


New Methods for Mapping 
Quantitative Trait Loci 

@an Carlborg 

U P P S h  
Department of Animal Breeding and Genetics 

Doctoral thesis 
Swedish University of Agricultural Sciences 

Uppsala 2002 



Abstract
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Doctoral dissertation.
ISSN 1401-6257, ISBN 91-576-6362-9

This thesis presents and discusses the use of various genetic models, high performance
computing, global optimization algorithms and statistical methods for mapping
Quantitative Trait Loci (QTL). The aim of the work has been to develop statistically
powerful and computationally efficient methods to detect genomic loci affecting
multifactorial traits, and use the methods use to analyse experimental data.
   Imprinting is an epigenetic phenomena which causes differential expression of alleles
based on their parental origin. A genetic model handling imprinting was used during QTL
mapping in an experimental Wild Boar x Large White intercross. The analyses revealed a
paternally imprinted QTL with large effect on the development of muscle mass.
   Parallel computing algorithms for interval mapping and randomization testing in QTL
mapping are described. New randomization testing schemes are now computationally
feasible due to these algorithms. Selection of appropriate kernel algorithms for solving
least squares type problems in QTL mapping is discussed. The importance of optimization
of QTL mapping software is also illustrated.
   A genetic algorithm was shown to be efficient in a multidimensional search for
interacting QTL. The genetic algorithm significantly decreases the computational demand
when employing simultaneous mapping of multiple QTL, and makes randomization
testing based on multidimensional searches computationally feasible. A new
randomization testing scheme based on simultaneous mapping of epistatic QTL was also
proposed and evaluated. A simulation study showed that the method increases the power
to detect epistatic QTL.
   A large intercross was derived between Red junglefowl and White Leghorn chickens. A
number of QTL affecting growth was revealed using the newly developed method for
simultaneous mapping of epistatic QTL pairs. In total, 21 QTL were identified, and
eleven of these were only detected by the new simultaneous mapping method. Epistasis
was shown to be an important component in the genetic regulation of the growth process.

Keywords: QTL, imprinting, epistasis, high performance computing, randomization
testing, genetic algorithm

Author�s address: Örjan Carlborg, Department of Animal Breeding and Genetics, SLU.
BMC, P.O. Box 597. S-751 24 Uppsala. Email: Orjan.Carlborg@hgen.slu.se.



                                                      To my family



Contents

Introduction 7
Genetic dissection of multifactorial traits 7
  Genetic markers and genetic maps 7
  Experimental crosses used for QTL detection 8
  Genetic modeling of QTL 9
  Interval mapping of Quantitative Trait Loci 11
  Randomization testing in QTL mapping 12
  Mapping of multiple QTL 12
  Computational aspects of QTL mapping 14
  General code optimization 16

Objectives of the present studies 17

Material and Methods 18
Computer resources and techniques 18
Analysed data 18

Results and Discussion 19
Mapping of imprinted QTL in an experimental linecross (I) 19
QTL mapping benefits from high performance computing (II) 23
 Optimization of QTL mapping software for single processor machines 23
  Parallel algorithms in QTL mapping and randomization testing 25
An overview of recent approaches to map epistatic QTL 27
A new strategy for simultaneous mapping of epistatic QTL 29
  Simultaneous mapping of epistatic QTL using a genetic algorithm (III) 30
  Randomization testing for multiple epistatic QTL (IV) 30
Detection of epistatic QTL in an experimental linecross (V) 33

Conclusions 37

Future prospects 38

References 42

Acknowledgements 46



Appendix
Papers I-V
The present thesis is based on the following papers, which will be referred
to by their Roman numerals:

I. Jeon J-T., Carlborg Ö, Törnsten A, Giuffra E, Amarger V, Chardon
P, Andersson-Eklund L, Andersson K, Hansson I, Lundström K &
Andersson L. 1999. A paternally expressed QTL affecting skeletal
and cardiac muscle mass in pigs maps to the IGF2 locus. Nature
Genetics 21, 157-158.

II. Carlborg, Ö., Andersson-Eklund, L., & Andersson, L. 2001.
Parallel computing in interval mapping of quantitative trait loci.
Journal of Heredity 92, 449-451

III. Carlborg, Ö., Andersson, L. & Kinghorn, B. 2000. The use of a
genetic algorithm for simultaneous mapping of multiple interacting
quantitative trait loci. Genetics 155, 2003-2010.

IV. Carlborg, Ö & Andersson, L. 2002. The use of randomization
testing for detection of multiple epistatic QTL. Genetical Research.
In Press (Cambridge University Press).

V. Carlborg, Ö., Kerje, S., Schütz, K., Jacobson, L., Jensen, P. &
Andersson, L. Detection of single QTL and simultaneously mapped
epistatic QTL pairs explaining a large proportion of the difference
in growth between the Red junglefowl and White Leghorn
chickens. (Submitted)

Paper I-IV is reproduced with the permission of the journals concerned



7

Introduction

Most traits in plants and animals are affected by both genetic and environmental
factors. Differences between individuals for these traits are of degree rather than
kind, quantitative rather than qualitative. Quantitative genetics is concerned with
the inheritance of these traits. Until recently, this field was mainly focused on
studying the aggregate effects of all the genes causing variation. This approach
has given estimates of the genetic contribution to the observed phenotypic
variation (heritability), as well as knowledge about the genetic correlation
between various traits. The knowledge has been successfully used in animal
breeding to increase the production of e.g. meat, milk and eggs from our domestic
animals.

In some studies, individual genes with direct and measurable effect on
quantitative traits (so called major genes) have been detected. A handful of such
genes exist, including the Boorola gene (Davis et al. 1982), which raises litter size
in sheep, and the double muscling gene in cattle, which increases lean meat yield
(Grobet et al. 1997). The majority of the genes affecting quantitative traits do not
have directly measurable effect on the traits and can thus not be detected by
segregation analysis. Due to advances in molecular genetic and statistical
methodology, it has become possible to map individual genetic factors with
smaller effects on the quantitative traits, known as Quantitative Trait Loci or
QTL, to specific chromosomal segments in the genome. The methods are also
used to infer the mode of inheritance, which gives a better understanding of the
genetics underlying quantitative traits. One of the applications for this knowledge
is Marker Assisted Selection (MAS), where knowledge about the QTL genotype
can help animal breeders to further increase the genetic progress of the domestic
animals.

Genetic dissection of quantitative traits

This section briefly introduces the concept of QTL mapping. Further reviews on
the topic are given by Darvasi (1998), Broman (2001), Cardon and Bell (2001),
Flint and Mott (2001) and Doerge (2002).

Genetic markers and genetic maps
The localization of genes affecting phenotypes to individual chromosome
segments requires detection of co-segregation of the phenotype with genetic
markers on the chromosome. The genetic markers are chromosomal loci where
the genotype can be identified by looking e.g. at the phenotype of the individuals
(e.g. coat colour), protein polymorphisms or directly as sequence differences in
the DNA molecule (e.g. microsatellites or single nucleotide polymorphisms
(SNPs)). Automation has dramatically decreased the time and costs for scoring of
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genetic markers. This has made it possible to perform studies including typing of
hundreds of genetic markers on hundreds of individuals.

A genetic map describes the chromosomal location and the relative order of
known markers on each of the chromosome in the genome. Rapid advances in
molecular genetics have led to the development of dense genetic maps of linked,
polymorphic markers for many species. Detection and localisation of QTL on the
genetic map is based on co-segregation between alleles at marker loci and alleles
at the QTL. The genetic maps have been used in many gene and QTL mapping
studies, which have identified and localised a large number of QTL for various
traits (reviewed by Andersson 2001).

Experimental crosses used for QTL detection
When the aim of a QTL mapping study is to identify loci for a particular trait or
group of traits it is possible to create a mapping population, which maximizes the
chance to have such genes segregating. It is more likely that a given QTL show
segregation in a cross between two phenotypically divergent lines than within a
population, which has been under strong directional selection. 

Crosses between inbred lines are highly efficient for detecting QTL. The crossed
lines have a high degree of homozygosity at marker loci and QTL, and their
resulting offspring will have high linkage disequilibrium between alleles of all
linked loci. Crosses between outbred lines are common in species where inbred
lines do not exist, e.g. farm animals. The major disadvantage with this type of
cross is that the degree of homozygosity at marker loci is lower than in inbred
lines and that it is unknown for the QTL. Since the degree of homozygosity at the
QTL is unknown in the divergent breeds in the cross, the parental lines are usually
assumed fixed for alternative QTL alleles. If this is not the case in reality, there is
a confounding between the allele frequency and the effect of the QTL, which
decreases the power of QTL mapping.

Figure 1. Mating scheme for experimental backcross and F2 populations used for
mapping of QTL.

Several types of populations can be derived from a cross between divergent lines,
including F2, single- or double- backcross and recombinant inbred. Crossing
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schemes for the single backcross and the F2 population types are presented in
Figure 1. An F2 is more powerful than either individual backcross for detecting
QTL of additive effect, and can also be used to estimate the degree of dominance
for detected QTL. In general, several traits are considered in each study and the
level and direction of dominance will depend upon the trait. The F2 or a
combination of the two backcrosses may be optimal both in terms of overall
power and the ability to estimate the effects of detected QTL. 

The F2 or a combination of the two backcrosses can be used to detect four types of
interaction between two loci: additive by additive, additive by dominance,
dominance by additive and dominance by dominance. The single backcross can
only be used to detect the additive by additive interaction effect. The F2 thus
makes a more thorough investigation of epistasis possible, but a larger population
size is needed to obtain the same power to detect epistasis. Varona et al. (2001)
has used simulations to evaluate the power to detect epistasis in outbred F2 line
crosses. Their studies indicate that the power to detect an interaction effect of size
1-5% of the phenotypic variance ranges from 50 to 80% in populations of 200-
400 individuals. 

Genetic modeling of QTL
Various ways exist to model the genetic effects of QTL. By estimating the effects
of each marker or putative QTL genotype (when interval mapping is used)
separately, no genetic model is assumed for the QTL. This analysis can be
performed e.g. by regression of the phenotypes of the individuals in a population
either on their marker genotypes or on putative QTL genotypes between markers.
Simultaneous analysis of multiple loci increases the number of parameters in the
model to 3n (or 4n if accounting for parental origin), where n is the number of
evaluated loci. A disadvantage with this method is that the power of the test
decreases for multiple QTL models due to the large number of included
parameters. 

Figure 2. Definition of the additive (a), dominance (d) and imprinting (im)
genetic effects used for mapping of QTL.

A QTL can be modelled by an allele substitution effect, which is commonly
called an additive effect (Figure 2). The additive model assumes a linear
relationship for the three QTL genotype classes, where the heterozygote
individuals (Qq) have an intermediate phenotype to the homozygotes (QQ and
qq). The additive effect is then the effect obtained by replacing the low effect
allele (q) for the high effect allele (Q). Sometimes the additive effect is also
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expressed as the positive and negative deviation of the respective homozygotes
from the mean of both homozygotes. In many cases the heterozygotes phenotypes
deviates from the mean of the two homozygotes. The situation, where the
heterozygote phenotype is closer to either one of the homozygotes, is called
dominance, and the allele that mainly influences the phenotype is called
dominant. A dominance effect can be modelled by including a parameter for the
deviation of the heterozygous phenotype from the mean of the two homozygotes
(Figure 2). Both the additive and dominance effects are commonly used in QTL
mapping. For some loci in mammals, only one of the two alleles is expressed. The
expression is determined by the parental origin of the allele and this phenomenon
is known as genetic imprinting. Imprinting can be modelled by treating the
heterozygotes obtaining maternal and paternal alleles separately. Further details
on imprinting models in QTL mapping will be given later in this text. Genetic
models including imprinting have recently been used for QTL mapping (Knott et
al. 1998; Nezer et al. 1999; Jeon et al. 1999; de Koning et al. 2000; Rattink et al.
2000). The additive, dominance and imprinting effects will during the rest of this
text be referred to as marginal genetic effects, since these effects are only
dependent on the actions of the individual locus and can be detected by
considering each locus separately.

Quantitative traits are by definition affected by the products from genes at
multiple loci. It is believed that many of these gene products interact to larger or
smaller extent. In the reminder of this text, we will talk about interactions
between genes, epistasis, but the biological interpretation of this should be that
the products from these genes interact. Genetic effects due to multiple loci have
been modeled as independent genetic factors (using the marginal effects for each
locus) or treated as polygenes. Interactions between QTL are in most cases
ignored, but a number of QTL mapping studies in various species and for various
traits have shown that interactions are important (e.g. Fijneman et al. 1996;Long
et al. 1996; Li et al. 1997;Shook and Johnson 1999). Epistasis can exist between
2 to n loci and the higher the order of the interaction, the more difficult it is to
model. Here we will limit ourselves to interactions between pairs of loci. When
considering this two-way epistasis, a model needs to consider the marginal effects
of both loci in the same way as for a marginal effects model, but also the four
possible pairwise interactions between the loci, homozygous-homozygous,
homozygous-heterozygous, hererozygous-homozygous and heterozygous-
heterozygous. Most models do this by including the parameters aa, ad, da and dd,
which are biometrical quantities specifying these interactions. 

Two alternative ways of partitioning the genetic effects of individuals using these
models are given by Cockerham (1954) and Seyffert (1966). The model described
by Cockerham (1954) is orthogonal, and it considers epistasis as something
additional to the marginal additive and dominance effects of the QTL. This may
lead to an underestimation of the biological importance of epistasis. Kao and
Zeng (2002) further discuss the modeling of QTL epistasis, using Cockerham�s
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model. The model described by Seyffert (1966) is non-orthogonal in the modeling
of the epistatic parameters. In this model, the estimates of the epistatic effects are
not modeled as an addition to the additive and dominance effects of the individual
loci, and are therefore a more biologically relevant indicator of the importance of
epistasis. The interest to use these epistatic models in QTL mapping has increased
and several recent papers describe various approaches for this (Broman 1997; Kao
et al. 1999;this thesis; Jannink and Jansen 2001).

Interval mapping of Quantitative Trait Loci
Statistics is used in QTL mapping to evaluate the significance of putative QTL
and to estimate their genomic location and genetic effects on the trait. Regression
of phenotype on genotype at a marker location is called a single marker test and
can be used to estimate the effects of QTL linked to the marker. In a genome scan
composed of multiple single marker tests, the best estimated location for a QTL is
taken as the genomic location of the marker with the highest statistical support for
an association of the marker genotype with an effect on the phenotype. The major
drawback with this method is a confounding between the genetic effect of the
QTL and the distance of the QTL from the marker. Is a small effect due to a small
QTL close to the marker or to a larger QTL further from the marker?

Lander and Botstein (1989) introduced the concept of interval mapping to
disentangle the estimates of the location and genetic effect of a QTL. Interval
mapping uses marker brackets instead of individual markers in the analysis and
this makes it possible to make independent estimates of location and effect of the
QTL. This method has since then become the basis for most QTL mapping
methods. Within the concept of interval mapping, various methods have been
proposed for significance testing and estimation of location and genetic effects. 

Methods based on maximum likelihood estimation of location and genetic effects
are widely used in QTL mapping. The advantage of this methodology is that they
use the full information from the marker-trait distribution and is thus expected to
be powerful. Disadvantages are a high computational demand, difficulties to
modify the basic model and the need to construct specific analysis programs to
perform the analyses. Construction of the maximum likelihood equations is rather
straightforward, but obtaining the maximum likelihood estimates is much more
difficult (Lynch and Walsh 1998).

In 1992, a QTL mapping procedure based on ordinary least squares regression
was introduced (Haley and Knott 1992; Martinez and Curnow 1992). The basic
principle is to estimate the probabilities of unknown QTL genotypes in the marker
intervals, and from these calculate regression coefficients to be used for
estimation of QTL location and effect. This methodology proved to be a good
approximation to the maximum likelihood based methods and greatly reduced the
computational demand of QTL mapping. It also simplifies modifications to the
basic model and can be performed in standard statistical computer packages.
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Haley et al. (1994) later extended the method to analyses of crosses between
outbred lines. 

Kao (2000) have, analytically and numerically by simulation, investigated the
differences between QTL mapping based on maximum likelihood and linear
regression. His study indicates that the maximum likelihood based methods can
be more accurate, precise and powerful at the cost of an increased computational
demand. The properties of the methods in real data where there is likely to be
violations of model assumptions, such as unequal variances within QTL genotype
classes, segregation distortion and unusual inheritance patterns, were not
evaluated. It is therefore difficult to assess the properties of the methods in the
analysis of experimental data sets. 

Randomization testing in QTL mapping
Since QTL mapping involves multiple statistical tests throughout the genome, the
selection of a significance threshold is a key issue of the procedure. Correction for
multiple testing is necessary, since the use of a nominal significance threshold
will lead to an elevated type I error (large number of falsely detected QTL).
Various methods have been suggested to deal with the multiple comparisons (e.g.
Lander and Botstein 1989; Kruglyak and Lander 1995; Benjamini and Hochberg
1995; Southey and Fernando 1998). Empirical estimation of overall significance
thresholds can be done in a wide range of population designs by resampling
techniques, such as randomization testing (Churchill and Doerge 1994). Here the
observed trait values are randomly shuffled over individuals (genotypes)
generating a sample with the original marker information, but with trait values
randomly assigned over genotypes. The test statistic is then computed in the new
sample, and the procedure is repeated many times, generating an empirical
distribution of the test under the hypothesis of no marker-trait associations. By
keeping the marker information for each individual together, the approach
accounts for differences in marker densities, missing genotypes and segregation
distortion. The major drawback with this method is a 1,000 to 10,000 fold
increase in computational demand, which in some cases causes severe restrictions
for the use of the method in practice.

Mapping of multiple QTL
Interval mapping, as described by Lander and Botstein (1989), was designed to
map single QTL, and does not consider other, linked or unlinked, QTL affecting
the trait. This decreases the power and resolution of the procedure when more
than one QTL affects the trait. To overcome this, several authors have proposed
extensions of interval mapping to mapping of multiple QTL. The basic concept of
these methods is to include markers, or previously detected QTL, as cofactors in
the model when interval mapping is used to search for QTL. The effects of linked
QTL can be reduced by including markers linked to the interval of interest,
whereas including unlinked markers can partly account for the segregation
variance generated by unlinked QTL (e.g., Jansen, 1992, 1993; Jansen and Stam,
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1994; Zeng, 1993a,b). These methods generally increase the power to detect a
QTL and improve the precision in the estimates of QTL position

Efficient methods for detecting epistatic QTL are needed to gain a better
understanding of the genetics underlying complex traits. Several lines of evidence
indicate the importance of epistasis. For instance, approximately 40% of the genes
in yeast do not yield an aberrant phenotype when ablated (Wolfe 2000) and the
same alleles can cause a strain specific expression of autoimmune disease in mice
(Bolland & Ravetch 2000). Epistasis has been reported in QTL mapping studies
(Fijneman et al. 1996; Long et al. 1996; Li et al. 1997; Shook & Johnson 1999;
Leips & Mackay 2000; Mackay 2001) and in various basic biological processes,
which are expected to affect the expression of most traits. Biological processes
where epistasis has been shown to be of importance are e.g., signaling pathways
in both plants (Beaudoin et al. 2000) and animals (Araujo & Bier 2000; Scanga et
al. 2000; Luschnig et al. 2000) and differential crossing-over and segregation
(Khazanehdari & Borts 2000). 

The first multiple QTL mapping methods assumed that there were no interactions
between the QTL included in the model. Ignoring epistasis can decrease power
and bias the estimates of QTL effects when epistasis exists. In order to detect
interactions, a multidimensional search for QTL have to be performed. A search
for QTL in multiple dimensions results in a large number of statistical tests and
calls for an appropriate way to correct for multiple testing. If a Bonferroni type
correction is used, the threshold would be high and the power to detect QTL
decreased. Alternative methods to correct for multiple testing therefore need to be
evaluated. Exhaustive searches (i.e. evaluation of all possible combinations of
locations) in high dimensions also imposes a high computational demand for the
mapping procedure. Various approaches have been described to address these
issues.

Evaluating the importance of epistasis between pairs of QTL detected using a
marginal effect QTL mapping method, is the most dramatic way to decrease the
computational demand and the number of statistical tests performed (e.g.
Brockman et al. 2000). Testing for epistasis among already detected QTL can be
important in for evaluations of the importance of epistasis among already detected
QTL, but QTL without significant marginal effects will remain undetected.

The use of multiple one-dimensional searches to detect epistatic QTL has been
explored e.g. by Fijneman et al. (1996). The number of statistical tests performed
are decreased by lowering the dimensionality in the search, by performing
repeated one-dimensional searches where significant QTL in each round are
added to a total genetic model. By using dimensional searches, the computational
demand of the procedure is dramatically decreased. Detection of epistatic QTL is
based on that at least one of the QTL has significant marginal effects and the
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power to detect QTL with small marginal effects, but with large epistatic effects,
is thus limited.

Methods for simultaneous, two-dimensional searches for epistatic QTL pairs have
been developed despite their computational demand and problems of obtaining
appropriate significance thresholds. Epistatic QTL pairs are either searched
among all marker combinations (Edwards et al. 1987; Damerval et al. 1994;
Chase et al. 1997; Li et al. 1997; Holland 1998), or using interval mapping
(Haley and Knott 1992). 

Several methods have recently been proposed for mapping epistatic QTL. These
methods and their properties will be further described later in this thesis.

Computational aspects of QTL mapping
QTL mapping is computationally demanding due to multiple testing and an
extensive use of resampling techniques to obtain empirical significance
thresholds. Increasing sizes of mapping populations calls for new QTL mapping
methods that fully explore the experimental data. If a new improved method is
proposed, a relatively low computational demand is desired. Several properties of
the mapping procedure make it computationally intense, and in this section we
will point out some key issues.

1. The computational kernel
The computational kernel in QTL mapping is the method used for statistical
testing and parameter estimation. The calculations involved in this procedure are
performed repeatedly, once for each genomic position or positions that are
evaluated. Generally, the core problem is based on a minimization of ||G(Xb-y)||2,
where G is a matrix that varies depending on the statistical method used. In QTL
mapping based on ordinary least squares, as described by Haley and Knott (1992)
and Martinez and Curnow (1992), G=I, where I is the identity matrix. A further
discussion regarding other statistical methods can be found in Ljungberg et al.
(2002). We have mainly used ordinary least squares in our research, and will
therefore only briefly mention the procedures based on maximum likelihood
methods. 

2. Iterations to obtain maximum likelihood estimates
When maximum likelihood is used to estimate parameters for the QTL, the
estimates are normally obtained in an iterative procedure, such as the EM-
algorithm. The computational demand is thus increased as compared to the
ordinary least squares based methodologies.
 
3. Global search algorithms used in QTL mapping
QTL mapping involves evaluation of genetic models including one or several
QTL. We refer to the selection of genomic locations for these QTL(s) as a global
search strategy. The search space in QTL mapping is generally described as a
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grid, either based on markers or on genetic map positions. In a genomic grid
based on genetic markers, each node in the grid is at the location of a genetic
marker. The density of the grid depends on the spacing of the markers, and will
thus vary across the genome. This mapping procedure is usually called single
marker test. For genomic grids based on genetic maps, each node in the grid is a
location on the genetic map. The QTL mapping procedure based on genetic map
positions is usually called interval mapping. The resolution of the grid can be
varied, by choosing the step size through the genetic map, in the interval mapping
procedure. We will here briefly introduce the search methods used to search for
QTL in these grids

A) Exhaustive searches
A one-dimensional exhaustive search in a grid based on markers is a standard,
single marker test. This method has been used since the first genetic markers
became available. Multidimensional exhaustive searches have been used in
marker grids to detect epistatic QTL (e.g. Edwards et al. 1987; Damerval et al.
1994; Chase et al. 1997; Li et al. 1997; Holland et al. 1997). Recently, Sugyiama
et al (2001) proposed to use a randomization test for epistatic QTL pairs based on
an exhaustive search in a grid of markers, and this method has later also been
applied by others (Kim et al. 2001; Shimomura et al. 2001).

The exhaustive search is also commonly used for one-dimensional genome scans
based on genetic maps (interval mapping). When multidimensional grids are
considered, the computational demand of the exhaustive search increases
exponentially, and therefore several alternative search methods have been
proposed for this task.

B) Search methods reducing the dimensionality of the search
Forward selection can be used to decrease the number of positions to evaluate
when searching for multiple QTL. By performing sequential one-dimensional
exhaustive genome scans, where the most significant QTL in each scan is added
to the genetic model, one can obtain an approximation to the exhaustive
multidimensional search. This significantly reduces the computational complexity
of the search (Jansen 1992, 1993; Jansen and Stam 1994; Broman 1997). The
method leaves large portions of the genome unexplored, and thus will have
limited power to detect QTL with small marginal effects.

C) Multidimensional search algorithms 
Stochastic multidimensional searches based on e.g. Markov Chain Monte Carlo
(MCMC) can be used to simultaneously map multiple QTL. MCMC has been
used in Bayesian QTL mapping to map multiple QTL (Satagopan et al. 1996;
Hoeschele et al. 1997; Sillanpää and Arjas 1999). The methodology is powerful,
but its implementation and use require substantial knowledge and experience of
the technique.
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In paper III, we propose the use of an evolutionary algorithm (the genetic
algorithm) for simultaneous multidimensional searches in interval mapping for
QTL. The major strength of evolutionary algorithms, in the context of QTL
mapping, is their robustness. We have shown that the search algorithm works
properly for mapping multiple QTL. 

4. Randomization testing to derive empirical significance thresholds for QTL
Randomization testing is extensively used to obtain significance thresholds in
QTL mapping. The major drawback of the method is that it increases the
computational demand by performing repetitive (in practise 1,000 to 10,000)
analyses on permuted data sets. In many practical studies, where multiple traits
are analysed, randomization tests are performed on a smaller number of the traits
and the same thresholds are then used for the other traits in the study (Malek et al.
2001). This might be reasonable for many traits, but it would be desirable to use a
unique threshold for each trait. One- and multidimensional randomization tests
can be made computationally feasible by improving the computational efficiency
of task 1-3 described above. Further decreases in analysis times can also be
obtained by parallel computing, and this will be further discussed later in this text. 

 
General code optimization
To increase the performance of the QTL mapping software, the appropriate
algorithms and software libraries should be selected to perform the desired tasks,
the code should be optimized and the appropriate compiler options selected. This
procedure can lead to substantial decreases in analysis times. Available software
tools simplifies the profiling and optimization process, by identifying bottlenecks
in the software. 
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Objectives of the present studies

The most commonly used model for QTL mapping includes marginal additive
and dominance genetic effects. When dealing with imprinted or epistatic QTL,
this model is not appropriate. To obtain maximum power to detect QTL and
obtain correct estimates of genetic effects, other genetic models should also be
evaluated. 

Simultaneous mapping of multiple QTL and randomization testing for
significance testing increases the power to map QTL and help to avoid detection
of false positive QTL. Both techniques, however, dramatically increase the
computational demand. These techniques can be more widely used by
implementing efficient algorithms and designing optimized software utilizing
high performance computing. This will lead to a more in-depth analysis of
collected datasets.

The objectives of the present thesis were: 
- to examine and extend the use of alternative genetic models in QTL mapping 
- to evaluate whether high performance computing is useful in QTL mapping

and to develop highly optimized software for mapping QTL in outbred line-
crosses 

- to develop and evaluate strategies and algorithms for simultaneous mapping
of and statistical testing for multiple interacting QTL

- to apply the developed methods to data collected from divergent farm animal
crosses
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Material and Methods

Supercomputers have been used throughout this thesis for simulation studies and
mapping of QTL in experimental line crosses. The following section will describe
the computers and experimental populations that have been used.

Computer resources and techniques

High performance computer resources were throughout this project provided by
the National Supercomputing Centre (NSC) at Linköping University. Simulation
studies and analysis of experimental data were performed in parallel on a 272
processor distributed memory supercomputer (Cray T3E-600). A minor part of
the work was also performed on a 32 processor PC Cluster at NSC. Profiling and
code optimization was done on the Cray T3E, using the Apprentice software
package (Anderson et al. 1997). 

The original version of the QTL mapping software used for paper I and II, was
kindly provided by Drs Sarah Knott and Chris Haley. The software was rewritten
for parallel computing and for testing an imprinted QTL model. The computer
software used in paper III-V is new, entirely written in Fortran 90 and has been
extensively optimized and involves routines for parallel execution of interval
mapping and randomization testing. It can perform all analyses described in this
thesis. The software is currently ported to a Linux workstation (PII-400 MHz,
NAG f95 compiler) and has been optimized for high performance on a Cray T3E
(Alpha 600 MHz, Cray f90 compiler) and PC clusters (AMD Athlon, 900 MHz,
Portland Group f90 compiler) at NSC.

Analysed data

Study I and II used data from an F2 intercross between the European Wild Boar
and the Large White breed. The pedigree consists of 191 F2 animals in 26 full sib
families, which have been genotyped for 248 genetic markers on 18 autosomes
and the X chromosome. The cross was initiated in 1989 and numerous QTL have
been detected for various traits (e.g. Andersson et al. 1994; Edfors-Lilja et al.
1998; Andersson-Eklund et al. 2000).

Study III and IV were based on simulated data for two inbred F2 intercrosses. The
simulated pedigrees consisted of 520 individuals in 26 full sib families. All
individuals had full marker information every 10 cM on 20 chromosomes each of
length 100 cM.



19

Study V used data from an F2 intercross between the Red junglefowl and a White
Leghorn selection line. The cross was initiated in 1998 and consists of 852 F2

individuals in 38 full sib families. The current genetic map includes 104 genetic
markers on 24 autosomal linkage groups with an average marker spacing of 25.4
cM. The cross was developed to study the genetics of domestication of production
and behavioural traits in the chicken and was set up at the Department of Animal
Environment and Health at SLU in Skara. Several QTL mapping studies have
been performed using this material including analysis of behavioural traits
(Schütz et al. submitted), production traits (Kerje et al. manuscript), body
composition and bone density (Kindmark et al. in preparation) and meat- and egg
quality (Babol et al. in preparation).

Results and Discussion

My work has focused on developing more comprehensive methods for QTL
detection and improving the computational efficiency of QTL mapping. Key
topics have been simultaneous mapping of multiple QTL and randomization
testing in multiple QTL models, since these techniques have great potential to
improve the efficiency in QTL mapping. We have proposed how the techniques
can be used and their computational demand can be decreased. Finally, the
proposed strategies have been evaluated using simulated and experimental data. 

Mapping of imprinted QTL in an experimental linecross (I)

The first report of an imprinted locus affecting body composition in farm animals
was the callipyge (CPLG) locus in sheep (Cocket et al. 1996). Later, we (study I)
and Nezer et al. (1999) reported imprinting of an IGF-2 linked QTL in pigs. A
more recent study in pigs indicates that imprinting might be a more common
phenomenon, as four out of five detected QTL for body composition in pigs were
reported to be imprinted  (de Koning et al. 2000; Rattink et al. 2000). This high
incidence of imprinting is surprising, since genetic imprinting has only been
reported for a small number of genes in mammals (Reik and Walter 2001). 

Material and Methods
The QTL mapping method used in our study was developed to detect QTL in a
three generation pedigree from a cross between divergent lines using an
additive/dominance genetic model (Haley et al. 1994). Knott et al. (1998) later
described how this method could be extended to map imprinted QTL. The
analysis is performed in two stages, where first marker genotypes are used to
estimate the probability of an F2 offspring being each of four possible QTL
genotypes (accounting for parental origin) at fixed 1-cM intervals across the
genome. The estimation of origin is simpler for loci with multiple (>2) alleles,
and is impossible for biallelic markers, where the parental lines are fixed for
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alternative alleles. Estimation of parental origin is thus impossible in inbred
linecrosses where all parental F1 animals have the same heterozygous genotype.
Under the assumption that the grandparental breeds are fixed for alternative
alleles, the probabilities are used in a least squares framework to investigate two
alternative genetic models, one including additive and dominance components of
a QTL and the other including an additional imprinting component of the QTL.

Genetic models
By denoting the effect of QQ as a, the effect of (Qq+qQ)/2 as d and the effect of
qq as �a (Falconer and Mackay 1996), the following linear model describe the
expected value of an offspring in terms of the additive and dominance
contributions at a QTL (Knott et al. 1998):

where µ is the mean, cai is the regression indicator variable for the additive
component for individual i at the given location which, denoting the probability
of an individual of being genotype XX as PXX, is equal to PQQ-Pqq and cdi is the
regression indicator variable for the dominance component for individual i at the
given location, which is equal to PQq+PqQ, and εi~(0,σ2). 

When taking account for the grandparental origin of the alleles, there are four
possible genotypes in the F2 generation.  This makes it possible to fit three effects,
the third being the difference between heterozygote classes. The difference
between the two classes of heterozygotes is the parental origin of the two alleles.
In the first heterozygote class, the wild boar allele is inherited through the F1

mother and in the other through the F1 father, and the reverse for the Large White
alleles. For the autosomes, the difference between the heterozygotes should
indicate whether imprinting is an important effect (Knott et al. 1998). By
denoting the difference in mean effects of Qq and qQ individuals as im, the QTL
model that fits an imprinting effect additional to the additive and dominance QTL
effects can be described as:

where µ, cai and cdi and εi are defined as before and cimi is the regression indicator
variable for the imprinting component (im) for individual i at the given location,
which is equal to PQq-PqQ. 

QTL analysis and significance levels
A one dimensional genome scan was performed using both the
additive/dominance model and the additive/dominance/imprinting model. The
grid size was 1 cM. An F-ratio test was used to compare the non-imprinted QTL
model and the imprinted QTL model at each location to a reduced model without
the QTL. The best estimate for the position of the QTL was taken to be the
location giving the highest F-ratio. If the QTL model fitting imprinting was
significant, it was compared with the QTL model without imprinting (one degree

idiaii dcacy εµ +++=

iimidiaii imcdcacy εµ ++++=
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of freedom) to see whether the imprinting effect was significant. The significance
levels were obtained empirically by a permutation test (Churchill and Doerge
1994) according to Knott et al. (1998). In addition to the regressions on the
additive, dominance and imprinting coefficients, statistical models included the
effects of other relevant phenotypic observations which had significant effect on
the respective trait (Andersson-Eklund et al. 1998). Family and significant
unlinked QTL were also included in the analyses to account for background
genetic effects.

Summary of results
In study I, we report the presence of an imprinted QTL on the p-arm of pig
chromosome 2. The QTL had large effects on lean meat content in ham and
explained 30% of the residual phenotypic variation in the F2 population. Effects
were also detected for the area of the longissimus dorsi muscle, heart weight and
backfat thickness. The Large White allele was associated with larger muscle mass
and reduced backfat thickness and a clear paternal expression was shown.

Discussion
Imprinting is in general considered to be a relatively rare occurrence. Due to this,
relatively few attempts have been made to design QTL mapping methods to detect
imprinted QTL. In this section the proposed methods will be briefly discussed in
relation to the method we have used. 

Cocket et al. (1996) and Nezer et al. (1999) used interval mapping based on
maximum likelihood to test for imprinting. Three alternative hypothesis were
compared to the null hypothesis (H0) of no QTL affecting the trait:

H1: a Mendelian QTL segregates in the population
H2: a paternally expressed imprinted QTL segregates in the population
H3: a maternally expressed imprinted QTL segregates in the population

To infer the genetic model for the QTL they compare the best imprinting QTL
model (paternal (H2) or maternal imprinting (H3)) to the model of a Mendelian
QTL using a LOD score test (log10(H2(3)/H1)) at the best location for the QTL.
This approach to map imprinted QTL is rather similar to that described by Knott
et al. (1998). Instead of including all parameters in the same model, three
alternative genetic models are evaluated and later compared. The advantage of
this procedure is that only appropriate genetic effects are included in each genetic
model, and therefore a high power can be obtained. The disadvantage is that
multiple genome scans with several alternative genetic models needs to be
performed, which limits the use of this approach as a standard QTL mapping
procedure.
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de Koning et al. (2000) suggest a rather different genetic model for mapping
imprinted QTL. Rather than using the additive, dominance and imprinting
coefficients described above, they suggest that  the following model is used
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here µ is the mean, cimpi is the regression indicator variable for paternal
mprinting for individual i at the given location which, denoting the probability of
n individual of being genotype XX as PXX, is equal to [PQQ+PQq]- [PqQ+Pqq],
immi is the regression indicator variable for maternal imprinting for individual i at
he given location which is equal to [PQQ+PqQ]- [PQq+Pqq] and cdi is the
oefficient for the dominance component calculated as described above. The use
f the paternal and maternal imprinting coefficients represents contrasts for
aternal and maternal imprinting, and will give the estimates of the imprinting
ffects for imprinted QTL. The model was proposed to give estimates of the
mprinting effect, and whether the imprinting is paternal or maternal, directly in
he genome-scan. The benefit of using the model is questionable. First, imprinting
s an exception rather than the rule, and therefore it should not replace the additive
ffect as the main effect in the model. Second, the proposed model is still not a
rue imprinting model, since the dominance effect is included. Dominance and
mprinting are mutually exclusive genetic effects and if only imprinting is sought,
he dominance effect should be removed from the model. Third, if there is

endelian segregation, both the paternal and maternal imprinting parameters will
ave significant, non-zero, effects, which is confusing in the interpretation of the
esults. Based on this, we argue that the imprinting model proposed by Knott et
l. (1998), should be used to map non-imprinted and imprinted QTL.

onclusions
he results from this study clearly indicates the presence of an imprinted QTL
nd that the power to map imprinted QTL increases when using an appropriate
enetic model. Subsequent studies have been performed to map imprinted QTL in
igs (de König et al. 2000; Rattink et al. 2000), and these studies indicate an
nexpectedly high incidence of imprinted QTL. Even though it needs to be
onfirmed that imprinting is such a widespread phenomena, it might be
orthwhile to include an imprinting effect in the genetic model to acchieve
aximal power for mapping QTL in those species where imprinting occurs (e.g.
ammals). 

idiimmiimpii
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QTL mapping benefits from high performance computing (II)

To improve the throughput in QTL analyses, the computational aspects of the
procedure needs to be considered. We will here describe several ways to improve
the performance of software used for QTL mapping.

Optimization of QTL mapping software for single processor machines
We have based our work on the least squares interval mapping method to map
QTL (Haley and Knott 1992; Haley et al. 1994). The method solves a standard
least squares problem for each (or each combination of) proposed genomic
location(s). To improve the efficiency of the computational kernel of the mapping
procedure, we have evaluated the following options to solve the least squares
problem: 

1. A general least squares solver (g02DAF) from the commercial NAG software
library. 

2. Our own code to solve the normal equations yXXXb TT 1)( −=  by
explicitly inverting the matrix X�X.

3. Code from Numerical Recipes (Press et al. 1999) to solve the normal
equations by LU- or QR- factorization or by singular value decomposition 

4. General numerical libraries, BLAS and LAPACK (Anderson et. al. 1999)
freely available from Netlib (http://www.netlib.org), to solve the normal
equations by LU decomposition. 

5. Specialised solver for solving the series of least squares problems in QTL
mapping (Ljungberg et al. 2002)

The general least squares solver g02DAF is robust and designed to solve a wide
range of least squares problems. The long computational time of the routine when
used for QTL mapping is mainly due to computations, which are not required for
computing the quantity used in mapping of QTL. 

We initially replaced the NAG library routine with our own code to solve the
normal equations by matrix inversion. This code was more efficient, since
unnecessary computations were removed. Later, we also evaluated LU- and QR-
factorization and singular value decomposition as other alternatives to solve the
normal equations. LU-factorization of the normal equations was most efficient,
and was selected as the standard method in our analysis software. The theoretical
predicted speedup from using LU-factorization (four times), instead of solving the
normal equations by explicitly inverting the matrix X�X, in practise turned into a
1.6 times speedup of our analysis software. We compared the LU-factorization
implementations in the Numerical Recipes and the computer platform optimized
BLAS/LAPACK libraries. The freeware LAPACK libraries include efficient
routines for a wide range of numerical problems, and exist in several versions
optimized for a many computer platforms. The LAPACK routines were more
efficient when the design matrix (X) in the least squares problem contained more



than 9 columns. For smaller matrices the code provided by Numerical Recipes
implementation was more efficient, which most likely is a reflection of the data
control statements included in the LAPACK library routines. This will only be
seen where the matrixes are small, and a very small number of computations are
performed. For general problems, the LAPACK libraries are recommended.

Several fixed effects and covariates are often included in the analysis when the
least squares method for QTL mapping is used. Many of the columns in the
design matrix (X) will thus remain unchanged during consecutive computations in
genome scans and randomization tests. QR factorization with updating is an
efficient algorithm for solving these problems (Björck 1996). A slightly modified
version of this algorithm was evaluated by Ljungberg et al. (2002). A
significantly improved computational efficiency was shown for sizes of the least
squares problem corresponding to realistic QTL mapping scenarios. Decreases in
computational times in the order of 10 and 100 times were obtained when this
strategy was compared to the LAPACK implementation of LU-factorization and
the g02DAF routine from NAG. The advantage of using this method increases
with the number of individuals in the cross and the number of unchanged columns
in the design matrix. In Figure 3, we show the results for two different population
sizes and number of fixed columns representing mapping one QTL by two
marginal genetic effects and two QTL using an epistatic QTL model with eight
genetic effects. The number of individuals and fixed effects used for the
evaluations equals those in the previously described Wild Boar x Large White and
White Leghorn x Red junglefowl intercrosses.
24

Figure 3. The computational performance of three different solvers for least squares
problems. The NAG library routine g02DAF, the LAPACK routine DGELS and the
custom written routine UQRLS. n: number of individuals in the population, fix: number
of fixed columns in the design matrix (X), updated: number of updated columns in the
design matrix (X).
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Our analysis software has been profiled and optimized using the Apprentice
software on the Cray T3E at the National Supercomputing Centre. Figure 4 shows
the distribution of tasks, the ratio between memory access and computations as
well as the performance of the code in Megaflops (Mflops) before and after
optimization. 

Figure 4. Profiling of program used for QTL mapping before and after optimization and
after removing a majority of the output statements. a.o.: arithmetic operations.

By improved memory access patterns, and decreasing the number of Input/Output
operations, the performance of the analysis code increased from 11.7 Mflops to
115 Mflops on the Cray T3E. The Alpha 300 MHz processors on the Cray have a
theoretical peak performance of 600 Mflops, and a performance of 115 Mflops is
considered to make efficient use of the computer. High peak performance can
thus be obtained in software for QTL mapping type problems. For a population
size of 520 individuals without fixed effects or cofactors, a randomization test for
a single QTL takes about 8 minutes using the optimized version of the software,
which means that randomization tests are computationally feasible for single
processor machines. The analysis times for the conditional and additional
randomization tests proposed in paper IV, are about 25 and 425 minutes
respectively using the optimized software based on LAPACK LU factorization to
solve the normal equations.

Parallel algorithms in QTL mapping and randomization testing for QTL
A large number of statistical tests are performed during a genome-scan for QTL.
The tests can be performed in any order, without knowledge of the result from
any of the other tests. Thus, the tests can be solved on separate computers or in
parallel on a multiprocessor computer. In paper II, we present a simple algorithm
for parallelising existing QTL mapping software by allocating the computations
for each chromosome to alternative processors. We show that this simple
partitioning of the problem gives reasonable speedups of the QTL mapping
procedure. 

To obtain a better load balance between the processors, the computations should
be separated independent on their chromosomal location. This procedure is used
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in our software, and gives large speedups for exhaustive simultaneous searches
for epistatic QTL pairs. Figure 5 shows the speedups obtained during the
simultaneous mapping step used in study V. The speedup is linear up to 32
processor (31.5 times speedup). Further speedups are obtained up to 64 processors
(50 times) after which no further improvements are made. The analysis times
decreases from 95 minutes on one processor to two minutes on 64 processors.

7000 60
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Figure 5. The decrease in analysis time and speedup of an exhaustive search for two
epistatic QTL on one to 64 processors on a Cray T3E computer.

In randomization testing, several independent genome-scans are performed on
permuted data sets. Distributing the analyses of the permuted datasets to different
processors is a simple and efficient parallel algorithm for this problem. The load
balance is good, provided that the number of data sets is a multiple of the number
of used processors. Figure 6 shows the results from parallel execution of the three
randomization tests proposed in study IV.

All three randomization tests scale very well to 10 processors (relative speedup
8.1/9.4 /9.7), and utilize up to 25 processors efficiently, where they reach relative
speedups of 17.7, 20.5, and 23.3. The randomization tests for epistatic QTL pairs
can utilize up to 32 processors, where they reach speedups of 21.6 and 24.2 times
respectively. By using 32 Alpha 300 MHz processors on a Cray T3E, a
randomization test for a single QTL takes about 30s, a randomization test for a
single QTL plus a second epistatic QTL takes about 75s and for a single QTL plus
two additional QTL takes about 22 minutes. A similar evaluation has been
performed on a 32 processor (AMD Athlon 900 MHz) PC Cluster, and it shows
that the scalability of the randomization testing procedure equals that achieved on
the Cray T3E. The computation times on the PC Cluster are generally decreased
by a factor 1.2 compared to those on the Cray T3E. Larger data sets including
more individuals and several cofactors will increase the analysis times. 
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Figure 6. Serial and parallel performance of the analysis software to perform
randomization tests for one-, one plus two conditional and one plus two additional QTL
as described in study IV, on one to 32 Alpha 300MHz processors on a Cray T3E
computer. The analyses were performed in a data set with 520 individuals and two or
eight genetic parameters in the model. 

In Table 1, we present the relative increases in computational time as the number
of columns in the design matrix of the least squares problem (X) increases. This
has to be considered when mapping QTL in experimental data sets, but can to
some extent be accounted for by the method described by Ljungberg et al. (2002).

Table 1. The relative increase in the computational demand as the number of columns
increases in the design matrix (X) in the ordinary least squares problem y=Xb+e.

An overview of recent approaches to map epistatic QTL

There is a great interest among geneticists to find interacting QTL and understand
the genetic basis for these interactions. It is feasible to design QTL mapping
populations, which are large enough to detect epistasis. Therefore it is necessary
to develop and evaluate methodologies to efficiently analyse such experimental
data. Several methods for mapping of epistatic QTL have been proposed during
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the course of the thesis work. In this section, these will be briefly introduced, to
provide an introduction to the current status of the field.

Multiple Interval Mapping (MIM) 
Zeng and co-authors have proposed an interval mapping method to
simultaneously map multiple QTL and their interactions in experimental crosses
between inbred lines. The method is called Multiple Interval Mapping (MIM)
(Kao and Zeng 1997; Kao et al. 1999; Zeng et al. 1999). MIM models two-locus
epistasis between all pairs of QTL using an orthogonal genetic model (Cockerham
1954). It uses maximum likelihood for parameter estimation in a statistical
framework based on simultaneous modeling of multiple interacting QTL. The
implemented method is not a true simultaneous mapping method, since the search
algorithm is limited to map QTL in pre-selected genomic regions. The full
potential of the method has thus not been reached in its current implementation
(Zeng et al. 2000). The authors have proposed several alternative strategies for
significance testing and model selection, but there is still no obvious way to
handle these issues for this method. The method has not been evaluated by
simulation, but QTL mapping for high heritability traits in experimental
Drosophila crosses suggests a high power to detect interacting QTL.

A mixed model approach to mapping of epistatic QTL 
It is desirable to take account of genetic background effects in the QTL mapping
procedure. Wang et al. (1999) proposed a mixed model approach to map epistatic
pairs of QTL and to detect QTL by environment interactions. To take account for
the genetic background in the mapping procedure, the method uses a model
including a random polygenic effect besides the fixed effects for an epistatic QTL
pair. The method, however, does not simultaneously search for multiple QTL and
multiple interactions.

Simultaneous mapping and randomization testing for QTL at marker
locations 
Methods based on exhaustive simultaneous searches for epistatic QTL pairs have
been developed despite their computational demand and problems of obtaining
appropriate significance thresholds. Recently, a method was proposed for
randomization testing and simultaneous mapping of epistatic QTL
pairs(Sugiyama et al. 2001). The proposed method is based on exhaustive
searches in genomic grids based on markers, and introduces randomization tests
for the null hypothesis of no QTL versus the alternative hypotheses of two
interacting QTL. An F-test is then used to discriminate whether the significance
was due to strong main effects of the first QTL or truly due to the QTL pair. An
F-test is also used to select the final model (additive/dominance or interaction) for
the QTL pair. In a simulation study performed by Fridlyand (2001), the method
has problems to discriminate between large main effects of single QTL and the
effect of an epistatic QTL pair.
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Mapping of epistatic loci using QTL by genetic background interactions
Jannink and Jansen (2001) proposed a method for mapping epistatic QTL in large
populations derived from multiple related inbred line crosses. These types of
crosses are typically available in plants. The method is based on one-dimensional
genome scans and maps epistatic QTL by identifying loci with high QTL by
genetic background interaction. The advantage of the method is that it can handle
higher order epistasis. The power to detect epistasis is large according to the
simulation study performed. This method is not applicable in the type of line
crosses available in animals.

Non-parametric methods
A non-parametric method for mapping of multiple interacting QTL has been
described by Fridlyand (2001). This method attempts to detect QTL regions only
and makes no attempt to make inferences about the underlying genetic model.
The method is based on regression trees, forward selection and stratification of
data based on genotypes at marker loci. The advantage of the method is that
makes no assumptions about the genetic effects of each detected QTL, which
makes it possible to detect higher order epistasis. Disadvantages with the method
are i) the forward selection approach, which limits the power to detect QTL with
small major effects, ii) the need for very large population sizes to map more than
three QTL and iii) the lack of provided information about the underlying genetic
model for the trait.

Bayesian methods
Sen and Churchill (2001) have described a general statistical framework that can
accommodate multiple interacting QTL. The method is based on a Monte Carlo
algorithm to implement QTL analysis and allows the analyst to focus on modeling
and model comparisons. In their implementation, single and pairwise genome
scans are performed to identify those regions that exceed randomization testing
thresholds for no QTL versus one QTL and no QTL versus two QTL. Multiple
gene models are then fitted for the regions that are significant in the genome
scans. Model comparisons are made using Bayes factors or likelihood-ratio tests.
The method is an extension of that described by Sugiyama et al. (2001)

A new strategy for simultaneous mapping of epistatic QTL 

In paper III and IV, we describe an interval mapping strategy to simultaneously
search and statistically test for epistatic QTL pairs. The method uses i) a genetic
algorithm to simultaneously search for epistatic QTL pairs, ii) a least squares
regression based method for evaluating the fit of a two locus epistatic model for
the pairs proposed by the genetic algorithm and iii) significance testing based on
randomization testing. 



30

Simultaneous mapping of epistatic QTL using a genetic algorithm (III)
When QTL are mapped by their marginal genetic effects, as in a standard one-
dimensional search, epistatic QTL pairs can only be detected when both QTL
have significant marginal effects. In this case it is possible to test if any of all the
possible pairs of QTL interacts. When only one or none of the QTL are
significant, an alternative mapping approach is needed.

Forward selection can be used for a one-dimensional search for QTL that interact
with QTL that can be detected by their marginal effects. With forward selection it
is possible to perform one-dimensional genome scans with an epistatic model to
detect additional epistatic QTL. This will increase the power to find QTL pairs,
where one of the QTL has significant marginal effects. However, it is not possible
to detect QTL pairs where none of the QTL has significant marginal effects.

A simultaneous search for QTL pairs will increase the power to detect QTL
without significant marginal effects, but with significant epistatic effects (study
III+IV). An exhaustive search for QTL pairs is computationally demanding, and
an exhaustive search for more than two QTL or the use of exhaustive
multidimensional searches in randomization testing is computationally infeasible.
An efficient search algorithm is needed to make the simultaneous search feasible.
The genetic algorithm (Goldberg 1989) is a robust search method with good
computational performance. In study III, we compared a genetic algorithm to a
forward selection strategy to search for epistatic QTL pairs. The one-dimensional,
forward selection based, search algorithm had the least computational demand,
but the lowest efficiency in the search. The genetic algorithm based two-
dimensional, simultaneous search performed well and only increases the
computational demand fourfold when compared to forward selection. The
computational demand of the exhaustive search was considerably higher, a 200-
fold increase, as compared to the genetic algorithm. In summary, the genetic
algorithm proved to be an efficient search algorithm for mapping interacting QTL
pairs, and the ability of the method to detect the QTL is almost as good as for an
exhaustive search. The genetic algorithm also clearly outperformed the forward
selection based method for almost all evaluated types of epistasis.

Randomization testing for multiple epistatic QTL (IV)
Detection of epistasis can be considered as a model selection problem, i.e. is a
model including marginal and epistatic effects more suitable for the data than a
model that only includes the marginal effects. The properties of several model
selection methods have been evaluated in the context of QTL mapping for
marginal effects (Broman 1997) and epistatic QTL models (Zeng et al. 2000). The
genetic models used in these studies were orthogonal, and the individual estimates
of the parameters in the model thus remain unchanged when other effects are
added or withdrawn from the model. Study III was based on a non-orthogonal
genetic model and we wanted to evaluate randomization testing for model
selection in this context. 
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In order to obtain correct estimates of the genetic effects in the non-orthogonal
model, model selection means selection of either the marginal effects model:

where µ is the mean, caij is the regression indicator variable for the additive
component for individual i and QTL j at the given location which, denoting the
probability of an individual of being genotype XX as PXX, is equal to PQQ-Pqq and
cdij is the regression indicator variable for the dominance component for
individual i and QTL j at the given location which is equal to PQq+PqQ, and
εi~(0,σ2). 

or the full epistatic model

where µ, caij, cdij and εj are the same as above, and caai, cadi, cdai and cddi, are the
regression indicator variables for the additive by additive, additive by dominance,
dominance by additive and dominance by dominance components of the model
and are calculated as caai= cai1* cai2, cadi= cai1* cdi2, cdai= cdi1* cai2, cddi= cdi1* cdi2

(Haley and Knott 1992).

Most analytically based model selection techniques, e.g. Akaike�s Information
Criterion (AIC) (Akaike 1969), Mallows Cp (Mallows 1973), or Bayes
Information Criterion (BIC) (Schwartz 1978; Hannan and Quinn 1979), treat each
additional model parameter equally. In order to add an additional parameter, the
parameter needs to explain a predefined proportion of the residual variance. When
comparing the marginal effects model with the epistatic model for a QTL pair, the
number of genetic parameters is doubled. In the epistatic genetic models, the
variance explained by epistasis will be the amount of additional variance that can
not be explained by the parameters for the marginal genetic effects. For some
types of epistasis, this additional variance will be relatively small, although
epistasis is rather important for the trait. It is therefore important to have a
sensitive method for model selection to be able to detect these types of epistasis.
Instead of using an analytically derived model selection method, a model
selection method based on the properties of the genetic models in QTL mapping
experiments would be desirable. In study IV, we propose randomization testing to
derive an empirical distribution of the additional variance explained by the
epistasis parameters. The properties of the method were evaluated using data
simulated under various additive and epistatic genetic models. We were able to
show that the proposed randomization testing strategy for model selection was
powerful and gives reasonable type I errors. 
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The computational demand of this model selection method is modest, since it only
performs a randomization test for one pair at a time. It is thus possible to evaluate
numerous combinations of QTL pairs on a single processor machine. The number
of permutations can also be decreased by including a check for the sufficient
number of permutations in the testing procedure  (Nettleton and Doerge 2000).

A simultaneous search for epistatic QTL pairs involves many statistical tests, and
an appropriate significance level needs to be selected for the proposed QTL pairs.
In study IV, we describe a randomization testing strategy procedure for
simultaneously mapped epistatic QTL pairs. The strategy is an add-on to a
standard one-dimensional search, and it uses the information about QTL that are
significant by their marginal effects in significance testing for QTL pairs. The
strategy introduces consecutive steps with forward selection of simultaneously
mapped epistatic QTL pairs. In the forward selection procedure, epistatic QTL are
simultaneously mapped using a genetic algorithm, and statistically tested for
depending on whether the QTL in the pair are significant by their marginal effects
or not (see points 1-3 below). If the proposed QTL pair is significant, the QTL are
added to the genetic model and the procedure continues, otherwise the forward
selection procedure is terminated. The significance testing for the QTL pairs is
based on the following three alternatives: 

1. Both QTL are significant by their marginal effects
When both of the QTL in the proposed pair are significant by their marginal
effects, we conclude that the QTL in the proposed epistatic QTL pair exist. In this
case, a model selection randomization test is performed to evaluate whether
epistasis is present or not.
 
2. None of the QTL are significant by their marginal effects
When none of the QTL in the proposed pair can be detected by their marginal
effects, we propose to test the alternative hypothesis that an epistatic QTL pair
exists versus the null hypothesis that no QTL exists. This is done by the
additional randomization test proposed in study IV, where the model including
two epistatic QTL is compared to the model including no QTL. By using the
genetic algorithm for the simultaneous searches in the permuted data sets, the
computational demand for this test is reasonable for a single processor computer.

3. One of the QTL in the proposed pair is significant by its marginal effects
When one of the QTL in the pair is significant by its marginal effects, the test of
no QTL versus two epistatic QTL can not be used, since it is already known that
one of the QTL exists. The additional randomization test could become significant
due to existence of an epistatic QTL pair, or due to a strong main effect of the
significant QTL. We propose that the conditional randomization test (study IV) is
used instead. This test compares the model including two epistatic QTL to the
model with the marginal effects of the significant QTL. 
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By simulations we were able to show that the proposed strategy was powerful in
detecting epistatic QTL pairs, and that it gave reasonable type I errors. Some
concerns were raised with regard to the second dimension of multiple testing,
where a QTL can be detected in either one of three consecutive tests (0 versus 1, 0
versus 2, and 1 versus 2 QTL). It needs to be evaluated whether it is necessary to
correct the significance thresholds for the subsequent tests in order to avoid an
elevated type I error.

Detection of epistatic QTL in an experimental line cross (V)

To further evaluate the properties of the procedure proposed in paper IV, we
decided to use it for mapping of QTL in an F2 intercross between the Red
junglefowl and White Leghorn. The application of the method to experimental
data, where the true genetic background of the traits is unknown, will indicate the
practical importance of the method and help to identify topics that needs to be
addressed for further improvents.

The analysed data set
An optimal data set for evaluation of a method to map epistatic QTL pairs would
include large numbers of individuals in each of the genotype classes for a QTL
pair, phenotypic data on high heritability traits, for which the lines used to
generate the cross differ substantially, and a dense map of fully informative
genetic markers. We have created an F2 intercross between the Red junglefowl
and a White Leghorn selection line consisting of 852 F2 individuals. The
individuals were genotyped for 104 genetic markers on 25 linkage groups.
Phenotypic data has been collected for various traits, for example growth traits,
for which the parental lines differ substantially. We expect to have more than 50
individuals in each two-locus genotype class and data for traits of medium to high
heritability. The genetic map is currently relatively sparse (average marker
distance 25 cM). Even though the data is not ideal, we decided to perform an
analysis in this data set, based on the following. i) In the analysis of an
experimental cross, it is common that a relatively sparse genetic map is used for
the initial analysis, and that the map later will be filled in interesting regions. By
performing analyses in a data set with a sparse map and later perform a follow-up
study using a denser map would mimic how the method would be used in most
practical situations. ii) By evaluating the genomic regions where the significant
QTL were located with regard to inconsistencies (such as segregation distortion)
and low information content could indicate if there is a risk of false positives due
to deviations from the underlying assumptions.

Since the genetic map is rather sparse, the power to detect QTL in the middle of a
marker bracket is decreased. One of the incentives of using this method is to
identify QTL regions, which should be further characterised by molecular work.
By lowering the significance threshold, the power to detect QTL in regions with
low information content is increased. In this initial study we thus wanted to study
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both those QTL which were significant at a 5% and at a 20% genome-wide
significance level. By including new markers in regions with low information
content that contains suggestive QTL, these regions can be further examined
using the new marker information and a more stringent significance threshold. 

The computational demand of the mapping strategy
The randomization testing strategy proposed in study IV include multiple
randomization tests for each trait. Before this strategy is used, the need for
computational resources should be assessed. The calculations are based on i) the
number of QTL identified by their marginal effects in the initial genome scan and
the estimated number of additional epistatic QTL, ii) the number of individuals in
the population, and iii) the number of cofactors to be included in the analysis

Based on our data set and previous analyses we have made the following
assumptions and calculations. We would, on average, use 850 individuals in the
analysis of each trait. On average four QTL were detected by their marginal
effects for the growth traits (Kerje et al. manuscript). These QTL would
contribute to 4 QTL x 2 marginal genetic effects = 8 columns in the design
matrix, X. The four QTL detected by their marginal effects can form

QTL pairs. If we assume that three of the six possible pairs interact, the additional
contribution of these to the design matrix would be
3 pairs x 4 epistatic effects = 12 columns. The mean effect would be included
together with the fixed effects of sex (2 levels) and batch (6 levels) in the
analysis. The inclusion of these effects contributes with an additional 1 + (2-1) +
(6-1) = 7 columns to the design matrix. We assume that 20 forward selection
rounds are performed before convergence, and that the conditional and additional
randomization tests are used in equal proportions in these steps. If we assume that
8 new QTL regions will be identified and that 10 detected QTL pairs interact, the
total contribution to the design matrix would be:
8 new QTL x 2 marginal genetic effects = 16 columns with marginal genetic
effects and 10 QTL pairs x 4 epistatic effects = 40 columns with epistatic effects.
The average contribution to the design matrix would then be (40+16)/2=28
columns.

Based on this, we can predict the total computational demand of the testing
procedure. Most of the computational time is spent in the additional
randomization tests, and we therefore base the calculations entirely on the
computational demand of this test. The average size of the design matrix used in
the randomization tests would be 850 rows times 8 + 12 + 7 + 28 = 55 columns.
This size of the design matrix would according to table 1 on average increase the
computational demand by approximately 15 times that of a matrix with size 850
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rows times 3 columns (which is the size used to map single QTL without
cofactors and fixed effects). Each randomization test for an additional QTL pair
would then based on the previously described performance of our analysis
program take approximately 425 minutes for each test x 15 times increase in
computing time = 6,375 minutes. We would analyse 9 traits and perform 10
randomization tests each of these traits, which would lead to an expected
requirement of CPU time of: 9 traits x 10 randomization tests x 6,375 minutes per
test =573,750 CPU minutes = 9,563 CPU hours.

The computational demand corresponds to approximately one year of
computations on a single processor machine or 20 days on 20 processors on a
parallel machine. This initial study does not justify such an extensive use of
computational resources, and we thus decided to use a slightly modified version
of the proposed strategy.

A modified mapping strategy
The strategy we describe in study IV detects epistatic QTL by forward selection
of simultaneously mapped epistatic QTL pairs. To decrease the computational
demand, we instead used a modified version of the strategy. A comparison of the
original and the modified strategies are given in Figure 7. The principle of the
modified strategy is to first map QTL by their marginal additive and dominance
effects using forward selection. Significance testing is performed by a
randomization test for each step in the forward selection procedure. Secondly, use
an exhaustive search to evaluate the model fit of all possible epistatic QTL pairs.
Significance levels for model selection are derived from the conditional and
additional randomization tests described in study IV. Thirdly, select the model for
each of the significant QTL pairs using the model selection randomization test
described in study IV.

The updated strategy uses one conditional randomization test for each QTL that
was significant as a single QTL and one additional randomization to test for
epistatic QTL pairs where none of the QTL had significant marginal effects. This
significantly decreases the computational demand of the strategy. On the other
hand, the updated strategy has a lower power to detect epistatic QTL, since it does
not correct for significant background genetic effects. By using a 20% genome-
wide threshold, we hope to identify most QTL regions that would be significant
by the original strategy, and thus we could include new markers in these regions.
Further studies using the original strategy in the same experimental cross will help
to address the importance of using the full strategy to obtain maximal power of
the mapping procedure.
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Figure 7. A comparison of the original and modified randomization testing strategies.

Summary of results
We found 21 significant loci contributing to the nine evaluated growth traits using
a 5% genome wide significance threshold. Eleven of these were only found by the
simultaneous search. When using a 20% genome wide significance level, 14
additional QTL were detected, eight of those could only be detected by
simultaneous mapping. The relative contribution of epistasis was more
pronounced for early growth (prior to 46 days of age), whereas additive genetic
effects explained the major portion of the genetic variance later in life. Several of
the detected loci affected either early or late growth but not both. Very few loci
affected the entire growth process, which points out that early and late growth, at
least to some extent, have different genetic regulation. The amount of residual
variation explained was also increased considerably for most of the growth traits.
Partitioning of the genetic variance showed that epistasis was considerably more
important for early growth, than for late growth.

Once applied, the mapping strategy appears to have high power to detect epistatic
QTL. The number of significant QTL regions that influence growth in the Red
junglefowl x White Leghorn cross was more than doubled when simultaneous
mapping and randomization testing were used. 
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Conclusions

Our work has shown that high performance computing is a valuable tool in QTL
mapping. The use of modern search algorithms and parallel computing have made
simultaneous searches and randomization tests for interacting QTL
computationally feasible. Development of efficient software for QTL mapping is
advantageous both for making new mapping methodologies available to
geneticists as well as for shortening the time from data collection to the
completion of the statistical evaluation. This gives users of this technology a
competitive edge in the field of genetical research. 

We have also shown that the use of genetic models, including imprinting or
epistasis, can increase the power in QTL mapping experiments. The use of these
methods also gives new insights into the genetics underlying important traits in
farm animals and other organisms.
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Future prospects

In progress
Implementation of the least squares solver described by Ljungberg et al. (2002),
should make it possible to use the original strategy described in study IV to map
QTL in the Red junglefowl x White Leghorn chicken intercross. The importance
of using forward selection of epistatic QTL and including genetic background
effects in the genetic model can thus be addressed.

We have in study V started to evaluate the sensitivity of epistatic and non-
epistatic models to inconsistencies in the data and low information content in the
genome. By performing new analyses in an updated data set, where new genetic
markers are typed in putative QTL regions with low information content, we will
be able to evaluate the sensitivity of the epistatic QTL mapping method to
inconsistencies in the analysed data sets.

Immediate future
We have in study III and IV proposed that an epistatic model should be used to
simultaneously search and statistically test for QTL pairs. In this procedure we
have used a two locus non-orthogonal genetic model. It would be interesting to
evaluate whether the use of alternative epistatic genetic models (e.g. the
orthogonal model described by Cockerham 1954) would give similar results in the
mapping procedure we propose in study IV. 

The use of an epistatic genetic model in significance testing for proposed QTL
pairs decreases the power to detect non-interacting QTL, since several
unnecessary parameters are included in the testing procedure. If a marginal effects
model would be used instead, the power to detect non-interacting QTL should
increase. Further studies could be performed to evaluate how much additional
power that could be gained by simultaneous mapping of non-interacting QTL. It
would also be interesting to evaluate a strategy where QTL pairs are sought using
an epistatic model, and that model selection is used to select an appropriate model
for each QTL pair prior to significance testing. Based on the selected model,
randomization testing would then be performed using either a marginal effects or
an epistatic QTL model. This strategy should increase the power to detect QTL by
using an appropriate model when testing for the QTL, but has the drawback of
introducing another level of multiple testing. 

In study III, we proposed the use of a genetic algorithm for simultaneous mapping
of epistatic QTL pairs. The search was limited to QTL pairs, since we believe that
a simultaneous search is most important when epistatic QTL are sought, and the
currently available data sets are not large enough to handle genetic models
including third order epistasis. To fully explore future larger data sets it is
necessary to evaluate genetic algorithms, or other search algorithms, in
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simultaneous searches for epistatic QTL in higher dimensions. Simultaneous
mapping might also increase the power to map multiple QTL, even if only two-
way epistasis is included in the genetic model. To make this computationally
feasible, the evaluation of alternative search algorithms is necessary.

One important topic in QTL mapping is to infer the dimension of the mapping
problem, i.e. deciding how many QTL that affect the trait. We have proposed
randomization testing, and other authors have proposed analytical methods
(Broman 1997; Zeng et al. 2000) for this. Comparative studies of the proposed
methods under various genetic models will be necessary to design powerful
methods for comparing models with different numbers of QTL and genetic
parameters for the QTL.

Most analyses of outbred line crosses are today based on the method described by
Haley et al. (1994), which assumes that alternative QTL alleles are fixed within
lines. If QTL alleles segregate within the lines, the QTL effects will be
confounded with the allele frequencies in the parental lines. Is a small QTL effect
caused by a small QTL which is fixed in the parental lines, or a large QTL that is
still segregating? A further complication when mapping QTL in outbred lines is
that there might exist multiple alleles for the same QTL. This will decrease the
power to detect the QTL, but also cause serious misinterpretations of the results
from the QTL mapping study. When denser genetic maps becomes available, it
will be possible to identify individual haplotypes which segregate within
populations, and thus increase the need for genetic models that can handle this
situation. 

Looking ahead

QTL mapping is performed with various statistical methods in a wide range of
populations. The mapping population and statistical method selected for a specific
study depends on the aim of the study. Is the aim to increase the understanding of
the genetic background of a quantitative trait, or to detect QTL affecting a
population specific phenotype? When considering the analysis methodology,
three major approaches can be identified and I will here briefly introduce them. 

First, there are the association-based tests, where the effects of individual
candidate genes or genetic markers are evaluated in population samples. The
design of association studies and the methodology used for statistical analysis is
rather general and can therefore be used in most species and populations. Today,
the power of these tests is limited, since the currently used density of the markers
in these studies is too low to cover the genome, since linkage disequilibrium only
span short genomic segments in most outbreeding populations. The advantage of
the approach is mainly that the detected QTL have a direct effect on the
expression of the quantitative phenotype in the studied population. This is



40

important in medicine or agriculture to find loci affecting disease phenotypes or
various production traits.

Secondly, there are the linkage-based tests, where analyses are generally
performed among related individuals in the population. More closely related
individuals share larger linked segments of the genome, and this linkage
disequilibrium can be used to detect QTL. A relatively sparse genetic map of
linked genetic markers can cover large portions of the genome and increase the
power to detect QTL. Various methods have been proposed for linkage mapping
in different population designs. The power to detect QTL within the analysed
populations is higher than for the association-based tests. Major disadvantages
with the method are that the relative importance of the QTL on a population level
remains unknown and that the resolution of the QTL position is low. 

Linkage disequilibrium (LD) mapping combines association and linkage
mapping. The method aims to detect associations between haplotypes of linked
genetic markers and the phenotype. Linkage is used to indicate location, and
association tests are used to indicate the strength of the association. The method
uses the linkage disequilibrium that exists in short genomic segments, even in
outbred population samples. A very dense map of genetic markers is necessary to
utilize this linkage, and based on the population history, the method can provide a
very high resolution of the QTL location. 

The human genome sequence has recently become available to the public. One of
the current efforts of the human genome project is to sequence individuals from
several different ethnic groups to identify the major genome wide haplotypes in
the human population. The sequencing of the genome of several farm animal and
experimental animal species is also in progress, and we can expect to obtain the
same haplotype information for these species as well. The genome projects will
also develop dense genetic maps, with a genetic marker every 100 kb or closer,
throughout the genome. By using the dense genetic maps, it will be possible to
decide the genome-wide haplotype for each individual in a population. In ten
years from now, the cost for genotyping will have decreased to levels where it is
possible to perform genome-wide genotyping of all individuals in large
populations. It will then be possible in practise to perform QTL mapping
experiments in populations containing all individuals in a species that have
phenotypic observations using LD mapping. These studies will have very high
power to map QTL with high resolution. One could e.g. consider mapping of
QTL for growth or fat deposition in the entire pig breeding population of the
world! 

The ability to collect genetic data from dense genetic maps in large populations
calls for QTL mapping methods that can handle genome wide linkage
disequilibrium mapping of QTL. Today, methods exist for detection of single
QTL using LD mapping. In order to fully utilize the information in the large
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population, several issues needs to be addressed. For a better understanding of the
genetics behind multifactorial traits, methods for genome wide LD screens for
multiple QTL are needed. Genetic models needs to be developed, which can
simultaneously include multiple alleles at multiple QTL. These models will help
improve the understanding about the contribution of genetic polymorphism at
individual or groups of loci to the total genetic variance. These analyses will be
possible based on the knowledge about the haplotypes that exist in the population.
Model selection and significance testing will be key issues, due to the multiple
testing that inevitably will be performed. High performance computing will be a
necessity for the analyses of the huge data sets. Once the methods are available,
they will be of general interest since they would be applicable to a wide range of
existing populations in various species. It is therefore of general interest to the
whole QTL mapping community to make a joint effort in improving these
methods. Based on the wide range of competence�s needed in this effort, it is an
absolute necessity to establish inter-disciplinary collaborations to develop the
QTL mapping methods of the future.
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