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a b s t r a c t

Examination of closely related species pairs is suggested for
evolutionary comparisons of different degrees of polyphagy,
which we did here with three taxa of lepidopteran herbivores,
Spodoptera spp (S. littoralis, S. frugiperda maize (C) and rice
(R) strains) for a RNAseq analysis of the midguts from the 3rd
instar insect larvae for differential metabolic responses after
feeding on pinto bean based artificial diet vs maize leaves. Paired-
end (2�100 bp) Illumina HiSeq2500 sequencing resulted in a
total of 24, 23, 24, and 21 million reads for the SF-C-Maize, SF-C-
Pinto, SF-R-Maize, SF-R Pinto, and a total of 35 and 36 million
reads for the SL-Maize and SL-Pinto samples, respectively. After
quality control measures, a total of 62.2 million reads from SL and
71.7 million reads from SF were used for transcriptome assembly
(TA). The resulting final de novo reference TA (backbone) for the
SF taxa contained 37,985 contigs with a N50 contig size of
1030 bp and a maximum contig length of 17,093 bp, while for SL,
28,329 contigs were generated with a N50 contig size of 1980 bp
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and a maximum contig length of 18,267 bp. The data presented
herein contains supporting information related to our research
article Roy et al. (2016) http://dx.doi.org/10.1016/j.ibmb.2016.02.
006 [1].

& 2016 The Authors. Published by Elsevier Inc. This is an open
access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
Specifications Table
ubject area
 Biology

ore specific sub-
ject area
Molecular Ecology and Bioinformatics
ype of data
 Tables, figures, charts, and Excel files

ow data was
acquired
High-throughput RNA-sequencing using Illumina HiSeq2500 instrument at
the Max Planck Genome Centre Cologne (MPGCC).
ata format
 Analyzed

xperimental
factors
RNA Isolation, cDNA library construction, and sequencing
xperimental
features
Differential midgut gene expression analysis of three closely related Spo-
doptera moths feeding on pinto diet vs maize leaves.
ata source
location
Alnarp, Sweden and Jena, Germany
ata accessibility
 Data is available with this article. Raw data is publically deposited with the
following accession number: PRJEB 19473 [EBI short read archive (SRA)], SRA
Ids - ERR986577 to ERR986580.
Value of the data

� The genetic information of Spodoptera taxa in public databases is scant.
� The gene expression data provide insights into the adaptive mechanisms of these closely

Spodoptera with relatively little phylogenetic noise [2].
� It is a significant contribution to further research on adaptive mechanisms in Spodoptera taxa at all

levels.
� The data could be used as a benchmark and for comparative or collaborative studies in other

noctuid moths (Nocutidae, the largest family in the Lepidoptera).
� This data further supports our publication [1] and the use of transcriptomic technologies in

non-model organisms.
1. Data

We provide data on the transcriptome responses in the larval guts of the three moth taxa when
feeding on a semi-artificial diet (suitable for all three insect groups) and on maize leaves (the primary
food of only the S. frugiperda C (Corn) strain). The raw data of our study on Spodoptera larval
responses to different diets [1], can be accessed directly at the following URL: http://www.ebi.ac.uk/
ena/data/view/PRJEB10473.

The analyzed data presented here contains three types of data 1) the transcriptomes of S. littoralis
and S. frugiperda 3rd instar larval midgut (assembled and annotated) in two Excel files (plain text &
numerical) (Supplemental Files 1 and 2), 2) Quality control and annotation plots as Blast2GO, WEGO
(Web Gene Ontology Annotation) in five Figures (plain graphical) (Figs. 1 to 5), and 3) differential gene

http://dx.doi.org/10.1016/j.ibmb.2016.02.006
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expression (DGE) analysis in two sets of Supplementary charts (graphical listings of numbers) (Sup-
plementary charts 6.1-6.5 and 7.1-7.6).
2. Experimental design, materials and methods

2.1. Plant and insect

The detailed information for plants and insect strains (incl. origin) will be found in our publication
associated with this data set. In brief, maize plants (Sweet Nugget F1) were grown in Alnarp at 23 °C
and 70% RH. The R strain of S. frugiperda (Moore Haven, Florida), C strain of S. frugiperda (Santa Isabel,
Puerto Rico) and S. littoralis (Egypt) were maintained in the lab on pinto bean based semi-artificial
diet for several generations prior to the experiments.
2.2. RNA isolation

Total RNA was extracted from each of the larval midgut samples using a combined approach of
Trizol based extraction followed by purification using the RNeasy Mini Kit (Qiagen, Venlo, Nether-
lands) following the manufacturer's guidelines. DNA was eliminated with on-column RNase-free
DNase (Qiagen). The integrity of the RNA was verified using an Agilent 2100 Bioanalyzer and a RNA
6000 Nano Kit (Agilent Technologies, Palo Alto, CA). The quantity of RNA was determined using a
Nanodrop ND-1000 spectrophotometer. RNA from a total of twenty individuals was combined in one
pool per sample (for each of the SF-C-Maize, SF-C-Pinto, SF-R-Maize, SF-R-Pinto and for the SL-Maize
and SL-Pinto samples) for sequencing.
2.3. RNA seq data generation and assembly

Tissue-specific transcriptome sequencing of four different RNA samples for SF and two RNA
samples for SL was carried out on an Illumina HiSeq2500 Genome Analyzer platform using paired-
end (2�100 bp) read technology with RNA fragmented to an average of 150 nucleotides at the Max
Planck Genome Centre Cologne (MPGCC). Sequencing resulted in a total of 24, 23, 24, and 21 million
reads for the SF-C-Maize, SF-C-Pinto, SF-R-Maize, SF-R Pinto, and a total of 35 and 36 million reads for
the SL-Maize and SL-Pinto samples, respectively. Quality control (QC) measures which include the
filtering of high-quality reads based on the quality score given in fastq files, removal of reads con-
taining primer/adaptor sequences and trimming of read length, were performed using CLC Genomics
Workbench v6.5 (http://www.clcbio.com). The de novo transcriptome assembly was then carried out
using the Genomics Workbench v6.5 software and the selection of the presumed optimal consensus
transcriptome was done using the pre-optimized approach [3]. Any conflicts among the individual
bases were resolved by selecting the base with highest frequency. Contigs shorter than 250 bp were
removed from the final analysis.

The de novo assembled transcriptomes were annotated using BLAST, Gene Ontology and Inter-
ProScan searches using BLAST2GO PRO v2.8.1 (www.blast2go.de) [4]. For BLASTX searches [5] against
the non-redundant NCBI protein database (NR database) up to the 20 best NR hits per transcript were
retained, with an E-value cut-offr10�1 and a minimum match length of 15 amino acids to obtain the
best homologue for the predicted short polypeptides. Annex [6] was used to optimize the GO term
identification further by crossing the three GO categories (biological process, molecular function and
cellular component) to search for name similarities, GO term relationships and enzyme relationships
within metabolic pathways (Kyoto Encyclopedia of Genes and Genomes) [7,8].

Finally, the GO enrichment analysis (level 2) was performed by plotting all the GO information, but
from only the contigs with an expression difference more than fourfold and a minimum RPKM cut off
at 1 against the reference set (SL and SF whole transcriptome) using the web tool called WEGO [9].

http://www.clcbio.com


Fig. 1. Homology analysis output of SL unigenes. a) E-value distribution for top BLAST hit for unique sequence, b) GO level
annotation distribution of the top BLAST hits, c) similarity distribution for top BLAST hit for unique sequence, d) species
distribution for top BLAST hit for each unique sequence.

Fig. 2. Homology analysis output of SF unigenes. a) E-value distribution for top BLAST hit for unique sequence, b) GO level
annotation distribution of the top BLAST hits, c) similarity distribution for top BLAST hit for unique sequence, d) species
distribution for top BLAST hit for each unique sequence.
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Fig. 3. WEGO plot showing gene ontology classification of SL and SF unigene sets. Classification and functional distribution of
the 7809 unigenes of the SL and 8391 unigenes of the SF transcriptome according to the 3 major classifications of gene
ontology: Biological Process, Molecular Function and Cellular Component.

Fig. 4. Summary of GO enrichment analysis. Green boxes show enrichment events for the corresponding GO terms.
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2.4. Re-mapping and digital gene expression analysis

Digital gene expression analysis was performed by using QSeq Software (DNAStar Inc.) to re-map
the Illumina reads from all individual samples onto their respective transcriptome backbone refer-
ence, and then count the sequences to estimate expression levels, using previously described para-
meters for read mapping and normalization such as n-mer length¼25; read assignment quality
options required at least 25 bases and at least 90% of bases matching within each read to be assigned
to a specific contig; maximum number of hits for a read¼10; n-mer repeat settings were auto-
matically determined by the software and other default settings [3]. Biases in the sequence datasets
and different transcript sizes were corrected using the RPKM algorithm (reads per kilobase of tran-
script per million mapped reads; log2 transformed) to obtain accurate estimates for relative
expression levels. To control for the effect of global normalization using the RPKM method, we also
analyzed a number of highly-conserved housekeeping genes that are frequently used as control genes
for quantitative RT-PCR. These included several genes encoding ribosomal proteins (RpL5, RpL8,
Fig. 5. WEGO output showing over-represented GO terms against reference transcriptome for each species after feeding on
pinto bean diet (P) and maize leaves (M). 5.1 & 5.2) SL-P vs SL-M, 5.3 & 5.4) SF-C-P vs SF-C-M , 5.5 & 5.6) SF-R-P vs SF-R-M, 5.7 &
5.8) SF-C-P vs SF-R-P, and 5.9 & 5.10) SF-C-M vs SF-R-M.



Fig. 5. (continued)
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RpL7a, RpL15, RpL22, RpS3a, RpS5, RpS8, RpS15, RpS18, and RpS20), elongation factor 1-alpha and
eukaryotic translation initiation factors 4b and 5a. The corresponding genes were evaluated for
overall expression levels across samples and treatments and were found to display expression level
differences (based on log2-transformed RPKM values) lower than 1.4-fold across samples, validating
them as housekeeping genes with no diet or strain dependent differential expression. Due to the
robust pooling strategy detailed above, combining large numbers (20) of larvae per sample and
treatment group, our effective sample size per group is n¼1. Hence, there is no statistical power for
conventional hypothesis testing using this pooling approach. However, this pooling strategy reduces
the influence of individual outliers. Expression differences in the gene categories with less than 10
total identified transcripts were not considered for analysis (Supplementary charts 6.1-6.5).
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Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.
org/10.1016/j.dib.2016.04.029.
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