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Sex chromosomes in willows. Evolutionary studies of the ZW sex
chromosome system in Salix viminalis

Abstract
Sexual reproduction is found in most eukaryotes and has in the majority of animal species
led to the evolution of separate sexes. In contrast, only 5-6% of all angiospersms are
dioecious with female and male flowers on separate individuals. Interestingly, dioecy has
evolved hundreds of times independently and at different timepoints in angiosperms. The
development of separate sexes requires a sex determinationmechanism, which often is
located on sex chromosomes. The independent evolution of numerous sex determination
and sex chromosome systems in angiosperms allows for studies of processes involved
in different stages of their evolution. The ratio between male and female individuals
in a dioecious population is expected to be equal due to frequency dependent selection.
Distorted sex ratios are however common in many plant and animal species.

The overall aim of my thesis was to investigate the sex chromosome system in the
dioecious, perennial willow speciesSalix viminalisthat both in natural populations as
well as in lab populations often displays female biased sex ratios. Although dioecy
evolved from hermaphroditic ancestors before the split betweenSalixand its sister genus
Populus, we found that the two lineages have different sex chromosomes (Populus: Chr.
19, Salix: Chr. 15). As we found no evidence for translocations between these chromo-
somes, it is most likely that two different sex determination mechanims are present in the
two lineages, meaning that sex chromosome turnover has occurred recently. We further-
more determined thatS. viminalisis female heterogametic (females Z/W, males Z/Z) and
has a single sex determination locus on chromosome 15. The W homolog of the sex de-
termination region contains hemizygous, female specific sequences and the SNP density
in this region is increased in females relative to males, witnessing of lost recombination
between the Z/W homologs. We did not find a Fast-Z effect or major degeneration of
the W chromosome, suggesting a recent evolution. In fact this sex chromosome system
is among the youngest observed so far. Based on our data, the insertion of repetitive
sequence and sex specific gene expression appear to be among the first processes to hap-
pen in sex chromosome evolution. We also determined that female biased sex ratios in
S. viminalisare likely caused by an allelic incompatibility between Z homologs which
results in the lack of one expected male genotype, reducing the male frequency in the
population.

My studies thus extended our knowledge on processes involved in sex chromosome
evolution and evolution of biased sex ratios inS. viminalis. However, given how common
these phenomena are, results from my research can be appliedto most organisms with
genetic sex determination.
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Könskromosomer i viden. Evolutionära studier av ZW-
könskromosomsystemet i Salix viminalis

Sammanfattning
Sexuell reproduktion finns i de flesta eukaryoter och har letttill att majoriteten av alla
djurarter har evolverat separata kön. Dock är separata kön ett relativt sällsynt fenomen
bland fröväxter (angiospermer) och förekommer i endast 5-6% av alla arter (växten kallas
då för dioik eller tvåbyggare). Bland angiospermer har dockseparata kön utvecklats hun-
dratals gånger oberoende av varandra och vid olika tidpunkter. Utvecklingen av honor
och hanar hos dioika arter kräver som regel en könsbestämningsmekanism som ofta är
positionerad på specifika könskromosomer. Då olika könsbestämnings- och könskromo-
somsystem har uppstått så många gånger bland angiospermer utgör dessa ett enastående
system för studier av evolutionära processer involverade ievolutionen av könskromo-
somer i olika utvecklingsstadier. Hos arter med separata kön förväntar man sig att en
population har ungefär lika många honor och hanar, det vill säga att könskvoten är lika
med 1. Det antas att en jämn könskvot är ett resultat av frekvensberoende selektion. Trots
detta så förekommer skeva könskvoter i många djur- och växtarter.

Det huvudsakliga syftet med min avhandling var att studera könskromosomsystemet
i den dioika, perenna videartenSalix viminalissom intressant nog ofta både i naturliga
populationer och i labbpopulationer uppvisar en skev könskvot (då med flera honor än
hanar). Trots att separata kön evolverade från hermafroditiska anfäder innan Salixsläk-
tet separerade från systersläktet Populus, har arter i dessa två släkten olika könskromo-
somer (Populus: Chr. 19, Salix: Chr. 15). Eftersom vi inte hittade några tecken på
translokationer mellan dessa två kromosomer är det rimligtatt anta att dessa två släk-
ten har olika könsbestämningsmekanismer, vilket pekar på att dessa nyss evolverade (ett
fenomen som kallas för snabb “turnover”). Vi har också visatatt honor hosS. vimi-
nalis är heterogametisk och har en Z- och en W-homolog i ett könsbestämningslokus
på kromosom 15 (hanar har istället två Z-homologer). W-homologen består bl.a. av en
hemizygotisk, honspecifik sekvens och mängden av den genetiska variationen är förhöjd i
honor jämfört med hanar, vilket tyder på en avsaknad av rekombination mellan W- och Z-
homologen i honor. Vi fann dock inga tecken på “Fast-Z-effekten” eller storskalig förfall
av W-homologen, vilket tyder på att könskromosomsystemet iS. viminalisär bland de
yngsta som hittills har beskrivits. Våra resultat visar atten ansamling av repetitiva DNA-
sekvenser och en förändring mot könsspecifika genuttryck ärbland de första processer
som sker när könskromosomer evolverar från ett autosomalt kromosompar. Vi visade
också att den honliga skeva könskvoten iS. viminalistroligtvis uppstår på grund av al-
lelinkompatibilitet mellan två Z-homologer, vilket resultarar i att en förväntat hangenotyp
saknas, vilket leder till en reduktion av hanfrekvensen i populationen.

Mina studier har ökat kunskapen om mekanismer involverade ikönskromosomevo-
lution och evolutionen av skeva könskvoter iS. viminalis. Men då dessa fenomen är så
pass vanligt förekommande, kan resultat från min forskningtillämpas på de flesta organ-
ismer med genetisk könsbestämning.





What makes it difficult is that research is immersion in
the unknown. We just don’t know what we’re doing.
[...] If we don’t feel stupid it means we’re not really
trying.

— Martin A. Schwartz (2008)
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1 Introduction
Sexual reproduction is found in most eukaryotes and it is based on separate
female and male gametes (Bachtroget al., 2014). This separation is extended
– so to say – to an organism level in species with separate sexes with either
male or female organs in different individuals. Separate sexes are the pre-
dominant state in most species of the animal kingdom (Jarne & Auld, 2006)
and the functional sex of individuals is in many cases regulated by genetic
factors located on sex chromosomes with a sex specific segregation pattern.

In flowering plants (angiosperms), separate sexes (dioecy) are the ex-
ception, found in only 5-6% of all species (Renner, 2014). In contrast,
most angiosperm species have hermaphroditic flowers with both male and
female functions which is considered to be the ancestral state. Phyloge-
netic data indicates that dioecy has evolved many times (851 - 5000 (Renner,
2014)) independently from hermaphroditic ancestors and sex chromosomes,
which are found in several dioecious species, are often evolutionary young
(Charlesworth, 2015, and references therein). Angiosperms constitute there-
fore exceptional systems to study the mechanisms underlying the evolution
of separate sexes, sex chromosomes and sex determination mechanisms.

Without other selective pressures it is expected that frequency depen-
dent selection maintains an equal ratio between male and female individuals
(Fisher, 1930; Lloyd, 1974; Hardy, 2002). Thus, understanding the back-
ground to distorted sex ratios – which are found in many plant and animal
species (Fieldet al., 2013; Pipolyet al., 2015) – will reveal selective forces
and molecular mechanisms that shape the interaction between the sexes. Non-
Mendelian inheritance of sex chromosomes can be the driving force behind
biased sex ratios but alternative mechanisms are presented as well.

Willows (Salix) are woody angiosperm trees and shrubs that are nearly
universally dioecious with homomorphic sex chromosomes. TheSalixgenus
comprises a large number of species (400-550 (The Plant List, 2013; Ren-
ner, 2014)) of which many can be easily propagated clonally and high seed
counts in a number of species allow the generation of large study popula-
tions. In multiple species the sex ratio is uneven, often with a surplus of
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females.Salix andPopulusare sister genera in the Salicaceae plant family
and show high genetic and genomic similarity. Interestingly, the sex determi-
nation systems are not shared between the genera and different chromosome
pairs have evolved into sex chromosomes in the two taxa, indicating turnover
of the sex chromosomes since the split of the genera. Therefore studies on the
sex chromosomes in willows are highly interesting and can give insights into
their complex evolutionary history and the background to sex chromosome
turnover as well as the genetic basis for biased sex ratios.

This thesis starts with an introductory part, providing a broad back-
ground to the evolutionary context in which sex chromosomes evolve and an
overview over mechanisms that can lead to biased sex ratios. The results of
my studies are thereafter summarized in an overview over the articles which
are included in the thesis in the form of separate scientific manuscripts in the
last section.

1.1 Sexual reproduction
Sexual reproduction can be defined as any means of reproduction thatin-
volves a step of meiosis (Beukeboom & Perrin, 2014, p. 3). Meiosis is
thought to be an evolutionary adaption for DNA repair (Bernsteinet al., 2011;
Mirzaghaderi & Hörandl, 2016) and a way to reset epigenetic signaling and
thus rejuvanating the cell line (Gorelick & Carpinone, 2009). The recom-
bination of genetic elements from different genomes that generates new al-
lelic combinations and thus provides the basis for selection is, however, usu-
ally considered the most important effect of meiosis (Weismann, 1889; Burt,
2000).

In the light of the Red Queen Hypothesis (Jaenike, 1978) and in the con-
text of an ever changing environment the rapid generation of new genetic
combinations is beneficial. It also counteracts the Hill-Robertson interfer-
ence (Hill & Robertson, 1966) in finite populations. Experimental evolution
in yeast (Saccharomyces cerevisiae) confirms the importance of sex for adap-
tion to new, challenging environments (Goddardet al., 2005).

However, recombination through sexual reproduction can also disruptfa-
vorable genetic combinations and in this way it might reduce the fitness of a
population under the rare condition of constant selection pressure (de Visser
& Elena, 2007; Otto, 2009).

Importantly, sexual reproduction has, in most animal species and in some
plant species, led to the evolution of separate sexes, and if sex determi-
nation is genetically controlled, sex chromosomes often evolve. In plants,
the evolution of sex chromosomes is according to theory (Charlesworth &
Charlesworth, 1978) tightly linked with the evolution of dioecy.
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1.2 Dioecy and the evolution of separate sexes in
plants

Dioecy, the complete separation of sexes into different individuals with uni-
sexual flowers, is found in only 5-6% of angiosperm species (Renner, 2014)
which are however spread over a large part of the angiosperm phylogenetic
tree (43% of all families) (Renner, 2014) and thus dioecy must have evolved
from an ancestral hermaphrodictic stage hundreds or even thousandsof times
(Charlesworth, 2002; Renner, 2014).

There are multiple selective forces that are speculated to be involved in
the evolution of dioecy. Obviously, dioecy ensures cross pollination to 100%
and thus inbreeding avoidance is likely to be a driving force in its evolution
(Baker, 1959; Maynard Smith, 1978). At the same time the separation of
sexes allows for a specialization for only one reproductive function, and se-
lection for optimal resource allocation might thus be involved in the evolution
of dioecy (Charnovet al., 1976; Freemanet al., 1997). Additionally pollen
discounting can reduce the paternal fitness of a (partially) selfing plant (Kohn
& Barrett, 1994; Harder & Barrett, 1995) by retaining pollen at structures in
the same individual (e.g. stigma) which is therefore not released for cross
pollination. This effect is reduced by dioecy. All of these forces might be
involved simultaneously in the evolution of dioecy and do not exclude each
other (Baker, 1984; Charlesworth & Guttman, 1999).

The evolution of complete sexual separation from hermaphrodites re-
quires two major changes in floral structure. On the one hand co-sexual
flowers need to change to unisexuality and on the other hand those unisexual
flowers need to be separated to different individuals. For flowers to become
unisexual, they need to abandon the development of either their male or fe-
male organs, a process that can happen during different stages in the devel-
opment and that likely involves changes in at least two genes (see below).It
is unlikely that all these changes happen simultaneously (Ainsworth, 2000)
and thus dioecy is expected to evolved through intermediate stages. Both
monoecy and gynodioecy are likely candidates for such intermediate stages
(Barrett, 2002).

1.2.1 Dioecy via gynodioecy

A transition from hermaphroditic to one type of unisexual individuals is
possible with one single mutational change (Charlesworth & Charlesworth,
1978). If a mutation leads to male (or female) sterility in all flowers, this indi-
vidual will be functionally female (or male). However, the individuals in the
population that do not express this new mutation will still be hermaphroditic.
A population with both female and hermaphroditic individuals is gynodi-
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oecious while a population with both males and hermaphroditic individu-
als is androdioecious. Due to resource limitations, high pollen output will
limit the number of ovules produced by a cosexual plant andvice versa.
But siring opportunities are presumably limited mainly by ovule availabil-
ity (Charlesworth & Guttman, 1999, p. 34) which means that higher pollen
output from a pure male individual – gained by resource reallocation – might
provide less fitness benefit than higher seed output gained by a pure female
plant. Therefore gynodioecy is expected to be selectively more advanta-
geous than androdioecy. This theoretical prediction is supported by the ob-
servation that many more gynodioecious than androdioecious species exist
(Charlesworth & Guttman, 1999, p. 32; Renner, 2014) and that the phyloge-
netic distribution of the androdioecious species indicate that it is likely a state
derived from dioecy (Charlesworth & Guttman, 1999, p. 33; Barrett, 2002;
Pannell, 2002). Field tests could show that the increased fitness of females
over hermaphrodites can be strong enough to grant them selective advantage
(Schultz & Ganders, 1996; Sakaiet al., 1997).

If the fraction of females in a population increases over time, pollen can
become limited and thus the remaining hermaphrodictic individuals can gain
higher fitness by reallocating resources to pollen production and increase
their male role in reproduction. This process can then lead to the complete
separation of the sexes and to the evolution of dioecy (Barrett, 2002). The
combination of female sterilizing and male sterilizing mutations on a homol-
ogous chromosome pair can initialize the evolution of sex chromosomes (see
below).

As the evolution of dioecy through gynodioecy is based on a mutation
with a strong effect leading to male sterility and potentially multiple sub-
sequent mutations with weaker effects, gradually leading to female sterility,
inconstant sex expression (e.g. (genetic) males with few female flowers) is
expected to be found more often in males (Lloyd, 1980). Additionally, in-
constant sex expression in females might lead to the total loss of outbreed-
ing fitness gain (i.e. few pollen-producing flowers might self-fertilize most
ovules of an inconstant female) while (selfed) seed set of a small number of
seeds in a male plant might not be under strong negative selection (Lloyd,
1980; Webb, 1999). Thus, gynodioecy as an intermediate stage can be as-
sumed if the molecular mechanism identified through the analysis of the sex
determination system of a dioecious species fit these predictions.

In principal, dioecy can evolve through a very similar pathway from a
monoecious (separate male and female flowers on the same individual) popu-
lation. In this case a single mutation with strong effect can lead to the abortion
of all male flowers and thus to pure female plants. Subsequently the remain-
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ing monoecious individuals undergo masculinization by reducing the number
of female flowers (Webb, 1999; Dorken & Barrett, 2004).

1.2.2 Dioecy via monoecy-paradioecy
Both early studies (Lewis, 1942) and recent analyses of a large dataset (Ren-
ner, 2014) found a strong correlation between the presence of dioecyand
monoecy in plant families. This might indicate that monoecy (separate male
and female flowers on the same individual) could be a transitional state in
the evolution of dioecy and since in monoecy unisexual flowers have al-
ready evolved, the transition to dioecy might be facilitated. In the monoecy-
paradioecy pathway the transition from monoecy to dioecy is expected to
happen gradually by changing the male to female flower ratio within individ-
uals (Barrett, 2002; Dorken & Barrett, 2004). In this scenario a single key
gene is thought to regulate the flower sex ratio and diversifying selection can
lead to alternative alleles of this gene to produce pure males or pure females
(Renner, 2016; Charlesworth, 2016). The chromosome with this key gene
can develop as sex chromosome (see below).

Due to the incremental change towards dioecy, in this pathway the fitness
gains through resource reallocation or inbreeding avoidance can be incre-
mental as well and the immediate two-fold fitness increase required for the
gynodioecy pathway is not needed (Lloyd, 1980).

There are several examples where dioecy likely has occurred from mo-
noecy through the intermediate paradioecy state (Lloyd, 1975, 1981; Webb,
1999) indicating the relevance of this pathway in at least some cases. But
dioecy can also evolve from monoecy by mechanisms similar to the gynodi-
oecy pathway (see above) (Webb, 1999; Dorken & Barrett, 2004) and the
strong correlation of monoecy and dioecy found on family level does not
hold on a genus level, indicating that the correlation might be partly due to a
common potential for the formation of unisexual flowers (Baker, 1984). It is
therefore not sure how common this pathway is.

1.2.3 Other paths to dioecy
Plants have developed different mechanisms to prevent self fertilization and
some of them might give rise to dioecy by increased diversification. Both
temporal separation of the ripening of male and female organs (dichogamy
/ duodichogamy / heterodichogay) (Bertin & Newman, 1993; Webb, 1999;
Renneret al., 2007) and spatial separation of sexual organs within a flower
(herkogamy) in different morphs (distyly/heterostyly) (Webb & Lloyd, 1986;
Belaoussoff & Shore, 1995; Pailleret al., 1998; Webb, 1999) reduce selfing
and could incrementally evolve into female and male morphs specialized for
pollen or seed production. Some evidence for such pathways is found (Pailler
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et al., 1998; Webb, 1999), however, little is know about the selective mecha-
nisms and the genetic basis involved in these transition (Barrett, 2002).

While studies on the evolution of dioecy often focus predominantly on the
selective forces and morphological changes that are involved, these changes
must be based on molecular mechanisms and genetic or environmental fac-
tors that regulate the distinct morphology of males and females and thus de-
termine sex. Genetic sex determination factors are the basis for the evolution
of sex chromosomes.

1.3 Sex determination
1.3.1 Sex determination systems and sex chromosomes
The mechanisms of sex determination has fascinated scientists and philoso-
phers for a long time from Aristotle (384-322 BC) (cited in Mittwoch, 2005)
to today.

Many of the speculations in the early times were aimed to understand how
sex is determined in humans. Here, for a long time, environmental factors
such as diet during pregnancy, but also for example the side of the womb
in which the embryo develops were postulated as causative factors of sex
determination (Mittwoch, 2005, and references therein).

In 1891 Herman Henking described for the first time a sex chromosome
in the fire waspPyrrhocoris apterusas an element that behaved strangely
during meiotic divisions (Henking, 1891). As he was unaware of its func-
tion he termed it the “element X” which lead to the naming of a type of sex
chromosomes as “X chromosomes”. In 1905 Netty Stevens then described
the heterochromosomes of the mealwormTenebrio molitorand demonstrated
that in this species one out of 20 chromosomes in males is smaller than the
other 19 while females posses 20 chromosomes of equal size. She concludes
that “it seems certain that an egg fertilized by a spermatozoön which contains
the small chromosome must produce a male” (Stevens, 1905) and thus she
discovered the common genetic X/Y male heterogametic sex determination
system. It was only several years after this finding that Painter (1921) de-
scribed the human X/Y sex chromosome systems and laid the grounds to un-
derstand the genetic basis of sex in our species and the first sex chromosome
system in a dioecious plant (Silene latifolia) was discovered soon thereafter
(Blackburn, 1923).

The discovery of heteromorphic X/Y sex chromosomes was a major step
in understanding sex determination systems. But over time it became obvious
that there are many different and variable sex determination systems in dif-
ferent animal and plant species and not one single sex determination system

20



universal to all species with separate sexes. Even within apparently similar
systems as the male heterogametic X/Y system, found in many species, ei-
ther the Y chromosome can play the active role and contain a dominant factor
that leads to maleness of the bearer as for example in mammals (Goodfellow
& Lovell-Badge, 1993) or papaya (Carica papaya) (Wanget al., 2012; Wu
& Moore, 2015) or the absence of a second X chromosome decides overthe
development as a male, and the dose between X and autosomes is the actual
determining factor as inDrosophila melanogaster(Hodgkin, 1990).

Similarly, an active factor on one of the sex chromosomes can lead to
femaleness as for example in the silkworm (Bombys mori) (Fujii & Shimada,
2007) and thus individuals with two identical sex chromosomes without this
factor (denoted as Z/Z) develop as males and females are the heterogametic
sex (Z/W). Alternatively, also in female heterogametic systems the Z to auto-
some ratio can determine sex, a model found for example in chicken (Smith
et al., 2009).

While genetic sex determination is most common in those species with
known mechanisms (Bachtroget al., 2014), there is even some truths to be
found in the ancient hypotheses that attributed sex determination to condi-
tions during pregnancy. Environmental stimuli like temperature, photoperiod
and social factors can indeed determine offspring sex in different species (e.g.
Bull, 1980; Warneret al., 1996; Walker, 2005; Guleret al., 2012; Kobayashi
et al., 2012; Merchant-Larios & Díaz-Hernández, 2012; Czerwinskiet al.,
2016). And even random expression variance of key genes in the sexde-
termination pathway could be enough to determine an individuals functional
sex and thus sex determination might even have a random component in some
species (Perrin, 2016).

In plants, environmental effects on the sex ratio (i.e. the relative number
of males and females in a population) are well documented (see below), sta-
ble determination of offspring sex by environmental factors might be however
of minor relevance since in this kingdom sex specific phenotypes – in most
species – are limited to flowers which are generated from the meristems late
in life and thus sex is – so to say – determined many times in environmental
diverse conditions during a plants lifetime. Environmental sex determination
should therefore not give rise to individuals with the same sexual function
in every reproductive season. In some cases however transitions from one
sex to another are observed during the lifetime of plants. Such labile sex
expression can be regulated by the environment (Freemanet al., 1980; Zim-
merman, 1991; Korpelainen, 1998; Dorken & Barrett, 2004) as well as the
extend to which hermaphrodite individuals invest in their female vs. male
function (Freemanet al., 1980; Korpelainen, 1998; Sánchez Vilas & Pannell,
2014).
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But also with genetic sex determination variations from the system of
distinct nuclear sex chromosomes are observed. Cytoplasmic male sterility
(CMS) is caused by genes transmitted through cytoplasmic organelles, of-
ten mitochondria, and thus shows always a non-Mendelian maternal segrega-
tion pattern which facilitate its spread in the population (Dufayet al., 2009).
The associated spread of pure female individuals in the population can cre-
ate the selective environment for a (nuclear) male fertility restorer gene to
emerge (Frank, 1989; van Dammeet al., 2004; Delphet al., 2007). In fact
CMS is speculated to be the most common mechanism underlying gynodi-
oecy (Frank, 1989; Hanson, 1991; Klaas & Olson, 2006; Dufayet al., 2009)
and it is found in many plant species (van Dammeet al., 2004; Klaas & Olson,
2006; Dufayet al., 2009; Chen & Liu, 2014; Ashmanet al., 2015) with some
indications of a cryptic CMS locus even inA. thaliana, suggesting a gyn-
odioecious past of this highly selfing hermaphroditic species (Gobronet al.,
2013). But importantly, due to the maternal segregation of the cytoplasms,
cytoplasmic female-sterile mutations would prevent the spread of themselves
and thus pure cytoplasmic sex determination can not lead to complete sepa-
ration of sexes.

Sex can also be determined by multiple alleles in one locus or multiple
loci on different chromosomes where one factor can be dominant over other
factors or through additive and epistatic effects (Kosswig, 1964; Moore &
Roberts, 2013; Bachtroget al., 2014). Such systems are found for exam-
ple in pygmy mice (Mus minutoides) (Veyruneset al., 2010) and cichlid fish
(Metriaclima spp.) (Seret al., 2010) and polygenic sex determination was
also described for the model speciesDanio rerio (zebrafish) (Bradleyet al.,
2011; Liewet al., 2012; Nagabhushana & Mishra, 2016). However, a study
on wild zebrafish lines indicate one strong sex determination locus that was
potentially lost during domestication (Wilsonet al., 2014; Nagabhushana &
Mishra, 2016). In several plant species, multiple nuclear loci are described
to interact to restore CMS (Belhassenet al., 1991; Koelewijn & van Damme,
1995; Ashmanet al., 2015). However, it is not clear if polygenic sex deter-
mination systems are evolutionary stable or if they reflect a transition in sex
determination systems (Moore & Roberts, 2013).

Finally sex can be determined by the absence or presence of the whole sex
chromosome (XX/X0 system) as found for example in nematods (Hodgkin,
1987) or by the ploidy (haploid or diploid) as for example found in
hymnopteran insects (Dzierzon, 1845, as cited in Gempeet al., 2009; Ver-
hulstet al., 2010).
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1.3.2 Molecular mechanisms of sex determination

While the mode of sex determination (e.g. X/Y or Z/W) is identified in an
ever increasing number of species (Renner, 2014; The Tree of Sex Consor-
tium, 2014; Gambleet al., 2015) the detection of the underlying molecular
mechanism and regulatory pathways of sex determination are known in much
fewer species. In well established model systems, sex determining genes
were detected years ago (mammalsSRY(Gubbayet al., 1990; Sinclairet al.,
1990; Li et al., 2014), birdsDMRT1(Smithet al., 2009)) but the molecular
sex determining mechanisms in dioecious plant species start to emerge only
now.

Akagi et al. (2014) studied for example the male heterogametic (X/Y)
sex determination system of Caucasian persimmonDiospyros lotusand re-
vealed the key regulator for purely male flowersOGI. The genusDiospyros
contains ca. 475 species of subtropical and tropical trees that, based on cur-
rent knowledge, all are dioecious. Male flowers have stamens that are fertile
but the pistils are rudimentary and arrested. In female flowers the anthers
are developed but defective and do normally not produce pollen grains. By
screening pooled sequencing data for male specific genomic regions and an-
alyzing RNA expression data, the authors could establish a list of candidate
genes and demonstrated that the small RNA OGI is the female sterilizing
factor and suppresses the expression of the MeGI mRNA.

For the naturally monoecious melon plantCucumis melo, Boualem
et al. (2015) unraveled a cascade of several transcription factors – namely
CmACS11, CmWIP1andCmACS-7– mediating ethylene production and they
could show that the controlled expression of these factors regulates the ex-
pressed sex of flowers. Deactivation ofCmWIP1due to epigenetic changes
– triggered by the insertion of a transposable element into the promoter re-
gion of the gene – leads to plants with only female flowers (Martinet al.,
2009) while a non-functionalCmACS-7leads to plants with only male flow-
ers (Boualemet al., 2008). Based on this knowledge and together with the
discovery of the key-regulatorCmACS11, Boualemet al. (2015) could gen-
erate an artificial but stable dioecious line ofC. melowith homozygous re-
cessiveCmacs11/Cmacs11in all plants and heterozygousCmWIP1/Cmwip1
males and homozygousCmwip1/Cmwip1females.

These examples show that in dioecious plants, different regulatory path-
ways can lead to the separation of sexes. In fact, in plants, any gene thatis
required for the successful development of stamen or carpel could act as sex
determining factor or being a direct target of that factor. Changes in func-
tion or expression pattern of such genes could easily lead to male or female
sterility (e.g. Lewis, 1941; Robinson-Beerset al., 1992; Byzovaet al., 1999;
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Stintzi & Browse, 2000). Gene expression studies inArabidopis thalianare-
vealed hundreds of genes to be specifically expressed in stamen as well as
carpels (Wellmeret al., 2004), highlighting the large number of genes in-
volved in the development of these tissues. Thus the number of potential
developmental processes leading to sex determination is huge, especially if
the flowers start to develop as perfect hermaphroditic flowers and organ abor-
tion happens during the development. It appears that there is not even a pre-
ferred stage – from organ initiation to post-meiosis – at which organ abortion
is happening among the systems studied so far (Diggleet al., 2011). But
as floral organ identity is determined by a conserved set of genes described
in the ABC model (Haughn & Somerville, 1988) this set of genes and their
regulators are key candidates for sex determination genes in species where
the “undesirable” organ is not initiated. Confirmatory for this hypothesis, sex
determination in the dioecious speciesThalictrum dioicumandSpinacia ol-
eracea, which only initiate one type of sexual organs, has been linked to the
regulation of B class genes by yet unknown factors (Di Stilioet al., 2005;
Pfentet al., 2005; Satheret al., 2010).

So with the independent evolution of dioecy in hundreds of cases (Ming
et al., 2011; Renner, 2014) in the angiosperm clade it is quite likely that
even hundreds of different systems of molecular sex determination exist and
knowledge of the sex determination system in one species is only a weak in-
dication of the genes that are involved in sex determination in another species.
But by understanding the diversity of plant sex determination systems it will
be possible to determine if general patterns are present and to fully understand
evolutionary forces that lead to the evolution of separate sexes.

1.4 Sex chromosome evolution
With an enormous variety in sex determination mechanisms, it might appear
as if independent evolution of sex determination results in unique systems
with little shared characteristics. However, sex chromosome evolution fol-
lows a similar pattern in many lineage from different kingdoms and both male
and female heterogamety. This is of no surprise as the two phenomena: sex
determination mechanism and evolution of sex chromosomes are connected
but not identical.

Sex chromosomes are chromosomes in the genome of an organism that
contain genetic sex determination factors and they evolved several times in-
dependently in different animal taxa (Lahn & Page, 1999; Rosset al., 2005;
Rice, 1996) and many times in angiosperm plants (Minget al., 2011; Pa-
padopuloset al., 2015; Charlesworth, 2016). The evolutionary origin of sex
chromosomes are ordinary autosomes (Rice, 1996; Bachtrog, 2013; Bachtrog
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et al., 2014; Wei & Barbash, 2015). The pathway towards sex chromosomes
is, according to an established theory, thought to involve two different muta-
tions on the homologous chromosomes, one leading to male sterility (thus to
female individuals) and one leading to female sterility (thus to male individu-
als) (Charlesworth & Charlesworth, 1978). These can be the same mutations
that lead to dioecy in the first place (see above) or they can occur on a new
autosomal pair in an already dioecious species and lead to sex chromosome
turnover (see below). The mutations are expected to happen subsequent to
each other on the same chromosome pair (Charlesworth & Charlesworth,
1978) (see fig. 1). Dependent on the type of these mutations (dominant or
recessive) and the order in which they occur, the heterogametic sex canbe fe-
males (Z/W) or males (X/Y) and the intermediate state of the population can
be either gynodioecy or androdioecy (Bachtroget al., 2014) (fig. 1). Some
of the evolutionary pathways are considered more likely than others which
can explain the abundance of male heterogametic systems and gynodioecy as
intermediate stage. But theoretically male and female heterogamety can be
reached through both gynodioecy and androdioecy (Bachtroget al., 2014).

Alternatively a single key gene might regulate the relative investment in
male or female function (either in hermaphrodites or monoecious individuals)
and diversifying selection can lead to alternative alleles, producing males or
females (Renner, 2016; Charlesworth, 2016).

1.4.1 Reduced recombination
In both cases, the genetic sex determination factor(s) on the incipient sex
chromosomes will, however, experience sex specific inheritance patterns,
with one homolog being always found in the heterogametic sex (sex limited
Y or W chromosome) and the other homolog (shared X or Z chromosome)
found in both sexes. This sex-specific inheritance of the sex determination
locus opens the possibility for genes located in close linkage to it to evolve
in a sex specific way and alleles on the proto-W chromosome to gain female
beneficial effects (or proto-Y: male effects). Such effects might be (mildly)
deleterious for the opposite sex and thus selection will favor reduced recom-
bination between those sexually antagonistic alleles and the sex determining
factor to ensure their linkage (Fisher, 1931; Rice, 1987, 1992; Qiuet al.,
2013; Wei & Barbash, 2015). The case of two opposite sterility genes is in
this context the most extreme possibility of sexual antagonism and in case of
recombination between them, half of the offspring would be neuters which
will result in strong negative selection against recombination (Charlesworth
& Charlesworth, 1978; Charlesworth, 2016). Different mechanisms to reduce
recombination can thus evolve, or the sex determination system can establish
in a region ofa priori low recombination rate for example the centromers
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Figure 1: Possible pathway of sex chromosome evolution. Starting from an ancestral
hermaphroditic population (A) a dominant male sterility mutation occurs on one chromosome pair
(B). As a result individuals carrying this mutation will be female (not producing pollen) and only
contributing to the populations reproduction as mothers. Thepopulation is in a gynodioecious state.
On a chromosome, homologous to the one with the first male sterility mutation, another recessive
female sterility mutation occurs (C). Individuals that are homozygous for the second mutation will
loose their female function and thus will act as males and contribute only as fathers to the repro-
duction within the population. If both mutations became fixed the population is dioecious (D).
Due to the selective cost to recombination between the two mutations (E) mechanisms to avoid
recombination develop and the sex limited sex chromosome will acquire sex specific functions but
also degenerate by deleterious mutations, accumulating repetitive sequence or loosing large parts
of its content (F). In a similar pathway with a primary recessive male sterile mutation an X/Y sex
chromosome system can evolve.
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(Telgmann-Rauberet al., 2007; Yuet al., 2007; Kerstenet al., 2014). Thus
the sex determination locus is expected to be located in a genomic region
where recombination has halted.

The molecular mechanism underlying the block of recombination is how-
ever not completely understood. The evolutionary strata – spatial clustersof
X-Y or Z-W orthologs with similar divergence estimates – found on many
sex chromosomes for example in birds (Moghadamet al., 2012; Wrightet al.,
2012, 2014), mammals (Lahn & Page, 1999; Rosset al., 2005), fish (Roesti
et al., 2013; Whiteet al., 2015), snakes (Vicosoet al., 2013a; Yinet al., 2016)
as well as plants (Bergeroet al., 2007; Houghet al., 2014; Papadopuloset al.,
2015) indicate a stepwise extension of non recombining regions on sex chro-
mosomes. It was hypothesized that inversions of parts of the sex chromo-
somes are the cause for this pattern (Charlesworthet al., 2005; Wrightet al.,
2016). However, young sex chromosomes show a more gradual expansion
of non recombining regions and thus the swift effect of an inversion appears
unlikely as the cause for recombination suppression (Palaet al., 2012a; Berg-
eroet al., 2013; Natriet al., 2013). In this scenario inversions, that are found
between sex chromosomes, might instead be the consequence of a relaxed
selection for retained syntheny but the reduced selection against inversions is
caused by other means.

Independent of the underlying cause, reduced recombination allows ad-
ditional sexually antagonistic genes to evolve in or transposition to the sex
determining region which in turn can lead to suppression of recombination in
a larger area (Bergeroet al., 2013). Often recombination between the homol-
ogous sex chromosomes is retained in distal regions which are thus behav-
ing just as autosomes and are termed pseudoautosomal regions(PARs) (Lahn
et al., 2001).

1.4.2 Degeneration of sex chromosomes
Recombination is an essential process that separates advantageous anddele-
terious mutations on the same chromosome and thus allows deleterious muta-
tions to be purged from the population (see the section “Sexual reproduction”
above). The cessation of recombination between the sex chromosomes will
therefore, in the long run, lead to degeneration of the non-recombining part
of the sex limited sex chromosome (W or Y) (Charlesworth, 1996; Berlin &
Ellegren, 2006). The effect of degeneration due to lost recombination was
well described in old animal sex chromosomes before (Rice, 1996; Skaletsky
et al., 2003; Wrightet al., 2016) and recent insights from genomic studies in
the dioecious plantSilene latifoliaconfirmed its relevance in the plant king-
dom (Papadopuloset al., 2015). Results from the plant speciesRumex hastat-
ulus in which different sex chromosome systems co-occur also demonstrated
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that sex limited sex chromosomes accumulate deleterious mutations and un-
preferred codon usage in a time dependent manner (Houghet al., 2014). Pop-
ulation genetic processes, such as selective sweeps, background selection,
and Muller’s ratchet, result in a reduction in effective population size (Ne)
of the sex limited sex chromosome beyond the 1:3 ratio due to its inherent
segregation pattern, which increase the likelihood of fixation of deleterious
mutations by drift and thus a lower-than-expected levels of genetic variabil-
ity can occur (Charlesworth & Charlesworth, 2000; Sachidanandamet al.,
2001; Berlin & Ellegren, 2004, 2006; Berlinet al., 2007; Moghadamet al.,
2012; Houghet al., 2014). Moreover, following the arrest of recombination,
gene expression on the sex chromosomes can change as well, due to transcrip-
tional decay of the sex-limited chromosomes (W or Y) resulting in reduced
expression of the W (or Y) allele compared to the corresponding Z (or X)
copy. This process has been shown to occur quickly (Bachtroget al., 2008;
Houghet al., 2014; Papadopuloset al., 2015).

Additionally, random insertions of transposable elements and other repet-
itive sequence might extend the lengths of non-recombining sex limited re-
gions (Hobzaet al., 2015; Li et al., 2016) but sequence loss will ultimately
take over, leading to reduced size of the sex limited sex chromosome and
to the loss of many genes (Rice, 1996; Skaletskyet al., 2003; Lahnet al.,
2001; Li et al., 2016; Wrightet al., 2016). This leads to high levels of hete-
rochromatic DNA (Blackburn, 1923; Carvalho, 2002; Bachtrog, 2013; Wei &
Barbash, 2015) and low gene density (Rice, 1996; Zhou & Bachtrog, 2012;
Bachtrog, 2013; Skinneret al., 2016) in many old sex limited sex chromo-
somes. Genes that are retained on the sex limited sex chromosome can, how-
ever, be essential and are found to be concerned mostly with sex determina-
tion, fertility or ubiquitous function (Charlesworthet al., 1987; Lahn & Page,
1997; Lahnet al., 2001; Skaletskyet al., 2003).

In the long run, the accumulation of deleterious changes on the sex lim-
ited sex chromosome will lead to the evolution of morphological clearly dis-
tinct (heteromorphic) sex chromosomes like they are found in most old sys-
tems. Some homomorphic sex chromosomes (e.g. European tree frogs (Stöck
et al., 2011), snakes (Vicosoet al., 2013a), ratite birds (Mank & Ellegren,
2007; Vicosoet al., 2013b; Yazdi & Ellegren, 2014)) are however old, but
display limited levels of differentiation, indicating that loss of recombination
has not spread very far from the sex determination locus. In such systems
selective factors preventing or slowing down the degeneration of sex chromo-
somes – and thus the evolution of heteromorphic sex chromosomes – proba-
bly exist. These can for example be: a long haploid phase, incomplete dosage
compensation, recombination of sex chromosomes in rare sex reversed indi-
viduals or low levels of sexual conflict (Wrightet al., 2016, and references
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therein). Tight regulation of the spread of repetitive DNA might also play a
role in the fate of individual sex chromosomes (Hobzaet al., 2015).

Many homomorphic sex chromosomes are however young and in the
early stage of degeneration (e.g. papaya (Liuet al., 2004; Wanget al.,
2012), wild strawberry (Spigleret al., 2008; Tennessenet al., 2016), Si-
lene colpophylla(Mrackovaet al., 2008),Populus(Geraldeset al., 2015),
Megaselia scalaris, Megaselia abdita, Calliphora erythrocephala(Vicoso &
Bachtrog, 2015, and references therein)).

1.4.3 Sexualization of the recombining sex chromosome
Like the sex limited sex chromosome (W or Y), also the homologous shared
sex chromosome that is recombining in the homogametic sex (Z or X) un-
dergoes specialized evolution. As the W chromosome degenerates, it loses
functional genes, rendering the Z chromosome effectively haploid (hemizy-
gous) for these genes in females. The ratio between W linked genes and au-
tosomal genes is halved compared to that of Z/Z males, creating a potentially
detrimental imbalance for dosage-sensitive genes. To overcome this problem
different dosage compensation systems have evolved, either by up-regulation
of hemizygous genes in the heterogametic sex (Straubet al., 2005; Naurin
et al., 2012) or by silencing of one allele in the homogametic sex (Senner
& Brockdorff, 2009; Splinteret al., 2011; Graves, 2016b) (but see Chen &
Zhang (2016)). At the same time newly arisen recessive or partially recessive
mutations in hemizygous genes on the shared sex chromosome are more often
exposed to selection compared to autosomal genes and thus beneficial muta-
tions can be fixed more rapidly by selection. Additionally, reduced effective
population size can lead to higher rate of fixation of novel mutations due to
drift. Therefore Z-linked (or X-linked) genes can be more divergentbetween
species compared with autosomal genes, a phenomenon known as the ‘faster-
X effect’ (Charlesworth & Charlesworth, 1987; Baines & Harr, 2007;Mank
et al., 2010; Connallonet al., 2012; Meisel & Connallon, 2013). Similarly
a faster-X (faster-Z) effect for gene expression can be seen (Kayserili et al.,
2012; Llopart, 2012; Meiselet al., 2012; Deanet al., 2015) which can be
caused by faster evolution ofcis regulatory non-coding sequence (Meisel &
Connallon, 2013).

Dominant alleles on the proto-Z (proto-X) of genes that are retained on
both homologs are expressed 2/3 of the time in males (X: females) and thus
can similar to genes on the W (Y) chromosome obtain a sex specific effect
due to sex biased selection, while recessive changes on the shared sexchro-
mosomes are predominantly under selection in the hemizygous stage in the
females (X: males) and thus are selected for benefits in the opposite sex (Rice,
1984; Wrightet al., 2012; Jaquiéryet al., 2013). Conflicts arising from this
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sexualization of the shared sex chromosome can be solved by sex specific
expression and thus genes on a sexualized shared sex chromosome areex-
pected to be more commonly expressed in a sex specific way than genes on
autosomes (Connallon & Knowles, 2005; Scotti & Delph, 2006; Ellegren &
Parsch, 2007). Extensive sex specific expression might be sufficient to mit-
igate detrimental effects of sexual antagonistic genes and thus might be an
alternative to recombination suppression between sex chromosomes in some
clades, as for example seen in emus (Vicosoet al., 2013b).

1.4.4 Sex chromosome turnover
The major differentiation and high functional specialization especially of old
sex chromosomes might appear to be a dead end and it might seem unlikely
that the sex chromosome system changes (Mank & Avise, 2009). None the
less, new chromosomes actually can take over the role as sex chromosomes
or established sex chromosomes can be extended by fusion events. These
sex chromosome turnover events are happening often and in different taxa
(Smith, 1964; Phillipset al., 2001; Miura, 2008; Mank & Avise, 2009; Ki-
tano & Peichel, 2012; Slancarovaet al., 2013; Bachtroget al., 2014; Yoshida
et al., 2014; Vicoso & Bachtrog, 2015; Mulugetaet al., 2016). Turnover
can also change the sex determination system and induce a transition from
male to female heterogamety orvice versaand therefore turnover provides
another evolutionary pathway to these systems than the evolution together
with dioecy.

A new pair of autosomes can evolve into sex chromosomes and take
over sex determination if a new sex determining mechanism is established
on this chromosome pair which sets off a new round of sex chromosome
evolution. This can occur through transposition or translocation of existing
sex-determination genes, the fusion of sex chromosome and autosome or the
evolution of a new sex determining mechanism (fig. 2) (Smith, 1964; Kitano
& Peichel, 2012; Houghet al., 2014; Yoshidaet al., 2014; Wei & Barbash,
2015). This transition can be facilitated by (partial) environmental sex de-
termination as an intermediate step (Ezazet al., 2009; Quinnet al., 2011;
Holleleyet al., 2015; Graves, 2016a).

Different driving forces can theoretically induce sex chromosome
turnovers such as sexually antagonistic selection (Charlesworth &
Charlesworth, 1980; van Doorn & Kirkpatrick, 2007, 2010), heterozygote
advantage (Charlesworth & Wall, 1999), selection for sex ratio bias (Fredga
et al., 1977), rescue of deleterious mutation on Y chromosomes (the “Hot-
Potato model”) (Blaseret al., 2013, 2014), a combination of genetic drift and
heterozygote disadvantage (Lande, 1985; Yoshidaet al., 2014), the disruption
of sex determination by endosymbionts (Cordauxet al., 2011) or the presence
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Figure 2: Cycle of sex chromosome turnover. New sex chromosomes can evolve by chromosomal
fusion or acquisition of a new sex determination system. Illustration inspired by Wei & Barbash
(2015).

of sex chromosome meiotic drive (Maynard Smith, 1978, p. 164,Yoshida &
Kitano, 2012).

Sex chromosome turnover can lead to mating barriers between individu-
als with the old and the new sex determination system respectively (Graves
& O’Neill, 1996; Graves, 2016a) and thus sex chromosome turnover might
lead to speciation. The three major mammal lineages (Eutheria, Metatheria,
Prototheria) are separated by sex chromosome turnover events and it is thus
conceivable that the turnover of sex determination systems is causative for
those speciation events (Graves, 2016a, and references therein).

Neo sex chromosomes can be the result of the fusion between an autoso-
mal part and the former sex chromosomes or sex determination can be regu-
lated by a new pair of former autosomes (fig. 2). In the first case the evolu-
tionary pattern of sex chromosome divergence can extend to the new partsof
the sex chromosome (Waterset al., 2001; Palaet al., 2012a,b; Bergeroet al.,
2013; Houghet al., 2014). In the case of a new sex chromosome system,
emerging directly from an autosome however, the previous sex chromosome
can revert to autosomal inheritance (Vicoso & Bachtrog, 2013, 2015; Wei &
Barbash, 2015). Especially if the previous sex chromosomes had strongly
diverged from each other, the reversion needs to overcome selection barriers
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which might contribute to the apparent stability of some old sex chromosome
systems. As an initial step it is likely that the shared sex chromosome (Z or
W) reestablishes diploidy, possibly through meiotic nondisjunction (Vicoso
& Bachtrog, 2013), which is than followed by a loss of dosage compensation
mechanisms (Wei & Barbash, 2015).

1.5 Deviations from equal sex ratios
By separating sexual functions into different individuals, selection canact
differently on them. One effect of this sex specific selection is the evolution
of sex chromosomes (see above), another effect can be the higher mortality
or a selective advantage of individuals of one sex. Genetic sex determination
creates also an environment where genetic elements can be inherited specifi-
cally to one sex. Such elements can benefit from a biased sex ratio that facil-
itates their spread in the population. However, frequency based selectionis
expected to maintain a balanced offspring sex ratio, provided that the costof
producing male and female offspring and their fitness is equal (Fisher, 1930;
Lloyd, 1974; Hardy, 2002). None the less, both in the plant kingdom (Barrett
et al., 2010; Sinclairet al., 2012; Fieldet al., 2013) but also among animals
(Westerdahlet al., 1997; Donald, 2007; Netoet al., 2011; Pipolyet al., 2015)
uneven sex ratios are common on a family and species-wide level due to often
unknown genetic or ecological mechanisms.

Males and females invest different resources into reproduction and thus
bear different costs (e.g. fruit formation or high amounts of pollen in wind
pollination). This effect can lead to differences in resilience and sex-biased
mortality which in turn influences the adult sex ratio (Crawford & Balfour,
1983; Delph, 1999; Donald, 2007; Petryet al., 2016). As an additional factor,
in species with heteromorphic sex chromosomes the heterogametic sex will
be hemizygous for a large number of loci and thus unable to mask the expres-
sion of recessive deleterious alleles. According to the ‘unguarded sexchro-
mosome hypothesis’ this will lead to higher mortality of individuals of the
heterogametic sex (Haldane, 1922; Dorken & Barrett, 2004; Donald, 2007;
Pipolyet al., 2015).

But especially for plants, determining the sex of an individual that is not
flowering (juvenile or non-reproducing) is difficult since sexual dimorphisms
are usually limited to floral tissue and therefore there is a lack of knowledge
on when in an organism’s life cycle the sex bias is introduced. Not only
does adult sex ratio not necessarily reflect seed sex ratio but one sexmight
flower more often or have an earlier onset of flowering during life historyand
therefore the measured sex ratios might be biases by data collection (Barrett
et al., 2010). Molecular markers or cytological methods can in some cases be
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used to determine genetic sex without phenotypic differences and in an early
life stage (Stehlik & Blattner, 2004; Xuet al., 2004; Stehliket al., 2008;
Abreu et al., 2015; Tsaiet al., 2016) and these tools are therefore valuable
for the understanding of mechanisms underlying sex ratio biases during the
life history (Barrettet al., 2010).

Sex chromosome meiotic drive is a mechanism that – due to non-Men-
delian segregation of sex determination alleles – can influence the offspring
sex ratio directly. A gene on a sex-determining chromosome, making that
chromosome more likely to participate in fertilization, will increase its fre-
quency – until checked by some counterbalancing force (Hamilton, 1967;
Meiklejohn & Tao, 2010). An example for such a system is the Y-linked
geneMD in Aedes aegypti(Hickey & Craig, 1966; Newtonet al., 1976; Shin
et al., 2012). The presence of this gene in males results in an over-abundance
of males in the offspring generation due to X chromosome breakage during
male meiosis. Similar systems have been observed inDrosophila species
(Gershenson, 1928; Novitski, 1947; Jaenike, 2001) and seem to playa role
in the female biased sex ratio inSilene latifolia(Taylor, 1994; Taylor & Ing-
varsson, 2003; Taylor, 1999).

Uneven transmission of sex chromosomes to the next generation can, in
male heterogametic species, also be caused by selection in the haploid pollen
stage and thus influence the sex ratio. This can be caused either by differ-
ential survival of the gametophyte (Smith, 1963) or different types of pollen
can vary in their fertilization success in competitive situation (certation, e.g.
differences in pollen tube growth) (Smith, 1963; Taylor, 1994, 1999; Taylor
& Ingvarsson, 2003; Stehliket al., 2008) which can results in a higher abun-
dance of embryos of one sex. Based on this mechanism sex ratios can vary
dependent on population density for example inRumex nivalis(Stehliket al.,
2008).

In the androdioecious plantPhillyrea angustifolia males and
hermaphrodites co-occur at approximately equal ratios (Lepart, 1992)
which is of surprise as functionally androdioecious species are expected
to exhibit low male frequencies in populations unless males have a strong
selective advantage (Saumitou-Lapradeet al., 2010). It was shown that
the genetic background to this system is a genetic incompatibility between
two classes of hermaphrodites. Males are able to sire hermaphrodites of
both incompatibility groups due to a “permissive” incompatibility allele
in tight linkage to the sex determination locus (Saumitou-Lapradeet al.,
2010). Detailed studies of pedigree populations based on different types
of hermaphrodites and males revealed an additional selfish genetic element
in some males, which is also linked to the female-sterility locus and which
effectively prevents the formation of hermaphroditic offspring in one
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type of crosses. All offspring of these crosses inherited exclusivelythe
Y-acting allele of the sex determining region from the father while expected
hermaphrodictic siblings are purged from the population by a unknown
mechanism that is potentially similar to gametophytic self-incompatibility
(Billiard et al., 2015; Pannell & Voillemot, 2015).

Beside nuclear genetic elements also units in the cytosol can influence
the sex ratio. Since the cytosol is usually predominantly maternally inher-
ited, symbionts and organells benefit from a female biased offspring sex
ratio. Many insects, includingDrosophila species but also other animals,
often are associated with symbiotic bacteria (Moranet al., 2008; McFall-
Ngaiet al., 2013). Some symbionts likeWolbachia, Spiroplasma, Cardinium
andArsenophonuscan act through male-killing, feminization, cytoplasmic
incompatibility and parthenogenesis to alter the operational sex ratio among
offspring of an individual bearing them and thus spread into their host pop-
ulations in selfish ways (Werrenet al., 2008; Cordauxet al., 2011; Hurst &
Frost, 2015; Perlmanet al., 2015; Harumotoet al., 2016). Similarly mito-
chondria are known to change the operative sex in different hermaphroditic
plant species through cytoplasmic male sterility (CMS) (see above). This
effect is sometimes referred to as sex ratio change (Bailey & Delph, 2007;
Perlmanet al., 2015). Likewise, in species with completely separate sexes,
effects on the genetic or operational sex ratio by organells – similar to the
effects of symbionts – are conceivable but were not yet described (Matessi &
Saino, 2003; Lane, 2006, p. 239; Perlmanet al., 2015).

1.6 The Salicaceae family
While this thesis studies aspects of sex determination, sex chromosome evo-
lution and deviations from equal sex ratio which are of very general interest
both within the plant kingdom but also beyond, we used the willow species
Salix viminalisas a model. This plant species is a member of the Salicaceae
family which also contains the well studied tree speciesPopulus trichocarpa
(Tuskanet al., 2006) as well as several other species that are investigated for
different aspects.

According to the current molecular evidence the Salicaceae family is a
group of about 1000 species in ca. 55 genera (Cronket al., 2015b) with
PopulusandSalix forming a monophyletic clade andIdesiaandBennettio-
dendronbeing the closest sister genera (Leskinen & Alström-Rapaport, 1999;
Liu et al., 2016). Based on fossil records the divergence of thePopulusand
Salixgenus started more than 45 mya (Boucheret al., 2003; Manchesteret al.,
2006). Species in the Salicaceae family are woody (trees or shrubs, fig.3)
with simple, usually alternate leaves (Cronket al., 2015b). The flowers of
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Figure 3: Physical appearance ofS. viminalis. (A) Field archive with shoots regrown from root-
stock during one growing season. (B) Growth in controlled conditions in a climate chamber. (C)
Seedlings. (D) Female catkins with protruding gynoecia. (E) Schematic image of female limited
reproductive organ (gynoecium) (F) Male catkins with protruding stamens. (G) Schematic image
of male limited reproductive organs (filaments and anthers). Panel E and G are reproduced from
Thomé & Müller (1886).

PopulusandSalix species are arranged in catkins (racemose inflorescence,
fig. 3) while sister genera usually show branched inflorescences (Cronk et al.,
2015b). Most genera in this family are dioecious and thus dioecy is likely an
ancient trait in this taxon that evolved at least prior to the split ofPopulusand
Salix(Cronket al., 2015b; Geraldeset al., 2015).

TheSalixgenus comprises a large number of species (400-550 (Leskinen
& Alström-Rapaport, 1999; Berlinet al., 2010; The Plant List, 2013; Renner,
2014)) of which many can be easily propagated clonally and high seed num-
bers in some species allow the generation of large study populations. Willows
are a “foundation species” and provide an abundant food-source for generalist
and specialist animals such as rodents, deer, elk, reindeer and many insects
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(Cronk et al., 2015a, and references therein) and thus shape characteristic
ecosystems. The genomes of willows and poplars are highly synthenic except
for a major interchromosomal rearrangements involving poplar chromosome
1 and 16 and willow LG Ib (S3 map, Berlinet al. (2010)) / chromosome 16
(S5 map, paper IV) as a result of a fission or fusion event in one of the lin-
eages. Wild populations and artificial crosses of manySalixspecies display
distinct, mostly female biased sex ratios (Crawford & Balfour, 1983; Alliende
& Harper, 1989; Dawson & Bliss, 1989; Alström-Rapaportet al., 1997; Pre-
davec & Danell, 2001; de Jong & van der Meijden, 2004; Uenoet al., 2007;
Myers-Smith & Hik, 2012; Che-Castaldoet al., 2015).

Both poplars, aspens and willows are used as energy crop in short-rotation
coppice systems with positive energy output (Karp & Shield, 2008; Dillen
et al., 2013; Murphyet al., 2014) and detailed studies on the genetic back-
ground of traits related to breeding goals, for example on growth and phenol-
ogy (Hallingbäcket al., 2016) and drought resistance (Pucholtet al., 2015b),
are undertaken. The shared whole genome duplication between poplars and
willows (Tuskanet al., 2006; Berlinet al., 2010) also allows to study evolu-
tionary questions on, for example, the retention of paralogous genes (Berlin
et al., 2010; Harikrishnanet al., 2015).

1.6.1 Sex determination in the Populus genus
Studies on sex determination inPopulusspecies (poplars and aspens) revealed
that likely multiple systems exist within this genus. While dioecy is ances-
tral and thus originated more than 45 mya, sex chromosomes seem not to
have evolved into heteromorphic sex chromosomes and the sex determina-
tion mechanism(s) have evolved more recently (Geraldeset al., 2015).

Genetic mapping studies have identified a sex-determining region in
the proximal telomeric end of chromosome 19 in poplars (Populussections
Tacamahaca and Aigeiros) (Gaudetet al., 2008; Yinet al., 2008) and a peri-
centromeric region in aspens (Populussection Populus) (Pakullet al., 2009;
Paolucciet al., 2010; Kerstenet al., 2012). There are reports on female het-
erogamety (Z/W system) (Yinet al., 2008; Paolucciet al., 2010) and male
heterogamety (X/Y system) (Gaudetet al., 2008; Pakullet al., 2009; Kersten
et al., 2014; Pakullet al., 2015) and forPopulus tremuloidesand Populus
tremulait could be shown that the gene TOZ19 is hemizygous in males and
absent in females, possibly indicating a role of this gene in sex determination
(Pakullet al., 2015).

The presence of at least two different sex determination systems in differ-
ent sections of thePopulusgenus at different loci of chromosome 19 is also
supported by a genome-wide association study (GWAS) inP. trichocarpa
and P. balsamiferaand comparative sequence analysis withP. tremuloides
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(Geraldeset al., 2015). Based on this data the Y-chromosmal region inP. tri-
chocarpais 6-7 my old and thus the sex determination system in this species
is much more recent than dioecy (Geraldeset al., 2015).

However in the context of our own results on the study of sex determi-
nation inSalix viminalisit is important to stress that in allPopulusspecies
studied so far chromosome 19 was identified as the sex chromosome (Tuskan
et al., 2012; Geraldeset al., 2015, and references therein).

1.6.2 Previous knowledge on sex determination in the Salix
genus

Sex determination in theSalixgenus (willows) has previously attracted less
attention than inPopulus, partly due to the absence of a reference genome
in this genus. However, a study mainly targeting the biased sex ratios in
S. viminalisproposed a genetic multi-locus system of sex determination in
this species (Alström-Rapaportet al., 1997) and the genetic basis for sex
determination was confirmed by the presence of randomly amplified poly-
morphic DNA (RAPD) and amplified fragment length polymorphism (AFLP)
markers that were associated with sex in some genetic backgrounds (Alström-
Rapaportet al., 1998; Gunteret al., 2003b; Semerikovet al., 2003). These
markers were linked to the morphological sex marker but the position of the
markers in the genome was not resolved (Gunteret al., 2003b; Semerikov
et al., 2003). However both the low number of sex linked markers (e.g. 1 in
1080 (Alström-Rapaportet al., 1998)) and the evidence that recombination is
present along large parts of the chromosome that contained sex linked mark-
ers (Semerikovet al., 2003) indicate that a non-recombining region would be
relatively narrow. The complete co-segregation of sex markers and pheno-
typic sex in a mapping population indicated a single genetic locus determin-
ing sex in this family (Semerikovet al., 2003).

Gunteret al. (2003b) converted two of the sex linked markers into PCR
based SCAR markers: SCAR UBC 354520 and SCAR OPAE08780 which
were also used in subsequent studies. Some attempts were made to am-
plify these markers in other species and to evaluate their correlation with sex.
While unsuccessful amplification of the SCAR 354 marker in someSalix
species indicate the absence of the marker region in these species (Temmel
et al., 2007) successful amplification and linkage with sex for the marker
SCAR AE08 (Gunteret al., 2003a) (but not SCAR 354) inSalix eriocephala
indicate that the sex determination system might be shared over species
boundaries. Similarity between the sequence amplified by SCAR 354 and
a locus on theP. trichocarpachromosome 15 gave a first indication of a po-
tential genetic position of sex determination inSalix(Temmelet al., 2007).
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In summary, the knowledge on sex determination in theSalixgenus prior
to this work was limited and mainly focused on a small number of genetic
markers with largely unresolved genomic location. They co-segregated with
phenotypic sex in some but not all genetic backgrounds.

In parallel to my work, another group was independently studying sex
determination inSalix suchowensisby applying QTL analysis to a mapping
population (similar to our approach). Shortly after our publication of PaperI
they could confirm one of our main findings, namely a single sex determina-
tion locus that is located centrally on chromosome 15 and thus on a different
chromosome than sex determination in poplars but on the same locus as we
describe it inS. viminalis(Pucholtet al., 2015a; Houet al., 2015).

1.7 Next generation sequencing and big data as re-
search tool

This work is based to a very large extent on the analysis of genomic and
transcriptomic sequencing data from so called next generation (or second
and third generation) sequencing (NGS) machines. Compared to previous
methods of sequencing (e.g. Sanger sequencing (Sangeret al., 1977)) the
new innovation was the extremely high parallelization of the sequencing re-
action. This field of technology is developing with an ever increasing speed
and during the time of this thesis I witnessed both how previously widely
used technologies (Roche 454 (Margulieset al., 2005), ABI SOLiD (Shen-
dureet al., 2005)) were nearly abandoned as well as the rapid adoption of
the third generation of sequencing technologies (PacBio (Eidet al., 2009),
Oxford Nanopore (Mikheyev & Tin, 2014)) that generate long reads from a
large number of single molecules.

In a broader perspective this rapid technological development has led to
an enormous rate of sequence data generation with a predicted doubling time
of all sequence data ever generated of 7 to 18 month (Stephenset al., 2015).
This development has been fueled by a drop in sequencing costs that sur-
passed Moore’s law (Moore, 1965) by orders of magnitude (Wetterstrand,
2016). Future biological research will thus have an even greater use of this
type of data than current studies but handling and analyzing these data and
their sheer amount requires large computational resources and new skillsfor
the researcher.

As the number of applications of NGS data in all biological fields is enor-
mous I will refrain from trying to give a general overview here and instead ex-
emplify the use of sequencing and genotyping methods in my thesis project.

38



For Paper I we used Sanger sequencing (Sangeret al., 1977) to identify
polymorphisms in the parents of an experimental cross. These single nu-
cleotide polymorphisms(SNPs) were then genotyped in the whole population
using the Illumina GoldenGate high throughput method (Fanet al., 2003).
This combination of traditional sequencing to identify polymorphic sites and
high throughput genotyping delivered a dataset that was large compared to
similar studies.

For Paper II 291 individuals of a collection of wild and largely unrelated
accessions ofS. viminaliswere genotyped using the technique developed by
Elshireet al. (2011) called Genotyping-by-Sequencing (GBS). In this pro-
cess the whole genome of an individual is in a first step reduced to regions
in proximity to restriction enzyme cut sides and this reduced library is then
sequenced. This technique makes it feasible to analyze a large number of in-
dividuals without prior knowledge of polymorphisms and it generates a high
density of traceable SNPs in a nearly random distribution over the whole
genome. In a GWAS we then analyzed the association between genotypes
and the sex of individuals.

The same technique was used for Paper IV on 273 individuals of a map-
ping population to analyze association between genotypes and sex ratio, and
gender and to generate a high density genetic map.

To link markers from paper II to genomic positions we additionally used
a S. viminalisgenome assembly based on PacBio RSII single molecule se-
quencing reads. This third generation sequencing technique proved to be
highly valuable to obtain long genomic sequence scaffolds of the complex
genome.

For Paper III we applied the Illumina HiSeq technique (Bentleyet al.,
2008) to analyze the whole genome sequence of fourS. viminalisindividuals
as well as the transcriptome from catkins and leaves of six individuals. The
total sequencing data generated for this project was approximately 220 Gbp
which is equivalent to 73 times the size of the human genome or 440 times
the size of theS. viminalisgenome.

With this huge amount of data comes an enormous power to detect sci-
entifically interesting phenomena and many of the questions posed in this
project would not be possible to answer without large datasets.

The data analysis usually requires the application of several
tools/programs in different computational environments to convert raw
data via multiple intermediate steps into results that lead to new insights.
Tools in this process can be optimized algorithms, performing computa-
tionally expensive tasks like read mapping or variant detection, utilities to
convert between different file formats or filtering the results based on given
parameters or applications for plotting or statistical testing. Every one of
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these steps typically has a number of adjustable parameters which often need
to be optimized to obtain the best analysis of the data at hand.

Such analyses can be seen as a workflow which van der Aalst & van Hee
(2004) defined as a collection of tasks that are interdependent and thusneed
to be completed in a specific order to obtain a result or to create a product.
In order to ensure reproducibility, to document the flow of data, the applied
methods and parameters and to automate and optimize the task execution,
workflow management systems are widely used in bioinformatics. Simple
systems of workflow management can be shell scripts that execute a defined
sequence of tasks. There are also browser based systems available that facil-
itate the analysis through simplified interfaces – as for example the Galaxy
framework (Giardineet al., 2005; Afganet al., 2016) that integrates many
widely used analysis tools.

However, in many cases an increased flexibility and higher parallelization
in the analysis of multiple samples with different sets of parameters can be
achieved through a workflow definition that resembles a programming lan-
guage. A popular system for workflow management that is based on the
python language and allows for extremely flexible execution of widely vari-
able workflows in diverse computational environments is the Snakemake sys-
tem (Köster & Rahmann, 2012).

Current biological research does already now – and will do so even more in
the future – use and depend on large datasets and thanks to the rapid devel-
opment in sequencing technologies, but also the increased usage of imaging
techniques etc. these datasets will become even larger. Therefore a mod-
ern research lab requires equipment and strategies to handle and analyze big
data. In my thesis work I followed the whole process from planning and ex-
ecution of the biological experiment, through DNA/RNA extraction to data
generation, analysis and insights for several large collections of sequencing
and genotyping data.
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2 Aims of the study
Sexual reproduction is omnipresent in the eukaryote lineage and separate
sexes are found in most animal and some plant species. Sex chromosomes
are found in many of the species with separate sexes and they representa
unique evolutionary system. This thesis aims to contribute to the knowledge
of sex chromosome evolution, sex determination and sex ratio distortion. We
used the plant speciesS. viminalisas a model to gain knowledge about these
processes. Therefore in a first stage we aimed to unravel the genomic archi-
tecture of sex determination in this species and to compare it to the system in
the related speciesP. trichocarpato then analyze the evolutionary history of
the sex determination locus in greater detail. A specific feature of the model
systemS. viminalisis its pronounced but variable biased sex ratio. We thus
aimed to identify mechanisms underlying this trait and to determine if sex
determination and sex ratio distortion are controlled by the same or different
mechanism.

The work had the following specific objectives:

• To determine the mode of sex determination inS. viminalis: genetic,
environmental, single locus, multi locus

• To identify the genomic location of the sex determination factor(s)

• To analyze the mode of inheritance of sex determination (female / male
heterogametic)

• To describe the effects that evolutionary processes had on the sex chro-
mosomes and by this, to identify processes that happen early during
sex chromosome evolution

• To elucidate factors regulating the biased sex ratios inS. viminalisand
their relation to sex determination factors
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3 Results and discussion
The results of this thesis are reported in the four articles reproduced in a
thematic order at the end of this book. These four parts of the thesis each
contain a detailed presentation of the findings and a discussion of the results
in their context. Here I will give a short summary and highlight some results
to present a more general picture of the work and the interconnection of the
sub-projects. Articles that are part of this thesis are referred to as roman
numerals.

3.1 Female heterogamety and chromosome 15 as
sex chromosome in Salix viminalis (I, II & IV)

One important aspect of this thesis was to characterize the sex determination
system ofS. viminalison a chromosomal level. Prior to this work it was
speculated that the sex determination in willows is based on a multi locus sex
determination system with dominance of certain loci over other (Alström-
Rapaportet al., 1997). These results were based on observed segregation
patterns but the assumed loci were not located in the genome. In paper I we
thus applied an open approach to identify any region in the genome that was
linked to sex determination through a QTL study in a population with even
sex ratio. Results from this analysis confirmed the genetic sex determination
and did show that there was a single locus on chromosome 15 that did explain
97.9% of the variation for the trait “sex”. Other than this, only marginally sig-
nificant signals were found. We could also show that one haplotype of three
markers on chromosome 15 was completely coupled to femaleness and that
these markers were maternally segregating and that females were always het-
erzygous in those markers. Based on these results we concluded that females
are the heterogametic sex (Z/W) inS. viminalisand that there is a single locus
on chromosome 15 (fig. 4) that determines the sex in this pedigree population.

Even though the main aim of paper IV was to study mechanisms be-
hind uneven sex ratios, data from this population was also very valuable to
analyze the sex determination system further. The pedigree populations in
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Figure 4: Association between genetic markers and sex. Markers from three populations (S3: even
sex ratio, paper I; S5: female biased sex ratio, paper IV; GWAS: unrelated individuals, paper II)
were located in theP. trichocarpagenome (x-axis) and the significance of their association with
the trait “sex” was calculated (Fisher’s exact test, y-axis). Data from all populations highlight
chromosome 15 as the sex chromosome.

paper I and IV share the same father but differ in the female parent. As the
results from paper I showed that females are the heterogametic sex, this sec-
ond population was ideal to test if there was any variance in the location of
the sex determination locus between female individuals or if different loci in
a potential multi-locus sex determination system would be dominant. The
results from paper IV showed however that sex determination was basedon
the same single locus on chromosome 15 (fig. 4) also in this population and
here as well, female heterozygosity was evident.

We could then extend these observations to a species wide level by apply-
ing GWAS to a large association mapping population with a high number of
genetic markers in paper II. We detected 48 SNP markers that were signifi-
cantly associated with sex and we could link the majority of these markers to
chromosome 15 (fig. 4). Even here we demonstrated that females are the het-
erogametic sex and we found a correlation between heterozygous genotypes
in the sex determination region and femaleness.

These findings are highly interesting as they clearly demonstrate the dif-
ference in sex chromosome systems (Salix: Z/W, Chr 15,Populus: X/Y or
Z/W, Chr 19) betweenSalixandPopulusspecies, while dioecy is ancestral to
the Salicaceae family that contains both clades. It is thus likely that one (or
both) clades underwent sex chromosome turnover events during their evolu-
tion.

Additionally we could show in paper II that some parts of the W sequence
in S. viminalisare hemizygous and – at least partially – are paralogous to
sequence on chromosome 9. The split between the paralogous sequences
happened before the split from otherSalixspecies (fig. 5) and thus the hem-
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Figure 5: Phylogenetic tree of homologous sequences to the W-hemizygous region detected on
chromosome 15. Details on the methods how this tree was generatedand a discussion of its content
is found in paper II.

izygous region is expected to be share over species boundaries suggesting
that also the sex determination system is shared by otherSalixspecies.

This insight, purely based on our own data, is supported by the observa-
tion that the same locus on chromosome 15 is determining sex in some other
Salixspecies as well:S. suchowensis(Houet al., 2015),S. purpurea(personal
communication). Contrary, a study inS. herbaceaindicates the existence of
additional loci associated with sex (Cortés, 2015). More studies in different
Salixspecies would allow an analysis on how universal the sex chromosome
system observed inS. viminalisis and to what phylogenetic level it is shared.

A possible mechanism in sex chromosome turnover would be the translo-
cation of the sex determining region from one chromosome (e.g. Chr19) to
another chromosome (e.g. Chr15). If this had happened, some genetic mark-
ers that are associated with sex might be located on theS. viminalischromo-
some 15 while they have a location on chromosome 19 inP. trichocarpa. We
specifically analyzed our datasets for this possibility but did not find any indi-
cations for a translocation between these two chromosomes. It is thus likely
that different genetic elements underlay the sex determination in thePopulus
andSalix lineage respectively.
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3.2 Sex chromosome divergence and the evolution-
ary history of the S. viminalis sex determination
system (III)

Both theoretical predictions (Fisher, 1931; Charlesworth & Charlesworth,
1978; Rice, 1987, 1992; Qiuet al., 2013) and actual observations in paper I
and II suggest that some part of theS. viminalissex chromosome experiences
reduced or absent recombination. Analyzing the sequence divergence of this
region allows for an approximate estimation of the age of the sex chromo-
some system which is of high interest in the context of the presumed sex
chromosome turnover events in the Salicaceae family. UsingS. viminalisas
a model system however also allows new insights into the evolutionary pro-
cesses involved in sex chromosome evolution in general.

In paper III we used DNA and RNA sequencing data from multiple fe-
male and male individuals and could show that a small non-recombining re-
gion exists at the sex determination locus. The level of sequence divergence
and the absence of a Fast-Z effect indicate however a very recent evolution-
ary origin. The existence of genes in this region that are expressed in a sex
specific way together with the absence of allele specifically expressed genes
indicate that sex chromosome sexualization presumably predates severe W
chromosome degeneration. We could also show that insertion of repetitive
sequence into the sex limited sex chromosome likely happens early in sex
chromosome evolution, a finding that is confirmed by results from paper II.

3.3 Z chromosome incompatibility as a basis for bi-
ased sex ratios (IV)

Biased sex ratios are common in differentSalixspecies, both in wild popu-
lations and in pedigree populations (Crawford & Balfour, 1983; Alliende &
Harper, 1989; Dawson & Bliss, 1989; Alström-Rapaportet al., 1997; Pre-
davec & Danell, 2001; de Jong & van der Meijden, 2004; Uenoet al., 2007;
Myers-Smith & Hik, 2012; Che-Castaldoet al., 2015; Paper II). In paper IV
we studied a population with a strong female bias (~66% females in pop-
ulation) and could demonstrate that individuals with a certain genotype are
missing completely from the population and we attribute this to a form of
genetic incompatibility. Since this incompatibility locus is coupled to the
sex locus in such a way that the W-linked female determining region and
the Z-linked incompatibility region are located on different homologous sex
chromosomes, the incompatibility only affects males and thus leads to a fe-
male bias in the population. A similar incompatibility system was reported
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for the androdioecious speciesP. angustifoliawere a selfish genetic element
benefits from biased sex ratios (Billiardet al., 2015; Pannell & Voillemot,
2015). Even though the incompatibility system, as we found it in this pop-
ulation, will lead to reduced spread of Z-chromosomes and thus should not
benefit a selfish element, we could show that such an allelic incompatibility
could be maintained in the species through a system of overdominance or
pseudooverdominance.

Such a mechanism for sex ratio distortion is reported in very few sys-
tems, however it will only be detectable through high marker density in a rea-
sonably large population. Detailed studies in other non-model species might
therefore detect similar mechanism that went un-noted up to now. This mech-
anism can also explain biased sex ratios previously described inS. viminalis
that were attributed to a multi-locus sex determination system.

3.4 Genome structure of S. viminalis (IV)
Based on the “S5” population, we generated a new genetic map forS. vim-
inalis with a high marker density of GBS based genetic markers. This map
confirmed previous findings of high syntheny between the genome ofP. tri-
chocarpaand the fission/fusion event between the chromosomes 1 and 16
since the split of the species. We used this tool also to anchor scaffolds con-
taining sex associated markers to the genome in paper II and it will be of
great use in the ongoing work to assemble theS. viminalisgenome and for
upcoming QTL studies in the S5 pedigree population.
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4 Conclusion
During the course of this project we gained a multitude of new insights into
the sex determination system, the evolution of sex chromosomes and the
mechanism underlying biased sex ratio inS. viminalis. The open approach to
identify factors involved in these processes has been exceptionally success-
ful and extended the previous knowledge on sex determination in this species
greatly. We analyzed, for the first time, the evolutionary history ofSalixsex
chromosomes and we suggest that the basis for biased sex ratio is incompati-
bility between certain alleles.

Some of the conclusion from this work are:

• In S. viminalissex is determined by a single genetic locus on chro-
mosome 15. The locus may however include multiple genes or other
genetic elements. We confirmed this finding in multiple independent
datasets and results from otherSalix species, as well as phylogenetic
analyses, indicate that it is shared over species boundaries.

• Females are the heterogametic sex inS. viminalisand thus carry two
different homologous sequences (Z and W) in the sex determination
region, while males carry two alleles of the Z type.

• The sex determination systems in the related speciesS. viminalisand
P. trichocarpaare based on different genomic regions and sex chromo-
some turnover – likely with the emergence of a new sex determination
mechanism – has happened at least once between the species.

• The sex determination region contains W-specific hemizygous se-
quence that is limited to females. Phylogenetic analyses indicate that
the origin of this sequence predates the speciation.

• Within the sex determination region, recombination is reduced. The
observed increased SNP density in females in the region is likely a
result of this.
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• The sex chromosomes show little sequence differentiation and no signs
of extensive degradation or the Fast-Z effects. This indicates that they
are evolutionary young.

• Insertion of repetitive sequence and sexualization of the sex chromo-
somes appear to be among the first processes to happen in sex chromo-
some evolution.

• Biased sex ratios in aS. viminalispedigree population could be traced
back to the absence of an expected male genotype. This observation
indicates a role of allelic incompatibility as base for sex ratio distortion.
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5 Future perspectives
In this work we demonstrated thatS. viminalishas a single locus sex deter-
mination system in chromosome 15. While some data indicate that also other
Salixspecies share this mechanism, it is not clear how universal the system
that we describe here is in the genus. To investigate this question further, ei-
ther unbiased mapping approaches, similar to this work could be undertaken
in other species or the presence of the W-specific hemizygous region could
be tested specifically. Such analyses should be accompanied by a phyloge-
netic analysis of the genus since the current classification in sub-generaand
even species is partially contradictory in the literature (Leskinen & Alström-
Rapaport, 1999; Azumaet al., 2000; Cronket al., 2015a; Fogelqvistet al.,
2015) but a well resolved phylogeny is crucial to determine the evolutionary
trajectory of the sex chromosome system found here.

The hemizygous regions in the genome ofS. viminalisdemonstrate the
beginning of differentiation between the sex chromosomes. More work
is however needed to understand if these hemizygous regions are actually
causative in the sex determination or if they appeared as a consequence of
stalled recombination between sex chromosomes that occurred due to other
sex determining factors and sexually antagonistic genes. The currently ongo-
ing project to assemble theS. viminalisgenome with a specific focus to sep-
arate W and Z-linked sequences with the help of third generation sequencing
data will prove useful in identifying candidate genes or other genetic ele-
ments that are causative in sex determination and will also clarify the extend
and function of hemizygous regions.

To further characterize the genetic factors that are causatively involved in
sex determination, expression studies during the flower development – espe-
cially during the specialization phase at the time were female and male floral
tissue starts to develop differently – can give new insights. In a time series
of RNA seq data the regulatory pathways can be traced back and in this way
the factors that regulate the development into male or female flowers can be
identified. To confirm the involvement of these candidates, transformation
studies inSalix, Populusor A. thalianacould potentially be used.
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To study the genetic basis of biased sex ratios more, we have already
generated new pedigree populations as back-crosses, sibling-crosses and out-
crosses to other individuals based on the genetic material from the “S5” pop-
ulation (paper IV). Due to the extensive set of well characterized markers for
these populations, it will be possible to use molecular methods to determine
the genetic sex of the offspring and we can thus analyze the sex ratios andthe
presence of genotypes based purely on molecular data from seedlings.The
genome assembly can then be used to identify candidate genes that might be
involved in the incompatibility system.

To be able to analyze sex ratios in vegetative populations of any age, and
from a breeding perspective an easy to use universal molecular sex marker
is desirable. The PCR primers we designed in paper II do already separate
between females and males, presumably on a species wide level, but in some
cases the banding pattern alone might not be sufficient to predict an indi-
viduals sex. Other binary markers, either based on PCR or loop mediated
isothermal amplification (LAMP) (Tsaiet al., 2016) should be effortless to
create based on the results from our studies and can be used to determine (and
select on) the sex of individuals already in the seedling stage.

This work has thus laid the foundation for many more, highly interesting
research projects.
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really helpful and could give a new, outside perspective. Thank you for that,
Niclas!

Science needs infrastructure and I am thankful to all those people that
made sure that the infrastructure and administration that was required for my
work was working mostly flawless. Special thanks for this goes toBjörn
Nicander, Cecilia Wärdig, Lotta Olsson, Mona Munther, Randi Fredriksen
Isberg(so sad that you passed away so early!),Urban Pettersson(alphabetical
order) and all the others.

Working successful on this project was only possible since I could rely
on all past and present members of theSalix research groups for encourage-
ment, practical help in the lab and at the computer and for creating a nice
environment at work but also at our frequent group activities. Thankyou
Amela Kujovic(fieldwork, from−10◦C to 30◦C), Andrés Cortés(short but
interesting time),Henrik Hallingbäck(thank you for all statistics help and
more),Ingrid Eriksson(nothing beats well tested protocols and experience),
Jennifer Petersson(good company makes labwork more fun and hundreds
of DNA extractions bearable),Margareta Aili (introduction to the new lab),
Per Sjödin(get me up to speed with the computational analyses),Srilaksmy
Harikrishnan(that paper got really nice) andTom Martin(fun guy, in the lab
and beyond. And you know what: my extraction protocol does work nicely!)
(alphabetical order).

I am glad that I was selected to be part of the first round of the SciLife-
Lab bioinformatics advisory program, which complemented the competence
of my advisory team with hands-on guidance on practicalities in bioinformat-
ics analyses. Especially the grand meetings were an excellent opportunity to
exchange ideas with other PhD students that worked on technically similar
but scientifically highly diverse projects. My thanks go toBjörn Nystedtfor
establishing the program, “my” advisorPer Unnebergfor many hours of men-
torship and all the participants of the program. Additionally I had the pleasure
to work with Estelle Proux-WéraandAllison Churcherfrom the SciLifeLab
WABI team on some parts of my project. Thanks for the good collaboration.

For all the good advice and practical help in analyzing sex chromosome
divergence data, I want to thankAlison E. Wrightand Judith Mank. Our
common paper is a nice bonus to all that I learned from you!

Over the years I was sharing office with many great people who were
not part of my research group but were always interested in my work and I
enjoyed it very much that we could talk about science, the struggles with it
and all the rest. Thank youDavid Velázquez, Girma Bedada, Malin Abra-
hamsson, Selcuk Aslan, Ulrike Beuch, Yunkai Jin. I also want to express
my large gratitude for discussions about life and research both toHanneke
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Marjolijn PeeleandAndrea Claesand alsoShirin Akhter, Emma Larsson,
Veronika Nordal, Daniel Uddenbergdeserve a big thank you for support and
good talks at different occasions. Also a big thank you goes to those peo-
ple I had the pleasure to teach with and to organize the SPPS PhD student
conference (you know who you are. . . )!

I also thankAlexandra Elbakyanfor providing a platform to access sci-
entific literature independent of where you are and if you get a VPN client
running on the computer you are just working on. I think scientific literature
should not be locked behind pay-walls and while all my publications (up to
now) are open access, sci-hub.cc allowed me to access most other articles
when the journals would not (e.g. late at night from home).

Ein ganz besonderer Dank gilt natürlich auch meinenEltern, die mich
jederzeit unterstützen und die mir genügend Neugierde und Ausdauer mit-
gegeben haben um in der Wissenschaft erfolgreich zu sein und auch Durst-
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Und schließlich gebührt ein ganz großes Dankeschön meiner wunder-
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Thanks a lot everyone!

P.S. I know, you read the acknowledgment first.We all do!But I made sure that the
rest of the thesis is worth reading as well; Give it a try if youever wondered about
who discovered the Y chromosome or how high population density leads to more
females (in a plant species). I really think that also the results from my studies and
the methods we used are relevant for a large audience and of course worth reading.
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