretation of the results (see 

Methods section about EXAFS). Arsenate was added as Na2HAsO4, and analysis of As in the 

supernatant was made in the same way as for cadmium. 

The adsorption of cadmium(II) to filters and container walls was investigated by 

equilibrating 3 µmol L-1 cadmium(II) solutions without ferrihydrite on an end-over-end shaker 

for 24 h. Results showed between 7.7 and 9.5% cadmium(II) adsorption in the pH range of 5.9 to 

6.5. Batch results were not corrected for this effect. Concerning the possible effect of CO2(g) on 

the results, Tiberg et al. [19] determined dissolved inorganic carbon (DIC) in batch experiments 

with 3 mmol L-1 ferrihydrite and with no metals added in the pH range of 4 to 10. The results 
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were used to evaluate DIC effects on cadmium(II) sorption (see section 2.5 on geochemical 

modeling). 

2.3 EXAFS measurements 

Ferrihydrite from batch experiments with the two highest Cd/Fe ratios were analyzed with 

EXAFS spectroscopy. The samples were centrifuged once more after removal of the supernatant 

to increase the cadmium(II) concentration. An EXAFS spectrum of a solution standard, 15 mmol 

L-1 Cd(NO3)2, was also collected. 

One difficulty when studying interactions with phosphorus by EXAFS spectroscopy is 

that phosphorus is a light element and therefore contributes little to the EXAFS signal from 

higher shells. Arsenate has sorption properties similar to phosphate. However, arsenic is heavier 

than phosphorus and therefore easier to identify by EXAFS. It is also possible to do 

complementary EXAFS measurements on the arsenic K edge, whereas EXAFS measurements on 

phosphorus K edge are very difficult. A few ferrihydrite samples in which phosphate had been 

substituted for arsenate were therefore prepared to study the coordination of cadmium(II). 

EXAFS measurements at the Cd K edge were performed at beamline B18, Diamond 

Light Source, UK. Measurements on the cadmium(II) solution standard were made at beamline 

X-11A at  the National Synchrotron Lightsource (NSLS), Brookhaven laboratory, US. Arsenic K 

edge EXAFS spectra were collected at beamline 4-1 at the Stanford Synchrotron Radiation 

Lightsource (SSRL), US. Measurements were performed in fluorescence mode and internal 

energy calibration was made with a foil of metallic cadmium assigned to 26,711 eV or with a 

metallic arsenic foil assigned to 11,867 eV [26]. The monochromator was detuned about 50% to 

reduce higher order harmonics and about 10 scans were collected per sample. Beamline B18 at 

the Diamond Light Source operated at 3.0 GeV and with a ring current of 300 mA (top-up 
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mode). The station was equipped with a Si[311] double crystal monochromator and a 9-element 

Ge fluorescence detector. Palladium filters and Soller slits were placed between the sample and 

the detector to reduce iron fluorescence and scattering contributions. Beamline X-11A at NSLS 

operated at 2.5 GeV with a ring current of 200 mA and electrons injected every 12 hours. The 

station was equipped with a Si[311] double crystal monochromator and a PIPS detector. A 

Palladium filter was used. Beamline 4-1 at SSRL operated at 3.0 GeV and with a ring current of 

197-200 mA (top-up mode). The station was equipped with a Si[220] double crystal 

monochromator and a 13 element Ge fluorescence detector. A germanium filter and an 

aluminum foil were placed between the sample and the detector to reduce contributions from Fe 

fluorescence. 

2.4 EXAFS data treatment 

All EXAFS spectra were treated in the Athena software (version 0.8.061) [27]. Energy 

calibration, averaging and background removal were performed according to the procedures 

described by Kelly et al. [28]. The background was removed using the AUTOBAK algorithm 

incorporated in Athena with a k-weight of two or three for the background function and Rbkg = 1 

for cadmium and Rbkg = 0.85 for arsenic. 

 Wavelet transform (WT) analysis of the EXAFS spectra was performed [29] to 

differentiate between light (e.g. O) and heavy (e.g. Fe) back-scatterers in higher shells. This 

qualitative analysis of back-scattering contributions from higher-shell atoms was performed on 

k3-weighted EXAFS spectra with the Morlet WT incorporated in the Igor Pro script [30] with the 

parameter combination κ = 7 and σ = 1 and a range of R + ΔR from 2 to 4 Å (corresponding to 

interatomic distances of about 2.5 to 4.5 Å). The k-ranges were the same as in the EXAFS fitting 

procedure. 
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The Artemis program (version 0.0.012) [27] was used for final data treatment of the 

EXAFS spectra. Theoretical scattering paths were calculated with FEFF6 [31]. The amplitude 

reduction factor (S0
2) was set based on fitting of the first coordination shell. Several 

combinations of scattering paths were tested in the fitting procedure before deciding what paths 

to use. These included contributions from Cd–O, Cd···Fe, Cd···P and Cd···As distances as well 

as multiple scattering paths.  

Values of CN were chosen to give reasonable values of σ2. The Cd···Fe paths used in the 

final fits were based on the mineral structure of keyite [32] with partial Cu for Fe and Zn for Cd 

substitution and monteponite [33] with partial Fe-for-Cd substitution. The Cd···P path was based 

on NaCdPO4 [34], the Cd···As path on NaCdAsO4 [35] and the As···Fe path on scorodite [36]. 

Fitting was performed on the Fourier transform real part between 1 and 4 Å using a Hanning 

window (dk value = 1) and optimizing over k-weights of 1, 2 and 3. Refined models were 

evaluated by means of goodness-of-fit of the Fourier Transform (as evidenced by the R factor in 

Artemis) and qualitative comparison of WT plots of the model spectra with WT plots of the 

EXAFS spectra. WT of the model spectra were made with the same WT-parameters and k-ranges 

as for measured spectra. 

2.5 Geochemical modeling 

Cadmium(II) surface complexation to ferrihydrite was simulated with the CD-MUSIC (Charge 

distribution multisite complexation) model [37] in the Visual MINTEQ 3.1 software [38] with 

the surface charging parameters of Tiberg et al. (2013). The surface complex-forming ions (Cd2+, 

PO4
3-, AsO4

3-) were assumed to react exclusively with the ≡FeOH groups, as these are generally 

considered to be the most reactive ones (Hiemstra et al., 2009). All surface complexation 

reactions considered are listed in Table 1. Model simulations with DIC concentrations measured 
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by Tiberg et al., [19] showed a very small effect of DIC on cadmium(II) sorption (the 

cadmium(II) sorption increased <0.6%). DIC was therefore not considered in the modeling.  

For phosphate and arsenate adsorption, the model description assumes bidentate 

complexes to predominate. A doubly protonated monodentate species was also included but was 

only found to be of some importance at low pH [39, 40]. Phosphate surface complexation 

constants were optimized by Tiberg et al. [19], and arsenate surface complexation constants by 

Gustafsson (unpublished), based on the arsenate binding data sets treated by Gustafsson and 

Bhattacharya [39]. 

The surface complexation reactions for cadmium(II) were constrained from the 

spectroscopic evidence of this study (c.f. Results). The SCM of the series with only cadmium 

and ferrihydrite was improved by the introduction of surface site heterogeneity. The sorption 

sites were divided into two groups with different affinities for cadmium(II) ion adsorption, so 

that 1% of the total number of sites was assigned a higher adsorption affinity than the remaining 

99%.  

For ternary systems, i.e. for ferrihydrite suspensions that contained both cadmium(II) and 

phosphate or arsenate, initial model predictions were made assuming that any ternary 

interactions could be explained with electrostatic interactions only. A second modeling attempt 

included a ternary complex based on interpretation of EXAFS measurements (c.f. Results 

section). Consideration of site heterogeneity for the ternary complexes did not improve the 

model fits. Therefore, site heterogeneity was only used for Cd-ferrihydrite complexes in the final 

model.  

In the model optimization process, surface complexation constants for a given reaction 

were optimized with PEST [41], which is integrated with Visual MINTEQ. PEST uses a Gauss-

Marquardt-Levenberg algorithm for parameter estimation and minimizes the weighted sum of 



11 
 

squared differences between model-generated observation values and the measured values. The 

CD values were optimized by trying different (reasonable) combinations of values for the o-

plane and b-plane and comparing the correlation coefficient R, which is the goodness-of-fit value 

reported by PEST. Generally R should be >0.9 for an acceptable fit. The 95% confidence 

intervals of the surface complexation constants were calculated by PEST. 

 

Table 1. Surface complexation reactions and constants used in the CD-MUSIC model for ferrihydrite-

cadmium(II).  

Reaction (∆z0, ∆z1, ∆z2)a log Kb Data source(s) 

FeOH½- + H+  ↔  FeOH2
½+ (1,0,0) 8.1 c 

Fe3O½- + H+  ↔  Fe3OH½+ (1,0,0) 8.1 Assumed the same as above 

FeOH½- + Na+  ↔  FeOHNa½+ (0,1,0) -0.6 Hiemstra & van Riemsdijk (2006) 

Fe3O½- + Na+  ↔  Fe3ONa½+ (0,1,0) -0.6 ” 

FeOH½- + H+ + NO3
-↔  FeOH2NO3

½- (1,-1,0) 7.42 ” 

Fe3O½- + H+ + NO3
-↔  Fe3OHNO3

½- (1,-1,0) 7.42 ” 

2FeOH½- + 2H+ + PO4
3-↔  Fe2O2PO2

2- + 2H2O (0.46,-1.46,0) 27.59 Tiberg et al (2013) 

2FeOH½- + 3H+ + PO4
3-↔  Fe2O2POOH- + 2H2O (0.63,-0.63,0) 32.89 ” 

FeOH½- + 3H+ + PO4
3-↔  FeOPO3H2

½- + H2O (0.5,-0.5,0) 30.22 ” 

2FeOH½- + 2H+ + AsO4
3-↔  Fe2O2AsO2

2- + 2H2O (0.47,-1.47,0) 27.36 Gustafsson (unpubl) 

2FeOH½- + 3H+ + AsO4
3-↔  Fe2O2AsOOH- + 2H2O (0.58,-0.58,0) 32.42 ” 

FeOH½- + 3H+ + AsO4
3-↔  FeOAsO3H2

½- + H2O (0.5,-0.5,0) 29.5 ” 

2FeOH½- + Cd2+ + H2O ↔  (FeOH)2CdOH + H+ 

 

(0.5,0.5,0) 

(0.5,0.5,0)  

-1.42 (99%)d 

1.31 (1%)d  

This study 

” 

2FeOH½- + 2H+ + Cd2+ + PO4
3-↔  (FeO)2HCdPO3H0 + H2O (0.7,0.3,0) 30.50d ” 

2FeOH½- + 2H+ + Cd2+ + AsO4
3-↔  (FeO)2HCdAsO3H0 + H2O (0.7,0.3,0) 30.01d ” 

a The change of charge in the o-, b- and d-planes respectively. 
b Two numbers indicate binding to sites with different affinity, the percentages of which are within brackets (c.f. text). 
c The log K values of the singly- and triply-coordinated surface groups were set equal in line with Hiemstra and van 
Riemsdijk [37] and the values correspond to the point-of zero charge of ferrihydrite [42]. 
d 95% confidence intervals calculated by PEST; -1.42 +/- 0.15, 1.31 +/- 0.2, 30.50 +/- 0.06, 30.01 +/- 0.06. 
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3. Results and discussion 

3.1 Effect of phosphate and arsenate on cadmium(II) adsorption to ferrihydrite 

The cadmium(II) sorption increased with increasing pH from about 0% at low pH to 100% at 

high pH (Fig 1). At low surface coverage (Cd/Fe ratio about 0.0001-0.001) the amount of 

cadmium(II) sorbed was close to the results from earlier studies of cadmium(II) sorption to 

ferrihydrite [15, 43], although the sorption edges reported in this study are somewhat steeper. 

However, at higher surface coverage (Cd-Fe ratio about 0.001-0.01), the sorption was stronger in 

this study than in the earlier studies. The differences may be due to differences in the synthesized 

ferrihydrite.  

The sorption edge was displaced to higher pH with increasing Cd/Fe-ratio in systems 

with only cadmium(II) and ferrihydrite (Fig 1a). This indicates that cadmium(II) sorption, as in 

earlier work [15, 43], depends on the surface loading and suggests the presence of sites with 

different affinities for cadmium(II) sorption. With phosphate added the sorption was independent 

of the surface loading except at the highest Cd/Fe ratio (0.1) where the surface approaches 

saturation (Fig 1b). The sorption edge was then displaced to higher pH due to competition for 

sorption sites. The sorption of phosphate and arsenate decreased with increasing pH (Fig 2).  
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Fig 1. Cadmium(II) sorption to ferrihydrite at Cd/Fe ratios 0.0001, 0.001, 0.01 and 0.1. Results from batch 

experiments (symbols) and SCM (lines) with the optimized parameters from Table 1. Filled symbols are 

samples for EXAFS measurements. a) Only cadmium(II) and ferrihydrite. b) With phosphate added; 

model without ternary surface complex (dashed lines) and with ternary complex (solid lines). 

 
 

Fig 2.Sorption of phosphate and arsenate to ferrihydrite (symbols). Lines are results from SCM with the 

optimized parameters of Table 1. Solid lines are simulations with a ternary complex and dashed lines are 

series with 30 µM Cd, 0.3 mM Fe and 60 µM PO4/AsO4 without a ternary complex. Filled symbols are 

samples for EXAFS measurements a) Phosphate, b) Arsenate. 

b) 

a) 



14 
 

 

Phosphate increased cadmium(II) sorption at all Cd/Fe ratios, i.e. more cadmium(II) was 

adsorbed at a certain pH in batches with phosphate added (Fig 3). The addition of arsenate 

produced results very similar to those with phosphate (Fig 3).  

Significant formation of cadmium(II) precipitates was excluded, as all suspensions were 

undersaturated with respect to Cd(OH)2(s), Cd3(PO4)2(s) and Cd3(AsO4)2(s) according to 

calculations in Visual Minteq. 

 
Fig 3. Sorption of cadmium(II) to ferrihydrite (blue symbols), with phosphate added (red symbols) and with 

arsenate added (black symbols). Lines are SCM results with the optimized parameters from Table 1. a) 

Cd/Fe ratio 0.0001, b) Cd/Fe ratio 0.001, c) Cd/Fe ratio 0.01 and d) Cd/Fe ratio 0.1. 

a) b) 

c) 

d) 
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3.2 Structure of cadmium surface complexes on ferrihydrite 

To elucidate the structure of the cadmium(II) surface complexes formed, nine ferrihydrite 

samples were analyzed with EXAFS spectroscopy (Table 2). A spectrum of dissolved Cd(NO3)2 

(Fig 4) was also collected. A visual comparison of these spectra revealed that the cadmium(II) 

coordination changed when phosphate or arsenate was added. The spectra with only ferrihydrite 

and cadmium(II) were more asymmetric than the spectrum for the Cd(NO3)2 solution standard (i. 

e. the marked area in Fig 4), while the spectra from samples with phosphate or arsenate were 

more similar in shape to the Cd(NO3)2 spectrum.  

A detailed picture of the complexes formed was obtained from models of the EXAFS 

spectra (Table 2). In all samples cadmium(II) was coordinated to six oxygens at a distance of 

2.26-2.27 Å in the first shell. Possible contributions from higher shells were identified in the WT 

analysis. There were distinct differences between samples with and without phosphate/arsenate. 

With only cadmium(II) and ferrihydrite present, the high intensity of the WT modulus indicated 

back-scatterers heavier than oxygen at k ≈ 7 and R = 2.7 to 3.5 Å (not phase-shifted, Fig S1, 

Supplementary material). This signal was reduced in samples with phosphate or arsenate added 

(Fig S2 and S3, Supplementary material). EXAFS spectra from samples without added anions 

were best fit with two different Cd···Fe distances (Table 2). Both distances can be interpreted as 

evidence for the formation of bidentate complexes where the 3.3 Å distance is an edge-sharing 

and 3.7 Å a corner-sharing complex (Fig. 5A, 5B) [11, 22]. A 3.7 Å Cd···Fe distance has also 

been interpreted as a bent monodentate complex [14]. Higher-shell contributions in phosphate-

containing samples were best fit with a Cd···Fe distance at about 3.8 Å and a Cd···P distance at 

about 3.4 Å. Similarly, samples with arsenate were best fit with a Cd···Fe distance at 3.8 Å and 

with a Cd···As distance at about 3.5 Å. The low intensity of the WT modulus in the WT plots of 
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these samples is explained by interferences between the Cd···Fe and the Cd···P or Cd···As 

distances.  

 

Table 2. Summary of cadmium and arsenic K-edge EXAFS shell fit resultsa. Parameters in italics were 

constrained during fitting. Error bars of fitted parameters within brackets. 

Sample Path CN R (Å) σ2 (Å2) ΔE (eV)  S0
2 R-factor (%) 

Cd(aq)  Cd–O 6 2.27 (0.01) 0.008 (0.000) 0.70 (0.62) 
  

1 0.7 
Cd(NO3)2(aq) Cd-O-Oc 18 4.43 (0.03) 0.017    
15 mM Cd-O···Od 24 3.72 (0.10) 0.025 k-range 3.0-10.0  
H 2 pH=6.67 Cd–O 6 2.26 (0.01) 0.009 (0.001) -0.64 (0.59) 0.75 0.6 
30 µM Cd,  Cd···Fe1 0.5 3.24 (0.04) 0.007 (0.006)     
3 mM Fe Cd···Fe2 1 3.78 (0.03) 0.007 (0.005)    
 Cd-O-Ob 18 4.55 (0.05)  0.019 k-range 2.6-9.5  
H 6 pH=7.12 Cd–O 6 2.27 (0.01) 0.010 (0.001)  -0.40 (0.61)  0.75 0.6 
30 µM Cd,  Cd···Fe1 0.5 3.26 (0.06)  0.008 (0.008)    
0.3 mM Fe Cd···Fe2 1 3.76 (0.04)  0.007 (0.005)     
 Cd-O-Ob 18 4.53 (0.05) 0.018  k-range 2.6-9.5  
H 7 pH=7.42 Cd–O 6 2.26 (0.01) 0.009 (0.001)  -0.37 (0.61) 0.75 0.7 
30 µM Cd,  Cd···Fe1 0.5 3.26 (0.05)  0.006 (0.006)    
0.3 mM Fe Cd···Fe2 1 3.74 (0.04) 0.006 (0.005)     
 Cd-O-Ob 18 4.55 (0.05)  0.018 k-range 2.6-9.5  
H 3 pH=5.18 Cd–O 6 2.27 (0.01) 0.010 (0.001) -0.30 (0.54)  0.85 0.4 
30 µM Cd,  Cd···P  1 3.36 (0.07) 0.017 (0.011)    
3 mM Fe,  Cd···Fe2 1 3.81 (0.08) 0.017 (0.012)    
600 µM P Cd-O-Ob 18 4.50 (0.04) 0.020 k-range 2.6-9.5  
H 8 pH=6.73 Cd–O 6 2.27 (0.01) 0.010 (0.000) -0.10 (0.47)  0.85 0.4 
30 µM Cd,  Cd···P 1 3.38 (0.04) 0.012 (0.007)    
0.3 mM Fe,  Cd···Fe2 1 3.80 (0.05) 0.013 (0.008)     
60 µM P Cd-O-Ob 18 4.50 (0.04) 0.020 k-range 2.6-9.5  
H 10 pH=6.02 Cd–O 6 2.27 (0.01) 0.009 (0.000) -0.87 (0.45) 0.85 0.3 
30 µM Cd,  Cd···As 1 3.45 (0.08) 0.014 (0.010)    
3 mM Fe,  Cd···Fe2 1 3.74 (0.08) 0.013 (0.010)    
600 uM As Cd-O-Ob 18 4.47 (0.04) 0.019 k-range 2.6-9.5  
H 12 pH=6.71 Cd–O 6 2.27 (0.01) 0.009 (0.000)  0.09 (0.46) 0.80 0.4 
30 µM Cd,  Cd···As 1 3.51 (0.10) 0.014 (0.014)     
0.3 mM Fe, Cd···Fe2 1 3.77 (0.07) 0.010 (0.010)    
60 µM As Cd-O-Ob 18 4.48 (0.04) 0.019 k-range 2.6-9.5  
H 12b pH=6.72 As–O 4 1.69 (0.01) 0.001 (0.000)  1.07 (1.62) 0.80 1.6 
60 µM As,  As-O···Ob 12 3.07 (0.04) 0.002    
0.3 mM Fe, As···Fe 1 3.33 (0.04) 0.010 (0.004)    
30 µM Cd     k-range 3.6-12.5  
I 11 pH=7.05 As–O 4 2.27 (0.01) 0.002 (0.000)  -0.76 (1.78) 0.90 1.8 
60 µM As As-O···Ob 12 3.06 (0.05) 0.004    
0.3 mM Fe, As···Fe 1 3.30 (0.07) 0.009 (0.003) k-range 3.6-12.5  

a CN = Coordination number; R = Atomic distance; σ2 = Debye-Waller factor; ΔE = Energy shift parameter; S0
2 = 

Passive amplitude reduction factor; R-factor = goodness-of-fit parameter of the Fourier Transform; sum of the 
squares of the differences between the data and the fit at each data point, divided by the sum of the squares of the 
data at each corresponding point. In general, R-factor values less than 5% are considered to reflect a reasonable fit. 
The error bars of fitted parameters (within brackets) are given as in Artemis [27]. 
b For each sample the ss(Å2) of Cd-O-O (multiple scattering path 180°) were defined as 2*ss(Å2) for the Cd-O paths. 
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Fig 4. Results from EXAFS measurements of cadmium(II) adsorbed to ferrihydrite and Cd(NO3)2 solution. 

a) EXAFS spectra (solid lines) and model fits (dashed lines). b) Fourier transforms of EXAFS spectra 

(soild lines) and model fits (dashed lines). The shaded area highlights an area where spectra for sample 

H2, H6 and H7 have a different shape than spectra from H3, H10 and H12. 

 

The distances identified in the samples with phosphate and arsenate are consistent with 

the formation of a ternary complex including a cadmium(II) ion, a phosphate or arsenate ion, and 

the ferrihydrite surface. Possible arrangements of such a complex that are consistent with our 

EXAFS interpretations are depicted in Fig. 5C-D. Cadmium(II) may coordinate to both the 

ferrihydrite surface and to phosphate or arsenate (Fig 5C or 5D). Cadmium(II) and phosphate 

have been proposed to form similar complexes on hematite based on ATR-FTIR measurements 

[21].  
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A. Edge-sharing            
(FeOH)2CdOH 

B. Corner-sharing  
(FeOH)2CdOH 

C. Ternary  
(FeOH)2CdPO4H2

0 
D. Ternary 
 (FeO)2HCdPO3H0 

 

Fig 5. Structures of cadmium(II) surface complexes consistent with both EXAFS interpretations and SCM 

results. Bright red atoms are oxygen and white atoms are hydrogen. Iron, cadmium(II) and phosphorus 

atoms are marked. The Cd···Fe and Cd···P distances from the EXAFS analysis are shown. Structures of 

the ternary cadmium(II)-arsenate complexes are similar except that the Cd···As distance is 3.5 Å. 

 

For the arsenate-containing sample with the highest Cd/As ratio (sample H12), arsenic K-

edge EXAFS spectroscopy was performed. A reference spectrum with only arsenate and 

ferrihydrite was collected for comparison (Table 2, Fig S5, Supplementary material). The arsenic 

K-edge EXAFS spectra with and without cadmium(II) were very similar and the arsenic was 

concluded to be present mainly as arsenate ions coordinated to two iron atoms of the ferrihydrite 

surface (corner-sharing complexes) with As···Fe distance 3.3 Å [44, 45]. The WT plots are 

presented in Fig S5, Supplementary material. An As···Cd distance could not be identified, 

probably because the contribution was too weak in comparison to the signal from the 3.3 Å 

As···Fe distance. This was supported by results from SCM according to which most of the 

arsenic was coordinated only to iron also in the sample with cadmium. 
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3.3 SCM for cadmium(II) sorption to ferrihydrite 

The cadmium(II) adsorption reaction in the single sorbate system could, based on the EXAFS 

analysis, be understood as the formation of bidentate complexes. (The SCM used does not 

distinguish between edge- and corner-sharing complexes). The best modeling results were 

obtained with a hydrolyzed cadmium(II) complex (Fig 1a) and inclusion of a high-affinity site 

constituting 1% of the sorption sites (c.f Methods section). All surface complexation reactions 

are listed in Table 1. The fitted CD-MUSIC values were 0.5 for both the o- and the b-plane, 

which means that a fraction (f) of 0.25 of the Cd2+ charge was attributed to the surface, which is 

reasonable.  

Cadmium(II) sorption in samples with phosphate added was poorly described by the 

model developed for the cadmium(II)-ferrihydrite system (Fig 1b). This model predicted an 

increase in cadmium(II) sorption caused by electrostatic effects but could only explain a small 

part of the increase in cadmium(II) sorption. The ternary complexes depicted in Fig 5 

(complexes C, D) were consistent with EXAFS measurements and could both be described by 

the same surface complexation reaction, in which two surface groups on the ferrihydrite react 

with one cadmium(II) ion and one phosphate or arsenate ion (Table 1). The addition of  

≡(FeO)2HCdPO3H0  and ≡(FeO)2HCdAsO3H0 complexes to the SCM and subsequent 

optimization of the surface complexation constants resulted in much better agreement with 

experimental data (Fig 1b). The CD values for the ternary complex were 0.7 for the o-plane and 

0.3 for the b-plane. This resulted in f = 0.24, which is very close to the value of the bidentate Cd-

ferrihydrite complex. Other divalent metals have been suggested to form similar complexes 

under the same experimental conditions [19]. The model with ternary complexes also simulated 

the sorption of phosphate and arsenate better than the model without any ternary complexes (Fig. 

2). With a ternary complex the model could simulate the “plateau” in the series with the lowest 
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P/Cd and As/Cd ratio. In the series with higher phosphate addition (600 µM) there was no visible 

effect of the ternary complexes due to the much higher concentrations of phosphate compared to 

cadmium(II). Ternary complexes have earlier been used in geochemical models of  cadmium(II) 

sorption to ferrihydrite and goethite in presence of  sulphate [15], but this is the first time a SCM 

has used ternary complexes to describe cadmium(II) sorption to ferrihydrite in the presence of 

phosphate.  

4. Conclusions 

Phosphate greatly enhanced cadmium(II) sorption to ferrihydrite. The increased sorption could 

not be explained by electrostatic interactions alone. A ternary ferrihydrite-cadmium(II)-

phosphate surface complex had to be considered. This study confirmed our hypotheses that 

phosphate would enhance cadmium(II) sorption to ferrihydrite and that it should be possible to 

identify the surface complexes formed by EXAFS spectroscopy and implement these complexes 

in a SCM.  

Previous studies have shown increased sorption of cadmium(II) to iron (hydr)oxides in 

the presence of phosphate, but only to goethite [17, 20]. Our study is also the first to identify 

ternary iron (hydr)oxide-cadmium(II)-phosphate surface complexes by EXAFS spectroscopy and 

to successfully implement such complexes in a SCM, the CD-MUSIC model. In contrast to 

earlier EXAFS measurements of cadmium(II) sorbed to goethite in presence of phosphate [22] 

we identified a Cd···P distance indicative of a ternary complex at about 3.4 Å by EXAFS. The 

existence of a ternary complex was supported by an earlier ATR-FTIR analysis of a 

cadmium(II)-phosphate-hematite system [21]. 

The results indicate that phosphate increases cadmium(II) sorption to ferrihydrite in soils. 

This is potentially an important retention mechanism for cadmium(II) in iron-rich soils and could 
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affect risk assessments of contaminated soils. The results could also be useful in the development 

of new remediation strategies using phosphate and iron (hydr)oxides for remediation of 

contaminated soils and groundwater. Future work on cadmium(II) sorption to soils with different 

levels of phosphorus and iron (hydr)oxides is needed to clarify when phosphorus has an 

influence on the overall cadmium(II) mobility in soils. 
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Fig S1. Wavelet transforms of EXAFS spectra and models for cadmium(II) bound to ferrihydrite. The k-range 
used was 2.6-9.5 Å-1. a) Spectrum H2; 30 µmol L-1 Cd, 3 mmol L-1 Fe, b) Spectrum H6; 30 µmol L-1 Cd, 0.3 mmol 
L-1  Fe, c) Spectrum H7; 30 µmol L-1 Cd, 0.3 mmol L-1 Fe, d) Model H2, e) Model H6, f) Model H7.  

 

Fig S2. Wavelet transforms of spectra and models Cd(II) bound to ferrihydrite with phosphate added. The k-
range used was 2.6-9.5 Å-1 for all samples. a) Spectrum H3; 30 µmol L-1 Cd, 3 mmol L-1 Fe, 600 µM P, b) 
Spectrum H8; 30 µmol L-1 Cd, 0.3 mmol L-1 Fe, 60 µmol L-1 P, c) Model H3, d) Model H8. 
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Fig S3. Wavelet transforms of spectra and models Cd(II) bound to ferrihydrite with arsenate added. The k-range 
used was 2.6-9.5 Å-1 for all samples. a) Spectrum H10; 30 µmol L-1 Cd, 3 mmol L-1 Fe, 600 µmol L-1 As, b) 
Spectrum H12; 30 µmol L-1 Cd, 0.3 mmol L-1 Fe, 60 µmol L-1 As, c) Model H10, d) Model H12. 

 

 

Fig S4. Wavelet transform of EXAFS spectra and model for cadmium(II) solution a) Spectrum 15 mmol L-1 
Cd(NO3)2(aq), b) Model 15 mmol L-1 Cd(NO3)2(aq), The k-range used was 3-10 Å-1. 
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Fig S5. Results from EXAFS-measurements (solid lines) and models (dashed lines) at the As K edge. a) 
EXAFS spectra, b) Fourier transforms. 

 

 

Fig S6. Wavelet transforms of EXAFS spectra and models for arsenic adsorbed to ferrihydrite. The k-range used 
was 3.6-12.5 Å-1 for all samples. a) Spectrum I11; 60 µmol L-1 As, 0.3 mmol L-1 Fe, b) Spectrum H12b; 60 µmol L-1 
As, 0.3 mmol L-1Fe, 30 µmol L-1 Cd, c) Model I11, d) Model H12b. 

a) b) 
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