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The role of rodents in the transmission of Echinococcus 
multilocularis and other tapeworms in a low endemic environment 

Abstract  

Echinococcus multilocularis is zoonotic tapeworm in the Taeniidae family with 

a two part lifecycle involving a canid definitive host and a rodent intermediate 

host. The work of this thesis followed the first identification E. multilocularis in 

Sweden in 2011 in a red fox (Vulpes vulpes). The main purpose was to describe 

the importance of the rodents for E. multilocularis transmission in Sweden. 

Echinococcus multilocularis was identified in both the water vole (Arvicola 

amphibius) and the field vole (Microtus agrestis), but not the bank vole (Myodes 

glareolus) or mice (Apodemus spp). As the number of E. multilocularis positive 

rodents was low (n=9), the examination of other taeniid parasites was used to 

investigate overall parasite transmission patterns. Rodents caught in field habitat 

(field voles and water voles) were ten times more likely to be parasitized than 

rodents caught in forest habitat (bank voles and mice). These results provide 

further support for the importance of field- and water voles found in field habitat 

for cestode transmission. Still, these rodent species differ from the most common 

rodent intermediate hosts in central Europe, and metacestode development 

within these species may be limited. Thus, the presence of E. multilocularis in 

Sweden could be constrained by the lack of an ideal intermediate host.  

The distribution E. multilocularis was found to be highly aggregated with 

localized areas of high parasite egg contamination. Despite an extremely low 

national prevalence, multiple positive rodents and feces were identified in areas 

with known and unknown E. multilocularis status. This success is credited to the 

targeted sampling strategy, which was designed to focus collection efforts in 

areas where risk for parasite presence was estimated to be highest. This sampling 

strategy could be used as a basis for future risk-based sampling to detect E. 

multilocularis in areas where parasite prevalence is low or unknown. 

Keywords: Echinococcus multilocularis, tapeworm, fox, rodent, intermediate host, 

transmission ecology, risk-based sampling, targeted sampling 

Author’s address: Andrea L. Miller, SLU, Department of Biomedical Sciences and 

Veterinary Public Health, Section for Parasitology  

P.O. Box 7036, 750 07 Uppsala, Sweden  

E-mail: andrea.miller@slu.se



Dedication 

To my parents for always encouraging me to be what I want to be and to 

Grandma and Grandpa Fischer for encouraging me to do it with a healthy sense 

of adventure  

 

 

 

 

 

  



 

Contents 

List of Publications 7 

Abbreviations Used 9 

1 Background 11 

2 Introduction 13 
2.1 Echinococcus multilocularis 13 

2.1.1 Lifecycle 13 
2.1.2 Zoonotic Potential 15 
2.1.3 Transmission Dynamics and Micro-Foci 16 

2.2 Monitoring/Surveillance Considerations 17 
2.2.1 Monitoring/Surveillance in the EU 17 
2.2.2 Freedom from Disease 18 
2.2.3 Sample Collection 18 
2.2.4 Risk-based Sampling 19 

2.3 Echinococcus multilocularis in Sweden 19 
2.3.1 History of E. multilocularis in Sweden 19 
2.3.2 The EMIRO Project 23 
2.3.3 Definitive Hosts in Sweden 23 
2.3.4 Proposed Rodent Intermediate Hosts in Sweden 24 

2.4 Other Taeniid Parasites 25 
2.4.1 As a Proxy 25 
2.4.2 Other Parasites 26 

3 Aims of the Thesis 31 

4 Materials and Methods 33 
4.1 Study Regions (Papers I-III) 33 
4.2 Rodent Trapping (Papers I-II) 33 

4.2.1 Snap Trapping (Papers I-II) 34 
4.2.2 Topcat Trapping (Papers I-II) 34 
4.2.3 Rodent Trapping Site Placement (Papers I-III) 35 

4.3 Fox Fecal Collections (Papers II-III) 37 
4.4 Laboratory Methods 39 

4.4.1 Rodent Dissection (Papers I, II) 39 
4.4.2 Fecal Egg Isolation (Papers II, III) 40 



4.5 Parasite Identification (Papers I-III) 41 
4.5.1 Morphologic and Histologic Methods (Paper I-II) 41 
4.5.2 Molecular Methods (Papers I-III) 41 

4.6 Statistical Analyses (Papers II-III) 42 

5 Results and Discussion 43 
5.1 Role of Rodents for E. multilocularis Transmission in Sweden 43 

5.1.1 The Importance of Field Voles (M. agrestis) and Water Voles (A. 

amphibius) 43 
5.1.2 Presence and Susceptibility of Rodents as a Limiting Factor 44 

5.2 Spatial and Temporal Parasite Distribution and Transmission Factors 46 
5.2.1 Micro-foci 46 
5.2.2 Yearly and Seasonal Effects 47 
5.2.3 Occurrence and Distribution of Other Taeniid Cestodes 47 
5.2.4 Field as a Risk Factor for Transmission 48 

5.3 Monitoring Considerations 49 
5.3.1 Sampling Methodology 49 
5.3.2 Sampling Design Implications 50 

6 Conclusions 51 

7 Future Perspectives 53 

8 Populärvetenskaplig Sammanfattning 57 

References 59 

Acknowledgments 71 
 

 



7 

List of Publications 

This thesis is based on the work contained in the following papers, referred to 

by Roman numerals in the text: 

I Miller, A. L., Olsson, G. E., Walburg, M. R., Sollenberg, S., Skarin, M., 

Ley, C., Wahlström, H., and Höglund, J. (2016). First identification of 

Echinococcus multilocularis in rodent intermediate hosts in Sweden. 

International Journal of Parasitology: Parasites and Wildlife 5(1), 56-63.                                   

doi: 10.1016/j.ijppaw.2016.03.001 

II Miller, A. L., Olsson, G. E., Sollenberg, S., Walburg, M. R., Skarin, M. S., 

and Höglund, J. Transmission ecology of taeniid liver parasites in rodents in 

Sweden, a low endemic area for Echinococcus multilocularis. (Manuscript). 

III Miller, A. L., Olsson, G. E., Sollenberg, S., Skarin, M., Wahlström, H., and 

Höglund, J. Support for targeted sampling of red fox (Vulpes vulpes) feces 

in Sweden: a method to improve the probability of finding Echinococcus 

multilocularis (Parasites & Vectors, In Press) 

Papers I and III are reproduced with the permission of the publishers. 



  8 

The contribution of ALM to the papers included in this thesis was as follows: 

I Determined field and laboratory design in cooperation with co-authors and 

as part of the EMIRO group. Performed fieldwork with some support from 

student volunteers and co-authors. Performed the majority of the rodent 

dissection and some molecular labwork. Mainly responsible for data 

interpretation. Drafted the manuscript and handled correspondence with 

the journal. 

II Determined field and laboratory design in cooperation with co-authors and 

as part of the EMIRO group. Performed fieldwork with some support from 

student volunteers and co-authors. Performed the majority of the rodent 

dissection and some molecular labwork. Mainly responsible for data 

interpretation in collaboration with main supervisor and statistician. 

Drafted the manuscript. 

III Determined field and laboratory design in cooperation with co-authors and 

as part of the EMIRO group. Performed fieldwork with some support from 

student volunteers and co-authors. Performed the majority of fecal egg 

collections and some molecular labwork. Mainly responsible for data 

interpretation in collaboration with supervisors and statistician. Drafted the 

manuscript and handled correspondence with the journal. 

 

 

 

  



9 

Abbreviations Used 

BLAST Basic Local Alignment Search Tool 

EES European Economic Area 

EFSA European Food Safety Authority 

ELISA Enzyme Linked Immunosorbant Assay 

EMIDA Coordination of European Research on Emerging and Major 

Infectious Diseases of Livestock 

EMIRO Echinococcus Multilocularis in ROdents 

ERA European Research Area 

EU European Union 

FOHM Public Health Agency of Sweden 

FoMA National environmental and wildlife monitoring assessment 

program (Sweden) 

FORMAS Swedish Research Council 

G/N Gnesta/Nyköping 

K Katrineholm 

MC-PCR Magnetic capture polymerase chain reaction 

NCBI National Center for Biotechnology Information 

PCR Polymerase chain reaction 

SJV Swedish Board of Agriculture 

SLV National Food Agency, Sweden 

SVA National Veterinary Institute (Sweden) 

U Uddevalla 

V/V Vetlanda/Växjö 

 

  



  10 

  



11 

1 Background 

Echinococcus multilocularis, the red fox tapeworm, is part of the parasite family, 

Taeniidae. It is the shortest of the tapeworms reaching only a maximum length 

of 4.5 mm as an adult (Thompson and McManus, 2001) and, thus, has also been 

termed the dwarf fox tapeworm. Despite its size, it causes one of the most severe 

parasitic diseases known to man (Torgerson et al., 2008). This tapeworm has a 

lifecycle which involves many hosts across the northern hemisphere, and, in 

recent years, has been suggested to be a zoonotic parasite of increasing concern 

(Davidson et al., 2012).  

Figure 1. Example of a newspaper article (front page photo) after the first finding of 

E. multilocularis in Sweden. Main headline: “I am worried about the children” 

Affected landowner fears the tapeworm. Top box, lower right: Voles give clues in 

the hunt for infection. Lower box, lower right: The Minister: “It can change our 

outdoor life”, Swedish translation by author. Newspaper: Göteborgs-Posten (The 

Göteborg Post), Nr 101, Week 15, April 13, 2011. Photographer: Elisabeth Alvenby. 

Used with permission. 
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With the first report of E. multilocularis in 2011 (Osterman Lind et al., 2011), 

Sweden became part of the northernmost border for E. multilocularis in Europe 

(except for Svalbard, Henttonen et al., 2001). Fueled by media reports, such as 

the ones in Figure 1, the public reacted with not only fear for personal safety, 

but also concern for the preservation of the Scandinavian cultural concept of 

“friluftsliv”. Directly translated as “outdoor life”, this concept is an intrinsic 

need to connect to nature though, for example, outdoor activities (for a review 

of this idea see Beery (2013). Connected to this concept is the strong tradition 

of collecting and eating fresh berries, the practice of which has been suggested 

as a route of human exposure for E. multilocularis (e.g Kern et al., 2004).  

The Public Health Agency of Sweden (FOHM) and National Food Safety 

Agency (SLV) immediately began work to answer questions about the safety of 

the outdoors (Wahlström et al., 2012). Furthermore, the Swedish Board of 

Agriculture (SJV) decided to take action, in collaboration with the National 

Veterinary Institute (SVA), to clarify the geographical distribution of the 

parasite. An intense monitoring effort was undertaken to analyze a national 

collection of almost 3000 foxes and a regional collection of nearly 800 fox feces 

by the end of 2011, at a cost of nearly 4.7 million SEK (~466,000 €) (Wahlström 

et al., 2015). Although positive results were few (see also Section 2.3.1), it was 

concluded that E. multilocularis was established in the country, that eradication 

was not possible, and that risk for public health was low (Wahlström et al., 

2012).  

Soon after the first finding in Sweden, funding was obtained for a project 

investigating the role of the rodent in the E. multilocularis lifecycle across 

Europe (see Section 2.3.2). Sweden’s involvement, in the form of this thesis, 

couldn’t have been more timely. Many questions still remained about the 

presence of E. multilocularis in Sweden—the most important of which was the 

identification of the rodent link (which was still unknown). Furthermore, from a 

research perspective, studying this parasite at the northern border of its range 

provided a unique opportunity to understand what factors, if any, limit parasite 

prevalence.  
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2 Introduction 

2.1 Echinococcus multilocularis 

2.1.1 Lifecycle 

The cestode Echinococcus multilocularis has an indirect lifecycle involving a 

canid definitive host and a rodent intermediate host (Figure 2). The adult 

tapeworm lives within the small intestine of the definitive host. The prepatent 

period is about a month but has been reported as less than 25 days (Kapel et al., 

2006). When reproductively mature, the adult worm sheds eggs into the 

environment with the definitive host’s feces. The shedding period has been 

shown to be up to three months in young foxes (Kapel et al., 2006). When an 

intermediate host ingests these eggs, the shells are digested in the stomach to 

release the oncospheres (parasite larvae). From the small intestine, the 

oncospheres migrate though the bloodstream and lymphatic system to the liver 

and develop into a metacestode (Thompson, 1995) (Figure 3A). The 

metacestode is a multivesicular structure that has an outer laminar layer and an 

Figure 2. The lifecycle of E. multilocularis with focus on the rodent intermediate host. The adult 

worm (lower right) lives in the fox and sheds eggs (lower right) into the environment. After a rodent 

ingests the eggs, a metacestode develops in the rodent liver. Only metacestodes which contain 

protoscolices (upper left) are infectious to the fox after eating the rodent. © Diogo Guerra. Used 

with permission within the EMIRO Project. 
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inner germinal layer (Thompson, 1995). The inner germinal layer gives rise to 

brood capsules which produce protoscolices (Thompson, 1995) (Figure 3B). 

This maturation can take 6-10 weeks in highly susceptible hosts (Woolsey et al., 

2015b). Without protoscolices the metacestode is considered non-infectious. 

The lifecycle is only completed when a definitive host ingests an infectious 

intermediate host (i.e. one that contains a metacestode with protoscolices). 

For most of Europe, the most important definitive host is the red fox (Vulpes 

vulpes) (Eckert & Deplazes, 2004). Prevalence of E. multilocularis in the red fox 

has been reported over 60% in some regions (Raoul et al., 2001; Hofer et al., 

2000). Other hosts in Europe may include the arctic fox (V. lagopus) (important 

on Svalbard, Fuglei et al., 2008), raccoon dog (Nyctereutes procyonoides) 

(Kapel et al., 2006) and other canids. Pet dogs can host the parasite, but, even in 

high endemic areas, prevalence is usually low (<10%) (see also section 2.1.2) 

(Deplazes et al., 2011). Although cats can serve as hosts, Kapel et al. (2006) 

noted that parasite development within the cat is limited. 

In Europe, the most important rodent intermediate hosts are within the 

Arvicolinae subfamily, which includes voles, lemmings, and muskrats (Eckert 

& Deplazes, 2004). Of these, the common vole (Microtus arvalis) and the water 

vole (Arvicola scherman) are considered the most important rodent intermediate 

hosts within central Europe due to reports of high prevalence of infection (e.g. 

39% in Arvicola spp. Gottstein et al., 2001) and importance as prey items for the 

red fox (Raoul et al., 2010). The bank vole (Myodes glareolus) may also be an 

important intermediate host in some areas (Reperant et al., 2009; Barábasi, S.S. 

et al., 2011); however, overall this species is considered of lesser importance 

than the common vole or water vole in central Europe due to typically low 

reports of prevalence (Hanosset et al., 2008). Furthermore, a recent laboratory 

study has indicated a low susceptibility of bank voles to E. multilocularis 

Figure 3. Echinococcus multilocularis A) Multiple mestacestodes (white arrows) in a water vole 

liver B) Protoscolices (larvae) from a metacestode   Photos: Andrea Miller 
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(Woolsey et al., 2016). Other sympatric rodents, e.g. mice (Apodemus spp.), are 

believed to be of even less importance to the transmission of E. multilocularis 

given the rare observations of infection (e.g. Barabási et al., 2011; Stieger et al., 

2002). 

2.1.2 Zoonotic Potential 

Humans can become infected by E. multilocularis by ingestion of eggs from the 

environment. Like in the rodent intermediate host, a metacestode develops most 

commonly in the liver but can metastasize to bones and other organs (Ammann 

& Eckert, 1995). Development in the liver is usually very slow (5-15 years 

before obvious symptoms arise) and is characterized by a proliferative lesion(s) 

which invades the surrounding liver tissue much like cancer (Ammann & Eckert, 

1995). Advocated treatment is often long-term use of anthelminthics, such as 

menbendazole or albendazole, but may also include invasive procedures, such 

as liver resection and transplants (Brunetti et al., 2010). Without such treatment, 

case prognosis is very poor (Ammann & Eckert, 1995). 

Risk factors for exposure are difficult to explore due to long incubation 

period. Factors such as lifestyle (e.g. farming, hunting), consumption of 

contaminated forest berries or unwashed garden vegetables, and drinking 

contaminated water have all been suggested as routes of contamination (Kern et 

al., 2004; Schantz et al., 2003; Yamamoto et al., 2001). Due to close contact 

with humans, infected dogs may be one of the most important sources of 

infection. Dog ownership (or simply presence of dogs) which have access to 

infected rodents has been shown to be a risk factor for alveolar echinococcosis 

in both Alaska and China (Craig et al., 2000; Rausch et al., 1990). 

Occurrence in humans is rare even in high endemic areas, and recent studies 

have suggested natural immunity may protect a large proportion of 

infected/exposed humans from actually developing the disease (Gottstein et al., 

2015; Vuitton & Gottstein, 2010). However, in Europe, it has been suggested 

that the risk for exposure may be increasing as the geographic range of the 

parasite expands and numbers of definitive and intermediate hosts increase 

(Davidson et al., 2012). This suggestion is supported by studies, such as 

Schweiger et al. (2007) which reported nearly doubled incidence of human 

infection, from ~0.15/100000 to 0.26/100,000, in Switzerland in the early 2000s. 

This increase was positively correlated with the increase in fox population which 

followed the European rabies vaccine campaign in the 1980s (Schweiger et al., 

2007). However, outside of the E. multilocularis high endemic countries of 

Europe (e.g. Germany, Switzerland, France), it is more difficult to analyze 

trends. In many other European countries, the parasite has only recently been 
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recognized in the past decades and reports of human cases may be lacking due 

to poor reporting or simply misdiagnosis (Vuitton et al., 2015). 

2.1.3 Transmission Dynamics and Micro-Foci 

As an indirectly transmitted parasite with a free-living egg stage and multiple 

potential final and intermediate hosts, the transmission of E. multilocularis is 

very complex (for a recent review see Raoul et al. 2015). Factors such as 

predator-prey dynamics, host density and susceptibility as well as seasonal, 

yearly, and environmental conditions interact to influence each stage of the 

parasite’s lifecycle (Giraudoux et al., 2003). In addition, movements of the red 

fox definitive host can carry the parasite over large distances. Although typical 

movements are within several kilometers, red fox dispersal has been reported up 

to 60-65 km in Sweden (Englund, 1980). Still, actual parasite transmission 

occurs within only 100s of meters in the more localized home ranges of the 

rodent intermediate host (e.g. Erlinge et al., 1990). When optimal conditions for 

all the factors listed above exist in these geographically limited areas, 

transmission is enhanced and “hotspots” or “micro-foci” of parasite presence are 

formed (Giraudoux et al., 2002). 

In central Europe, micro-foci have been most closely associated with field 

habitats where both common voles and water voles live (Giraudoux et al., 2003). 

These voles are highly susceptible to E. multilocularis (e.g. Burlet et al., 2011; 

Woolsey et al., 2015b) and, within a micro-focus, prevalence in these species 

can be high (e.g. 39% of 28 examined water voles, Gottstein et al. 2001). These 

rodent species live in dense populations and exhibit both seasonal and 

interannual peaks in population numbers (Duhamel et al., 2000b; Delattre et al., 

1992). Although the red fox appears to have a dietary preference for Microtus 

spp (Raoul et al., 2010; Guislain et al., 2008), it also feeds on water voles, 

particularly during times of high population densities (Raoul et al., 2010). 

Increased presence of foxes in these rodent habitats is marked by increased fecal 

densities (Robardet et al., 2011; Guislain et al., 2007). Thus, the basic 

components needed for parasite transmission (definitive and intermediate hosts, 

feces) are focused in these areas. Transmission is further enhanced if micro-

habitat conditions, such as a cool, moist environment, or seasonal conditions, 

such as cold winters, exist to increase parasite egg survivability (Veit et al., 

1995). 

Micro-foci are important not only for understanding parasite transmission 

between wildlife hosts, but also for understanding transmission to humans. 

Although the specific risk for human exposure in these areas yet unknown, 

micro-foci are areas of focused parasite egg contamination. Viel et al. (1999) 

showed that areas with high densities water voles were correlated to a high 
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incidence of human cases in eastern France. As discussed above and in Viel et 

al. (1999), intense feeding of foxes on water voles during periodic outbreaks 

likely increased parasite transmission and environmental contamination and, 

thus, human infection years later. In addition, it has been suggested that clusters 

of human infection demonstrated in high endemic areas may be linked to 

occurrence of micro-foci (Said-Ali et al., 2013; Danson et al., 2004; Giraudoux 

et al., 2002).  

A better understanding of the relationship between human and wildlife 

infection will provide insight into limiting or even controlling risk of infection 

risk humans. However, the identification of micro-foci in the environment 

remains challenging. The occurrence and relative importance (i.e. E. 

multilocularis prevalence of hosts present) of these areas varies in both space 

and time for many reasons, some of which are still unknown (Giraudoux et al., 

2002). For instance, as discussed above, fluctuations in rodent population 

densities create variation in fox feeding patterns and, thus, changes in levels of 

transmission and environmental contamination. In addition, landscape changes 

due to deforestation or agricultural practices may create or destroy habitat 

opportunities for suitable rodent intermediate hosts (Giraudoux et al., 2013). 

Due to the potential link to public health, this is an area of much needed research. 

2.2 Monitoring/Surveillance Considerations 

2.2.1 Monitoring/Surveillance in the EU 

Due to the zoonotic potential of E. multilocularis and its status as an emerging 

disease in Europe (Eckert et al., 2000), E. multilocularis was added to the list of 

zoonotic diseases for which monitoring and yearly reporting is required for EU 

member states in 2003 (European Parliament & Council of the European Union, 

2003). Because both the diagnostic and sampling techniques to be used are not 

well described, member states have the freedom to choose how to implement 

this directive. However, without standardized sampling and diagnostic 

techniques, comparisons between countries are difficult perform (Conraths & 

Deplazes, 2015). In addition to these difficulties, an underlying issue for 

successful monitoring/surveillance programs in all countries is the difficulty and 

expense of obtaining representative wildlife samples (Mörner et al., 2002). 

Most monitoring efforts for E. multilocularis in Europe focus on the fox 

rather than the rodent. Reasons for this may include that prevalence in foxes is 

often observed to be higher than in rodents (e.g Hanosset et al., 2008; Hofer et 

al., 2000) and samples can be collected over large areas (e.g. Raoul et al., 2001). 

In addition, fox samples are perceived to be more easily obtained (i.e. through 

hunter collaboration or other existing wildlife programs) (Conraths & Deplazes, 



  18 

2015). However, hunter collected samples are often biased both spatially and 

temporally, as hunters usually concentrate efforts only in certain regions or 

during certain time periods (Conraths et al., 2003). Furthermore, by focusing on 

the fox, very little or no information is gained about the rodent intermediate host. 

As demonstrated in this thesis, the evaluation of rodent samples can, for instance, 

give insight into the localized distribution of the parasite and potential 

limitations to parasite transmission. 

2.2.2 Freedom from Disease 

Monitoring/surveillance of E. multilocularis is, for obvious reasons, most 

important for countries trying to maintain or declare E. multilocularis disease-

free status. According to the EU directive (No. 1152/2011), a country can declare 

freedom from E. multilocularis if a monitoring program is designed to show with 

95% confidence that 1% or less of foxes in the country are infected with the 

parasite (European Commission, 2011). To maintain disease-free status, this 

must be reconfirmed on a yearly basis (European Commission, 2011). Countries 

with disease free status are allowed to enact deworming regulations to restrict 

the importation of dogs from E. multilocularis endemic countries (European 

Commission, 2011). Within the EU/EES, only Finland, the United Kingdom, 

Ireland, Malta, and mainland Norway are considered disease free (European 

Commission, 2011). Sweden lost disease-free status in 2011 (see Section 2.3.1). 

2.2.3 Sample Collection 

As discussed in Section 2.2.1, most monitoring focuses on the fox definitive 

host. Identification of positive foxes is typically done either through examination 

of intestines (from fox carcasses) or collected feces (from environment or fox 

carcasses). For biosafety reasons, these samples are typically frozen at -80 C for 

some time (≥1 week, carcass; ≥3 days, feces) to kill parasite eggs (Eckert et al., 

2001b). The gold standard for diagnosis in the fox is the sedimentation and 

counting technique (SCT), whereby worms are counted from subfractions of 

intestinal content (Eckert et al., 2001a). However, this method is time consuming 

and, thus, costly to perform (Conraths & Deplazes, 2015). In addition, there are 

significant biosafety concerns in handling the carcass before freezing (Eckert, 

2001). In contrast, diagnosis based on fecal examination can provide a safer, 

more cost efficient method of parasite detection (Conraths & Deplazes, 2015). 

Methods for fecal evaluation focus on detection of either copro-antigen (e.g. 

Raoul et al., 2001) or taeniid egg DNA (e.g. Mathis et al., 1996). For a recent 

review and comparison of commonly used diagnostic techniques for each of 

these samples see Conraths and Deplazes (2015). 
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2.2.4 Risk-based Sampling 

Although the statistical concepts behind risk-based sampling are beyond the 

scope of this thesis, the overall purpose of risk-based sampling is to increase the 

probability of disease detection (Stärk et al., 2006). This technique uses prior 

knowledge of factors affecting disease transmission to focus sample collection 

in, for example, a habitat or species known to most likely to harbor the disease 

(Stärk et al., 2006). By concentrating sampling in high-risk areas or populations, 

this technique is considered a more efficient method (both in time and costs) for 

disease detection as compared to systematic techniques (Stärk et al., 2006; 

Paisley, 2001). As stated by Cameron (2012): 

 

The increase in efficiency gained through risk-based sampling is due to the simple 

concept that one is more likely to find something if one looks where it is most 

likely to be.  

 

Risk-based sampling may be particularly relevant for detecting disease in low 

prevalence areas and for documenting freedom from disease (Hadorn et al., 

2002). However, the difficulty with risk-based sampling is that the selection of 

the high risk areas may be biased by lack of knowledge of certain risk factors. 

Thus, preliminary studies are needed to clearly define risk factors for the specific 

species and regions in question (Stärk et al., 2006). Risk factors for the detection 

of E. multilocularis in wildlife have not been specifically defined. However, a 

recent EFSA scientific opinion supports research into this area (European Food 

Safety Authority Panel on Animal Health and Welfare, 2015). 

2.3 Echinococcus multilocularis in Sweden 

2.3.1 History of E. multilocularis in Sweden 

Monitoring for E. multilocularis in Sweden began in 2000 as a response to the 

parasite’s expanding range (Osterman Lind et al., 2011). Of particular concern 

was the first report of the parasite in a red fox (Vulpes vulpes) in 2000 in the 

neighboring country of Denmark (Saeed et al., 2006). In addition, a risk 

assessment performed in 2006, estimated that the highest risk for the 

introduction of E. multilocularis was from importation of infected dogs 

(Vågsholm, 2006). Therefore, initial monitoring efforts by the Swedish National 

Veterinary Institute (SVA) were focused in the southern part of the country. This 

part of the country contains popular tourist areas, particularly along the west 

coast, and, most importantly, is connected to Denmark by the Øresund bridge 

(Malmö-Copenhagen). From 2000-2010 nearly 3000 foxes (~300/year) were 

examined for E. multilocularis with the first positive finding reported from a fox  



  20 

 

 

 

Figure 4. Map of the southern half of Sweden and study regions (boxes) (see also Table 1). 

Black stars indicate areas where intestinal samples from shot foxes were identified as positive 

for Echinococcus multilocularis through national monitoring (2011) before this thesis began 

(2013) (Wahlström et al. 2012). Black diamonds indicate additional areas identified positive for 

E. multilocularis by the conclusion of this thesis work (2015). Map created in QGIS v2.12.3. 

(Basemap: Sweden 1000plus 6.0, SWEREF 99 TM, 2008, © Lantmäteriet). Modified from Fig 

1 in Miller et al. (2016). Used with permission from Miller et al. (in press) (Paper III). 
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shot December 2010 near the city of Uddevalla on the west coast (Osterman 

Lind et al., 2011) (Figure 4).  

Following this first finding, monitoring efforts were expanded with the goal 

to determine the geographic spread of the parasite within the country. By the 

conclusion of 2011, nearly 3000 intestines from hunter-shot foxes had been 

examined and three additional positive foxes had been identified (Wahlström et 

al., 2012). This included a second positive fox shot near Uddevalla and one fox 

in each of two new areas near the cities of Katrineholm and Borlänge 

(Wahlström et al., 2012) (Figure 4). During 2011, a regional baseline monitoring 

of collected fox feces was performed in a 50 km diameter area near Katrineholm 

(Wahlström et al., 2015). Here 6/790 (0.8%) feces were found E. multilocularis 

positive (Wahlström et al., 2015). 

During the completion of this thesis project, a second nation-wide monitoring 

was performed between 2012 and 2014. Within this monitoring, nearly 3000 fox 

feces collected by hunters as well as ~20-30 samples collected as part of this 

thesis work were analyzed by the newly developed magnetic capture PCR (MC-

PCR) technique for detecting E. multilocularis DNA in fox feces (National 

Veterinary Institute, 2016; Isaksson et al., 2014). Only three feces were found to 

be E. multilocularis positive (National Veterinary Institute, 2016). One of these 

feces was a positive collected within this thesis work near Katrineholm (Paper 

III). Another feces was found the region of Gnesta/Nyköping, where the first 

rodent finding was reported earlier as part of this thesis work in 2013 (Paper I). 

The final feces was found near Uddevalla. 

These monitoring efforts are summarized in Table 1. Overall, the estimated 

prevalence of E. multilocularis in foxes is very low (<0.1%) nation-wide and 

slightly higher regionally (0.8%) (National Veterinary Institute, 2016; 

Wahlström et al., 2015). Still, as a result of these findings Sweden lost its E. 

multilocularis disease free status and the consent to require deworming of 

incoming dogs (Wahlström et al., 2015).  

Despite the intensity of these monitoring efforts, very few positives were 

found and individual positive foxes and fox feces were generally found 100s of 

kilometers apart (Figure 4). In addition, very little attention was given to the 

rodent intermediate host. Following the first fox finding in 2011, only 236 

rodents, mainly water voles, captured near Uddevalla  were examined for E. 

multilocularis and found negative (Wahlström et al., 2012). As such, very little 

was known about the local presence and transmission dynamics of the parasite 
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Table 1. Summary of major investigations undertaken in Sweden to examine for Echinococcus multilocularis in red foxes (Vulpes vulpes) and in rodents. (Used 

with permission from Miller et al., (In Press)) 

 
Abbreviations:  n total samples; Pos. (%) number and percent positive; SVA National Veterinary Institute; SLU Swedish University of Agricultural Sciences; EMIRO 
Echinococcus Multilocularis in ROdents-this research project;  B Borlänge; K Katrineholm; G/N Gnesta/Nyköping; U Uddevalla; V/V Vetlanda/Växjö 
aSamples collected near Uddevalla 
bSamples collected from a localized region (50km diameter) near Katrineholm 
cFeces collected from environment 
dSamples collected from four regions (10x10km or 20x20km) in Sweden 
***Reference numbers correspond to years [3=2011, 4=2012, 38=2015, 39=2016, 5=2016]       

 Investigation Duration Species/sample n Pos. (%) Year Place of positive finding Reference*** 

SVA         

 Yearly monitoring 2000-2010 Fox  intestines 3,266 1 (<0.01) 2010 U Osterman Lind et al. [3] 

 First nation-wide 

screening after 

positive finding 

2011 Fox intestines 2,985 3 (0.1) 2011 B, K, U 

 

Wahlström et al. [4] 

 

 

 Regional surveya 2011 Rodent livers 236 0 (0) 2011  Wahlström et al. [4] 

 Regional surveyb 2011 Fox fecesc 790 6 (0.8) 2011 K Wahlström et al. [38] 

 Second nation-wide 

screening 

2012-2014 Fox fecesc 2,779 3 (0.1) 2012–2014 G/N, K, U National Veterinary Institute, 

www.sva.se [39] 

SLU         

 EMIRO projectd 2013-2015 Rodent livers 1,566 9 (0.6) 2013–2015 

 

G/N, K Miller et al. [5] 

  2013-2015 Fox fecesc 714 41 (5.7) 2013–2015 

 

G/N, K, U, V/V This paper 
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in Sweden at the beginning of this thesis work in 2013, and, most importantly, 

the rodent intermediate host was yet unknown. 

2.3.2 The EMIRO Project 

This thesis was performed within the 

framework of an European wide 

EMIDA/ERA net funded project by 

Formas (www.formas.se) entitled 

Echinococcus Multilocularis in 

ROdents (EMIRO) (Figure 5). This 

project was a collaboration between five 

different countries (Denmark, Finland, 

Lithuania, Switzerland, and Sweden). 

The main work for this project was 

completed between 2012 and 2015. The overall goal of this project was to 

describe and compare the role of the rodent in the lifecycle of E. multilocularis 

in both high and low endemic regions in different European countries. To do 

this, field investigations were performed in Lithuania and Switzerland (high 

endemic) as well as in Sweden (low endemic). Two workshops were performed 

early in the project to harmonize both field and laboratory techniques between 

these countries and, thus, streamline results for later comparison. Field results 

were supported by laboratory experiments investigating infection dynamics in 

wild rodent intermediate hosts in Denmark.  

This thesis is a summary of the work performed within Sweden. At the time 

of writing, finalized results are pending from some countries within the EMIRO 

project. 

2.3.3 Definitive Hosts in Sweden 

To date, E. multilocularis has only been identified in the red fox in Sweden. 

Although other potential definitive hosts (e.g. raccoon dogs, e.g. wolves) have 

been examined, none have been found positive (Osterman Lind et al., 2011; 

Wahlström et al., 2011). Taeniid eggs have been identified in arctic fox (Vulpes 

lagopus) feces from northern Sweden, but these eggs were not identified to 

species (Meijer et al., 2011). Furthermore, population numbers of the red fox 

likely far outnumber that other wild canids in Sweden, as these species are highly 

managed for conservation (arctic fox, wolves) (Dalén et al., 2006; Wabakken et 

al., 2001) or hunted for eradication (raccoon dogs) (Mårhundprojektet, 

https://jagareforbundet.se/vilt/Mardhundsprojektet/). In 2011, 119 hunting dogs 

were examined in the area near the finding of the first positive red fox in 

Uddevalla; all were negative (Wahlström et al., 2012). Similarly, no dogs (n=16) 

Figure 5. EMIRO logo. Designed by Diogo 

Guerra for use by the EMIRO Project. 
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examined from the Uddevalla and Katrineholm study regions in this thesis were 

found positive for E. multilocularis (data not shown). Therefore, for Sweden, as 

in central Europe, the red fox is the most important definitive host for E. 

multilocularis transmission. 

The red fox is a generalist predator which inhabits a variety of habitats. 

Rodents, particularly field voles (M. agrestis), have been shown to be a 

significant proportion of the fox diet in Fenno-Scandinavia (as elsewhere) (e.g. 

Dell'Arte et al., 2007; Lindström, 1989). In times of low rodent densities, the red 

fox may even switch to other more abundant non-rodent prey, such as roe deer 

fawns (Kjellander & Nordström, 2003). However, the relative proportion of 

rodents in the diet may change according to changes in vole densities (Dell'Arte 

et al., 2007). This may be explained in part by optimal foraging theory (reviewed 

in Pyke, 1984), which is based on the idea that an animal will choose food 

resources that are energetically most beneficial (e.g. abundant and easy to catch). 

In reality, fox feeding patterns can be more complex, particularly when multiple 

species are considered (Raoul et al., 2010). Still, understanding the different 

feeding behaviors of the fox may help explain the variability observed in E. 

multilocularis transmission. For instance, Saitoh and Takahashi (1998) found 

that, in some regions of Japan, prevalence of E. multilocularis infected foxes 

varied according to both the density of the main intermediate host, the gray-sided 

vole (Clethrionomys (Myodes) rufocanus) and the degree of fox predation. 

2.3.4 Proposed Rodent Intermediate Hosts in Sweden 

At the beginning of this thesis work, the rodent intermediate host was still 

unknown in Sweden. Rodent species that were present in the country and that 

could be considered included the water vole (A. amphibius), the field vole 

(Microtus agrestis), the bank vole (Myodes glareolus), the yellow necked mouse 

(Apodemus flavicollis) and the wood mouse (Apodemus sylvaticus) (Wilson & 

Reeder, 2005). Of these, the water vole, field vole, and bank vole were 

hypothesized to be the most likely to fulfill the role of intermediate host in 

Sweden based on observed prevalence of these species (or their close relatives) 

in central Europe (see Section 2.1.1). 

One of the most commonly reported rodent intermediate hosts in central 

Europe, the common vole (M. arvalis), is not present in Sweden (Wilson & 

Reeder, 2005). The most closely related species present is the field vole (M. 

agrestis). In south-central Sweden, the field vole occupies open field, 

agricultural, and regenerating (e.g. clear-cut) forests (Hansson, 1977; Hansson, 

1968) and has been shown to be common prey of foxes (Lindström, 1982). 

Although the field vole is susceptible to E. multilocularis (Woolsey et al., 
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2015a), prevalence in this species in central Europe is difficult to determine as 

most studies report findings as Microtus spp. 

The other most commonly reported rodent intermediate host in central 

Europe is the water vole (Arvicola terrestris). Recently, this species has been 

reclassified into two separate species based on ecology and genetics—the semi-

aquatic A. amphibius and the fossorial A. scherman (Wilson & Reeder, 2005). 

Arvicola scherman is a smaller vole which burrows in grasslands of higher 

elevation of in central Europe, while A. amphibius is a larger vole normally 

associated with water  and distribute across most of mainland Europe and 

Scandinavia (Piras et al., 2012; Wilson & Reeder, 2005). Of these two, only A. 

amphibius exists in Sweden; however, very little is known about its ecology in 

this country. There is little mention of water voles in Swedish diet studies, except 

for Englund (1965) which reported water vole presence in the stomach of foxes 

from southern half of the country. Until recent years, most studies reported water 

voles as A. terrestris, making it difficult to know what the prevalence of E. 

multilocularis is specifically for A. amphibius in central Europe. However, 

recent studies (e.g. Raoul et al., 2015) indicate that most reports (at least for 

France and Switzerland) have been for A. scherman. 

As discussed in Section 2.1.1, although susceptible, bank voles are 

considered of lesser importance than Microtus spp. and water voles for E. 

multilocularis transmission (Romig et al., 2006; Stieger et al., 2002). Bank voles 

are typically found in forest and shrubland, but will disperse into bordering field 

or regenerating forested areas (Hansson, 1979; Hansson, 1968). Bank voles are 

not considered main prey of foxes in southern Sweden (Lindström, 1982). 

Sylvan mice (Apodemus spp.) were considered to be the least likely of the 

species present to host E. multilocularis (see Section 2.1.1). Both Apodemus 

species present in these study regions prefer forested habitat (Bergstedt, 1965). 

However, the yellow-necked mouse (A. flavicollis) is more likely to restrict 

populations to forest, whereas the wood mouse (A. sylvaticus) has been shown 

to also inhabit edge habitat or fields in low densities (Hansson, 1968; Bergstedt, 

1965). Furthermore, these species do not appear to be heavily preyed upon by 

foxes in Sweden (Erlinge et al., 1983). 

2.4 Other Taeniid Parasites 

2.4.1 As a Proxy 

The family Taeniidae is composed of several genera, such as Echinococcus, 

Taenia, Versteria, and Hydatigera (Nakao et al., 2013). Members of this family 

have an indirect lifecycle generally between a carnivore definitive host (e.g. 

canids, felids) and an herbivore intermediate host (e.g. rodent, lagomorph, 
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ungulate) (Deplazes et al., 2016). In an area, such as Sweden, where E. 

multilocularis is relatively rare, transmission dynamics for other related taeniid 

species may provide a representative model (i.e. proxy) for understanding E. 

multilocularis transmission.  

This concept was also used in a study by Al-Sabi et al. (2013b) which, similar 

to the investigations in this thesis, examined liver taeniid parasites in rodents in 

a low endemic area for E. multilocularis (Denmark). Although no E. 

multilocularis infections were detected, the high prevalence of V. mustelae and 

T. polyacantha in both urban and rural forests together with prior knowledge of 

location of taeniid infected foxes led these authors to conclude that risk for E. 

multilocularis risk was higher in forested areas as compared to residential and 

farm gardens. However, it should be noted that few field voles and water voles 

(n=37), the species most likely to host E. multilocularis (Section 2.3.3), were 

examined as compared to bank voles (n=403) (Al-Sabi et al., 2013b).  

2.4.2 Other Parasites 

Recent molecular studies have classified 

Versteria (formerly Taenia) mustelae as  

most closely related Echinococcus 

(Nakao et al., 2013; Knapp et al., 2011). 

In contrast to E. multilocularis, the 

definitive hosts for V. mustelae are 

typically mustelids (Iwaki et al., 1996; 

Hoberg et al., 1990). In Sweden, this 

may include the least weasel (Mustela 

nivalis) and the stoat (Mustela erminea) 

(Bang et al., 2001; Iwaki et al., 1995; 

Hoberg et al., 1990). Metacestodes 

(cysticerci) of this parasite are usually 

multiple and occur in the liver of the 

intermediate host (Freeman, 1956) 

(Figure 6). Versteria mustelae is 

commonly reported in M. glareolus 

(Behnke et al., 2008; Pétavy et al., 2003; 

Le Pesteur et al., 1992), but is also reported in other voles such as M. agrestis 

(Soveri et al., 2000) and A. terrestris (Chechulin et al., 2010). An experimental 

study showed limited development of V. mustelae in laboratory mice (Iwaki et 

al., 1996). 

Hydatigera (formerly Taenia) taeniaeformis most commonly occurs in felids 

(e.g. domestic cat), but also in the red fox (Deplazes et al., 2016; Saeed et al., 

Figure 6. Liver from a bank vole with three 

visible cystercerci (white arrows) of V. 

mustelae (2-3mm diameter) Photo: Andrea 

Miller 
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2006). Like several other taeniids, the metacestodes (strobilocerci) develop in 

the liver.  Mestacestodes can be one or many, and mature metacestodes contain 

a characteristic larvae (strobilocercus fasciolaris) (Deplazes et al., 2016) (Figure 

7). The intermediate hosts for H. taeniaeformis are broad and include both voles 

(Burlet et al., 2011; Fichet-Calvet et al., 2003; Tenora et al., 1979) and mice 

(Montgomery & Montgomery, 1988). 

 
Figure 7. A) Liver from a water vole containing multiple strobilocerci (9-12mm diameter) (white 

arrow) of H. taeniaeformis. B) Strobilocercus fasciolaris extracted from a strobilocercus of H. 

taeniaeformis found in a water vole liver. Ruler seen to the right of the picture is in millimetres. 

Photos: Andrea Miller 

Taenia polyacantha most commonly occurs in foxes (both red and arctic) but 

it can also infect other canids (Deplazes et al., 2016; Rausch & Fay, 1988b). The 

experimental study of Rausch and Fay (1988a) noted early development of T. 

polyacantha metacestodes in the liver of M. oeconomus which later migrated to 

become free-floating in the abdominal cavity (Figure 8).  However, an 

experimental study by Myodes (formerly Clethrionomys) rufocanus bedfordiae 

found that early development occurs in the intestinal wall and that then larvae 

migrate to the abdominal cavity but rarely to the liver. This suggests that 

development varies between species. Taenia polyacantha is commonly reported 

in voles, in particular bank voles (Haukisalmi & Henttonen, 1993; Wiger et al., 

1974), but rarely in mice (Goüy de Bellocq et al., 2003; Ihama et al., 2000). 



  28 

 
Figure 8. Dissected bank vole specimen showing an open abdomen. For orientation the head is to 

the top of the picture and tail is to the bottom. Free-floating metacestodes of T. polyacantha (3-

4mm in length) in the abdominal cavity indicated by white arrows. Photo: Andrea Miller 

Mesocestoides spp are in the same order (Cyclophyllida) as Taenidae, but are 

in a separate family, Mesocestoididae (Deplazes et al., 2016). The lifecycle of 

these parasites are poorly understood, but are thought to involve two 

intermediate hosts. The definitive hosts are varied but includes canids and 

mustelids (Deplazes et al., 2016).  In Europe, the red fox is a common definitive 

host for Mesocestoides spp, particularly M. litteratus (Al-Sabi et al., 2013a; 

Hrčkova et al., 2011). The first intermediate host is thought to be an invertebrate 

(e.g. orbatid mite), but this is still under debate (Deplazes et al., 2016; Loos-

Frank, 1991). The second intermediate host is a variety of small vertebrates, 

including rodents (Deplazes et al., 2016). Loos-Frank (1980) suggested that 

Mesocestoides spp are more commonly reported in bank voles and Apodemus 

species than common voles due to the fact that bank voles and Apodemus are 

more likely to include insects in their diet than common voles. Larvae of 

Mesocestoides spp. (tetrathyridia) are most commonly found free-floating in the 

abdomen of rodent hosts, but can occasionally invade other organs (Deplazes et 

al., 2016) (Figure 9). Mesocestoides spp are included as part of this thesis work 

(Paper II), because, similar to E. multilocularis, the lifecycle includes at least a 

partial fox-rodent transmission pattern and the larval stage can be present in the 

liver. 
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Figure 9. Dissected bank vole specimen showing an open abdomen. For orientation the head is to 

the top of the picture and tail is to the bottom. Intestines are pulled to the right. Free-floating 

tetrathryidia of Mesocestoides spp. (2-3 mm in length) in the abdominal cavity indicated by white 

arrow. Photo: Andrea Miller 
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3 Aims of the Thesis 

The overall aim of this thesis was to investigate the role of the rodent 

intermediate host for the E. multilocularis lifecycle in a low endemic 

environment (Sweden) and to use this knowledge to make suggestions for future 

monitoring. 

 

The specific aims were as follows: 

 

 To identify rodent intermediate host(s) for E. multilocularis in Sweden 

 

 To describe E. multilocularis infections within the individual rodent 

intermediate hosts and to describe the prevalence for each rodent species 

 

 To describe the prevalence of other taeniid parasites within the livers of 

rodent intermediate hosts and to relate these findings to E. multilocularis 

transmission 

 

 To investigate the parasite background (environmental) contamination from 

fox feces within rodent habitat and to relate this to E. multilocularis and other 

taeniid parasite transmission 

 

 To use both rodent and fox feces results to comment on methods for future 

monitoring of E. multilocularis in Sweden 
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4 Materials and Methods 

Decisions for field study design, sample collection methods, and sample analysis 

in this thesis were based initially on the framework outlined within the EMIRO 

project and then adjusted for use within Sweden and within the aims/limits of 

this thesis. Analysis of samples collected from fieldwork, 2013-2015, formed 

the database used for Papers I-III. 

4.1 Study Regions (Papers I-III) 

At the beginning of this project (2013), very little was known about E. 

multilocularis presence in Sweden. Study regions were chosen based mostly on 

results from the first nation-wide monitoring for E. multilocularis in hunter-shot 

foxes (2011) (Wahlström et al., 2012), but also on the regional study performed 

near Katrineholm (Wahlström et al., 2015) (Table 1, Figure 4). From these 

results, it appeared that most positives were identified in the southern half of the 

country and near the municipalities of Uddevalla and Katrineholm. Therefore, 

to implement the EMIRO design and optimize the possibility of finding positive 

samples, two study regions (10x10km) were chosen near Katrineholm and 

Uddevalla.  

To investigate regions with an unknown status, two additional regions 

(20x20km) were chosen near the municipalities of Gnesta/Nyköping and 

Vetlanda/Växjö (Figure 4). This was done as part of a collaboration with 

Sweden’s National Environmental and Wildlife Monitoring and Assessment 

program (FoMA, http://www.slu.se/en/environment). Since 2012, rodents in 

these regions have been collected and examined for presence of viral and 

bacterial zoonotic diseases.  

4.2 Rodent Trapping (Papers I-II) 

Rodent trapping was performed 2013-2015 under ethical permits from the 

Swedish Environmental Protection Agency (NV-02939-11) and the Swedish 

Board of Agriculture (A-135-12). Trapping design is described in detail in Paper 

I. Some additional details can be found in Paper II and III (in reference to 

targeted/risk-based sampling). Trapping was performed in the spring and 

autumn to capture the seasonal variation in rodent populations. Rodent 

populations were assumed to be at their lowest in the spring and the highest in 

autumn (Haukisalmi et al., 1988; Myllymäki, 1977b; Bergstedt, 1965). 

Sampling continued only for the FoMA regions (Gnesta/Nykjöping and 

Vetlanda/Växjö) spring 2015 for logistical reasons. 
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4.2.1 Snap Trapping (Papers I-II) 

Two trapping designs, the small quadrat method and the line transect, were 

considered for rodent collections (specifically, field voles, bank voles, and 

mice). As described in Myllymäki et al. (1971), the small quadrat method is 

designed to encompass the home range of the resident rodents within a defined 

habitat. Thus, it is can be used to estimate relative rodent densities (Hansson, 

1972) and has been used extensively in Scandinavia for both short and long term 

rodent population monitoring (e.g. Oksanen & Oksanen, 1992; Christiansen, 

1983; Myllymäki et al., 1971). In contrast, line transects cross multiple habitats 

and potentially sample multiple rodent home ranges. In comparison to grid 

methods, such as the small quadrat, line transects have been proposed to increase 

sample numbers and provide a better representation of microhabitat differences 

(Pearson & Ruggiero, 2003). However, accurate density estimates may involve 

additional trapping (Hansson, 1967). Furthermore, line transect design is highly 

variable (Hansson, 1972; Hansson, 1967).  

According to EMIRO discussions, the small quadrat design was chosen over 

the line transect due to the interest in obtaining comparable rodent densities for 

specific habitats in each country. Furthermore, in the interest of Swedish 

sampling, results from quadrats using snap traps were then comparable to FoMA 

sites and potentially other projects in Scandinavia in the future. Snap trap sites 

consisted of multiple quadrats (2-4) in an effort to obtain a sample representative 

for the habitat of that area. In addition, quadrats were placed at least 50m apart 

to lessen the likelihood of sampling rodents from the same home range (Erlinge 

et al., 1990; Mironov, 1990; Hansson, 1969) (see also Figure 11).  As indicated 

in (Myllymäki et al., 1971), catches for the first two nights are highest and are 

most likely to capture resident breeding animals. Therefore, it was also decided 

within the EMIRO project to trap for two trap nights.  

4.2.2 Topcat Trapping (Papers I-II) 

Water voles (primarily) and field voles were trapped using topcat (Andermatt 

Biocontrol AC, Grossdietwil, Switzerland) traps. Topcat traps do not require 

bait, but must be set into water vole tunnels. Therefore, these traps could only 

be used in fields where clear signs (e.g. tunnels, tumuli) of water voles were 

present (Figure 10). Although permanent sites were chosen for topcat trapping, 

the actual location of the traps changed based on the movements of the voles. 

Occasionally, anthropogenic influences (plowing) eliminated the ability to trap 

entirely.  This was less commonly noted for snap trap sites. 

In contrast to the small quadrat method, topcat traps are set in an unsystematic 

manner. Therefore, these traps can not be used to create density estimates for 

water voles. In France, methods for estimating densities of both Microtus spp. 
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and Arvicola scherman based on observed signs (tunnels, runways, tumuli) 

(Figure 11) has been developed (Giraudoux et al., 1995; Quéré et al., 2000). 

However, these methods have not been validated for the habitat in Sweden. In 

addition, Arvicola scherman has a differing ecology than Arvicola amphibius 

(see Section 2.3.3). Furthermore, Hansson (1979) found that occurrence of grass 

runways was not well correlated with M. agrestis abundance in southern 

Sweden, possibly due to the permanence of tunnels and holes even after the 

rodents had migrated from the area. Because of the difference in traps and lack 

of a validated surface index method, rodent density estimates could not be 

calculated within this project. 

4.2.3 Rodent Trapping Site Placement (Papers I-III) 

In Paper II a rodent trapping site is defined as either a set of 2-4 small quadrats 

(i.e. snap trap site) (Figure 11) or a collection of topcat traps (i.e. water vole 

field). The placement of these traps are described in detail in Paper I. Please note 

corrections made here to the sizes of the EMIRO study regions (i.e. 10x10) and 

fox home ranges (i.e. 2x2) from those reported in Paper 1. 

The placement of rodent trapping sites in the 10x10km study regions of 

Uddevalla and Katrineholm was guided according to the EMIRO design (Figure 

12). The purpose of the EMIRO field studies was to investigate the transmission 

ecology of E. multilocularis at the localized level of the rodent intermediate host 

Figure 10. Examples of water and field vole signs. A) Topcat trop placed between mounds of 

dirt indicative of water vole tumuli. B) Grass trail of either field or water voles leading to hole 

in the ground.  Photos: Andrea Miller 

B A 
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(i.e. micro-foci).  Therefore, the size of the larger study region was of less 

importance than the placement of the rodent trapping sites. To help guide trap 

placement within the larger study regions, smaller areas representative of a fox 

home range for each country were chosen. Rodent trapping sites within these 

smaller regions were assumed to represent feeding opportunities for one fox. In 

Sweden, 2x2 km areas encompassing both field and forest habitat were 

designated based on estimates of fox home ranges in southern Sweden (e.g. von 

Schantz, 1981). 

Within the 20x20 km regions of Gnesta/Nyköping and Vetlanda/Växjö, the 

placement of snap trap sites was guided by sampling points previously defined 

for the FoMA monitoring design. FoMA monitoring is spaced according to the 

the Swedish National Grid (1 km x 1 km). Whenever possible, topcat traps were 

set in fields near snap trap sites, and other fields observed with signs of water 

vole activity. 

Regardless of EMIRO or FoMA rodent trapping design, final placement of 

trapping sites was based on the criteria specifically outlined in Paper III and 

listed below. Emphasis was placed on selected habitats known to be suitable for 

the targeted rodent species. In addition, to increase the likelihood of catches and 

diversity of species obtained, rodent trapping areas were placed on or near 

ecotones (Lidicker Jr, 1999). As described in Paper II rodent trapping sites were 

broadly classified as “field”, “mix”, or “forest” based on vegetation type. 

 
Figure 11. Example of rodent trapping sites. Two to four quadrats (15x15m) are positioned at least 

50m apart in a habitat (forest). Three snap traps (small gray ovals) are placed at the corners of each 

quadrat. Distances not to scale. 
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Figure 12. Example of EMIRO rodent trapping design. The large square outline (10x10km) shows 

the Katrineholm study region. The smaller squares outlines (2x2km) were designed after the idea 

of fox home ranges and were used to guide placement of rodent trap sites. Approximate location of 

snap trap sites (solid white square) and water vole/field vole trap sites (solid white triangle) are 

shown. Scale to 2 km. Map created in QGIS v2.12.3 with a background satellite image (WMS 

ortofoto årsvis 2015, SWEREF99, © Lantmäteriet). 

4.3 Fox Fecal Collections (Papers II-III) 

Methods for fecal collection and the definition of a fecal collection site are 

specifically outlined in Paper III. As discussed in Paper II, the purpose of fecal 

collection was to estimate parasite background contamination from fox feces in 

rodent habitats. This concept was also used by Stieger et al. (2002) to compare 

E. multilocularis presence between three different zones surrounding Zürich, 

Switzerland and to relate these percentages to infected rodents trapped in these 

same zones. Although fox fecal analysis can be used to estimate the parasite 

prevalence in the fox population of an area, collections must occur on a much 

broader scale than was performed for this thesis to avoid collecting feces from 

the same individual fox (Raoul et al., 2001). Therefore, results for fecal analysis 
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performed in this manner should be considered rather as an “index of 

contamination” (Conraths & Deplazes, 2015). 

Knowledge of fox movements and marking behavior were used to optimize 

fox fecal collection efforts. For instance, studies have observed a predilection 

for foxes to mark edges (Giraudoux et al., 2002), carrion sites (Goszczyński, 

1990) and the tops of water vole tumuli (Stieger et al., 2002) (Figure 13).  A 

description and an example of the search pattern used is provided in Paper III. 

Although molecular techniques have been shown to be a more accurate form of 

fecal identification (Monterroso et al., 2013, Knapp et al., 2016), feces collected 

for this thesis were identified as fox based on morphology and environmental 

location. While this is commonly done within E. multilocularis studies (e.g. 

(Stieger et al., 2002, Robardet et al., 2011, Guislain et al., 2007), it is important 

to remember that estimates for species specific background contamination (or 

fecal densities) could be somewhat underestimated due to misidentified species.  

Fox fecal samples are less subject to degradation in the winter months when 

rainfall is typically less, temperatures are low, and snow may be present 

(Cavallini, 1994, Lucchini et al., 2002). Shorter vegetation height also increases 

the visibility of deposited feces. In addition, some studies have observed higher 

numbers of infected foxes in autumn months and have suggested that, due to the 

~3 month patent period (Kapel et al., 2006), infected feces could be continued 

to be deposited into the winter months (Hegglin et al., 2007, Stieger et al., 2002). 

For these reasons, two winter fecal collections were performed in addition to 

Figure 13. Fox feces (white shapes) on top of a water vole mound. 

Photo: Andrea Miller 
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regular collections during rodent trapping. Due to time constraints associated 

with the logistics of trapping, winter collections also allowed for more focused 

fecal sampling. 

In Paper III, a fox fecal collection site is specifically defined as an area where 

at least one fox feces was collected within 500-600m of a rodent trapping site. 

A fecal collection site could contain more than one rodent trapping site, but was 

usually limited by habitat.  That is, search efforts, and thus collections sites, were 

usually were restricted to either the field or forest (but could occasionally 

incorporate a rodent trapping site set on a mix of these two habitats). As such, 

feces were identified as being collected in “field habitat”, “field/forest edge” or 

“forest habitat”. 

4.4 Laboratory Methods 

4.4.1 Rodent Dissection (Papers I, II) 

Rodent dissection methods are 

outlined in Paper I with some 

supporting details concerning 

breeding status in Paper II. 

Particular focus was put on liver 

examination as E. multilocularis 

has a predilection for this organ in 

the rodent intermediate host 

(Eckert, 1998). In addition to 

macroscopic examination, livers 

were held over a strong light and 

palpated to search for parasitic 

lesions within the liver 

parenchyma (Figure 14). Still, it was accepted that early infections (lesions 

<1mm) may have been missed. Similarly, although intestines were removed and 

the abdominal cavity investigated, early or low intensity infections for 

Mesocestoides spp. and T. polyacantha within the abdomen may have been 

missed. 

Although the functional group was identified for E. multilocularis positive 

rodents in Paper I, this was not performed for all rodents in Paper II. Rodent 

functional groups refer to the age cohort, size, and breeding status of an 

individual within a community of rodents (Haukisalmi et al., 1988, Myllymäki, 

1977a). For instance, subadult M. agrestis (i.e. those born later in the year) 

experience reduced growth and opportunity to breed (Myllymäki, 1977a). 

Parasite prevalence within these cohorts has been shown to significantly differ. 

Figure 14. Examining a liver over a strong light. 

Photo: Andrea Miller 
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In particular, over-wintered (breeding) animals are often more likely to be 

parasitized (Haukisalmi et al., 1988, Haukisalmi and Henttonen, 1993). 

However, the purpose of Paper II was to examine the parasitization patterns 

across species. Therefore, these cohort differences (with the exception of 

breeding status) were largely ignored. 

Due to logistical constraint, only Apodemus spp from 2014 were examined. 

It was decided to dissect fewer Apodemus spp as these species were considered 

the least likely to host E. multilocularis (Stieger et al., 2002; Barabási et al., 

2011). Still, Apodemus spp. from 2014 were chosen as that year had the largest 

sample of these rodents.  

4.4.2 Fecal Egg Isolation (Papers II, III) 

Fecal analysis is specifically described in Paper III. For both Paper II and III, 

only results for feces collected within fecal collection sites (Section 4.3) are 

reported. 

To analyze feces, both coproantigen ELISA and PCR methods for extracted 

eggs were considered. Fecal analysis for environmental contamination is often 

performed using the copro-antigen ELISA test (Raoul et al., 2001, Stieger et al., 

2002). This method has the advantage of detecting both patent and pre-patent 

infections and is less labor intensive than fecal egg extraction (Deplazes et al., 

1999, Mathis et al., 1996). However, the specificity of the copro-antigen ELISA 

is lower than PCR methods (Conraths & Deplazes, 2015). As the interest of the 

EMIRO project was to assess level of parasite egg contamination in rodent 

habitats, prepatent infections were of less interest. Furthermore, for Sweden, 

where the parasite was newly identified and any new findings were reportable, 

a method with high specificity was needed. Therefore, PCR methods, which 

have specificities of nearly 100%, were preferable (Conraths & Deplazes, 2015). 

In addition, egg isolation allowed identification of multiple parasite species 

(Mathis et al., 1996, Trachsel et al., 2007). 
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4.5 Parasite Identification (Papers I-III) 

4.5.1 Morphologic and Histologic Methods (Paper I-II) 

In Paper I, E. multilocularis lesions in rodent livers were described grossly and 

histologically.  The combination of these findings in addition to molecular 

methods (Section 4.5.2) were used to confirm E. multilocularis diagnosis. 

Furthermore, to assess the infectivity of the rodents, metacestode lesions were 

examined for presence of protoscolices through microscopic examination of 

metacestode fluid, histologic sections, or both. In Paper II mature H. 

taeniaeformis lesions were identified by extracting the stobilocercus fasciolaris 

(Figure 7B). 

4.5.2 Molecular Methods (Papers I-III) 

Specific methods for DNA extraction, PCR, and sequencing are detailed in 

Papers I-III. Nomenclature in those papers was based on Nakao et al. (2013) and 

Lavikainen et al. (2016). 

Except for mature H. taeniaeformis lesions (Paper II), all parasitic lesions 

from rodents (Paper I and Paper II) were tested using the multiplex PCR 

described in Trachsel et al. (2007). This PCR method identifies both E. 

multilocularis and E. granulosus specifically, but other taeniids only to genus 

(Taenia). In addition, the primers used for Taenia spp. also detect Mesocestoides 

spp. (Trachsel et al., 2007).   

Although the multiplex PCR in Trachsel et al. (2007) was originally designed 

for testing fecal parasite eggs, it has also been used for identification of liver 

parasites (Beiromvand et al., 2013). Similar to Beiromvand et al. (2013), 

samples negative for E. multilocularis in the multiplex PCR were also tested 

using an additional single PCR specific for E. multilocularis (Stieger et al., 

2002) (Paper I). In Paper III, fecal parasite eggs were only tested using the 

multiplex PCR (Trachsel et al., 2007).  

Sequencing for both parasite lesions and for parasite eggs was performed for 

diagnostic purposes only. For E. multilocularis, sequencing only provided 

further confirmation of morphologic (Paper I) and PCR results (Paper I, III).  For 

other taeniids and Mesocestoides spp., sequencing was needed for identification 

to species or genus level (Paper II, III).  
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4.6 Statistical Analyses (Papers II-III) 

The statistical analyses performed are detailed in Paper II and III. 

In Paper II, a multiple logistic regression model was used to model the 

relationship between multiple variables and proportion of rodents parasitized. 

Logistic regression models are particularly useful for multiple explanatory 

variables, both continuous and categorical, and for a binomial response variable 

(Hosmer et al., 2013). In addition, the results of this model can be used to 

calculate odds ratios (Hosmer et al., 2013). Odds ratios are a calculated measure 

of risk for exposure to, in this case, taeniid parasites (Giesecke, 2002). 

Multivariable modeling was considered for Paper III. However, as discussed 

in Paper III, preliminary analysis demonstrated that the unbalanced dataset 

produced poorly fitted models. Resulting p-values were, therefore, highly 

uncertain.  For these reasons, complex modeling was abandoned and proportions 

were compared using only the Fisher’s exact test of independence with a 

Bonferroni correction for multiple comparisons when appropriate (McDonald, 

2014). 
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5 Results and Discussion 

The results of this thesis are based on rodents collected (n=1566) and examined 

for taeniid larval cestodes from over five trapping seasons and fox feces (n=714) 

collected during seven collection periods from four different regions of Sweden, 

2013-2015. These results are discussed in detail in Papers I-III in relation to the 

importance of the rodent intermediate hosts and implications for future 

monitoring of this parasite in Sweden. Highlights from these results and 

discussions are summarized below. 

5.1 Role of Rodents for E. multilocularis Transmission in 
Sweden 

5.1.1 The Importance of Field Voles (M. agrestis) and Water Voles (A. 

amphibius) 

In Paper I, E. multilocularis was identified for the first time in Sweden in eight 

water voles (n=439) and one field vole (n=187). It was not identified in any of 

the bank voles (n=655) or mice (n=285) examined (Paper I). These results were 

not surprising given that the most common rodent intermediate hosts in central 

Europe are the closely related common vole (M. arvalis) and water vole (A. 

scherman) (Raoul et al., 2015). Furthermore, as described in the introduction, 

the prevalence of E. multilocularis is usually low in bank voles (M. glareolus) 

(Romig et al., 2006; Stieger et al., 2002) and only very rarely reported in mice 

(Apodemus spp.) (Barabási et al., 2011; Stieger et al., 2002). 

The results of Paper I indicated that field voles and water voles were 

important for E. multilocularis transmission. The results of Paper II provided 

even stronger support for this conclusion. In addition to E. multilocularis, field 

voles and water voles were also found to be more highly parasitized with other 

larval taeniid cestodes than bank voles and mice (Figure 15). The ecology of the 

field and water vole, such as living in close, overlapping home ranges and lack 

of anti-predatory behavior (Henttonen, 1987), appear to predispose these species 

to predation by definitive hosts for both E. multilocularis and other taeniid 

species (foxes, cats, mustelids) (Liberg, 1984; Lindström, 1982; Erlinge, 1981) 

(Paper II). Focus of these predators in a small area increases fecal density, which, 

in turn, increases opportunities for parasite egg exposure (see Section 2.1.3). 

Together the results of Paper I and II suggest that field voles and water voles are 

rodent species at high risk for taeniid infections in Sweden and, in particular, E. 

multilocularis. 
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Figure 15. Number of parasitized rodents (in percent) for each species examined 2013-2015. Bars 

indicate binomial exact 95% confidence intervals. Rodent species found mostly in the field (water 

vole-A. amphibius; field vole-M. agrestis) and forest (bank vole-M. glareolus; mice-Apodemus 

spp.) are labelled. Mice species (A. flavicollis, A. sylvaticus) only examined for 2014. 

5.1.2 Presence and Susceptibility of Rodents as a Limiting Factor 

As indicated in Section (2.1.3), there are many factors which influence parasite 

transmission. Ultimately, however, both hosts need to be present for 

transmission to take place. Of the two hosts for E. multilocularis, the rodent 

intermediate host is the most spatially limited with home ranges of only hundreds 

of meters (Erlinge et al., 1990; Mironov, 1990). Therefore, transmission happens 

at a localized scale and, thus, may be strongly influenced by both rodent 

susceptibility and rodent ecology. 

 Sweden is missing one of the most important intermediate hosts in central 

Europe, the common vole (Wilson & Reeder, 2005). The closely related field 

vole is present and one individual field vole was found to be infected with an 

infectious metacestode (i.e. contained protoscolices) (Paper I). However, as 

discussed in Paper I, the relative importance of this species to E. multilocularis 

transmission in Sweden may also be limited. It has recently been suggested that 

metacestode development is reduced in the field vole as compared to the 

common vole (Woolsey et al., 2015a). In addition, the results of Paper II and 
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other studies (Myllymäki, 1977b, Hansson, 1977) showed that the field vole is 

not strictly confined to the field habitat, which was the habitat found to have the 

highest likelihood for parasite infection in Paper II (see also Section 5.2.4). Still, 

as only one infected individual was found, further work is needed to make strong 

conclusions about the relative role of this species in the E. multilocularis 

lifecycle in Sweden. 

Sweden is also missing one of the other most important intermediate hosts in 

central Europe, the water vole (A. scherman). The results of Paper I found 

infections in the closely related A. amphibius in Sweden. However, not all 

infected individuals (3/8) were considered infectious (i.e. contained 

protoscolices) (Paper I). Reasons for this may include immaturity of either the 

water vole or the metacestode (Burlet et al., 2011), but may also be that water 

voles have a reduced susceptibility for metacestode development. Results from 

other field studies have also shown a low proportion of infectious metacestodes 

in water voles (e.g. 2/31 infected  water voles in Reperant et al., 2009 and  2/19 

infected water voles in Hofer et al., 2000). Experimental studies are needed to 

fully address the question of susceptibility of water voles and potential 

differences between these two water vole species. However, based on this 

discussion, it could be suggested that, of the two identified intermediate hosts in 

Sweden, the field vole may be the species with the highest susceptibility in 

Sweden.  

As discussed in Section 2.3.3, the recent reclassification of Arvicola terrestris 

has made interpretation of previous literature relating water voles to E. 

multilocularis transmission difficult. While it seems that the role of A. scherman 

in the E. multilocularis lifecycle has been well established (e.g. review by Raoul 

et al., 2015), less is known about role of A. amphibius. Another challenge for 

interpreting Swedish results is the lack of knowledge about the ecology of water 

voles in this country. Only one study (as part of a larger thesis) was found 

describing water vole ecology in Sweden (Jeppsson, 1990). This author found 

that populations of A. amphibius were split into two groups. One group had a 

permanent fossorial lifestyle (much like A. scherman) in fields near water 

sources. However, the other population lived much more above ground and 

migrated seasonally between field habitat and the banks of nearby water sources. 

Furthermore, peaks in population density like those noted for A. scherman e.g. 

(Duhamel et al., 2000a; Viel et al., 1999) were not reported (Jeppsson, 1990) 

and have, in general, not been reported for rodent species in southern or central 

Sweden (Hansson, 1989). A relatively stable population density, migration 

between habitats (which could be more or less contaminated with parasite eggs), 

and an above ground lifestyle may limit the role of water voles for E. 
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multilocularis transmission in Sweden. However, further research is needed to 

investigate these hypotheses. 

A better understanding of species interactions between field and water voles 

could also provide some answers as to why E. multilocularis prevalence is so 

low in both rodents and foxes in Sweden. Although field voles were mostly 

captured above ground in snap traps (n=139), they could also be captured by 

topcats (n=48). However, this was most common in the spring (43/48, 90%). It 

may be that low water vole density in the spring allowed for cohabitation of the 

species, or that water voles overwintered in entirely different habitats leaving 

these tunnels vacated (Jeppsson, 1990). In Paper II it is suggested that 

underground behavior may increase risk of parasite transmission in rodents. If 

field voles are forced to vary their underground habits through the year, this 

could limit opportunities for parasite exposure for this species and may explain 

the single finding reported in Paper I. Similarly, if foxes prefer to eat larger water 

voles rather than smaller field voles in areas where the two rodent species co-

exist, parasite transmission involving field voles could be could be limited (see 

also Section 2.3.3). If field voles were indeed found to be the more highly 

susceptible species in Sweden (and, thus, theoretically more important for 

parasite transmission), limited opportunities for exposure and predation may 

restrict transmission of E. multilocularis and, therefore, overall prevalence in 

foxes. Further work is needed to investigate rodent movements, fox diet, and 

species interactions in Sweden to fully address these questions. 

5.2 Spatial and Temporal Parasite Distribution and 
Transmission Factors 

5.2.1 Micro-foci 

The results of Paper I and Paper III show a highly aggregated distribution of E. 

multilocularis in the Swedish environment. Forty-one positive feces were found 

in 8/57 collections sites (all fields) and nine positive rodents in 4/107 trapping 

sites (all fields). These areas are indicative of micro-foci (see Section 2.1.3). The 

proportion of positive feces in some of these fields was surprisingly high—up to 

52% (Paper II). As discussed in Section 2.1.3, these areas may be considered 

areas of high potential for egg exposure and, therefore, may be of public health 

concern. 

It seems that a common perception among the public is that eating fresh 

berries from the forest constitutes the highest risk of E. multilocularis infection.  

Although fecal collections in this thesis were focused mainly in field habitats 

(Paper III), it is still of note that few feces overall and no E. multilocularis 

infected feces were found in forest habitat. Furthermore, no E. multilocularis 
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infected rodents were found in forested habitat (Paper I, II). In particular, no 

bank voles, which include berries as a major component of their diet compared 

to field voles or mice (Hansson, 1971), were found infected. While bank voles 

appear somewhat resistant to E. multilocularis infection (Woolsey et al., 2016) 

in areas of high fox density and egg contamination, prevalence in this species 

can increase  (Reperant et al., 2009). Therefore, the results of this thesis suggest 

that forested areas in Sweden have low potential for egg exposure. Further 

investigation into, for instance, fox feces collected systematically throughout the 

year and in both habitats would further clarify these findings. 

5.2.2 Yearly and Seasonal Effects 

Although other studies have noted temporal influences on E. multilocularis 

positive findings in both feces and rodents (Hegglin et al., 2007, Stieger et al., 

2002, Burlet et al., 2011), no significant seasonal or yearly effects were noted 

for E. multilocularis positive feces in this project (Paper III). In the multivariable 

model for parasitized rodents performed in Paper II, season and reproduction 

were found to be highly associated. Breeding rodents, which were nearly 2.5 

times more likely to be parasitized, were most often captured in the spring. 

Reproduction (e.g. stress and hormones) could decrease immunity and increase 

opportunity for infection (Klein, 2004). In addition, spring densities of rodents 

are low and made up of older individuals which have had a longer time for 

parasite exposure (Haukisalmi et al., 1988; Myllymäki, 1977a). Therefore the 

association between breeding and season seemed not to be a true seasonal effect.  

In all Papers, the number of positive samples was too low to analyze temporal 

effects, if present, with any confidence. 

5.2.3 Occurrence and Distribution of Other Taeniid Cestodes 

In addition to E. mutilocularis, the other larval cestodes present in rodents 

included V. mustelae, H. taeniaeformis, T. polyacantha, and Mesocestoides spp. 

(Paper II). With few exceptions, the distribution of these parasite species seemed 

to be driven by an interaction between rodent species habitat preferences and 

rodent species susceptibility. Versteria mustelae and H. taeniaeformis were the 

most commonly found with parasites. Similar to E. multilocularis (Paper I), 

these parasites were most commonly found in rodents (water voles, field voles) 

caught in field habitat. In contrast, T. polyacantha and Mesocestoides spp., 

although rarely found, seemed to be restricted to rodents in forest/mix habitats 

(bank vole, mice). As in Paper III, several hotspots of infection, where both 

rodents and feces were found positive for a parasite, were identified. However, 

even in these cases, parasite distribution in the rodents followed the habitat and 

species limitations described above. 
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5.2.4 Field as a Risk Factor for Transmission 

All nine E. multilocularis positive rodents were found in field habitat (Paper I, 

II) and the odds of parasitization (with taeniid larval cestodes in general) was ten 

times higher in the field than in forest habitat (Paper II). In addition, most feces 

(96%) were found in fields or on field/forest borders (Paper III). This percentage 

is biased by the fact that sampling effort was more concentrated in fields. 

However, the decision to concentrate in fields was due not only to the observed 

difficulty of finding feces in forest within this study (Paper III), but also to 

previous literature supporting the importance of field habitat for E. 

multilocularis transmission (Giraudoux et al., 2003). Still, as infected definitive 

hosts were present in both habitats, the results of these Papers I-III support the 

idea that infection pressure/parasite contamination is highest in field habitat.  

As discussed in Paper II, the results of the multivariable model should be 

interpreted carefully as it is an attempt to explain a complex interaction between 

rodent ecology and susceptibility.  In addition, it is unclear how the absence of 

“rodent species” affects the final results. To attempt to understand the effect of 

rodent species, Table 2 was created. When divided by rodent species, it is evident 

that the data is skewed and, in some cases, few or no infected/non-infected 

individuals are observed. This is likely due in part to the strong preference for 

each species to live in certain habitats. There also appears to be a pattern 

suggesting an increasing parasite prevalence along the gradient from forest, mix, 

to field. However, except for M. glareolus, there is not a significant difference 

(p>0.05, Fisher’s) in parasite prevalence between the three habitats for each 

species. This pattern (i.e. strong effect of field), however, becomes significant 

when all factors are combined in the model (Paper II). 

 

Table 2. Proportion of parasite infected rodents by rodent species (n) and habitat 

 

 Field Mix Forest 

Arvicola amphibius (439) 107/439 (24.4%) -- -- 

Microtus agrestis (187) 36/136 (26.5%) 5/33 (15.2%) 1/18 (5.6%) 

Myodes glareolus (655) 0/1 (0%) 31/167 (18.6%) 30/487 (6.2%) 

Apodemus flavicollis (79) 0/1 (0%) 2/19 (10.5%) 3/59 (5.1%) 

Apodemus sylvaticus (206) 0/8 (0%) 1/58 (1.7%) 1/140 (0.7%)  
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5.3 Monitoring Considerations 

5.3.1 Sampling Methodology 

In contrast to the other high endemic countries in EMIRO (e.g. Lithuania and 

Switzerland), Sweden had a very low estimated E. multilocularis national 

prevalence in foxes (0.1%) (Wahlström et al., 2012). Furthermore rodent 

intermediate hosts were not identified at project start in 2013. To increase the 

likelihood of finding any E. multilocularis positive samples for comparison, 

sampling had to be focused in areas where the parasite was most likely to be 

found. In accordance to the descriptions provided in (Stärk et al., 2006) and 

(Cameron, 2012), the study design used in this thesis could be considered as an 

example of a risk-based sampling approach. However, as discussed in Paper III, 

the sampling in this thesis was not designed to specifically test risk factors or to 

evaluate the efficiency of risk-based sampling in relation to other sampling 

strategies. Therefore, the term targeted sampling, which is a term with a broader 

definition and which includes concepts on which risk-based sampling is based, 

was adopted (Stärk et al., 2006).  

As discussed in Paper III, the sampling strategy used should be interpreted as 

a first attempt at using these concepts (risk-based and/or targeted sampling) in 

the Swedish environment and used as a baseline for future work. Still, the 

importance of the methodology used became apparent when comparing final 

results herein to the outcome of previous monitoring activities (Table 1). 

Overall, significantly more positive fox feces (41/714, 5.7% 95% CI 4.2-7.7%) 

were identified through the work of this thesis than in the second national 

screening (3/2779, 0.1%, 95% CI 0-0.3%) (p<0.001) (Paper III). Most 

importantly, through the collections of both rodents and fox feces for this thesis, 

two new areas (Gnesta/Nyöping, Vetlanda/Växjö) positive for E. multilocularis 

were identified in Sweden (Paper I, Paper III). Although more work is needed to 

improve this design for wider use (e.g. clearly defining risk factors), these results 

exemplify the potential efficiency of using a risk-based approach for E. 

multilocularis detection in the future. 
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5.3.2 Sampling Design Implications 

High risk areas (i.e. areas where E. multilocularis was considered most likely 

to be found) targeted for sampling were based on presence of suitable rodent 

intermediate hosts (Paper III). This decision was based both on the EMIRO 

hypothesis that the rodent could be a limiting factor for E. multilocularis 

presence and on previous knowledge of E. multilocularis transmission ecology 

(see Section 2.1.3). The importance of considering host ecology when planning 

disease surveillance in wildlife has been highlighted before (Nusser et al., 2008; 

Mörner et al., 2002). In particular, Nusser et al. (2008) investigated different 

models for designing sampling for chronic wasting disease (CWD) in white-

tailed deer (Odocoileus virginianus). By choosing a sampling regime which 

incorporated knowledge of deer spatial grouping, the accuracy and reliability of 

the results was increased as compared to convenience or random sampling 

usually done by wildlife authorities (Nusser et al., 2008). These concepts should 

be particularly considered for any area with an assumed low prevalence of E. 

multilocularis, and, in particular, countries designing monitoring to declare 

freedom from E. multilocularis.  
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6 Conclusions 

 

The results of this thesis have provided the first identification of E. 

multilocularis in rodents in Sweden and give insight into the importance of these 

species as intermediate hosts in the country. These results also provide a 

representation of the localized distribution and local levels of environmental 

contamination of E. multilocularis within the southern half of Sweden. From 

these findings, a sampling strategy was proposed for monitoring E. 

multilocularis in Sweden for the future. Finally, to the author’s knowledge, these 

results provide the first description of other taeniid larval cestodes in rodents 

from the south-central part of the country. Specific conclusions are discussed 

below. 

 

 

 All rodent species investigated in this thesis are infected by taeniid larval 

cestodes. However, the host range of each parasite species was affected 

both by ecological factors and species specific host susceptibility. 

 

 The field vole (M. agrestis) and the water vole (A. amphibius) are 

probably the most important rodents for the transmission of E. 

multilocularis in Sweden. These rodents were also infected by other larval 

taeniid cestodes in Sweden, mainly V. mustelae and H. taeniaeformis.  

 

 Although E. multilocularis metacestodes were observed in both the field 

vole and the water vole, findings were rare. In addition, the majority of 

water voles (3/8) contained metacestodes which were likely not infectious 

to the definitive host. This, in addition to similar reports in literature, 

suggests a limited susceptibility of this species. The lack of highly 

susceptible hosts may limit E. multilocularis presence in Sweden. 

 

 No E. multilocularis metacestodes were identified in the bank vole (M. 

glareolus) or mice (Apodemus spp.) despite a large samples size (n=655 

and n=285, respectively). Thus, these species do not appear to play a 

significant role in E. multilocularis transmission in Sweden. These 

species do, however, have a role as intermediate hosts for other larval 

cestodes, such as T. polyacantha and Mesocestoides spp. 

 

 

 



  52 

 

 

 

 

 Transmission patterns for other taeniid cestodes were used as a model for 

understanding the potential for E. multilocularis transmission in Sweden. 

From this, field habitat emerged as an important risk factor for taeniid 

parasite, including E. multilocularis, infection in rodents in Sweden.  

 

 Echinococcus multilocularis has a heterogeneous distribution in Sweden. 

Regional differences in prevalence were recognized, and, on the local 

level, micro-foci were identified. Prevalence of E. multilocularis in foxes 

in these areas is probably higher than the national estimate (0.1%). 

 

 Targeted sampling as defined in this thesis, identified more E. 

multilocularis positive samples than systematic sampling techniques 

employed by the national authorities. Although the sampling design 

outlined here needs to be further developed, these findings demonstrate 

that the transmission ecology of E. multilocularis needs to be considered 

when designing future monitoring/surveillance for detection of this 

parasite in low endemic areas or in countries where the parasite is thought 

to be absent. 
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7 Future Perspectives 

Although the work of this thesis has expanded the knowledge of E. 

multilocularis lifecycle and distribution in Sweden, there are still many gaps in 

our knowledge. Due to the zoonotic potential of this parasite, there will be a 

continued need for research. Some potential areas for further investigations are 

discussed below. 

 

 Little is known about water vole ecology in Sweden. Observations from 

fieldwork indicated that water voles seem to prefer different types of 

fields and different parts of chosen fields. Even within these 

microhabitats, the voles seem to have different tunneling patterns. These 

preferences and behaviors could have important implications for the 

success of parasite transmission and should be investigated further. 

 

 There is very little information in the literature regarding the importance 

of the water vole for the red fox diet in Sweden. Although indirect 

evidence from bones observed in feces and signs in the field showed that 

foxes were eating these voles, a formal diet study is needed to examine 

the relative prey importance of these rodents throughout the year and what 

it may mean for parasite transmission.  

 

 Knowledge of host densities is a key factor in understanding E. 

multilocularis transmission potential. However, better methods of 

measuring relative fox and rodent host densities need to be developed. 

Current methods of estimating fox density, such as collecting feces along 

transects, are time-consuming, expensive, and need to be performed over 

large areas and times to increase accuracy (e.g. Webbon et al., 2004). In 

addition, techniques based on feces can be biased by environmental 

factors (Cavallini, 1994). Although techniques have been developed to 

estimate water vole density (Quéré et al., 2000; Giraudoux et al., 1995), 

they should be validated for use in Sweden.  

 

 Experimental studies investigating E. multilocularis infection dynamics 

in Arvicola spp. are needed to clarify any differences in the susceptibility 

between these species. 
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 Interspecies interactions both outside and inside the host may affect E. 

multilocularis transmission. For instance, field studies of interactions 

between rodent species, particularly field voles and water voles, may 

reveal behaviors that limit parasite exposure. In addition, experimental 

studies investigating parasite communities within individual rodents may 

reveal interactions which increase or decrease E. multilocularis 

establishment and development. 

 

 More research is needed to clarify human risk factors. In particular, the 

question of the risk of acquiring the parasite from berries remains. 

Although results from this thesis indicate a potentially lower risk of 

exposure in the forest, further investigation is needed to clarify these 

results. 

 

 Risk-based sampling is a promising method of detection for E. 

multilocularis. However, risk factors relating to the presence of the 

parasite in the environment (particularly for the formation of micro-foci) 

need to be identified and, if possible, quantified before this type of 

sampling can be performed more widely. 

 

 With better defined risk factors, models and/or risk maps could be 

developed. These could be used to estimate levels of contamination and 

therefore also risk for human exposure in different regions and habitats 

within Sweden. 

 

 The results of this thesis have indicated a wider distribution of the parasite 

than previously thought found in national monitoring. Still, only four 

restricted areas of southern Sweden were investigated. To better 

understand the distribution nationally, the methods used in this thesis 

should be applied to more regions throughout the country where the 

parasite has not yet been identified. Studying differences in prevalence 

between the north and south of Sweden may provide further insight into 

factors which limit parasite transmission. For instance, the heavily 

forested habitat of the north may reduce opportunities for micro-foci to 

form. In addition, repeat monitoring in the study areas herein may be 

useful to understand any temporal variation in prevalence. 
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 Since the first finding of E. multilocularis in Sweden, an underlying 

question has been if the parasite was introduced or if it has always been 

in the country. Although this thesis was not designed to answer this 

question, parasite findings in all four regions suggest that it was not a 

single recent introduction. However, this does not exclude the possibility 

of multiple recent introductions or that it has always been here but at a 

very low prevalence. Although this is a question that may never be fully 

answered, genetic studies may provide some insight. Repeated national 

monitoring to evaluate any change in prevalence may also give additional 

insight into this question. 



  56 

  



57 

8 Populärvetenskaplig Sammanfattning 

 

 

Rävens dvärgbandmask, Echinococcus multilocularis, är en parasit som överförs 

mellan olika hunddjur och gnagare. I Europa är rödräven parasitens viktigaste 

slutvärd, medan olika sorkar fungerar som mellanvärd. Som vuxen lever 

bandmasken i rävens tunntarm och ägg kommer ut i miljön med avföringen. När 

en sork äter äggen utvecklas parasiten i larvcystor i levern. Sorken måste därefter 

ätas upp av en räv för att bandmaskens livscykel skall fullföljas. Även människor 

kan infekteras genom att precis som gnagare få i sig äggen. Detta kan ske vid 

förtäring av förorenad mat eller genom interaktion med infekterade värddjur 

(t.ex. räv eller hund). I de fall en människa blir infekterad, tillväxer cystorna 

långsamt likt en cancer i levern. Sjukdomen echinococcos hos människa är 

dödlig men det finns bra behandlingsalternativ.  

Rävens dvärgbandmask är sedan årtionden vanligt förekommande hos rödräv 

i Centraleuropa (t ex i delar av Tyskland, Schweiz och Frankrike). I Sverige 

upptäcktes den för första gången 2011. På grund av att människor kan infekteras 

finns behov av att förstå var och hur parasiten kan uppträda i Sverige. När detta 

projekt inleddes 2013 saknades exempelvis kunskap om vilka gnagararter som 

är parasitens mellanvärdar i Sverige. Syftet med avhandlingen var att undersöka 

hur överföringen av rävens dvärgbandmask går till, med särskilt fokus på 

svenska gnagares roll.  

Genom arbetet upptäcktes rävens dvärgbandmask för första gången hos 

vattensork och åkersork i Sverige. Däremot påträffades den varken hos 

skogssork eller skogsmöss. Även undersökningen av närbesläktade bandmaskar 

hos dessa smågnagare visade att arter som fångades i ängsmiljöer (dvs. 

vattensork och åkersork) var parasiterade i högre grad än de som fångades i 

beskogade områden (dvs. skogsmöss och skogssork). Detta tyder på att det i 

Sverige är vattensork och åkersork som är viktigast för överföringen av olika 

bandmasklarver inklusive rävens bandmask. 

De två sorkar som är viktigast som mellanvärdar för dvärgbandmasken i 

övriga Europa (fältsork och en typ av vattensork) saknas i Sverige. Fältsork är i 

Sverige ersatt av åkersork. Dessutom skiljer sig den vattensork vi har i Sverige, 

både vad gäller livsstil och livsmiljö, från den i centrala Europa. Det visade sig 

att endast en av närmare 200 åkersork var infekterad. Av åtta infekterade 

vattensorkar var larverna infektionsdugliga bara hos tre individer. Då det i 

Sverige verkar saknas optimala mellanvärdar är det inte så konstigt att 

förekomsten av rävens dvärgbandmask generellt är låg.  
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För att ta reda på de svenska sorkarnas exponering för dvärgbandmaskens 

ägg, samlades rävspillning in på de olika fångstplatserna. Spillning med 

parasitägg påvisades därigenom i fyra regioner i Sverige. Rävens 

dvärgbandmask var dock inte jämnt fördelad i den svenska miljön. På några 

fångstplatser var andelen parasitinfekterad spillning mycket högre än på andra 

platser. Det är naturligtvis där som sorkarna är mest exponerade för bandmasken. 

Det var på en sådan plats som flertalet av de infekterade sorkarna hittades. Man 

kan inte utesluta att även människor exponeras där. 

Den provtagningsmetodik som har använts i detta avhandlingsarbete visade 

sig vara effektivare för att hitta spillning från infekterade rävar jämfört med den 

som använts i tidigare svenska studier. Genom att rikta insamlingsinsatserna till 

de platser där det är mest troligt att hitta dvärgbandmasken (det vill säga där 

vattensork och/eller åkersork lever), påvisades dvärgbandmasken i fyra 

undersökta regioner. Noteras kan att i två av dessa var dvärgbandmasken inte 

känd sedan tidigare. Dessa resultat har utgjort underlag till något som kallas 

riktad provtagning och baseras på kunskap om olika faktorer som är av betydelse 

för smittspridning.  

Efter ytterligare utveckling skulle riktad provtagning kunna användas för att 

på ett kostnadseffektivt sätt ta reda på om dvärgbandmasken finns etablerad på 

fler platser där den ännu inte påvisats, exempelvis i tätortsnära områden och i 

Norrland. Metodiken skulle även kunna tillämpas i andra länder och särskilt i 

länder som betraktas som fria från parasiten och där det finns behov av att 

dokumentera smittfrihet. 
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