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Abstract 18 

Microbial substrate use efficiency is an important property in process-based soil organic matter models, but is often 19 

assumed to be constant in mechanistic models. However, previous studies question if a constant efficiency is 20 

appropriate, in particular when evaluating carbon (C) cycling across temperatures and various substrates. In the 21 

present study, we evaluated the relation between substrate use efficiency, microbial community composition and 22 

substrate complexity in contrasting long-term management regimes (47-49 years of either arable, ley farming, 23 

grassland or forest systems). Microbial community composition was assessed by phospholipid fatty acid analysis 24 

and three indices of substrate use efficiencies were considered: (i) thermodynamic efficiency, (ii) calorespirometric 25 

ratio and (iii) metabolic quotient. Three substrates D-glucose, L-alanine or glycogen, varying in complexity, were 26 

added separately to soils, and heat production as well as C mineralization were determined over a 32-hours 27 

incubation period at 12.5 °C. Microbial communities from forest systems were most efficient in utilizing substrates, 28 

supporting our hypothesis that maturing ecosystems become more efficient. These changes in efficiency were linked 29 

to microbial community composition with fungi and Gram-negative bacteria being important biomarkers. Despite 30 

our initial hypothesis, complex substrate such as glycogen was utilized most efficiently. Our findings emphasize that 31 

differences in land use management systems as well as the composition of soil organic matter need to be considered 32 

when modelling C dynamics in soils. Further research is required to establish and evaluate appropriate proxies for 33 

substrate use efficiencies in various ecosystems. 34 
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Introduction 41 

Soil microorganisms are key players in governing the terrestrial carbon (C) cycle (Schimel and Schaeffer 2012). But 42 

due to the complexity of soils, they are often not specifically incorporated into simplistic process-based models used 43 

to predict soil organic matter decomposition. For example, the Century-model (Parton et al. 1987), RothC model 44 

(Coleman and Jenkinson 2014) or Q-model (Ågren and Bosatta 1987) treat the microbial compartment system as a 45 

‘black box’. During microbial decomposition, organic C is partitioned between respiratory energy production and 46 

substrate assimilated into microbial biomass and stabilized in soil organic matter. This partitioning is often referred 47 

to as substrate use efficiency or C use efficiency, and it is an important microbial physiological feature in 48 

determining the fate of C during organic matter decomposition in soils. This property is often assumed to be 49 

constant in process-based models, but research indicates that substrate use efficiency is (i) temperature dependent 50 

(Devêvre and Horwáth 2000; Steinweg et al. 2008; Wetterstedt and Ågren 2011; Frey et al. 2013; Tucker et al. 51 

2013) and (ii) varies among C substrates (Frey et al. 2013). Recent model frameworks emphasize that changes in 52 

microbial physiology i.e. varying substrate use efficiency have (i) significant impacts on global soil C stocks 53 

(Allison et al. 2010; Frey et al. 2013; Wieder et al. 2013) and (ii) their incorporation may improve future climate 54 

change model projections (Allison et al. 2010; Wieder et al. 2013). The underlying process mechanisms of substrate 55 

use efficiency are still unclear, but differences in efficiencies have been reported to reflect microbial community 56 

composition (Harris et al. 2012; Herrmann et al. 2014; Creamer et al. 2015). 57 

Recent research suggests that differences in substrate use efficiencies may be linked to the relative 58 

abundance of fungi and Gram-negative bacteria in an arable ecosystem (Harris et al. 2012; Herrmann et al. 2014) or 59 

a forest ecosystem (Creamer et al. 2015). These studies emphasize that microbial community composition may play 60 

a significant role in determining substrate use efficiencies within one land use management system. Yet, little is 61 

known if and how substrate use efficiencies vary across different land use management systems. Theoretical 62 

frameworks suggest that maturing ecosystems along a successional gradient become more complex in terms of their 63 

food web and biodiversity, and they increase their efficiency in utilizing resources (Odum 1969; Addiscott 1995). 64 

Arable soils are annually disturbed through ploughing and/or other tillage practices whereas grassland ecosystems 65 

are less frequently disturbed and forest ecosystems are the end point of a successional gradient. Thus, these land use 66 

management systems can be considered as systems representing certain stages within a successional gradient 67 
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following disturbance. Microbial community composition changes along this gradient. In comparison to arable and 68 

grassland ecosystems, forest ecosystems contain relatively more fungi than bacteria (Bossio et al. 2005; Cookson et 69 

al. 2007; Drenovsky et al. 2010), and it is often assumed that soil fungi have higher substrate use efficiencies than 70 

soil bacteria (Holland and Coleman 1987; Herrmann et al. 2014). Hence, we would expect that microbial 71 

communities residing in forest would have higher substrate use efficiency in comparison with communities residing 72 

in arable systems. 73 

Besides differences in substrate use efficiencies, soil fungi (e.g. wood decomposing fungi) have the ability 74 

to decompose complex soil organic matter through the production of extracellular enzymes (Bödeker et al. 2009; 75 

2014). The thermodynamic argument suggests that reactions metabolizing structurally complex, aromatic 76 

components have higher activation energies than reactions metabolizing structurally simpler, more labile 77 

components (Bosatta and Ågren 1999). Thus, utilization of complex substrates requires higher initial energy costs 78 

reducing net energy gain (Bradford 2013). Furthermore, metabolic pathways during decomposition are dependent on 79 

the nature of the utilized substrate and show varying respiration rates leading to variable substrate use efficiencies 80 

(Gommers et al. 1988; Manzoni et al. 2012). Simple carbohydrates such as glucose are primarily used when 81 

evaluating microbial substrate use efficiency (e.g. Dijkstra et al. 2011; Tucker et al. 2013; Blagodatskaya et al. 82 

2014). However, soil organic matter consists of heterogeneous organic material with inherent chemical energy 83 

stored below-ground which is exchanged within the soil system. Recent research has shown that the use of various 84 

substrates resulted in varying efficiencies (Frey et al. 2013) emphasizing the importance to evaluate several 85 

substrates when assessing microbial substrate use efficiencies. 86 

Substrate induced respiration in combination with incorporation of C into the microbial biomass is often 87 

used to evaluate substrate use efficiency (e.g. Behera and Wagner 1974; Blagodatskaya et al. 2014). Recently, 88 

microbial energetics approaches such as thermodynamic efficiency of microbial communities (Harris et al. 2012) 89 

and calorespirometric ratio (Barros et al. 2010) have been tested for exploring microbial substrate use efficiencies in 90 

soil systems. Isothermal calorimetry is used to determine these indices and its main advantage is that it quantifies all 91 

metabolic processes not only those accounted for by CO2 respiration measurements. Thus, it provides 92 

complementary information to the CO2 respiratory approach (Herrmann et al. 2014). Thermodynamic efficiency is a 93 

dimensionless index of substrate use efficiency and high values of this index indicate that microbial metabolism is 94 
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efficient (Harris et al. 2012). The calorespirometric ratio is metabolic heat released in relation to CO2 production 95 

(i.e. J mol-1 CO2 or mJ µg CO2-C). If the same organic material is undergoing decomposition, changes in 96 

calorespirometric ratios indicate differences in substrate use efficiencies with decreasing ratios indicating an 97 

increase in efficiencies (Hansen et al. 2004). Both indices are independent of the amount of microbial biomass 98 

residing in soils. Previously, Anderson and Domsch (1986, 1990, 2010) used the ratio of respiration to microbial 99 

biomass (i.e. µg CO2-C µg-1 biomass-C), i.e. the microbial metabolic quotient, as an index for substrate use 100 

efficiency of microbial communities. This quotient has been previously criticized (Wardle and Ghani 1995; 101 

Nannipieri et al. 2003) and should be therefore used with care. However, the microbial biomass is an important soil 102 

property when using the metabolic quotient for assessment of substrate use efficiency. So far, these three indices 103 

have not been used in the same study and it is not known if they would lead to similar conclusions. 104 

The aim of the present study was to test the hypotheses that (i) substrate use efficiency increases with 105 

maturing ecosystems along a successional gradient, (ii) the increase in efficiency is due to changes in microbial 106 

community composition, and (iii) chemically complex substrates result in a decrease in efficiency in comparison 107 

with labile organic material. Furthermore, we evaluated various substrate use efficiency indices using linear 108 

regression analysis. 109 

Material and Methods 110 

Soils 111 

In August 2012, we sampled soils from the agricultural long-term field experiment in Röbäcksdalen (63°48’N, 112 

20°14’E) and the forest long-term nutrient fertilization experiment at Flakaliden (64°07’N, 19°27’E). Both research 113 

sites are closely located to the city of Umeå, Northern Sweden, and exposed to a boreal climate. Mean annual 114 

temperature in the area is 2.3 °C; ranging from -8.7 °C in February to 14.4 °C in July (Coucheney et al. 2013). The 115 

field experiment in Röbäcksdalen was established in 1965 on an Eutric Cambisol (FAO) (Bergkvist and Öborn 116 

2011), and we selected three land use management systems: (i) barley annually (arable land), (ii) barley for one year 117 

followed by a two-year period with green fallow (ley farming) and (iii) barley for one year followed by a five-year 118 

period with green fallow (grassland) (Bergkvist and Öborn 2011). At the time of soil sampling, the ley farming and 119 

grassland management systems were in their second and fifth year of green fallow, respectively. Samples were taken 120 
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from a depth of 0 – 10 cm in the A horizon. The Flakaliden long-term field experiment was established in 1986 on a 121 

forest stand with Norway spruce (Picea abies) which was planted in 1963 on a Haplic Podzol (FAO) (Linder 1995). 122 

We sampled the control treatment from a depth of 2 – 10 cm representing the E horizon. The control treatment 123 

received no nutrient addition but soils were irrigated with water in order to avoid biases due to water stress. For each 124 

land use management system, we sampled soils from three field replicates, taking 25 to 30 subsamples per replicate 125 

which were thoroughly mixed and combined to one sample per replicate. Soils were sieved to 2 mm, plant material 126 

removed and soils were then adjusted to 50 % of their water holding capacity. Samples were stored frozen until 127 

further use. Additional soil data are given in Table 1. 128 

Incubation experiment 129 

Soils were pre-incubated for 14 days at 12.5 °C to allow the microbial respiration flush from fresh organic matter 130 

released due to sampling and freezing procedure to subside (Herrmann and Witter 2002). This temperature 131 

corresponded to the mean air temperatures at the long-term field experimental sites during the vegetation period 132 

(May-September). After the pre-incubation period, soils were then divided into three sets of subsamples for 133 

determination of heat production, C mineralization and evaluation of the soil microbial biomass. 134 

The first set was used for calorimetric measurements. For each soil management system, four aliquots of 135 

soil (5 g soil dry weight) were placed into 20 ml glass reaction vessels and each vessel was sealed with an admix 136 

ampule set up consisting of two 1 mL syringes (Fig. 1). Each admix ampule contained either a solution of D-137 

glucose, L-alanine, glycogen or double deionized water as control. The substrates were selected as they are all water 138 

soluble. D-glucose and L-alanine were chosen as representatives for simple substrates, with L-alanine being 139 

additionally a nitrogen source, whereas glycogen was chosen as a representative for complex substrates (Henrissat et 140 

al. 2002). Prior to the start of the experiment, we tested soluble starch but this substrate precipitated shortly after 141 

dissolution and was thus not applicable for the experiment. Therefore, glycogen was used as a complex substrate as 142 

it is water soluble, has a similar structure to starch and is used as a storage compound by soil microorganisms 143 

(Dijkstra et al. 2015). The samples where then introduced into a TAM Air isothermal calorimeter (TA Instruments, 144 

USA) with the thermostat set to 12.5 °C. The calorimeter was then sealed and the samples were allowed to 145 

equilibrate for 18 to 19 h. After equilibration (at time 0 h), substrate solutions (75 µl g-1 soil) were added drop-wise 146 

providing 500 µg C g-1 soil. All substrate solution additions increased the water content of the samples to 65 % of 147 
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their water holding capacity. Heat production rates were measured continuously over 32 h after substrate addition. 148 

The syringes were thoroughly cleaned with ethanol and repeatedly rinsed with deionized water after each use. At the 149 

end of the incubation period, samples were freeze-dried for subsequent determination of residual substrate in soil 150 

solution as described below. Initial substrate in soil solution was determined at the start of the incubation i.e. at time 151 

0 h, on separate aliquots of soils that were amended with C substrates and immediately freeze-dried. 152 

The second set of four aliquots (20 g soil dry weight) was amended with 500 µg C g-1 soil of D-glucose, L-153 

alanine or glycogen solution or double deionized water as control. Samples were placed into 0.5 l airtight glass 154 

containers and incubated for 32 hours at 12.5 °C, and evolved CO2 was analyzed consecutively every five to nine 155 

hours with an infrared gas analyzer (EGM-4, Environmental Gas Monitor, PP systems, UK). 156 

The third set was used to evaluate the biomass and composition of microbial communities in soils at the 157 

end of the 14-days pre-incubation period. Microbial biomass was determined using the chloroform-fumigation-158 

extraction method (Vance et al. 1987) with minor modifications (Dahlin and Witter 1998). Extracted organic C was 159 

measured as total organic C (TOC-5000A, Shimadzu, Japan), and the extracted C by fumigation was converted to 160 

microbial biomass C using a kec factor of 0.45 (Wu et al. 1990). Phospholipid fatty acid (PLFA) analysis was used to 161 

assess the microbial community composition using the method of Frostegård et al. (1993b). Briefly, phospholipids 162 

were extracted from 1 g of freeze-dried soil using a chloroform, methanol and citrate buffer in the ratio 1:2:0.8 163 

(v/v/v), fractionated by solid phase extraction and then derivatized by mild alkaline methanolysis (Börjesson et al. 164 

1998). The resultant fatty acid methyl esters were analyzed by gas chromatography (6890 Series GC System, 165 

Hewlett-Packard Company, USA). Fungal-to-bacterial ratio (F:B ratio) was based on the abundance of the fungal 166 

PLFA biomarker 18:2ω6 and 18:1ω9 (Federle 1986) and the sum of 11 bacterial PLFA biomarkers (i15:0, a15:0, 167 

15:0, i16:0, 16:1ω9, 16:1ω7t, i17:0, cy17:0, 17:0, 18:1ω7 and cy19:0; Frostegård et al. 1993a).  168 

Substrate in soil solution 169 

Utilized substrate has to be taken into account when estimating the thermodynamic efficiency of soil microbial 170 

communities (see Eq. 1). However, assays for the quantification of D-glucose, L-alanine and glycogen in soil 171 

solution are not readily available within soil research. We, therefore, tested if a commercial assay kit and assays 172 

established within animal sciences are applicable for soil samples. Unless indicated otherwise, soils from one field 173 
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replicate (5 g dry soil) of each land use management were amended with 375 µl of either (i) D-glucose, 174 

(ii) L-alanine or (iii) glycogen solution (for substrate concentrations see supplementary Table S1). Substrates were 175 

dissolved in 0.25 M K2SO4 or 0.1 M HCl to ensure the same background matrix for standard curves as well as for 176 

the determination of substrate recovery in soil solution (see below). Because it was necessary to store amended soil 177 

samples for a significant amount of time prior analysis, we also tested if freeze-drying prior soil extraction will have 178 

an effect on the amount of substrate measured in soil solution, i.e. fresh soil versus freeze-drying soil prior substrate 179 

extraction were compared. Three technical replicates were used for each treatment. 180 

For D-glucose quantification, we used a commercial available enzymatic assay kit (Glucose (GO) Assay 181 

Kit, GAGO-20, Sigma-Aldrich, USA). D-glucose in soil samples was extracted by shaking with 0.25 M K2SO4 182 

(soil:extractant mass-to-volume ratio of 1:4) for 30 minutes followed by centrifugation (3 minutes at 740 xg) and 183 

filtration using a 0.2 µm nylon syringe filter. 0.5 ml of the filtrate were then mixed with 1.0 ml of enzymatic assay 184 

reagent and the mixture was placed into a dark water bath at 37 °C. To stop the enzymatic reaction, 1 ml 6 M H2SO4 185 

solution was added after 30 minutes and the absorbance was measured at 540 nm (GENESYS 20, Thermo Scientific, 186 

USA). A calibration curve of absorbance (x-axis) versus glucose concentrations in freeze-dried samples (y-axis) was 187 

established and absorbance data from glucose concentration in soil solutions in the incubation experiment were 188 

fitted to a linear model (R2 = 0.98) as follows: y = 156.5x - 9.2. 189 

Quantification of L-alanine was done by adapting a method used for animal plasma (Reverter et al. 1997): 190 

L-alanine in soil samples was extracted by shaking with 0.1 M HCl (soil:extractant mass-to-volume ratio of 1:4)  for 191 

30 minutes followed by centrifugation (3 minutes at 740 xg).  800 µl of the supernatant were then mixed with 30 % 192 

(w/v) 5-Sulfosalicylic acid and centrifuged for 30 minutes at 14 000 xg. 200 µl of the mixture were transferred into 193 

30 kDa centrifugal filter units (Microcon-30 with Ultracel-30 membrane, Merck Millipore, USA) and centrifuged 194 

for 10 minutes at 14 000 xg. The filtrate was diluted to an estimated concentration of 250 pmol/µl and analyzed 195 

using Ultra-Performance Liquid Chromatography (UPLC) (Dionex UltiMate 3000 RS, Thermo Scientific, USA) 196 

after derivatization (AccQ Tag Ultra, Waters, UK). The amino acid norvaline was used in a dilution series to 197 

establish a calibration curve (R2 = 1.0). 198 

Results from the D-glucose and L-alanine assays indicate that freeze-drying prior substrate extraction did 199 

not affect substrate concentrations (data not shown) and therefore only freeze-dried samples were analyzed in the 200 
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glycogen assay. Glycogen in soil samples was extracted by shaking with 0.25 M K2SO4 (see above), and glycogen 201 

levels were quantified as D-glucose equivalent after 7 M HCl hydrolysis (extractant:HCl ratio of 1:1; 1 hour in 202 

boiling water bath to accelerate hydrolysis), followed by neutralization with 3.5 M K2CO3 (Geary et al. 1981). D-203 

glucose concentrations were quantified on 0.5 ml of soil extract using the enzymatic D-glucose assay kit (see 204 

above). Recovery of substrate in soil solutions varied among land use management systems, and therefore individual 205 

calibration curves were established for each management system (supplementary Fig. S1). 206 

Microbial substrate use efficiency indices 207 

We calculated microbial substrate use efficiencies with three indices: (i) thermodynamic efficiency, 208 

(ii) calorespirometric ratio and (iii) metabolic quotient of soil microbial communities.  209 

Thermodynamic efficiency (ηeff) was expressed by adapting the equations of Battley (1960; 1987) and Harris et al. 210 

(2012). In the present study, added substrate was not completely decomposed during the incubation period and 211 

therefore utilized substrate needs to be taken into account when calculating thermodynamic efficiency: 212 

௘௙௙ߟ  ൌ 1 െ ቀ
ொ

୼ு಺೙೔೟೔ೌ೗ି	୼ுೃ೐ೞ೔೏ೠೌ೗
ቁ  (1) 213 

where Q (J g-1 soil) is heat produced from microbial metabolism, ΔHInitial (J g-1 soil) and ΔHResidual (J g-1 soil) is the 214 

combustion enthalpy of initial substrate in soil solution and residual substrate in soil solution at the end of the 215 

incubation period, respectively. The difference between ΔHInitial and ΔHResidual is the combustion enthalpy of the 216 

utilized substrate, i.e. it is the theoretically available energy for metabolic processes during the incubation period. 217 

The standard enthalpy of combustion Δܪ௖° is 2,816.8 kJ mol-1 for D-glucose, 1,626.1 kJ mol-1 for L-alanine and 218 

2,841.3 kJ mol-1 for the smallest repeating polymer unit of glycogen (Washburn 2003). These values were used to 219 

calculate ΔHInitial and ΔHResidual. In the present work, 19.5 J g-1 soil for D-glucose, 22.6 J g-1 soil for L-alanine and 220 

19.8 J g-1 soil for glycogen were added to the soil samples. 221 

The calorespirometric ratio γ (J mol-1 CO2 or mJ µg-1 CO2-C) is the ratio of heat production and CO2 production 222 

(Hansen et al. 2004): 223 

 γൌ 	
ொ

஼ைమ	
 (2) 224 
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where Q (J g-1 soil) and CO2 (mol CO2 g
-1 soil or µg-1 CO2-C g-1 soil) are the heat and CO2 production after substrate 225 

addition, respectively. 226 

The microbial metabolic quotient (qCO2) is the ratio of CO2 production per unit microbial biomass C (Anderson and 227 

Domsch 1985a; 1985b): 228 

ଶܱܥݍ  ൌ 	
಴ೀమ
಴೘೔೎

 (3) 229 

where Cmic (µg C g-1 soil) is the microbial biomass C determined by fumigation extraction (see above). 230 

Statistical analysis 231 

Resultant data (i.e. thermodynamic efficiencies, calorespirometric ratios and metabolic quotients) were analyzed by 232 

two-way ANOVA (i.e. land use management system and C substrate were the two explanatory variables and the 233 

interaction effect between these variables was also tested) and homogeneous groups of mean established using 234 

Tukey’s HSD test (Minitab 17 Statistical Software, 2010). Within each land use management, results were analyzed 235 

by one-way ANOVA followed by Tukey’s HSD test. All data were tested for normality using Anderson-Darling test 236 

and equal variances using Levene’s test. If necessary, data was log or square root transformed prior analysis to 237 

obtain normal distribution and equal variance. For analysis of microbial community composition and efficiency 238 

profiles, we used R version 3.0.0 (R Core Team 2013) and the ‘vegan: Community Ecology Package’ version 2.0-9 239 

(Oksanen et al. 2013). Profiles were examined with principle component (PCA) analysis using normalized 240 

covariance of mole percent PLFA, thermodynamic efficiency values or calorespirometric ratios. Significant 241 

differences between land use management systems along ordination axes were analyzed by post hoc one-way 242 

ANOVA followed by Tukey’s HSD on PC scores. The associations between thermodynamic efficiency, 243 

calorespirometric ratios and PLFA data were determined by comparing the dissimilarity matrices of each of the data 244 

sets using the Mantel test based on the Pearson product-moment correlation coefficient (999 permutations). Linear 245 

regression analysis was used to evaluate equivalence between thermodynamic efficiency (X-axis) and 246 

calorespirometric ratio or metabolic quotient (Y-axis). 247 

Results 248 
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In forest management systems, heat production rates were constant when soils were amended with glucose or 249 

glycogen (Fig. 2a and c) whereas in alanine amended samples heat production rates increased from ca. 2 µW g-1 soil 250 

to ca. 10 µW g-1 soil (Fig. 2b) during the 32-hours incubation period. The other three land use management systems 251 

increased slightly up to ca. 45 µW g-1 soil during the incubation (Fig. 2), but based on heat flow data exponential 252 

microbial growth was not observed in any of the amended soil systems. Land use management systems and substrate 253 

type had significant effects on cumulative heat produced from microbial metabolism over the 32 hours incubation 254 

period (Table 2). Overall, heat production of soils from different land use managements decreased in the order ley 255 

farming > arable land/grassland > forest ecosystems (P < 0.01; Table 2). Across all land uses, D-glucose amended 256 

management systems produced significantly more heat in comparison with systems amended with L-alanine or 257 

glycogen (P < 0.01, Table 2). These patterns were mirrored in CO2 production (Table 2), but utilized substrate 258 

(ΔHInitial – ΔHResidual) resulted in a different pattern. Although we observed significant differences in heat production 259 

between management systems, substrate utilization was similar within each substrate class (P = 0.06, Table 2). 260 

Across all management systems, utilization of D-glucose and glycogen were significantly higher than L-alanine 261 

utilization (P < 0.01, Table 2).  The largest total heat production was observed in the ley farming system amended 262 

with D-glucose (Table 2). Taking this heat production, Thornton’s rule, and the ideal gas equation into account, O2-263 

concentration decreased from 21 to 17 % at the most indicating that sufficient O2 was present in the reaction vials 264 

throughout the entire incubation period (data not shown). 265 

Taking the heat output and utilized substrate into account, thermodynamic efficiency of soil microbial 266 

communities (Eq. 1) ranged between 0.63 and 0.92 with significant differences among land use management 267 

systems as well as applied C substrate (Fig. 3a). Generally, microbial communities residing in forest soils used 268 

substrates most efficiently and microorganisms in ley farming systems were least efficient in substrate use among 269 

the four management systems (P < 0.05, Fig. 3a). Thermodynamic efficiencies of microbial communities residing in 270 

arable land and grassland systems were in between but not significantly different to the ley farming system (Fig. 3a). 271 

Glycogen was used most efficiently by soil microorganisms followed by glucose and the efficiency of microbial L-272 

alanine use was the lowest among the three substrates (P < 0.01, Fig. 3a). Mean calorespirometric ratios (Eq. 2) 273 

ranged from 22 to 59 mJ µg-1 CO2-C (Fig. 3b). Here, only land use management had a significant effect on 274 

calorespirometric ratios. Forest soils revealed on average the lowest ratio of 28 mJ µg-1 CO2-C indicating highest 275 

microbial substrate use efficiency among the four land use management systems (Fig. 3b). Ley farming systems 276 
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resulted in the highest calorespirometric ratios (on average 44 mJ µg-1 CO2-C), i.e. lowest substrate use efficiency (P 277 

< 0.05). The ratios of arable land and grassland management systems were in between (both on average 40 mJ µg-1 278 

CO2-C) with no significant differences to the other two land use management systems (Fig. 3b). The microbial 279 

metabolic quotient (Eq. 3) was highest for arable land use and then decreased in the following order: ley farming, 280 

grassland and forest management systems (Fig. 3c). Furthermore, D-glucose amended soils showed the highest 281 

metabolic quotient among the three substrates (P < 0.01) indicating that microorganisms used glucose less 282 

efficiently in comparison with L-alanine and glycogen. 283 

The PCA of PLFA data revealed a clear separation between communities of different land use management 284 

systems (P < 0.01), and the eigenvalues of the first two components of the PLFA data together accounted for 78 % 285 

of the total variance of the PLFA profiles (Fig. 4a). Forest soil microbial communities were separated from arable 286 

land, grassland and ley farming communities along PC1 (P < 0.01). Along PC2, microbial communities of arable 287 

land were separated from communities of grassland and ley farming soils (P < 0.01). Biomarkers of actinomycetes 288 

(10Me16:0; Zelles 1999), Gram-negative bacteria (18:1ω7c; Frostegård et al. 1993a) and fungi (18:1ω9c; Federle 289 

1986; Bååth 2003) were the main drivers responsible for the separation of microbial communities (Fig. 4a). Pairwise 290 

comparison of dissimilarity matrices between microbial community and efficiency profiles revealed significant 291 

similarities between the two (Mantel R = 0.59, P < 0.01, cf. Fig. 4a and B; Mantel R = 0.53, P < 0.01, cf. Fig. 4a and 292 

c). Total amount of fungi, Gram-negative biomarkers and the F:B and Gram-negative:Gram-positive ratios were 293 

significantly higher in the forest system in comparison with the other three management systems (Table 3). 294 

The correlation coefficients of the linear regression between the efficiency indices were poor when using 295 

data across all land uses and substrate amendments together (R2 = 0.32 and 0.01 for calorespirometric ratios and 296 

microbial metabolic quotient, respectively). However, when we analyzed the data separately for each substrate, 297 

thermodynamic efficiency and calorespirometric ratio showed a significant negative correlation for soils amended 298 

with L-alanine and glycogen amendments, but there was no relation between the two indices when D-glucose was 299 

added to soils (Fig. 5a). Substrate specific correlations between thermodynamic efficiency and metabolic quotient 300 

were not significant for D-glucose and L-alanine amended samples and poor for glycogen amended samples (R2 = 301 

0.09, 0.10 and 0.54, respectively; see Fig. 5b). 302 

Discussion 303 
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Substrate use efficiencies across land use management systems 304 

Our initial hypothesis that substrate use efficiencies increase along a successional gradient due to changes in 305 

microbial community composition was partially confirmed. Irrespectively of efficiency indices, microbial 306 

communities in forest soils were most efficient in using substrates and separated clearly from arable, grassland and 307 

ley farming management systems (Fig. 3). Forest soils had a higher abundance of fungi and Gram-negative bacteria 308 

as well as higher F:B and Gram-negative:Gram-positive ratios in comparison with the other three management 309 

systems (Table 3). Our results therefore support the common assumption that fungi are more efficient in utilizing 310 

soil organic matter in comparison to bacteria (Holland and Coleman 1987; Herrmann et al. 2014), and that the 311 

abundance of Gram-negative bacteria may be of importance for differences in substrate use efficiencies (Harris et al. 312 

2012; Creamer et al. 2015). The Mantel tests for dissimilarities support the hypothesis that there may be a link 313 

between the composition of the microbial community and substrate use efficiency. Differences in microbial 314 

substrate use efficiencies among arable land, grassland and ley farming management systems were not significant, 315 

but grassland systems tend to have higher efficiencies than ley farming and arable systems (Fig. 3). This observation 316 

supports our initial hypothesis that substrate use efficiencies increase with maturing ecosystems along a successional 317 

gradient. These three management systems were located at the same field site in Röbäcksdalen. Here, microbial 318 

community composition was similar except that arable land use management differed from ley farming and 319 

grassland systems due to a higher abundance of actinomycetes (Table 3; Fig. 4). However, there was no relationship 320 

between actinomycetes and microbial substrate use efficiencies (R2 = 0.26 for thermodynamic efficiency), and we 321 

therefore conclude that actinomycetes are unlikely an important biomarker that could be made responsible for 322 

differences in substrate use efficiency. We expected that 47 years of various soil management systems at 323 

Röbäcksdalen would result in significant differences in soil microbial communities as observed in various land use 324 

management systems (e.g. Bossio et al. 2005; Cookson et al. 2007; Drenovsky et al. 2010). Although, along two 325 

successional gradients at the Kellogg Biological Station (Michigan State University, USA), Jangid et al. (2011) 326 

showed that legacy effects of past management still have an influence on soil microbial community composition, 327 

particularly in early succession sites. Our grassland management system consists of a five-year period with green 328 

fallow followed by one year barley and therefore, it represents a management system in early succession. Thus, the 329 

timeframe and/or type of land use managements at Röbäcksdalen were not sufficient to alter soil microbial 330 
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community composition significantly. This in turn may explain why we did not observe significant differences in 331 

microbial substrate use efficiencies among the management systems at the Röbäcksdalen site.  332 

Differences in microbial substrate use efficiencies between the sites at Röbäcksdalen and Flakaliden (forest 333 

system) could also be due to differences in general soil characteristics such as soil texture and pH (Table 1) 334 

(Blagodatskaya and Anderson 1998; Bååth and Anderson 2003; Rousk and Bååth 2011; Manzoni et al. 2012), and 335 

we cannot conclude firmly that differences in microbial community composition are the driver for changes in 336 

microbial substrate use efficiencies. To test Odum's (1969) and Addiscott's (1995) theory of increasing substrate use 337 

efficiency along a successional gradient, future studies could consider (i) the use of selective inhibition of microbial 338 

groups (Rousk et al. 2008) or (ii) gamma radiation following re-inoculation with microbial communities of different 339 

complexities obtained through a combination of soil fumigation, dilution and filtering techniques (Griffiths et al. 340 

2004). Such studies would avoid confounding effects of major soil properties such as soil texture and/or pH 341 

(Table 1; Delmont et al. 2014), and they should provide unequivocal evidence on the relationship between microbial 342 

community composition and microbial substrate use efficiency along a successional gradient. 343 

Carbon chemistry and substrate use efficiency 344 

Our initial hypothesis that chemically complex substrates are utilized with a lower efficiency than labile substrates 345 

was not confirmed. Out of the three substrates used, we regarded glycogen as the most complex substrate as it is a 346 

multi-branched polysaccharide. Decomposition of glycogen requires debranching enzymes and further degradation 347 

by glycogen phosphorylases or glycosidases to glucose, glucose-1-phosphate or maltose (Henrissat et al. 2002). 348 

Bosatta and Ågren (1999) defined substrate quality as the number of enzymatic steps required for breaking down a 349 

substrate, and they state that low quality, complex structures have therefore higher activation energies. Thus, we 350 

assumed that investments costs for microbial decomposition of glycogen should be higher in comparison with D-351 

glucose resulting in a lower substrate use efficiency of glycogen. But, conversely to our hypothesis, this substrate 352 

had either the highest (Fig. 3a and c) or similar substrate use efficiencies (Fig. 3b) compared with D-glucose. Most 353 

microorganisms have the capacity to synthesize and degrade glycogen as they use it as intracellular storage 354 

compound for energy (Henrissat et al. 2002). High efficiencies of glycogen may be the result that microbial 355 

communities have the enzymatic set for decomposition of this substrate readily available in these soils, and therefore 356 

glycogen may have been utilized without initial investment costs. Furthermore, we deem it unlikely that evolution 357 
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would select for a widely common storage compound which requires large energy losses during decomposition. 358 

Future studies should include analysis of enzymes present in the soil (Burns et al. 2012; Nannipieri et al. 2012). 359 

Implications for soil organic matter modelling 360 

Research has implied that substrate use efficiency is temperature dependent (Devêvre and Horwáth 2000; Steinweg 361 

et al. 2008; Wetterstedt and Ågren 2011; Tucker et al. 2013; Frey et al. 2013), and assuming varying substrate use 362 

efficiencies in modelling frameworks have significant consequences for projections of global soil C stocks (Allison 363 

et al. 2010; Frey et al. 2013; Wieder et al. 2013). Temperature dependency of substrate use efficiencies is therefore 364 

of major concern when modelling terrestrial C cycling. In our study, thermodynamic efficiencies varied up to 32 % 365 

across various land use management systems and C substrates (mean values varied between 0.63 and 0.92). Within 366 

the same substrate amendment, thermodynamic efficiencies varied between 10 and 20 % across land use 367 

management systems (i.e. mean values varied between 0.76 to 0.84, 0.63 to 0.80 or 0.82 to 0.92 for D-glucose, L-368 

alanine or glycogen, respectively; Fig. 3a). Similarly, within the same land use management system but across 369 

various substrates, thermodynamic efficiencies varied between 10 and 30 % (mean values varied between 0.71 to 370 

0.84, 0.64 to 0.83, 0.63 to 0.88 or 0.80 to 0.92 for arable land, ley farming, grassland or forest, respectively; Fig. 3a). 371 

These variations are in a similar range as temperature induced changes in microbial substrate use efficiencies when 372 

temperature changes by 10 °C (Devêvre and Horwáth 2000; Steinweg et al. 2008; Tucker et al. 2013; Frey et al. 373 

2013). A recent model framework showed that relative alteration in substrate use efficiency by 10 to 30 % could 374 

result in a change of 1 to 4 % of total organic C stored below-ground within 98 years, corresponding to approx. 90 to 375 

270 g C m-2 in a forest system (Frey et al. 2013). Thus, our results emphasize that variation in substrate use 376 

efficiency across land use management systems and various substrates are equally important as temperature induced 377 

changes in efficiencies. The composition of soil organic matter changes significantly along a successional gradient 378 

(Quideau et al. 2001; Garnier et al. 2004; Merilä et al. 2010), and future research should focus on evaluating 379 

potential proxies for microbial substrate use efficiencies that are applicable in modeling approaches of soil organic 380 

matter dynamics. 381 

Soil C models  commonly assume values of substrate use efficiency ≤0.55 (Parton et al. 1987; Ågren and 382 

Bosatta 1987; Coleman and Jenkinson 2014). In comparison, our thermodynamic efficiency values are above this 383 

value, i.e. they are between 0.67 and 0.92 (Fig. 3a). Such high efficiencies were reported previously (Steinweg et al. 384 
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2008; Dijkstra et al. 2011; Tucker et al. 2013; Frey et al. 2013; Hagerty et al. 2014) but these values are criticized 385 

being experimental biases due to a combination of short incubation time and storage compound synthesis (Nguyen 386 

and Guckert 2001; Hill et al. 2008; Sinsabaugh et al. 2013; Reischke et al. 2014; Blagodatskaya et al. 2014; 387 

Reischke et al. 2015). Dijkstra et al. (2015) could not confirm that high efficiencies are related to an experimental 388 

bias using position-specific labelled substrates, and they emphasized that the hypothesis of high efficiencies 389 

warrants further testing. Despite high values in substrate use efficiencies, our results confirm previous studies 390 

(Devêvre and Horwáth 2000; Frey et al. 2013) showing that microbial substrate efficiencies varies among C 391 

substrates. This should be taken into account when modelling soil organic matter decomposition in ecosystems. Our 392 

research emphasizes that further research in evaluating microbial substrate use efficiencies should focus on a set of 393 

different C substrates which may help to improve our mechanistic understanding of terrestrial C cycling. 394 

Compatibility of different efficiency indices 395 

The three efficiency indices resulted in the same overall conclusion, namely that the microbial community of the 396 

forest soil was most efficient in using the substrates. However, efficiency is generally defined as the ratio between 397 

an output and an input, and in most cases it is good if efficiency is high. From the indices used in the present study, 398 

only thermodynamic efficiency uses an input-output approach (Eq. 1). It is similar to approaches traditionally used 399 

for microbial C use efficiency where biomass production (output) is related to utilized substrate (input) (Frey et al. 400 

2001). Modelling of C dynamics in soils requires such values of substrate use efficiency which are based on the 401 

concept of input-output. Still, measuring the amount of utilized substrate (Eq. 1) may not always be feasible and/or 402 

rapid screening of microbial substrate use efficiency is required (Herrmann and Bölscher 2015). Under such 403 

circumstances, calorespirometric ratios may be a good proxy for relative substrate use efficiency, but only within the 404 

same substrate class (Fig. 5). Furthermore, the calorespirometric ratio has the potential for combined investigations 405 

of substrate use efficiency, substrate quality and metabolic pathways (Barros et al. 2016).  It should be noted that 406 

calorespirometric ratios varied substantially, but this variation could be reduced, if heat and CO2 production are 407 

measured in the same sample (Barros et al. 2011; Herrmann and Bölscher 2015). The metabolic quotient is not 408 

clearly related to thermodynamic efficiencies (Fig. 5) and applying this quotient may result in different overall 409 

conclusions in comparison with the thermodynamic efficiency index (see e.g. Harris et al. 2012). The underlying 410 

assumption in the metabolic quotient is that the amount of biomass is of importance when evaluating microbial 411 
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substrate use efficiency, but it has been questioned if the  microbial biomass is a pivotal characteristic for C turnover 412 

in soils (Kemmitt et al. 2008). Therefore, we consider that the metabolic quotient should be applied with care when 413 

evaluating microbial substrate use efficiencies. 414 

Conclusions 415 

Our study revealed differences in substrate use efficiencies among land use management systems with 416 

microorganisms residing in forest systems utilizing resources most efficiently. These findings support our 417 

hypothesis that microbial efficiencies increase with ecosystem maturity. The composition of microbial community 418 

may determine substrate use efficiency, and fungi as well as Gram-negative bacteria appear to be important 419 

biomarkers for differences in efficiencies. Furthermore, substrate use efficiency varied among resources, but 420 

complexity was not a good proxy for changes in efficiencies. Hence, the hypothesis that chemically complex 421 

substrates are metabolized with lower efficiency in comparison with labile organic material could not be confirmed. 422 

Our proposed thermodynamic efficiency provides values necessary for soil organic matter modelling, but the 423 

calorespirometric ratio could be used as an alternative when rapid screening of microbial substrate use efficiency is 424 

required. This study emphasizes that differences in land use management systems as well as the composition of soil 425 

organic matter may need to be considered when modelling C dynamics in terrestrial ecosystems. Our results warrant 426 

further investigation into establishing and evaluating appropriate proxies for substrate use efficiencies in various 427 

ecosystems. 428 
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Figure Legends 

Fig. 1 Schematic representation of the TAM Air 20 ml Admix ampule set up system 

Fig. 2 Heat production rates over 32 h incubation from (A) D-glucose, (B) L-alanine and (C) glycogen amended soil 

samples. Values displaying means (n = 3) and whiskers show standard errors 

Fig. 3 Results of substrate use efficiency expressed as (A) thermodynamic efficiency, (B) calorespirometric ratios, 

and (C) microbial metabolic quotient (qCO2). Values display means (n = 3) and whiskers show standard errors; 

common symbols after land use management regimes (see legend) and substrates (see x-axis) indicate homogenous 

means analyzing of overall effects (two-way ANOVA and Tukey’s HSD test at 5 % significance level). Values of 

calorespirometric ratios are expressed as mJ µg-1 CO2-C and kJ mol-1 CO2 to facilitate comparison with previous 

studies 

Fig. 4 Microbial community composition and substrate use efficiency profiling. Principle component analysis 

representing (A) microbial community composition by PLFA, (B) thermodynamic efficiency profiles and (C) 

calorespirometric ratio profiles in different land use management systems. Values in parentheses on axis labels 

denote % variation accounted for by the respective components 

Fig. 5 Substrate specific correlations between thermodynamic efficiencies (x-axis) and (A) calorespirometric ratios 

(y-axis) and (B) microbial metabolic quotient (qCO2) (y-axis) 
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Table S1 Calibration curves for quantification of substrate in soil solutions: Concentrations of D-glucose, L-alanine 

and glycogen used for establishing substrate assays in soils 

 Substrate concentration  

(µg C g-1 soil) 

D-Glucose 0 45 102 155  

L-Alanine  0 325 414 503  

Glycogen 0 89 177 353 452 

 

Fig. S1 Calibration curves for glycogen and all four land use management regimes. Values display means (n = 4); 

whiskers fall within confines of symbols 
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