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Summary 
In recent years, genome-wide association studies (GWAS) has become a dominant tool for 

detecting genetic architectures for complex traits. Thousands of associated genetic variants have 

been reported. However, the resolution of these studies was limited by the available marker density 

for the quantitative trait loci (QTL) region. Moreover, the X chromosome and non-additive genetic 

effects have often been excluded from GWAS, despite of their potentially important biological 

functions. This thesis carried out the finer mapping of functional (calving and female fertility) and 

production (growth) traits in dairy cattle utilizing high-density SNP chip (HD) and imputed whole-

genome sequence (WGS) data, and explored the genotype imputation of the X chromosome and the 

mapping of variants exhibiting dominance effects for female fertility.  

In chapter 2, fine-mapping of a previously reported QTL in Holstein cattle on Bos taurus autosome 

18 (BTA18) for calving traits was performed, using imputed HD genotypes followed by imputed 

WGS variants. BTA18 was analyzed for seven direct calving traits in 6,113 bulls with imputed HD 

genotypes. Single nucleotide polymorphism (SNP) rs136283363 (BTA18:57,548,213) was 

consistently the most significantly associated SNP across all seven traits. Then WGS variants 

within the targeted QTL region were tested for associations with direct calving traits and with three 

conformation traits. Genes SIGLEC12, CD33 and CEACAM18 were proposed as candidate genes. 

In addition, pleiotropic effects of this QTL region were observed on direct calving traits and 

conformation traits. However, the extent of linkage disequilibrium (LD), lack of complete 

annotation and potential errors in the Bos taurus genome assembly hampered our efforts to pinpoint 

the causal mutation. 

In chapter 3, we performed a GWAS for growth traits in Nordic Holstein, Jersey, and Red Dairy 

Cattle. First, GWAS was performed within breeds using WGS variants. Then a meta-analysis was 

performed to combine information across these three breeds. Several QTL were identified to have 

large effects on growth traits in Holstein and Red Dairy Cattle, but only one QTL located nearby 

gene CYP19A1 on chromosome 10 was shared between Holstein and Red Dairy Cattle. Another 

QTL near 25 Mb on chromosome 14 was very significantly associated with growth traits in Red 

Dairy Cattle, consistent with the previously reported gene PLAG1, which affect growth in beef 

cattle and humans. No QTL was statistically significant in Jersey, which might be due to the low 

power of detection with the small sample size. Meta-analysis of the three breeds enhanced the 

power to detect QTL.  
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In chapter 4, we performed the imputation of markers on the X chromosome in Holstein cattle for 

non-genotyped animals and animals genotyped with low density (Illumina BovineLD) chips, using 

animals genotyped with medium density (Illumina BovineSNP50) chips. The program FImpute 

V2.2 and genotypes of 26,884 Holstein individuals genotyped with medium density chips were used 

in this study. We found that the imputation accuracy of markers on the X chromosome was 

improved by treating the pseudo-autosomal region (PAR) as autosomal and by increasing the 

proportion of females in the reference group. We also found imputation for non-genotyped animals 

in general had lower accuracy compared to animals genotyped with the low density SNP array. 

Besides, higher cumulative pedigree relationships between the reference group and the target 

animals led to higher imputation accuracy. Better marker coverage of the X chromosome should be 

developed to facilitate genomic studies involving the X chromosome in future studies. 

In chapter 5, we aimed to detect dominance effects on female fertility traits in Danish Holstein 

cattle using Illumina BovineSNP50 data, and evaluate the power, precision, and type 1 error of 

detecting dominance effects through simulations. Female fertility data (number of inseminations, 

days from calving to first insemination, and days from the first to last insemination) were recorded 

from 3,040 genotyped heifers and 4,483 genotyped cows from Danish Holstein population. Firstly, 

the additive and dominance genetic variances were quantified using GBLUP for the fertility traits. 

Secondly, the association analyses for heifers and cows were performed separately. In the end, a 

simulation study was carried out to test the power, precision and type 1 error rate for detection of 

dominance effects. The dominance genetic variance was larger than additive genetic variance in 

heifers, but had a large standard error. Four QTL were detected for IFL in heifers, while one QTL 

was detected for cows. All these five QTL were detected with significant additive and dominance 

effects. Simulations showed that the current sample size had limited power to detect dominance 

effects for female fertility in cattle. In the future, more females need to be genotyped and/or 

imputed to map the genetic variants with dominance effects on female fertility traits. 
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Sammendrag 
I de senest år er genomiske associationsstudier blevet det fremherskende værktøj til at under søge 

komplekse egenskabers genetiske arkitektur. Tusinder af associerede, genetiske varianter er blevet 

rapporteret. Desværre er disse studiers præcision med hensyn til stedfæstelsen af de identificere 

kvantitative egnskabsloci (quantitative trait loci, QTL) begrænset af den tilgængelige markørtæthed. 

Desuden er X-bundne og ikke-additive genetiske effekter ofte blevet udelukket fra genomiske 

associationsstudier på trods af at deres potentielt vigitige, biologiske funktioner. Denne afhandling 

beskriver finkortlægning af funktionelle (kælvning og hunlig frugtbarhed) og produktions- (tilvækst) 

egenskaber i malkekvæg under udnyttelse af SNP-chip med stor tæthed (high density, HD) og 

imputeret helgenomskevens (whole genome sequence, WGS) data, og udforsker imputation af 

markører på X-kromosomet, samt kortlægning af varianter, som udviser dominanseffekter for 

hunlig frugtbarhed. 

I kapitel 2 udførtes finkortlægning af et tidligere rapporteret QTL i Bos taurus autosom 18 (BTA18), 

som påvirker kælvningsegenskaber. Dette sker ved hjælp af HD-genotyper imputeret til WGS-

niveau. BTA18 blev undersøgt for 7 direkte kælvningsegenskaber for 6.113 tyre med HD-genotyper. 

SNP rs136283363 (BTA18:57,548,213) var konsekvent den mest signifikant associerede SNP på 

tværs af de 7 egenskaber. Herefter undersøgtes WGS-varianter i det undersøgte QTL-område for 

association med kælvningsegenskaber og eksteriøregenskaber. Gener SIGLEC12, CD33 and 

CEACAM18 foreslås som kandidatergener. Desuden observeredes pleiotrope effekter på kælvnings- 

og eksteriøregenskaber. Imidlertid gjorde omfattende koblingsuligevægt, mangelfulde annotationer 

af genomet og potentielle fejl i Bos taurus-genomassembly det vanskeligt med sikkerhed at 

identificere den specifikke variant, som var årsagen. 

I kapitel 3 udførte vi en GWAS for tilvækst i Holstein, Jersey og Rødt Malkekvæg. If første 

omgang der en GWAS indenfor hver race. Herefter gennemførtes en meta-analyse, som 

kombinerede informationen på tværs af de tre racer. Adskillige QTL med store effekter på 

tilvækstegenskaber identificeredes i Holstein og Rødt Malkekvæg, men kun et QTL tæt på 

CYP19A1 på kromosome 10 deltes mellem Holstein og Rødt Malkekvæg. Et andet QTL omkring 25 

Mb på kromosom 14 var signifikant associeret med tilvækst i Rødt Malkekvæg, hvilket er i 

overensstemmelse med tidligere rapporter om genet PLAG1, som påvirker tilvækst i kødvæg og i 

mennesker. Der var ingen signifikante QTL i Jersey, hvilket muligvis skyldes lav statistisk styrke 
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på grund af den mindre stikprøvestørrelse. En meta-analyse  af de tre racer øgede den statistiske 

styrke til at finde QTL. 

I kapitel 4 udførte vi en imputation af markører på X-kromosomet i Holsteinkvæg for ikke-

genotypede dyr og dyr, som er genotypet chips med lav tæthed (Illumina BovineLD eller LD) ved 

hjælp af dyr, som var genotypet med mellemtætheds (Illumina BovineSNP50 eller 50k) chips. 

Programmet FImpute V2.2 og genotyper for 26.884 Holsteinindivider genotypet med 50k chips blev 

benyttet hertil. Vi fandt, at imputationssikkerheden  forbedredes ved at behandle den 

pseudoautosomale region som autosomal og ved at forøge andelen af hundyr i referencegruppen. Vi 

fandt også, at imputation for dyr uden genotyper generelt var lavere end for dyr med LD-genotyper. 

En større kumulativ slægtskabsgrad til referencegruppen medførte en højere imputationssikkerhed. 

En bedre markørdækning burde udvikles for at understøtte fremtidige genomiske studier af X-

kromosomet. 

I kapitel 5 bestræbte vi os på at finde dominanseffekter for hunlige frugtbarhedsegenskaber i danske 

Holsteinkvæg på baggrund af Illumina BovineSNP50 data, og at bedømme statistisk styrke, 

præcision og type 1 fejl i sporingen af dominanseffekter ved hjælp af simulationer. Hunlige 

frugtbarhedsdata (antal inseminationer, NINS, dage fra kælvning til første insemination, ICF, og 

dage fra første til sidste insemination, IFL) var registreret for 3.040 kvier og 4.483 køer med 50k-

genotyper i den danske Holsteinpopulation. Først estimerede vi den additive genetiske varians og 

dominansvariansen for frugtbarhedsegenskaber ved hjælp af GBLUP. Dernæst gennemførtes 

associationsstudier særskilt for hhv. kvier og køer. Til slut gennemførtes et simulationsstudie for at 

undersøge den statistiske styrke, præcisionen og type 1-fejlraten ved detektionen af 

dominanseffekter. Dominansvariansen var større end den additive varians i kvier med havde store 

estimationsusikkerheder. Fire QTL kunne påvises for IFL i kvier, mens et QTL kunne påvises i køer. 

Alle disse fem QTL havde både additive effekter og dominanseffekter. Simulationer viste, at den 

aktuelle stikprøvestørrelse kun giver begrænset styrke til at påvise dominanseffekter. For at kunne 

påvise dominanseffekter for hunlig frugtbarhed, så må der i fremtiden genotypes eller imputeres 

flere hundyr.  
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Sammanfattning 
På senare år har GWAS (associationsstudier med hjälp av markörer spridda över hela genomet) 

blivit det dominerande redskapet för att beskriva den genetiska bakgrunden till komplexa 

egenskaper. Tusentals associerade genetiska varianter har rapporterats.  Dock har dessa studiers 

förmåga att identifiera loci för kvantitativa egenskaper (QTL) begränsats av den tillgängliga 

markörtätheten. Dessutom har X-kromosomen och icke-additiva genetiska effekter ofta uteslutits 

från GWAS trots deras potentiellt viktiga biologiska funktioner. Denna avhandling har genomfört 

finare kartläggning av funktionella egenskaper (kalvning och honlig fortplantningsförmåga) och 

produktion (tillväxt) i mjölkkor genom att utnyttjar SNP-chip med hög densitet (HD) och imputerad 

helgenomsekvens (WGS) data. Imputering innebär att man beräknar sannolika genotyper för loci 

som ej genotypats. Avhandlingen har utforskat imputering av genotyper på X-kromosomen och 

kartläggning av varianter som uppvisar dominanseffekter för honlig fertilitet. 

 

I kapitel 2 genomfördes en kartläggning av en rapporterad QTL på Bos taurus autosom (BTA) 18 

för kalvningsegenskaper med imputerade HD-genotyper följt av imputerade WGS-varianter. 

BTA18 analyserades med avseende på sju kalvningsegenskaper i 6113 tjurar med imputerade HD-

genotyper. SNP rs136283363 (BTA18: 57.548.213) var genomgående den mest signifikant 

associerade SNP i alla sju egenskaper. Sedan testades WGS-varianter inom den undersökta QTL-

regionen för association med direkta kalvningsegenskaper och med tre kroppsbyggnadsegenskaper. 

Generna SIGLEC12, CD33 och CEACAM18 föreslogs som kandidatgener. Dessutom har 

pleiotropa effekter av denna QTL-region observerats på direkta kalvningsegenskaper och 

kroppsbyggnadsegenskaper. Våra försök att hitta mutationer har dock hindrats av omfattningen av 

kopplingsojämvikt, bristen på fullständig annotering och potentiella fel i den tillgängliga 

genomsekvensen. 

 

I kapitel 3 genomförde vi en GWAS för tillväxtegenskaper i Holstein, Jersey, och röda mjölkkor. 

Först utfördes GWAS inom raser med hjälp av WGS-varianter. Sedan utfördes en metaanalys för att 

kombinera information över de tre raserna. Flera QTL identifierades som har stora effekter på 

tillväxtegenskaper i Holstein och röda mjölkkor, men bara en QTL ligger i närheten gen CYP19A1 

på kromosom 10 var densamma i Holstein och hos röda mjölkkor. En annan QTL vid positionen 25 
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Mb på kromosom 14 hade ett mycket signifikant samband med tillväxtegenskaper hos röda 

mjölkkor, vilket överensstämmer med den tidigare rapporterade genen PLAG1, som påverkar 

tillväxten hos människor och köttraser av nötkreatur. Ingen QTL var statistiskt signifikant i Jersey, 

vilket kan bero på låg styrka med den begränsade provstorleken. Metaanalys av de tre raserna 

förstärkte styrkan att upptäcka QTL. 

 

I kapitel 4 utförde vi imputering av markörer på X-kromosomen i Holsteinboskap för icke-

genotypade djur och djur som genotypats med låg densitet (Illumina BovineLD) chips, med hjälp av 

djur som genotypats med medium densitet (Illumina BovineSNP50) marker. I denna studie 

användes mjukvaran FImpute V2.2 och 26884 Holsteinindivider genotypade med markörer med 

medeldensitet. Vi fann att imputeringens noggrannhet för markörer på X-kromosomen förbättrades 

genom att behandla den pseudoautosomala regionen som autosomal och genom att öka andelen kor 

i referensgruppen. Vi fann också att imputering för icke-genotypade djur i allmänhet hade lägre 

noggrannhet jämfört med djur som genotypats med SNP-chip med låg densitet. Dessutom ledde 

högre ackumulerade släktskap mellan referensgruppen och måldjuren till större noggrannhet. Bättre 

markörtäckning av X-kromosomen bör utvecklas för att underlätta genomiska studier med X-

kromosomen i framtida studier. 

 

I kapitel 5 är syftet att upptäcka dominanseffekter på honliga fertilitetsegenskaper i nordiska 

Holstein med hjälp av data från Illumina BovineSNP50 och utvärdera styrka, precision, och typ I-

fel för att upptäcka dominanseffekter genom simuleringar. Honliga fertilitetsdata (antal 

inseminationer, dagar från kalvning till första insemination, och dagar från första till sista 

insemination) registrerades från 3040 genotypade kvigor och 4483 genotypade kor med hjälp av 

den nordiska Holsteinpopulationen. Först kvantifierades den additiva variansen och 

dominansvariansen kvantifierats med hjälp av GBLUP för fertilitetsegenskaper. Sedan analyserades 

associationen för kvigor och kor separat. Slutligen genomfördes en simuleringsstudie för att testa 

styrka, precision och typ I-fel för att upptäcka dominanseffekter. Dominansvariansen var större än 

den additiva variansen hos kvigor, men hade stort standardfel. Fyra QTL upptäcktes för IFL hos 

kvigor, medan en QTL upptäcktes för kor. Alla dessa fem QTL upptäcktes med betydande additiva 

och dominanseffekter. Simuleringar visade att den aktuella provstorleken hade begränsad styrka att 
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upptäcka dominanseffekter för honlig fertilitet hos nötkreatur. I framtiden måste fler hondjur 

genotypas och/eller genotyperna imputeras för att kartlägga de genetiska varianter som har 

dominanseffekter på honliga fertilitetsegenskaper. 
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1 – General Introduction 

This PhD study “Population level genome-wide association studies in dairy cattle” could be simply 

illustrated using the following mixed model equation ignoring genotype × environment interaction.  

P = μ + G + E = μ + A + D + I + E 

Where P represents the population level of phenotypes or responsible variables from one trait or 

multiple traits, one breed or multiple breeds, μ is the common mean, G are the genotypic values, A 

is the additive genetic deviation, D is the dominance deviation, I is the epistasis effect, and E is the 

residual. This general discussion will first cover the equation from the left to the right. Then we will 

walk through different association mapping methods. In the end, current progress and application of 

association mapping will be described.  

 

1.1 The P 

1.1.1 Response variables  

Estimated breeding value (EBV), daughter yield deviations (DYD) and Deregressed EBV (DRP), 

other than raw phenotypes, have been used as response variables for gene mapping in dairy cattle 

(VanRaden & Wiggans, 1991; Israel & Weller, 2002; Mao et al., 2016a). The comparisons of using 

EBV, DYD, and DRP as response variables have been done in genomic predictions (Guo et al., 

2010; Gao et al., 2013). EBVs have advantages over raw phenotypes: Firstly, EBVs of bulls have 

relatively little random error and high reliability, because the EBV of a bull is a standard measure of 

genetic merit estimated from information of daughters and other relatives. Secondly, EBVs are 

available from routine genetic evaluations, while the raw phenotypes are often not available or not 

accessible for analyses. However, taking EBVs as response variables could result in high false-

positive rate, due to the included information from relatives. Ekine et al. (2014) have shown that the 

included family information in EBVs could reduce the power and increase the false-positive rates of 

GWAS. However, they also noted that using EBVs is less problematic for dairy cattle bulls, as the 

bulk of the information is derived from progeny testing (Ekine et al. 2014).     

In contrast, DYD of a bull are the average of the daughters’ performance adjusted for fixed effects, 

non-genetic random effects, and genetic effects of the daughters’ dams. Hence, using DYD as 

response variables might not have large false positive rate. However, DYD include less data and 

thus have relatively large random errors and lower reliabilities. Moreover, DYD are often not 

available from routine genetic evaluation. DRP has been proposed for gene mapping and genomic 
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prediction  (Garrick et al., 2009). The use of DRP, adjusted for parent average effects, not only 

takes account of the heterogeneous variances of EBVs due to different numbers of daughter records 

per sire, but also removes information from other relatives. In the future, a comparison of using 

EBV, DYD, and DRP as response variables should be carried out in gene mapping studies.  

1.1.2 Cross-phenotype associations 

In the past 10 years, many GWAS have been carried out in many species including human, plants 

and livestock, identifying thousands of genome-wide significant associations (McCarthy et al., 

2008; Bergelson & Roux, 2010; Bermingham et al., 2014). Many of these associations were 

observed to be across multiple traits in the same category, or even distinct traits, and these 

associations were described as cross-phenotype (CP) associations (Solovieff et al., 2013). CP 

association has been observed across livestock and humans (Table 1).  CP association is defined 

differently from pleiotropy. Pleiotropy represents a gene or genetic variant affecting more than one 

trait (Stearns, 2010), whereas CP association could be associations with multiple traits regardless of 

the underlying genetic cause.  Solovieff et al. (2013) has classified CP associatons into three 

categories (Figure 1) : 1. biological pleiotropy which describes one gene or a genetic locus affecting 

the biology of multiple traits directly; 2. mediated pleiotropy which describes that the CP 

association occur because the phenotypes are related; 3. spurious pleiotropy which basically means 

false pleiotropy due to study design, trait misclassification, etc.  

                                A                                        B                                      C 

 

Figure 1. Types of cross-phenotype associations.  A: biological pleiotropy. B: mediated pleiotropy. 
C: spurious pleiotropy.  
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Table 1. Cross-phenotype associations detected across species.  

Variation  Position Species Traits Association Reference 

SNP 39Mb on 

Chromosome 

6 

Cattle Calving and adult 

stature 

LCORL and NCAPG genes in the 

QTL region for calving traits in 

dairy cattle, which had been 

reported to influence fetal growth 

and adult stature in several 

species.  

(Sahana et al., 2015) 

SNP BTA14:253768

27bp 

Cattle Birth weight, 

human and 

bovine height 

QTL region for birth weight in 

Nellore cattle harbors genes 

affecting human and bovine 

height 

(Utsunomiya et al., 

2013) 

SNP BTA18: 

57,321,450– 

57,625,355bp 

Cattle Calving and 

conformation 

The QTL shows strong association 

with calving traits is also strongly 

associated with conformation 

traits. 

(Mao et al., 2015) 

SNP OAR2:219569

259bp 

Sheep Tenderness, meat 

color, myoglobin, 

glycogen, 

unsaturated 

(omega-3 and -6) 

fatty acids and 

saturated fatty 

acids 

Allele near PLCD4 increases 

tenderness, improves meat color, 

increases myoglobin, glycogen, 

and unsaturated (omega-3 and -6) 

fatty acids and decreases 

saturated fatty acids. 

(Bolormaa et al., 2016) 

Copy 

number 

variation 

16p2.11 

duplication 

Human Schizophrenia, 

autism, 

intellectual 

disability, 

developmental 

delay, congenital 

malformations 

CNV duplication increases risk for 

all five disorders 

(Helbig et al., 2013) 

SNP rs12720356 

(TYK2) 

Human Crohn’s disease 

and psoriasis LDL 

The G allele increases risk for 

Crohn’s disease and decreases risk 

for psoriasis 

(Thomas et al., 2008) 

 

Methods to detect CP associations can be generally classified into two groups: multivariate analyses 

and univariate analyses. Multivariate analyses analyze two or more traits simultaneously to test the 

associations between one genetic variant and multiple traits. But this methodology requires that all 

traits are available on the same individuals, which is not always the case. On the other hand, 

univariate analyses are based on the summary statistics from association between genetics variants 

and single trait. Univariate analyses are widely applied by large consortia to combine summary 

statistics from individual research group (Mahajan et al., 2014). Even though different methods 

have been developed to detect CP associations (Fisher, 1925; Cotsapas et al., 2011; Bhattacharjee et 

al., 2012), identifying the causal mutations and understanding the underlying biological 
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mechanisms remains a challenge. As more animals will be sequenced in the future, more 

sequenced-based GWAS (Höglund et al., 2014a; Mao et al., 2016a) potentially provide us 

opportunities to detect CP associations more accurately. In the future, univariate analyses could be 

carried out to combine the single-trait sequence-based GWAS within breed or across breeds, to 

reveal a more detailed genomic landscape for CP effects.  

1.1.3 Meta-analysis 

In recent years, GWAS have become a major tool for detecting genetic architectures for complex 

traits, discovering thousands of associated genetic variants (McCarthy et al., 2008). Even though a 

single GWAS could identify many common variants, these variants often explain a small fraction of 

the total genetic variance for the trait. Thus, larger sample sizes are needed to reduce false positives 

and gain sufficient power to detect associated genetic variants, especially those with small effect 

sizes (Ioannidis et al., 2006). As a result, meta-analyses were carried out by large consortia to 

combine the results from multiple independent studies (Mahajan et al., 2014; Replication et al., 

2014; van den Berg et al., 2015).  Several hundred meta-analyses have been carried out in various 

species, because meta-analysis does not require individual-level data, but depends on summary data 

from single GWAS (Evangelou & Ioannidis, 2013). For example, in humans, a meta-analysis was 

carried out for understanding the genetic basis of type 2 diabetes (T2D) susceptibility (DIAGRAM 

Consortium et al., 2014). Published meta-analyses of GWAS were aggregated, including 26,488 

cases and 83,964 controls of European, East Asian, South Asian and Mexican and Mexican 

American ancestry. Seven new T2D susceptibility loci were identified and the mapping resolution 

of the association signals was considered improved. In cattle, Bolormaa et al. (2014) performed a 

multi-trait meta-analysis to detecting pleiotropic variants for 32 traits categorized in stature, fatness 

and reproduction in Beef Cattle. They also found that the detection power was increased.  

Various methods of meta-analysis have been proposed and they differ in weighting and their 

abilities to detect heterogeneity. One of the traditional methods combines p-values from multiple 

independent studies (Fisher, 1925). This method have been widely used in different scientific fields 

(Evangelou & Ioannidis, 2013). The disadvantages of meta-analysis based on p-values are that it 

does not provide an overall estimate of effect size, does not account for heterogeneity between 

datasets, and ignores the direction of effects. The Z-score method, which was based on the average 

of z-values, was developed to extend p-value methods to take into account of the direction of the 

effects (Cooper & Hedges, 2009). Another method named fixed-effect meta-analysis assumes true 

effect of each variant to be the same in each independent study (Pfeiffer et al., 2009). In the most 
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common weighting strategy, each study is weighted according by the inverse of its squared standard 

error. This is called inverse variance weighting (Kavvoura & Ioannidis, 2008). Compared to fixed-

effect meta-analysis, random-effect meta-analysis assumes the effects of the same variant differ 

between independent studies. This takes into account the differences between studies (DerSimonian 

& Laird, 1986). However, random-effect meta-analysis are generally not used for discovery 

purposes due to far lower power than fixed-effect meta-analysis, but more often used for predictive 

purposes (Pereira et al., 2009). Bayesian approaches for GWAS meta-analysis were also proposed 

and they are straightforward and intuitive. However, these approaches need some knowledge about 

the prior distributions of parameters of interest, and the computation for the genome-wide data can 

be intensive (Evangelou & Ioannidis, 2013). 

1.1.4 Functional traits 

There has been declines in genetic level for many functional traits in dairy cattle, due to the 

negative genetic correlations between production traits and functional traits, such as the negative 

genetic correlation between milk yield and fertility (Lucy, 2001).  However, in recent years, a 

stabilization or even increase in genetic trends of functional traits has been observed, due to an 

active and balanced genetic selection (Figure 2). For example, the genetic progress of female 

fertility has been improved by 20% in the Nordic cattle population (SEGES, 2015), due to that 

increased weight has been put on female fertility traits in the breeding goal.  

 

Figure 2. Genetic trend of fertility, longevity, and youngstock survial for dairy cattle in three Nordic 
countries (Denmark, Finland, and Sweden). On the X axis is the year, on the y axis is the genetic 
progress (the average breeding value per birth year). (Source: 
http://www.sweebv.info/ba52nycknav.aspx).  
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Calving traits were included in this PhD study. Reduced calving ease not only leads to considerable 

economic losses due to veterinary treatment costs and calf loss but also leads to reduced animal 

welfare. Three calving traits are included in the Nordic cattle genetic evaluation. They are the 

birthing process (ease of calving), 24-hour survival after birth (stillbirth) of the calf, and calf size. 

Calving traits have low heritability, ranging from 0.04 to 0.2 (Lin et al., 1989; Steinbock et al., 

2003; Boelling et al., 2007). Several QTL mapping studies for calving traits (Sahana et al., 2011; 

Höglund et al., 2012; Cole et al., 2014) reported the presence of a QTL with a large effect on 

calving traits in Holstein cattle at approximately 57 Mb on BTA18. The resolution of these studies, 

however, was hindered by the limited marker density. Mao et al. (2015) carried out a fine-mapping 

study for the QTL region on BTA18 using imputed HD and WGS data. In this study, significant 

variants were prioritized with high resolution, and their biological relevance to the traits was 

interpreted. 

Another functional trait category, female fertility, was also included in this PhD study. The traits 

studied were the number of inseminations (NINS), days from calving to first insemination (ICF), 

and days from the first to last insemination (IFL). These traits are used as measures of a cow’s 

ability to return to cycling status after calving, to become pregnant after insemination, and maintain 

pregnancy. Female fertility traits have negative genetic correlation with milk yield (Roxström et al., 

2001), and in general have low heritability (from 0.01 to 0.10) (Hou et al., 2009; Sun et al., 2009). 

QTL mapping studies have been carried out to understand the genetic architecture underlying 

fertility traits (Palucci et al., 2007; Sahana et al., 2010; Höglund et al., 2014b; Aliloo et al., 2015), 

utilizing SNP chip and imputed WGS data. Strong associations of SNPs with fertility traits were 

reported on BTA1, BTA4, BTA7, BTA9, BTA11 and BTA13 in Nordic Holstein, Nordic Red and 

Jersey dairy cattle.  

1.1.5 Production traits 

Beef production from dairy production system should not be overlooked, because most of the bull 

calves from dairy breeds end up in beef production, for example in Nordic countries (Johansson et 

al., 2008) and Ireland (Hickey et al., 2007).  Besides, beef production from dairy cows is more 

efficient than from suckler cows in terms of climate impact (Johansson et al., 2008). Thus, it is 

worthwhile to explore the genetic architecture of growth traits, such as daily carcass gain and 

carcass conformation scores  from dairy breeds.  

24 

 



1 – General Introduction 

In beef cattle, a large numbers of GWAS have been carried out to identify QTL associated with 

growth traits (Setoguchi et al., 2009; Lee et al., 2013). For example, a QTL on Bos taurus autosome 

(BTA) 6 was found to be associated with carcass-related traits in Japanese Black and Brown cattle 

(Setoguchi et al., 2009). However, much fewer QTL mapping studies have been performed on 

growth traits for dairy cattle than for beef cattle (Elo et al., 1999; Pryce et al., 2011). Dairy cattle 

might differ in genetic architectures, because beef cattle accumulate nutrients as meat while dairy 

cattle mainly transform nutrients into milk (Bellmann et al., 2004). Moreover, no definitive findings 

of causal mutations have been reported for growth in cattle except for the double-muscled 

phenotype (Grobet et al., 1997).  

 

1.2 The G 

1.2.1 Development of genomic tools for Cattle genetics  

The cattle played an  important role in the development of human civilizations around the world and 

still the major source of animals protein for nearly 7 billion humans, due to their ability to 

efficiently convert low-quality forage into energy-dense fat, muscle, and milk (Muers, 2009; The 

Bovine Genome Sequencing and Analysis Consortium, 2009). In addition, regarding the area of 

comparative genomics, cattle have an interesting position in the phylogenetic tree: they are in a 

clade phylogenetically distant from humans and rodents (Muers, 2009). They also provide an 

important model organism for human genetic research (Andersson, 2016). In consequence, it is 

important to understand the genetic mechanisms underlying variation in complex traits for cattle.  

The continued development of genomic technologies provides a powerful tool to investigate cattle 

genetics. Like other mammals, cattle genomics developed in the wake of human genomics research 

and originated in somatic cell genetics (Womack & Moll, 1986). Early on isolated cases of 

associations between traits and genetic markers were identified (Conneally & Stone, 1965; Hines et 

al., 1969). In the early 90s, the first “genomic map” produced for cattle consisted of synteny groups 

assigning loci and markers to specific bovine chromosomes by integrating somatic cell genetics 

with in situ hybridization (Fries et al., 1993).  Bovine radiation hybrid (RH) maps were developed 

and then used for high-resolution comparative mapping (Williams et al., 2002). Microsatellite 

markers in cattle were applied to develop linkage maps to enable QTL mapping for economically 

important traits (Fries et al., 1990; Barendse et al., 1994; Kappes et al., 1997). In 2009, two 

assemblies of the bovine genome were published based on the genomic sequence of the Hereford 
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cow, L1 Dominette 01449. The assembly was initially generated and assembled by the Baylor 

College of Medicine Human Genome Sequencing Center (The Bovine Genome Sequencing and 

Analysis Consortium; & Elsik, C. G.; Tellam, R. L.; Worley, 2009). At the same time, Zimin et al. 

(2009) published an alternative assembly using the primary sequence data. Both assemblies have 

gone through several iterations of improvement and were upgraded to the current versions, 

Btau_4.6.1 and UMD3.1.1 (http://bovinegenome.org/). Then, there was a rapid improvements in 

high-throughput methods for SNPs genotyping and sequencing technologies (Matukumalli et al., 

2009; Goodwin et al., 2016). In addition, the cost of sequencing decreases dramatically. Figure 3 

illustrates the changes of the cost of sequencing a human genome. Due to the reduced cost, followed 

by an initiative human genome project known as 1000 Genome project (Consortium et al., 2010), 

an analogous project called The 1000 Bull Genomes Project was carried out for bovine genetics and 

genomic research (Daetwyler et al., 2014). These advances in genomic technologies have 

contributed to the research of GWAS and Genomic Selection (GS) (Meuwissen et al., 2001). 

 

 

Figure 3. Sequencing cost presented from 2001 to 2015. (https://www.genome.gov/27541954/dna-
sequencing-costs-data/) 

1.2.2 Imputation 
Genotype imputation is defined as predicting genotypes that are not directly typed in samples of 

individuals based on information from other individuals (Marchini & Howie, 2010). Imputation has 

been applied in several scenarios: 1. Imputation could be used to impute the low-density genotyped 

or even non-genotyped individuals using the reference population genotyped with high-density chip, 
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in order to reduce the genotyping cost (Daetwyler et al., 2011; Pryce et al., 2014); 2. Imputation is 

often used for combining data from different studies and genotyping platforms, in order to improve 

the power of analyses. For instance, imputation is widely used in the meta-analysis of GWAS, to 

detect variants with small to moderate effects (Saxena et al., 2007; WTCCC, 2007); 3. Imputation 

could be beneficial to the call rate for individuals with sporadically missing genotypes (Marchini & 

Howie, 2010). 

Current imputation methods rely on two sources of information, thus these methods could be 

classified into two classes. One class contains population-based methods, which use population 

linkage disequilibrium (LD) information to predict unobserved marker types based on LD with 

observed marker types; the other class contains family-based methods, which use linkage 

information from close relatives. 

Population-based methods, which are normally probabilistic based, model haplotype frequencies 

using LD information. For example, Beagle, a commonly used imputation software, uses hidden 

Markov model (HMM) to infer the haplotype phase and to impute non-genotyped markers 

(Browning & Browning, 2009). Beagle employs a graphical model that constructs a tree of 

haplotypes from the reference population, and then summarizes it in a directed acyclic graph by 

haplotype similarity. Then, the probability of a missing genotype is computed by averaging 

posterior genotype probabilities (Browning & Browning, 2009). Beagle4.1 claims to be fast, 

accurate, and memory-efficient by restricting the probability model to genotyped markers in the 

target samples and by performing linear interpolation to impute non-genotyped markers (Browning 

& Browning, 2016). Another commonly used software, IMPUTE2, also employs HMM which is 

based on an approximate coalescent model including mutation and recombination process to infer 

the haplotypes. 

Family-based methods are mainly rule-based methods. These models appear to work better for 

imputation of very low-density genotyped animals, especially when many close relatives are 

genotyped (Bouwman et al., 2014). For example, AlphaImpute utilizes simple phasing rules, long-

range phasing, haplotype library imputation, and segregation analysis (Hickey et al., 2011). 

FImpute relies on efficiently exploiting genealogy or relationships between individuals by searching 

for haplotypes from the longest to the shortest. This concept assumes that close relatives share 

longer haplotypes that have lower frequency in the population, and distant relatives share shorter 

haplotypes which usually have higher frequency (Sargolzaei et al., 2014). 
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With the rapid reduction in genotyping costs, access to phenotypes becomes a limiting factor 

especially for traits that are difficult or expensive to measure. Imputing non-genotyped individuals 

with such phenotype records could be potentially beneficial for GWAS or GS (Bouwman et al., 

2014). Currently, only a few family-based imputation programs can impute non-genotyped 

individuals, such as AlphaImpute (Hickey et al., 2011), FImpute (Sargolzaei et al., 2014), FindHap 

(VanRaden et al., 2013), and PedImpute (Nicolazzi et al., 2013). Another issue that needs more 

investigation is the imputation for the X chromosome, as most of the imputation studies focused on 

imputation of autosome (Brøndum et al., 2014; van Binsbergen et al., 2014).  However, in dairy 

cattle for example, ignoring the X chromosome could miss important biological functions and affect 

genomic evaluation (Sandor et al., 2006; Lyons et al., 2014; Su et al., 2014; de Camargo et al., 

2015). Several programs have extended the algorithm to consider the X-chromosome imputation 

(Hickey et al., 2011; Sargolzaei et al., 2014). It was showed that the Z chromosome in chickens 

with 25 SNPs could be imputed to a higher density (1,137 SNPs) with relatively high accuracy 

(approximately 0.9) (Hickey & Kranis, 2013). However, in this study the pseudo-autosomal region 

(PAR) that recombines with the W chromosome was treated as X-linked in the analysis. 

 

1.2.3 The X chromosome 

In mammalian, the females have two X chromosomes while males have one X and one Y 

chromosomes. Only the pseudo-autosomal region (PAR) is homologous between the X and Y 

chromosomes, which is required for sex chromosome segregation during meiosis in males (Das et 

al., 2009).  In the bovine genome, the X chromosome is relatively long (148,823,899 bp), 

constituting approximately 6% of the total physical genome (Zimin et al., 2009). ENSEMBL 

(release 82) reports 19,981 protein coding genes in the whole bovine genome, of which 833 (4.2%) 

are found on the X chromosome. It was also reported that the inclusion of the markers on the X 

chromosome enhanced reliabilities of genomic prediction in dairy cattle. On average markers on the 

X chromosome accounted  for 1.7% of the total additive genetic variance of 15 indices included in 

the Nordic Total Merit index (http://www.nordicebv.info) (Su et al., 2014). In the human genome, 

the X chromosome harbors more than 2,300 genes, including coding, noncoding and pseudo genes  

(Flicek et al., 2014). Around 7% of phenotypes with a known molecular basis are X linked, 

including autoimmune, cognitive, and behavioral conditions, according to the Online Mendelian 

Inheritance in Man (OMIM) catalog of human genes and genetic disorders (http://www.omim.org). 

Considering the potentially important biological functions of the X chromosome in animals and 
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human, the X chromosome is vital in the genetic analyses.  However, the X chromosome has often 

been excluded from GWAS, as evident from only 242 out of all 743 human GWAS conducted from 

January 2010 to December 2011 took the X chromosome into account (Wise et al., 2013).  

There are particular issues when including the X chromosome in GWAS: 1. Lower marker density 

on the X chromosome on the current genotyping platforms compared to autosomes for species like 

cattle. For instance, although the length of the X chromosome is about 6% of the total bovine 

genome, common genotyping chip Illumina BovineSNP50 BeadChip (Illumina Inc., San Diego, CA) 

(Matukumalli et al., 2009) has only  1.6% (894 out of 55,298) of total SNPs from the X 

chromosome; 2. Lower genotype calling accuracy compared with that of autosomes. Problems 

might occur with genotype calling for hemizygous males due to the lower intensity of the X-

chromosome variants, because males might cluster differently than females (Wise et al., 2013). 3. 

Quality control (Hardy-Weinberg equilibrium and minor allele frequency (MAF)) need to be 

adjusted for the X chromosome, because the expected frequencies of genetic variants are sex 

dependent (Wise et al., 2013); 4. Different imputation strategies compared with the imputation of 

autosomal markers. Imputation is crucial for combing data and is a cost-effective approach to 

augment genomic data from low-density or even non-genotyped individuals to higher marker 

density. The complexity of imputing the X chromosome lies with the fact that the X-chromosome 

inheritance is different from autosomes except in the PAR region where it is similar to the situation 

on autosomes.  Imputation for the X chromosome in dairy cattle, which takes the PAR into account, 

has been investigated using existing imputation softwares (Mao et al., 2016b). 5. The test statistics 

for autosome GWAS do not apply to the X chromosome, except for the situations that only females 

or the PAR are analyzed. A number of different test statistics have been proposed for the X-

chromosome association studies (Nicolae, 2006; Clayton, 2008). In the future, more tailor-made 

guidelines should be applied for X-chromosome GWAS, such as tailor-made quality control and 

test statistics.  

 

1.3 The A, D and I 

1.3.1 From additive to non-additive inheritance 

In quantitative genetics breeders have mainly focused on additive genetic variations. Also in 

applications such as GWAS and GS focus has almost exclusively been on additive genetic variance. 

Even though studies have reported that non-additive effects make a substantial contribution to 
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genetic variation in complex traits (Gengler et al., 1997; Palucci et al., 2007; Norris et al., 2010), 

this source of genetic variation is often neglected. However, understanding the non-additive part of 

the genetic architecture of traits is helpful for planning breeding strategies and increasing genetic 

gains. For example, non-additive effects can be utilized by designing mating schemes that optimize 

favorable allele combinations, especially when family or clonal propagation are available in the 

breeding program (Muñoz et al., 2014). Non-additive genetic variations include dominance which 

is the interaction between alleles at the same locus, and epistasis which is the interaction between 

alleles at different loci. Hill et al. (2008) examined a wide variety of theoretical models and showed 

high proportions of additive genetic variance even in the presence of non-additive gene action, 

basically because most alleles are likely to be at extreme frequencies. Due to the strong artificial 

selection in practical animal and plant breeding, gene frequencies are expected to be at extreme for 

the causal loci and therefore, a large proportion of non-additive gene action could contribute to the 

additive genetic variation. This influences the dissection of genetic architecture of complex traits 

and genetic evaluation.   

Non-additive genetic variation in growth, carcass and fertility traits has been investigated in 

Australian beef cattle, using 729,068 SNPs (Bolormaa et al., 2015). This study showed that the 

number of SNPs significantly associated with dominance effects was higher than expected by 

chance, and the authors presumed that most significant dominance effects were to increase fitness 

and in the opposite direction to inbreeding depression. Another study showed that dominance 

effects play a relevant role in the genetic architecture of number of teats in pigs (Lopes et al., 2014). 

In this study, the dominance genetic variance of the four QTL detected explained 1.82% of the total 

phenotypic variance, corresponding to one-fourth of the additive genetic variance. Su et al. (2012) 

proposed a method to build a dominance relationship matrix and an epistatic interaction matrix 

using genome-wide SNPs and illustrated that models including non-additive genetic effects 

improved unbiasedness of genomic predictions for daily gain in pigs. Su et al. (2012) demonstrated 

that dominance genetic variance accounted for 5.6% while additive by additive epistatic genetic 

variance accounted for 9.5% of the total phenotypic variance. Munoz et al. (2014) analyzed height 

data from a multi-family population of the tree species, Pinus taeda. It was shown that realized 

genomic relationships built from markers yielded a more precise partition of additive and non-

additive genetic variance, compared with pedigree based relationship. In addition, they showed that 

the additive and non-additive genetic variance were similar in magnitude in the analyzed population. 
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1.4 Association mapping Methods 

During the past decade GWAS have become a popular tool for gene mapping, not least due to the 

availability of HD and WGS data. GWAS has obvious advantages compared to the traditional QTL 

mapping approaches such as candidate gene approach and linkage mapping analyses (Hirschhorn & 

Daly, 2005). For example, the linkage mapping analyses, which are often performed using 

microsatellite markers, require family information and have poor resolution. GWAS do not need 

related individuals because they utilize the LD information among markers in a population and 

normally have finer resolution. Compared with candidate gene approach, GWAS do not require 

prior knowledge of the analyzed genomic regions.  

As in other statistical areas, methods of GWAS can be broadly classified into two types: frequentist 

and Bayesian approaches. The fundamental difference between frequentist and Bayesian 

approaches in the GWAS context is that Bayesian approaches quantify the probability of a SNP 

associated with the phenotype based on both the prior knowledge and current data (Stephens & 

Balding, 2009). Several models have been proposed for the frequentist approaches such as single-

marker tests (Cleveland & Deeb, 2009), linear mixed model analysis (Yu et al., 2006), genealogy 

based mixed-model, and haplotype models (Dashab et al., 2012). In a frequentist approach, SNP is 

normally analyzed one at a time using a linear mixed model that includes the effect of a SNP, fixed 

effects such as batch effect, the year, the cohort or group to which the individual belongs, and the 

random polygenic effect of each individual. The polygenic value is fitted to consider all other genes 

affecting the trait besides the SNP under evaluation. The significance of association between a SNP 

and the phenotype of interest is tested by comparing with a null hypothesis of no association. 

Several Bayesian models were also proposed such as least absolute shrinkage and selection operator 

(LASSO) (Tibshirani, 1996), and Bayesian variable selection models (BVS) (George & McCulloch, 

1993). In a Bayesian approach such as BVS, all SNPs are fitted in the model simultaneously and 

Markov chain Monte Carlo (MCMC) algorithms are implemented (Satagopan et al., 1996). 

Bayesian methods provide an alternative approach to test associations through so called Bayes 

factor, which is the ratio between the posterior odd ratio to prior odd ratio. 

1.5 Current progress and applications of GWAS 

GWAS were first applied in the analysis of human disease, and then were extended to the field of 

domestic animals due to the availability of the reference genomic sequences (Hillier et al., 2004; 

Zimin et al., 2009). By far, a large number of phenotype-genotype associations have been identified 
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in both humans and domestic animals. Table 2 lists some examples of reported GWAS in domestic 

animals.   

In human, GWAS results have been or probably will be applied in the areas of disease prediction, 

biomarker identification, disease sub-classifications, personalized medicine like treatment selection 

and drug dosing. For disease prediction, some treatments will prevent disease entirely or are the 

most effective before clinical abnormalities or a firm clinical diagnosis. Thus, it is important to 

predict the risk of diseases earlier in life. For example, Type 1 diabetes mellitus results in serious 

morbidity and mortality, requiring life-long insulin treatment and is highly heritable. The β-cells 

will be almost destroyed, and there are no effective treatments, when Type 1 diabetes mellitus is 

detected clinically (Chatenoud et al., 2012). Applying GWAS findings to clinical practice requires 

expertise from a wide range of disciplines, including molecular biology, clinical medicine, 

pharmacology, bioinformatics, implementation research, and clinician education (Manolio & Green, 

2011). 

In domestic animals, GWAS findings could be incorporated in a genetic evaluation model to 

increase accuracy of genetic prediction (Boichard et al., 2012). In the genomic BLUP (GBLUP) 

model, it is expected that with different weights on different SNPs depending on their association 

results, the relationship between test and training animals will be estimated more accurately. 

Brøndum et al. (2015) investigated the effect on the accuracy of genomic prediction,  of adding a 

small number of significant variants from single marker analysis based on WGS association results 

to the regular 50k SNP array data. In this study, 5 index traits from Nordic Holstein, French 

Holstein, and Nordic Red cattle were evaluated using GBLUP and Bayesian 2-distribution mixture 

model. Results showed that there were increases in accuracy of around four percentages in 

prediction reliability points for production traits and less than one percent for functional traits using 

GBLUP. The increases of in prediction reliabilities were less pronounced when using Bayesian 

models. 
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Table 2. Examples of reported GWAS in domestic animals. 

Trait Genotype Phenotype Method Significant 

level 

Finding Reference 

Milk yield 50K 

62,343 Holstein 

Friesian cows 

sired by 798 

bulls 

Mixed linear 

models P< 0.001 

362 

significant 

SNPs 

(Hayes et 

al., 2009) 

Fertility 50K 

2,531 Danish 

and Swedish 

Holstein bulls 

Mixed model 

analysis 

Chromosome

-wise 

Bonferroni 

correction 

74 

significant 

SNPs 

mainly on 

BTA 3, 5, 

10, 13, 19, 

20, and 24 

(Sahana et 

al., 2010) 

Tuberculosis 700k 

1,223 female 

cattle (629 

cases, 594 

controls) 

GRAMMAR,regio

nal heritability 

mapping and 

haplotype-sharing 

analysis identified 

Chromosome

-wise 

Bonferroni 

correction 

2 

significant 

SNPs 

(Bermingha

m et al., 

2014) 

Fertility Sequence 

3,475 Nordic 

Holstein bulls 

from Denmark, 

Sweden and 

Finland 

Mixed linear 

models 

Chromosome

-wise 

Bonferroni 

correction 9 genes 

(Höglund et 

al., 2014b) 

Androstenone 60K 

987 pigs 

divergent for 

androstenone 

concentration 

from a 

commercial 

Duroc- based 

sire line QFAM test 

FDR of q-

value ≤ 0.05 

37 

significant 

SNPs 

(Duijvesteijn 

et al., 2010) 

Canine 

atopicdermatitis 20K 

48 Golden 

Retrievers 

including 25 

with atopic 

dermatitis and 

23 healthy 

controls Chi-square test P < 0.001 

35 

significant 

SNPs 

(Wood et 

al., 2009) 

Racing distance 50K 

118 elite 

Thoroughbred 

racehorses Chi-square test 

Bonferroni 

correction 

a 

significant 

690 kb 

region 

(Hill et al., 

2010) 
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1 – General Introduction  

1.6 Objectives 

The overall objectives of this research were to fine-map functional (calving and female fertility) and 

production (growth) traits in dairy cattle utilizing HD and imputed WGS data, and explore the 

genotype imputation of the X chromosome and mapping variants exhibiting dominance effects for 

female fertility. 

 

1. Chapter 2 performed fine-mapping of the QTL on BTA18 for calving traits in the Nordic 

Holstein cattle population using HD genotypes and WGS variants, and investigated the pleiotropic 

effects of the fine-mapped QTL on conformation traits using WGS variants. 

2. Chapter 3 carried out GWAS for growth traits in three dairy cattle breeds, Holsteins, Jerseys, 

and Red Dairy Cattle, and meta-analysis was performed to gain power by combining association 

results from these three breeds. 

3. Chapter 4 investigated the imputation accuracy of markers on the X chromosome in dairy cattle 

for non-genotyped animals and animals genotyped with low-density chips. 

4. Chapter 5 explored the genome-wide dominance effects for female fertility traits in Danish 

Holstein cattle using Illumina BovineSNP50 data, and evaluates the power, precision, and type 1 

error of detecting dominance effects using simulated data.  
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6 – General Discussion 

The objectives of this thesis were to fine map QTL underlying functional (calving and fertility) and 

production (growth) traits by utilizing HD genotypes and imputed WGS variants, and explore 

genotype imputation for the X chromosome and mapping variants exhibiting dominance effects for 

female fertility. In chapter 2, Bos taurus autosome (BTA) 18, which had previously been reported to 

have a large effect on calving traits in Holstein cattle (Kühn et al., 2003; Thomasen et al., 2008; 

Cole et al., 2011; Sahana et al., 2011), was scanned using imputed HD genotypes followed by 

imputed WGS variants. SIGLEC12, CD33 and CEACAM18 were proposed as candidate genes. 

Pleiotropic effects of this QTL on direct calving and conformation traits were detected. In chapter 3, 

GWAS were performed on growth traits in Holstein, Jersey, and Red Dairy Cattle using WGS 

variants. CYP19A1 is a strong candidate gene for a QTL on BTA10 which was highly significant in 

both Holstein and Red Dairy Cattle. It has previously been reported that the gene PLAG1 has an 

effect on growth traits in humans and livestock (Gudbjartsson et al., 2008; Lettre et al., 2008; Pryce 

et al., 2011) . In chapter 4, the imputation accuracy for markers on the X chromosome in Holstein 

cattle was assessed. We reported that the imputation accuracy can be improved if PAR is treated as 

autosomal, and also if the proportion of females in the reference group is increased. In chapter 5, 

genetic variants throughout the genome were scanned for additive and dominance effects on female 

fertility traits. Only a few QTL were significant for both additive and dominance effects in Nordic 

Holstein cattle. The simulations studies showed that the power to identify QTL was limited due to 

small sample size and when the QTL heritability was low.  

In this general discussion part, I will discuss the benefits of using WGS data for mapping genes 

affecting economic traits and limiting factors in detecting causal mutations in cattle. Then, I will 

discuss the genotype imputation strategy for the markers on the X chromosome. Finally, CP 

associations and increasing cow data for enhancing GWAS power and exploring non-additive 

effects will be discussed.  

 

2.1 Utilization of WGS for identifying causal mutations 

Does WGS data lead us to identify the casual mutations affecting economically important traits in 

cattle? I studied this with a QTL having major effect on calving traits as an example (chapter 2). A 

QTL at approximately 57 Mb on BTA18 was reported to have a large effect on direct calving traits, 
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through linkage-based QTL-mapping studies (Kühn et al., 2003; Thomasen et al., 2008) and 

association studies (Cole et al., 2009; Sahana et al., 2011). SNP rs109478645 (allele C and A) at 

BTA18:57,589,121 bp was the most significant among markers on the Illumina 50K SNP array data 

(Cole et al., 2009; Sahana et al., 2011). This SNP is located in an intron of the sialic acid-binding 

Ig-like lectin-12 gene (SIGLEC12), which is expressed in the human placenta, and reported to 

function in the initiation of parturition (Brinkman-Van Der Linden et al., 2007). However, the 

resolution of these studies was limited because of the low marker density for this QTL region. 

Based on the WGS data, variant rs454366488 (BTA18: 57 477 561) was found to have the strongest 

association. However, several other variants nearby also showed similar significance level, because 

the LD is quite high among these nearby variants (Figure 2). Another QTL targeted for fine-

mapping was segregating in Holstein and Nordic Red cattle. In chapter 3, a QTL located on BTA10 

at approximately 59.2 Mb was detected to be significantly associated with growth traits in both 

Holsteins and Red Dairy Cattle. The most significantly associated variants were located close to the 

gene CYP19A1, which is known to encode the aromatase that catalyzes the conversion of androgens 

to estrogens (Chwalisz & Fürbass, 2014), and was reported to affect both growth and reproduction 

in cattle (Wendorf et al., 1983), mice (Heine et al., 2000), and humans (Öz et al., 2001). Thus, 

CYP19A1 was proposed as a candidate gene for growth traits. However, even with WGS data, we 

did not succeed in pinpointing the exact causal variant due to strong long-distance LD. Haplotype-

based analyses showed multiple haplotypes with a significant effect, indicating the underlying 

causal mutations might not follow simple bi-allelic QTL model or the causal mutation is an old 

mutant allele that is present in multiple haplotype background.    

In principle, GWAS with WGS variants could directly locate most of the causal variants, because 

nearly all variants segregating in the population are included in the analysis. However, our study in 

chapter 2 and 3 showed that WGS data did not manage to pinpoint the causal mutations. The 

reasons could be: 1. not all variants are included in our WGS variant data set because some variants 

were removed during the quality-checking process, certain types of variants are not normally 

detectable using WGS and non-bi-allelic variants (structural variants) were removed due to 

limitations of the imputation software; 2. LD with causal mutations is a key factor for mapping but 

could hinder the precise identification of causal ones, especially for Holstein that maintain long 

range haplotypes (De Roos et al., 2008); 3. The functional annotations for cattle genome were not 

detailed enough to prioritize the statistically significant variants. More detailed genomic annotation 

data could be used 1. to be directly incorporated in GWAS models, for example, weighting 
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sequence variants based on their annotation have been shown to improve the power of whole-

genome association studies (Sveinbjornsson et al., 2016), 2. to facilitate the explanations of GWAS 

findings in post-hoc, for example, the missense variants could be more likely to alter the gene 

translation than anonymous variants.  

Even though WGS data did not help us to reveal the causal mutations, it should be noted that 

GWAS are essentially based on the correlation, but correlation does not imply causation (Aldrich, 

1995). GWAS are the first step for identifying causal variant, because they are carried out without 

prior knowledge of the underlying biological mechanisms (Hirschhorn & Daly, 2005). Once a QTL 

has been detected in one population, follow-up studies should be carried out to confirm this QTL in 

different populations, and then functional studies should be carried out to identify causal mutations. 

GWAS results could provide a source for gene editing (Gaj et al., 2013) targets to find out the 

molecular basis for certain traits. A candidate causal variant could be confirmed by looking at 

phenotypic change through precise and targeted changes. For example, the approach of combination 

of GWAS and CRISPR elucidates a mechanistic basis for the strongest genetic association (FTO 

locus) with obesity (Claussnitzer et al., 2015). In human genetics, it is essential to know the causal 

mutations for the purpose of medical treatment. In animal breeding, knowing the causal mutations 

might not be that urgent because the significant variants could be implemented to weigh the 

genomic relationship to improve the selection accuracy (VanRaden, 2008; Brøndum et al., 2015).  
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Figure 2. Regional single-marker analysis for the Birth Index (BTA18: 57,321,450–57,625,355) 

using imputed whole-genome sequence variants. All genes located in this region are represented 

with green arrows. 

Computational costs have been an issue for GWAS utilizing WGS data. In chapter 2, the number of 

variants after quality control was 13,396,556 for Holsteins, 11,423,283 for Jerseys, and 14,002,305 

for Red Dairy Cattle. Fitting these amounts of variants in a mixed model one by one will cost up to 

months in analysis, with a typical sample size such as 5,000 records. This expensive computation 

time could be shortened and different approaches have been proposed. Aulchenko et al. (2007) 

proposed a two-step method to approximate the maximum likelihood estimate for mixed models, 

which is currently implemented in GRAMMAR. In the first step, a reduced model without genotypes 

is fitted. In the second step, the residuals from the reduced model are fitted in a model with 

genotypes, assuming non-genetic effects and variance component are constant. The inference of the 

genotype effects is close to that obtained from the full model, when the inclusion of genotype does 

not change these parameters. However, the results could be inaccurate when genotype is correlated 

with non-genetic effects. Moreover, effect of the variant will be underestimated if the effect is large. 
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Rather than fixing both the non-genetic effects and variance components, a mixed model that only 

fixes the variance components over all variants was proposed (Kang et al., 2010). This model 

assumes that each variant explains only a small fraction of the total genetic variance of a trait, 

avoiding estimating the time-consuming variance component repeatedly for each variant. Thus, the 

computational time is decreased but slower than GRAMMAR. This method is implemented in 

software EMMAX. The drawback of this method is that it still does not solve the problem of 

underestimating the variant with a large effect. In chapter 2, we have applied EMMAX in our 

analyses of WGS data and the computation time was reduced from weeks to only a few hours. The 

greatly reduced computation cost enables us to carry out GWAS on three breeds using imputed 

WGS data. The drawback of EMMAX, which underestimates variants having large effects, did not 

seem to impact our results as the major QTL were detected due to large significances. And we could 

re-analyze the region of interest by running the complete model to obtain proper effect estimates.  

 

2.2 The X chromosome 

In chapters 2 and 3, genome-wide analyses were carried out using imputed HD and WGS genotypes. 

However, the X chromosome was not included in those analyses. A similar situation is also 

common in human GWAS. It was reported that only 242 out of 743 human GWAS conducted from 

January 2010 to December 2011 included the X chromosome in the analyses (Wise et al., 2013). 

However, the X chromosome should not be ignored because the X chromosome in bovine genome 

is relatively long (148,823,899 bp), constituting approximately 6% of the total physical genome 

(Zimin et al. 2009). Ensembl (release 82) reports 833 (4.2%) of 19,981 protein coding genes on the 

bovine X chromosome. For example, non-synonymous mutations on the X chromosome were 

reported to be associated with andrological (traits that related to male fertility) and growth traits in 

beef cattle (de Camargo et al., 2015). In our case, the X chromosome was not include because the 

markers on the X chromosome were not imputed to higher density, due to limitations of imputation 

tools at the moment of analyses. The imputation strategy needs to be different for the X 

chromosome from that for autosomes. The X chromosome for mammals has a special genetic mode 

of inheritance: females have two copies and males have only one, leading to different inheritance 

pattern for the X chromosome from that for the autosomes.  

In chapter 4, new strategies for imputing the markers on the X chromosome in Holstein cattle for 

both non-genotyped animals and animals genotyped with low-density (Illumina BovineLD, 
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Illumina Inc., San Diego, CA) chips were investigated. The existing software FImpute V2.2 

(Sargolzaei et al., 2014) was used, and large number of animals (26,884) genotyped with medium-

density (Illumina BovineSNP50) chips were used as the reference group. The X chromosome was 

successfully imputed for both non-genotyped and low-density genotyped animals. We also gained 

imputation accuracy of markers on the X chromosome when treating the PAR as autosomal. This 

improved imputation accuracy suggests that the PAR should be imputed separately and treated as 

autosomal when imputing genotypes, because the PAR is inherited differently from the X-linked 

region. Besides the treatment of the PAR region, other factors affecting imputation accuracy for the 

X chromosome were also assessed in chapter 4, such as different male/female proportions in the 

reference group, and cumulated degree of relationship between the reference group and target group. 

Chapter 4 provides a strategy and more insights for imputing the X chromosome, which could be 

used as reference for routine imputation of the X chromosome for GWAS.  

In chapter 5, a genome scan including all the autosomes plus the X chromosomes was carried out 

for variants having additive and/or dominance effects on female fertility traits in Holstein cattle, 

using raw female fertility phenotypes. This study utilized 3,040 heifers and 4,483 cows genotyped 

with Illumina BovineSNP50 BeadChip version 1 and 2 (Illumina Inc., San Diego, CA). The 

genotypes had between 2,448 (BTA1) and 707 (BTX) markers after quality control. No SNP with 

significant effects (additive or dominance) was identified on the X chromosome. Moreover, the 

SNPs on the X chromosome in general had lower significance compared with SNPs on the other 

autosomes. Sex chromosomes have important roles in germ cell development in mammals, being 

enriched in genes expressed in the testis and ovary (Heard & Turner, 2011). For example, in 

humans, some cases of male infertility arise because of mutations in testis-expressed 11 gene 

(TEX11) in the maternal X chromosome that prevent development of viable sperm (Yatsenko et al., 

2015). Therefore, it is logical to assume that some fertility genes could be located on the X 

chromosome. However, this is not the case in our study. The reasons might be: 1. the genotyping 

platform for our study has low coverage for the X chromosome. The Illumina BovineSNP50 

BeadChip (Illumina Inc., San Diego, CA) (Matukumalli et al., 2009) contains only 1.6% (894 out of 

55,298) of total SNPs on the X chromosome; 2. The statistical power of our study design is too low 

to detect the additive and dominance effects. The chapter 5 did not consider specific test statistics 

for the analyses of the X chromosome (Nicolae, 2006; Clayton, 2008), because only females were 

used in our study. In the future, better coverage of the X chromosome and larger sample size should 

be used to map QTL on the X chromosome.  
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2.3 Cross-phenotype associations 

In chapter 2, the WGS variants in the QTL region (BTA18: 57,321,450–57,625,355 bp) for calving 

traits were also tested for the associations with conformation traits, including body depth, bone 

structure and stature. These WGS variants (BTA18: 57 321 450– 57 625 355) exhibit moderate 

associations with body depth and bone structure, but weak association with stature. Besides, the 

variants that were highly significant were common for both conformation traits and calving traits. 

Cole et al. (2009) performed a genome scan for 27 traits in American Holstein bulls. They also 

reported this calving trait QTL exhibits pleiotropic effects on conformation, economic merit and 

longevity. This pleiotropic effect might be categorized as mediated pleiotropy (Solovieff et al., 

2013), because calving and conformation traits could be phenotypically related. However, we can 

not here distinguish mediated pleitropic effect from biological pleitropy, because we do not know if 

one gene or a genetic locus underlying this QTL is directly affecting the biology of both calving and 

conformation traits.  

 

Figure 3. Demonstration of multi-breed meta-analysis and cross-phenotype (CP) meta-analysis. 

Orange rectangle highlights the multi-breed meta-analysis and green rectangle highlights the CP 

meta-analysis. CGL = carcass gain with a long finishing period; CGS = carcass gain with a short 

finishing period; CS = carcass conformation score; GI = growth index. 
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In chapter 3, a multi-breed meta-analysis was carried out to gain power by combining information 

from Holstein, Jersey, and Red Dairy Cattle.  Additional CP meta-anaysis was carried out for 

growth traits. The difference between multi-breed and CP meta-analysis is shown in Figure 3. In CP 

meta-analysis, we utilize an approach that can integrate association evidence from summary 

statistics of CGL, CGS, CS, and GI from Holstein, Jersey, and Red Dairy Cattle (Zhu et al., 2014). 

For comparison, the results of CP meta-analysis for  CGL, CGS, CS, and GI are shown in Figure 4, 

while the manhattan plot of GI in multi-breed meta-analysis is shown in Figure 5. In CP meta-

analysis, more significant variants were detected compared to the multi-breed meta-analysis of a 

single trait. In addition, the large QTL effects which was detected in the multi-breed meta-analsyis 

were still remain high significance in the CP meta-analysis. This CP meta-analysis suggests that 

analyzing multiple traits could improve the statistical power for the QTL that were missed in a 

single trait analysis. As more traits were recoded in one animal and single-trait GWAS has been 

performed on most of the traits, CP meta-analysis could be easily carried out. The summary 

statistics of these single-trait GWAS could be combined in this way to integrate the phenome-wide 

data available for genetic association analysis. However, we need to pay attention that double 

counting might occur when combing summary statistics from multiple traits, because multi-trait 

models could have been applied in the producre of estimating EBV in routein genetic evaluation in 

cattle. In chapter 5, declines in genetic level for many functional traits has been observed in dairy 

cattle, due to the negative genetic correlations between production traits such as milk yield and 

functional traits such as fertility (Lucy, 2001). Thus, the CP association analysis might be worth to 

be carried out to dissect this negative genetic correlation in future studies.  
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Figure 4. Manhattan plot of cross-phenotype (CP) meta-analysis for CGL, CGS, CS, and GI in 

Holstein, Jersey, and Red Dairy cattle. CGL = carcass gain with a long finishing period; CGS = 

carcass gain with a short finishing period; CS = carcass conformation score; GI = growth index. 

 

 

Figure 5. Manhattan plot of genome-wide -log10(P-values) for the growth index in multi-breed 

meta-analysis including Holstein, Jersey, and Red Dairy Cattle. 
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2.4 Increasing of cow data 

Cow data could be utilized in both gene mapping and genomic prediction. In chapter 2 and 3, EBVs 

obtained from routine genetic evaluations or DRP were used as response variables. Thus, the non-

additive part of the genetic architectures of calving traits and growth traits remain unexplored. In 

recent years, more and more cows are genotyped. This accumulation of cow genotype data enables 

us to perform GWAS for both the additive and dominance effects by using recordings on individual 

rather than EBVs. In chapter 5, female fertility data from 3,040 Holstein heifers and 4,483 Holstein 

cows was utilized to investigate on the additive and dominance effects. In the results, four QTL 

were detected for IFL in heifers and only one QTL was detected for IFL in cows. The simulations 

showed that the current sample size provides limited power to detect dominance effects for female 

fertility traits. With the accumulation of cow data, it is expected that the power to detect non-

additive effects will increase. In addition, with the available imputation tools, genotypes of non-

genotyped cows could also be imputed in future studies.  

Increased cow data impacts not only the power of GWAS, but also GS. In most GS for dairy cattle 

populations, progeny tested bulls constitute the reference population. A sufficient size of the 

reference population is required to obtain accurate estimation of marker effects and thus reasonable 

genomic prediction accuracy (Lund et al., 2011; Wiggans et al., 2011). There are several solutions 

proposed to enlarge the reference population size: 1. genotypes are shared within and across 

countries (Lund et al., 2011); 2. Information from different breeds are combined (Hayes et al., 

2009); 3. More genotyped cows are added in the reference population, especially for small 

population (Thomasen et al., 2014).  Increasing number of genotyped cows is both attractive and 

achievable. Some traits such as milk production, female fertility, and calving traits are only 

expressed in females and are already under routine recording. Thus, investigation on these cows 

could directly lead us to the underlying biology. In addition, the genotyping cost has decreased to be 

able to afford a large-scale genotyping on cows. Apart from the direct genotyping, more cows 

without genotypes or genotyped with low-density SNP chip could be imputed utilizing a rich 

resource of imputation tools (Marchini & Howie, 2010; Browning & Browning, 2013; Hickey & 

Kranis, 2013; Sargolzaei et al., 2014). However, attention needs to be paid on the possible biased 

selection of cows to genotype, if only superior and elite dams are genotyped. Thus, more young 

cows where no selection has been carried on should also be genotyped. 
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2.5 Conclusions 

GWAS have been widely implemented for dissecting the genetic architecture underlying complex 

traits in livestock and human, and numerous associations have been reported for several species. 

Our study has carried out GWAS with sequence-level variants, investigated on the ‘missing’ X 

chromosome from association studies and explored non-additive effects. The power of GWAS is 

expected to enhance in the future as more animals are accumulated with phenotype and genotype 

data. Imputation to WGS variants has become a standard practice due to the availability of reference 

sequences. This will greatly improve the resolution of gene mapping, especially for species with 

low LD in the genome, because in these species the causal mutations may be statistically separated 

from the nearby variants. More detailed genomic annotation data are also needed either to be 

directly incorporated in GWAS models, or to facilitate the explanations of GWAS findings in post-

hoc. Inspired by human GWAS studies, GWAS consortiums could be established to combine data 

or summary statistics across countries or breeding organizations to increase the size of data for 

dairy cattle. In addition, as more and more traits are recorded in one individual from routine genetic 

evaluation, CP meta-analysis could be carried out to increase the power of GWAS. Follow-up 

functional studies are also necessary to confirm the association and finally to locate the causal 

mutations.  
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Individual Training Plan 

Individual Training Plan  
 

 TRAINING (30 ECTS minimum) 

Mandatory courses Where/when  ECTS 

Welcome to EGS-ABG   AU/Sep 2012 2 

Scientific writing and presentation AU/Nov 2012 2 

How to write and publish a scientific paper  SLU/Jan-Mar 2015 3 

EGS-ABG Fall Research School  Ethiopia/Oct 2013 2 

Research Ethics for Science and Technology  SLU/Nov 2015 2 

Science in Practice  SLU/Oct 2015 2 

Leading organizations, projects and processes SLU/Mar-Apr 2015 3 

AdǀaŶced scieŶtific courses  ;≥ϭ8 ECTSͿ   

Linear Models in Animal Breeding  Norway/June 2015 3 

Selection and Response on Quantitative Trait  Germany/July 2013 3 

Sequence data analysis training school   Netherlands/Dec 2012 1.5 

Linkage and association mapping  AU/Jan-Mar 2013 5 

Introduction to Perl Programming   AU/May 2013 1.5 

Breeding Plans for Sustainable Animal Breeding  AU/Aug 2013 5 

EGS-ABG fall course "The Sustainability Concept in 
Animal Breeding"   

SLU/Oct 2015 2 

Population Genomics in Crops and Farm Animals  Austria/Nov 2012 2 

Total credits ;≥3Ϭ ECTSͿ  39 
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DISSEMINATION OF KNOWLEDGE 

Teaching/MSc supervision Where/When 

Teaching assistant for the course "Genetics"  AU/ Mar 2013 - June 2013 

Teaching assistant for the course "Gene mapping"  AU/Dec 2013 – Jan2014 

Teaching assistant for the course "Quantitative 
genetics" 

AU/Dec 2013 – Jan2014 

International conferences (minimum of 3)   

Poster in Conference of European Association for 
Animal Production(EAAP-France) 

France/Aug 2013 

Oral presentation in Conference of 10th World 
Congress on Genetics Applied to Livestock 
Production (WCGALP) 

Canada/Aug 2014 

Oral presentation in Conference of "Breeding for 
Bacon, Beer and Biofuels" 

United Kingdom/Apr 2015  

Oral presentation in Conference of European 
Association for Animal Production  

Poland/Sep 2015 

Poster in Conference of 5th International Conference 
on Quantitative Genetics 

United States/June 2016 

Seminars and ǁorkshop ;ŵiŶiŵuŵ ϭͿ  

Agricultural Research Connections Workshop Kenya/July 2013 

Seminar in Department of Animal Breeding and 
Genetics 

SLU/May 2015 

Other Activity  

Organizer for weekly "Gene mapping" team meeting AU/ Jan 2013 – Sep 2014 
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