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Abstract

In natural habitats plants can be exposed to brief and light contact with neighbouring plants.

This mechanical stimulus may represent a cue that induces responses to nearby plants.

However, little is known about the effect of touching on plant growth and interaction with

insect herbivores. To simulate contact between plants, a soft brush was used to apply light

and brief mechanical stimuli to terminal leaves of potato Solanum tuberosum L. The number

of non-glandular trichomes on the leaf surface was counted on images made by light micro-

scope while glandular trichomes and pavement cells were counted on images made under

scanning electronic microscope. Volatile compounds were identified and quantified using

coupled gas chromatography–mass spectrometry (GC-MS). Treated plants changed their

pattern of biomass distribution; they had lower stem mass fraction and higher branch and

leaf mass fraction than untouched plants. Size, weight and number of tubers were not signif-

icantly affected. Touching did not cause trichome damage nor change their total number on

touched terminal leaves. However, on primary leaves the number of glandular trichomes

and pavement cells was significantly increased. Touching altered the volatile emission of

treated plants; they released higher quantities of the sesquiterpenes (E)-β-caryophyllene,

germacrene D-4-ol and (E)-nerolidol, and lower quantities of the terpenes (E)-ocimene and

linalool, indicating a systemic effect of the treatment. The odour of touched plants was signif-

icantly less preferred by the aphids Macrosiphum euphorbiae and Myzus persicae com-

pared to odour of untouched plants. The results suggest that light contact may have a

potential role in the detection of neighbouring plants and may affect plant-insect

interactions.

Introduction

Coexistence with neighbouring plants is one of the most important challenges faced by plants.

The impossibility of escape from unfavourable growing conditions makes plants’ survival

directly dependent on their sensitivity and ability to respond to subtle cues from their sur-

roundings. Plants detect neighbouring plants by a range of cues including light quality [1, 2],
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sound [3] and chemicals released by roots [4] or leaves [5]. Depending on the type of signals

received from their neighbours, plants show specific responses that include changes in biomass

allocation, shade avoidance and volatile emission [6–9].

Mechanical stimuli are among the many cues to which plants can respond in order to

quickly adapt their growth and enhance survival in a specific environment [10, 11]. Plants

respond to mechanical stimuli with range of morphological, physiological and biochemical

changes. Those with specialized sensory cells such as Mimosa pudica and Venus fly trap Dio-
naea muscipula respond immediately [12, 13], while other plants show visible morphological

modifications over longer periods of time, from days to weeks [11, 14, 15]. Common plant

responses to mechanical stimulation include inhibition of internode elongation, stronger and

more flexible stem and increased ratio of branch to stem diameter [12].

Agricultural crops are particularly interesting because they are exposed to many different

types of mechanical stimuli that include bending [16], rubbing of the stem [17] or spraying

with water [18]. Hyponastic leaf movement can also cause modest mechanical stimuli through

touching of leaf tips with neighbouring plants and is perceived as the earliest signal to detect

future competitors [19]. Other widespread organ movements, such as circumnutation [20]

and phototropism [21] can also cause touching. Evidence that these frequently occurring phe-

nomena are involved in plant-plant interactions in nature is still lacking. However, it is possi-

ble that mechanical stimuli are a route through which plants can gain information about their

neighbours.

Plants are the basis of food webs, and the effects of plant responses to their environment

can impact organisms at higher trophic levels. For example, herbivorous arthropods can be

highly sensitive to changes in host plant status [22], and plant responses to environmental sti-

muli can alter plant-arthropod interactions (e.g. [23]). These effects can contribute to natural

regulation of herbivore populations and have consequences for productivity in agricultural

crop systems, as has been shown for plant-plant interactions [24, 25].

The aim of the current study was to investigate whether brief mechanical stimuli affect

plant morphology, physiology and interaction with insect herbivores. Using potato as a model,

we tested the effect of touching on biomass allocation, glandular and non-glandular trichome

occurrence, volatile chemical emissions and olfactory attraction of aphids.

Material and Methods

Plants and insects

As a model plant we used cultivated potato Solanum tuberosum L. (Solanaceae), one of the

most important vegetable crops for human nutrition, cultivated in more than 100 countries

[26]. Potato tubers of cultivar Sava were provided by Lantmännen, Sweden. Cut sprouting

buds taken from tubers were planted singly in plastic pots (9 × 7 × 7 cm) with potting soil (Spe-

cial Hasselfors garden, Hasselfors, Sweden). After 14 days, young plants were re-planted into

larger 5 litre polypropylene pots (height 18 cm, diameter 23 cm) filled with the same potting

soil. Distance between each pot was 70 cm. Plants were grown in a chamber maintained at 18–

22˚C, a light regime of L16:D8 and 70% relative humidity. Light was provided with HQIE

lamps (Hortilux Schréder, HPS 400 Watt, Holland)–one lamp per square meter.

The potato aphid Macrosiphum euphorbiae (Thomas) and green peach aphid Myzus persi-
cae (Sulzer) were grown in cultures under the same conditions as the test-plants but in differ-

ent climate chambers. Macrosiphum euphorbiae was reared on potted potato plants Solanum
tuberosum L. cv. King Edward while M. persicae was reared on potted rapeseed plants Brassica
napus L. These aphid species are the most important pests of potato since they vector a number

of plant -viruses [27].
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Touching treatment

Potato leaves were treated with an artificial light mechanical stimulus, starting 17 days after

planting. A soft squirrel hair face brush (Rouge) (Lindex, Sweden) was used. The terminal

leaves (the first leaves to come into contact with neighbours) on the top of each potato branch

were gently touched from the leaf base to the top (S1 Fig). The treatment was designed to sim-

ulate contact with a neighbouring plant and isolate the mechanical component from others

such as exchange of leaf chemicals. This method has been used previously to simulate natural

mechanical stimuli [14, 28–30], although it cannot be assumed to fully replicate plant-plant

contact under natural conditions. The treatment could also potentially simulate arthropod

movement on the leaves. Treated plants were brushed in the morning, 3 hours after the start of

the photoperiod, for 1 min/day.

Plant morphological analyses

Plants used for morphological analyses were touched as described above for 17 days. The

period was based on the time needed by potato plants to start to develop flowers. Potato plants

were cut at ground level using scissors and then separated into stem, branches, leaves and

tubers. Tubers from each plant were carefully washed of soil particles under running water.

Stem, branches and leaves from each plant were separately scanned using a dual lens scanner

(Epson 4490Pro). Leaf surface, stem height, total branch length and average branch diameter

were calculated using WinRHIZO (Regent Instruments), an image analysis system specifically

designed for plant morphological measurements. Leaves, stems and branches from each plant

were separately packed into labelled aluminium bags and dried for 48 h at 70˚C to constant

mass dry weights. All samples spent 24 h at room temperature before they were weighed.

These data were used to calculate integral morphological indices. Specific leaf area (SLA) is cal-

culated as proportion of leaf surface to leaf dry weight. Detailed information of the morpholog-

ical indices is presented in S1 Table. To describe the relationship between plant organs i.e. how

the biomass fraction of one organ relates to that of the entire above ground biomass, we calcu-

lated stem mass fraction (SMF), branch mass fraction (BMF) and leaf mass fraction (LMF)

(see dataset in S2 Table). The sum of leaf weight, branch weight and stem weight is presented

as total above ground biomass. Root weight was not analysed due to the difficulty of separating

roots from soil. The number of tubers per plant was counted, and tubers were weighed without

drying.

Determination of trichome number

Trichomes on the adaxial leaf surface were examined to determine whether mechanical stimuli

affected the number of trichomes both on the touched terminal leaves and on untouched pri-

mary leaves on the same branch. Leaf samples were carefully harvested from one randomly

chosen branch without causing damage to the surfaces. From the selected branch we collected

two leaf discs, one from the touched terminal leaf and one from the first primary leaf (S2 Fig).

The same procedure on equivalent leaves was repeated on control plants. Each treatment was

represented by 10 plants. We used a hollow metal cylinder to punch out round leaf discs (sur-

face 0.86 cm2) from sampled leaves. Samples were taken only on the areas between leaf veins

[31].

Light microscopy of leaf surface

Light microscopy was used to determine the number of non-glandular trichomes on the leaf

surface. Leaf discs obtained as described above were placed under a light microscope (Leica
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MZFLIII) under magnification 1.0 × to make a digital image for further analyses. The number

of trichomes per leaf disc was counted using a graphical program CorelDraw [32] in which

each trichome counted on the leaf disc was carefully marked using the ‘ellipse’ tool. All ellipses

were then selected using the ‘pick’ tool and the program automatically counted the number of

selected objects. (see S3 Table for detailed information).

Scanning Electronic Microscope (SEM) of leaf surface

We used SEM to determine the frequency of glandular trichomes and pavement cells on the

leaf discs, and to check whether glandular trichomes were damaged by the touching treatment.

One randomly chosen branch was harvested from five control and five treated plants. Leaf

discs from terminal and primary leaves (obtained by hollow cylinder as described above) were

attached to double-sided adhesive carbon sticker (same size as leaf discs) previously mounted

on aluminium SEM stubs. Each leaf disc spent a maximum of 15 minutes inside the SEM to

avoid effects of higher temperatures on the trichomes. Images made under SEM covered an

area of 1 mm2. SEM characterization of leaf discs was carried out using a Hitachi TM-1000-

μDeX environmental table top electron microscope, without coating of the samples in a

charge-up reduction mode. Glandular trichomes were determined according to a classification

previously described by Glass et al. [33] (see dataset in S3 Table).

Pavement cells were counted from SEM images where each recording was expressed as the

mean cell number of three randomly chosen square fields per leaf (0.06 mm2 per field). The

number of whole pavement cells inside each square field was estimated in CorelDraw [32] by

marking each cell using the ’ellipse’ tool and counting as described above. The final estimate of

cell density was calculated as the mean of five independent measurements for terminal and pri-

mary leaves on treated and control plants respectively (dataset presented in S4 Table).

Collection of volatiles

Prior to volatile collection, polyethyleneterephthalate (PET) oven bags (35 cm x 43 cm, Top-

pits1, Klippan, Sweden) were baked in an oven at 140˚C for 2 h to remove contaminants.

Glass tubes (5 mm diameter) containing Porapak Q (PPQ, 50mg of PPQ per tube, mesh 50/80,

Supelco, Bellefonte, PA, USA) were rinsed with redistilled dichloromethane (DCM) and baked

overnight under nitrogen flow at a temperature of 140˚C and cooled to room temperature just

before volatile collection started.

Plants were subjected to touching treatment as described above for 8 days and control

plants were untreated. Twenty four hours after this treatment, pots containing one potato

plant were carefully enclosed in PET bags, taking care not to touch the leaves and shoots. Char-

coal-filtered air was pumped in at 600 ml min-1 and a tube containing Porapak was inserted

through a hole in the top of the bag and air drawn through via PTFE tubing connected to a

pump (400 ml min-1). The difference in flow rates created a positive pressure to minimize

entry of unfiltered air. A small hole cut in the top of the bag prevented build-up of pressure.

Air was pumped in for 30 minutes prior to volatile collection to flush contaminating volatiles

from the system. Volatile collection was carried out for 48h under controlled environmental

conditions (21˚C, 16h:8h light-dark cycle). Six replicates were carried out for each treatment,

and two control treatments consisting of pots and soil without plants were included.

Chemical Analysis

Collected volatile compounds were extracted from PPQ traps with 750 μL of redistilled DCM

into a 2 ml glass vial. An internal standard (1-nonene) was added to achieve a concentration of
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50ng/μl in the sample. The samples were then reduced to 50 μl volume under a gentle nitrogen

flow.

Compounds were identified and quantified using coupled gas chromatography–mass spec-

trometry (GC-MS). A 2μl aliquot of each sample was injected onto a HP-5 column (95%

dimethyl polysiloxane and 5% diphenyl polysiloxane; 30 m, 0.25 mm i.d., and 0.25 μm film

thickness; J&W Scientific, Santa Clara, CA, USA) housed in a 7890A gas chromatograph (Agi-

lent Technologies, Santa Clara, CA, USA) coupled to an Agilent 5975C mass spectrometer.

Ionization was by electron impact at 70 eV. The oven temperature was held at 30˚C for 1min,

then programmed at 10˚C min–1 to 250˚C. The carrier gas was helium with a flow rate of 1 mL

min–1. Identifications were made by comparison of spectra with those of authentic samples in

a commercial database (NIST 2008) and by comparing mass spectra and retention times with

those of authentic standards where available. Only compounds appearing in the headspace of

plants and not of pots with soil were quantified. Quantifications were made using the internal

standard. Chemical standards were obtained as follows: (α)-pinene (98%), 6-methyl-5-hepten-

2-one (99%), linalool (97%), methyl salicylate (98%), (+)-cyclosativene (99%) (all from Sigma-

Aldrich, Sweden), (E)-β-caryophyllene (98.5%, Fluka, Sweden), (E)-nerolidol (>85%Fluka),

hexahydrofarnesyl acetone (98%, Bedoukian, Danbury, CT, USA). Standards of (E)-ocimene,

(E,E)-4,8,12-Trimethyl-1,3,7,11-tridecatetraene (TMTT) and (E)-4,8-dimethyl-1,3,7-nona-

triene (DMTT) were kindly provided by Dr Mike Birkett, Rothamsted Research, UK. Stan-

dards were not available for (α)-copaene, cadinene, germacrene D-4-ol, and two unidentified

compounds assumed to be sesquiterpenes based on their retention indices and mass spectra

(unknown sesquiterpene 1 (m/z 161, 105, 91, 119, 177, 204); unknown sesquiterpene 2 (m/z

161, 119, 134, 105, 204)). Germacrene D and germacrene D-4-ol have been previously reported

as volatiles from potato leaves [34, 35] (see dataset in S5 Table).

Aphid olfactory response

Plants used for olfactory bioassays were exposed to touching treatment for 8 days as described

above. Aphid olfactory preference was tested using a Perspex two way airflow olfactometer

consisting of two stimulus zones (length 4 cm) directly opposite each other connected by a

neutral central zone (2.5 × 2.5 cm) [5]. Olfactometry experiments were done 24 h after the last

touching treatment. One arm of each olfactometer was connected to a cage containing a

touched potato plant and the other arm to a cage containing an untouched potato plant. The

position of the treatments in the two-arm olfactometer was switched between the left and right

arms in each olfactometer to minimize positional bias. Airflow in the olfactometer was 250 ml/

min, which established discrete air currents in the stimulus zones.

Tested aphids were randomly collected from cultures using a fine paintbrush and placed in

Petri dishes with moistened filter paper to prevent dehydration. Aphids were left in the bioas-

say room for 1 h to acclimatize prior to the experiments. A single aphid was introduced into

the central zone of the olfactometer through a hole in the top and, after an adaptation period

of 10 min, the position of the aphid in the arms, defined as a visit, was recorded at 3 min inter-

vals over a 30-min period. The accumulated number of visits of a single aphid in a single arm

after ten recordings was regarded as one replicate. Data were expressed as mean of individual

aphid visits per olfactometer arm during the observation period of 30 min (dataset in S6 and

S7 Tables).If an aphid did not move between three consecutive observations, the replicate was

discarded and these individuals were not included in the analysis. To avoid pseudoreplication

individual aphids were used only once. Olfactometers were washed with 10% Teepol L (TEE-

POL, Kent, UK) and rinsed with 80% ethanol solution and distilled water and left to air dry.

The number of replicates (individual aphids tested) was 25.
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Statistical analyses

Differences in morphological parameters between touched and untouched plants were tested

by t-test. Using histogram and plots, data values and their residuals were found to be normally

distributed and homoscedastic. Values not normally distributed were log-transformed. One

way ANOVA was used to determine differences between treatments in the number of pave-

ment cells on terminal and primary leaves followed by Tukey’s HSD test for pairwise compari-

sons. Two way ANOVA was used to assess differences between treatments in the number of

trichomes on terminal leaves and primary leaves. The square root transformation was applied

to normalize the data and independence of mean and variance. Pairwise comparisons of

means were made using Tukey’s HSD test.

Principal component analyses (PCA) was used to reduce the complexity of multivariate vol-

atile data and to determine if there were overall differences between the peak areas of volatile

compounds released from touched and control potato plants. The first two principal compo-

nents PC1 and PC2 biplots of the total PC scores and loadings were used to visualize the

results. T- test was used to determine significant differences between individual volatile com-

pounds of treated and control plants. Data from olfactory bioassays were analysed with Wil-

coxon’s matched pairs tests. Analyses were performed with the Dell Statistica software [36].

Results

Pattern of biomass distribution

The effects of brief and light touching on potato plants are presented in Table 1. Touching

resulted in significant reduction in plant height, stem weight, number of internodes and aver-

age branch diameter compared to untouched control plants. Total above ground biomass was

not affected by touching, but SMF was reduced, and BMF and LMF significantly increased

(Fig 1). Changes in the proportion of biomass of individual organs as a fraction of total above

ground biomass suggest a specific pattern of biomass redistribution from the stem to branches

and leaves.

Leaf surface of touched plants was significantly higher than untouched plants (Table 1).

The number of tubers and their fresh weight were not affected by touching. As a result of the

biomass changes, touched plants were shorter with a more compact appearance.

Table 1. Effect of one minute of touching over a period of 17 days on morphological characteristics of potato plants.

Mean Touched Mean Control p value

Leaf surface (cm2) 4498.22 ± 165.29 3952.41 ± 162.33 0.02

Leaf weight (g) 5.91 ± 0.22 5.53 ± 0.15 0.16

Number of leafs 258.05 ± 13.98 248.65 ± 10.14 0.59

SLA 767.67 ± 24.20 731.61 ± 26.01 0.32

Plant height (cm) 22.86 ± 0.78 32.41 ± 2.31 <0.01

Stem weight (g) 1.48 ± 0.10 2.13 ± 0.12 <0.01

Number of internodes 11.20 ± 0.58 13.45 ± 0.29 <0.01

Branch number 32.40 ± 1.15 32.45 ± 1.57 0.98

Branch weight (g) 3.19 ± 0.24 2.70 ± 0.18 0.10

Total branch length (cm) 564.02 ± 23.56 506.86 ± 20.15 0.07

Branch diameter (mm) 4.69 ± 0.13 5.36 ± 0.13 <0.01

Number of tubers/plant 4.45 ± 0.71 4.10 ± 0.31 0.65

Tuber fresh weight/plant (g) 12.15 ± 1.50 12.58 ± 1.48 0.84

Total above ground weight (g) 10.59 ± 0.54 10.36 ± 0.35 0.72

doi:10.1371/journal.pone.0165742.t001
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Effects of touching on trichomes and pavement cells

The light and brief touching did not cause trichome injury on treated terminal leaves (Fig 2A

and 2B). Two-way ANOVA analyses did not show significant differences in the number of tri-

chomes between treatments (non-glandular F1, 36 = 3.78; P = 0.06; glandular F1, 16 = 4.37;

P = 0.053). However, the interaction between treatment and the type of leaf was significant

(non-glandular F1, 36 = 7.17; P = 0.01; glandular F1, 16 = 8.08; P = 0.01). Post hoc comparisons

with Tukey’s HSD tests showed that primary untreated leaves on branches with touched termi-

nal leaves had significantly higher numbers of both types of trichome than the equivalent

leaves of control plants (non-glandular P = 0.012) (Fig 3A) (glandular P = 0.015) (Fig 3B).

One way ANOVA analyses showed significant differences between treatments in the num-

ber of pavement cells (F1, 16 = 16.12; P = 0.00004). Post hoc comparisons with Tukey’s HSD

tests showed that primary untreated leaves on branches with touched terminal leaves had sig-

nificantly more pavement cells than the equivalent leaves of control plants (P = 0.005) (Fig 4).

Changes in volatile emission

Compounds identified in headspace collections from touched and control potato plants are

shown in Table 2. PCA revealed variation in the emission of volatile compounds between

treatments. PC2 distinguished the treatments better than PC1, and shows clear separation of

touched from untouched plants (Fig 5A). In particular, the score plot constructed from the

principal components PC1 and PC2 cumulatively captured 60% of the total variation in vola-

tile profiles; PC1 accounted for 37% and PC2 for 23% (Fig 5B). The results of PCA resolved

which of 16 volatile compounds were discriminated best among treatments. Longer vectors on

the loading plots revealed a greater relative contribution of each peak to the principal compo-

nents (Fig 5B). Eigenvector weightings of PC1 were predominantly informed by (E)-caryo-

phyllene (C9), (E)-nerolidol (C13) and germacrene D-4-ol (C15). The statistical analyses of

individual compounds of headspace of potato previously exposed to touching identified and

quantified five individual volatile compounds associated with the touching treatment

Fig 1. The effect of touching on potato mass fractions (SMF–Stem Mass Fraction, BMF–Branch Mass

Fraction and LMF–Leaf Mass Fraction). Significant differences between treatments (*P < 0.05; **P < 0.01;

Tukey’s HSD test).

doi:10.1371/journal.pone.0165742.g001
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Fig 2. Potato non glandular trichomes obtained by SEM under magnification ×180 on leaf surface from A)

touched terminal leaf, B) untouched terminal leaf. No tissue damage was observed on leaf samples.

doi:10.1371/journal.pone.0165742.g002

Plant Responses to Brief Touching

PLOS ONE | DOI:10.1371/journal.pone.0165742 November 9, 2016 8 / 19



(Table 2). Significantly higher amounts of (E)-caryophyllene (P = 0.002), (E)-nerolidol

(P = 0.008) and germacrene D-4-ol (P = 0.02) were released by touched plants compared to

controls, whereas the emission of (E)-ocimene (P = 0.03) and linalool (P = 0.03) significantly

decreased. Touched plants showed no significant change in the total amount of volatiles

released compared to control plants (P = 0.96).

Fig 3. Mean number of: A) non-glandular trichomes per leaf sample on images obtained by light microscopy,

B) glandular trichomes per image obtained by SEM. Significant differences in the number of trichomes

(*P < 0.05; Tukey’s HSD test).

doi:10.1371/journal.pone.0165742.g003
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Fig 4. Mean number of pavement cells per 0.06 mm2 on image obtained by SEM. Significant differences in the number of trichomes (*P < 0.05;

**P < 0.01; Tukey’s HSD test).

doi:10.1371/journal.pone.0165742.g004

Table 2. Volatile compounds released by treated and control plants (p values from T-test). TMTT: (E,E)-4,8,12-Trimethyl-1,3,7,11-tridecatetraene,

DMNT: (E)-4,8-dimethyl-1,3,7-nonatriene.

Compound Chemical name Treatment Mean±SE Control Mean±SE P value

C1 (a)-pinene 1.55±0.92 2.26±1.33 0.67

C2 6-methyl-5-hepten-2-one 1.69±0.61 3.16±1.17 0.30

C3 (E)-ocimene 1.26±0.28 3.03±0.62 0.03

C4 linalool 5.11±0.88 9.32±1.37 0.03

C5 DMNT 25.32±10.00 22.21±6.63 0.80

C6 methyl salicylate 9.45±3.00 10.65±4.20 0.82

C7 (-)-cyclosativene 1.19±0.34 1.13±0.20 0.87

C8 α-copaene 26.82±6.33 30.79±7.01 0.69

C9 (E)-caryophyllene 16.60±2.93 2.84±0.73 0.002

C10 unknown sesquiterpene 1 1.56±0.41 2.05±0.47 0.45

C11 unknown sesquiterpene 2 5.89±1.02 6.89±1.31 0.57

C12 cadinene 2.64±0.43 3.25±0.79 0.52

C13 (E)-nerolidol 1.38±0.18 0.55±0.15 0.008

C14 TMTT 38.26±11.29 45.80±10.86 0.64

C15 germacrene D 4-ol 10.00±3.42 0.49±0.23 0.02

C16 hexahydrofarnesyl acetone 7.85±0.77 10.17±1.91 0.29

doi:10.1371/journal.pone.0165742.t002
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Aphid olfactory response

Both aphid species showed a significantly lower preference (measured as mean number of vis-

its in odour field) for odour of touched potato plants compared to untreated plants: M. euphor-
biae (Wilcoxon’s test, N = 22; Z = 2.78; P = 0.005) (Fig 6A) and M. persicae (Wilcoxon’s test,

N = 18; Z = 2.26; P = 0.02) (Fig 6B).

Fig 5. Principal Component analysis (PCA) score plots for touched and control plants. A) Plots PC1 vs

PC2 compare total variation in volatile profile between treatments. B) Vectors on the loading plot based on the

first two PC show the relative importance of each peak area in volatile compounds released that discriminate

treatments (C1: (a)-pinene, C2: 6-methyl-5-hepten-2-one, C3: (E)-ocimene, C4: linalool, C5: DMNT, C6:

methyl salicylate, C7: (-)-cyclosativene, C8: a-copaene, C9: (E)-caryophyllene, C10: unknown sesquiterpene

1, C11: unknown sesquiterpene 2, C12: cadinene, C13: (E)-nerolidol, C14: TMTT, C15: germacrene D 4-ol,

C16: hexahydrofarnesyl acetone).

doi:10.1371/journal.pone.0165742.g005

Fig 6. Olfactory preferences of: A) M. euphorbiae and B) M. persicae for volatiles released from touched and

untouched potato plants. Significant differences in aphid olfactory preference (*P < 0.05, **P < 0.01;

Wilcoxon’s mean pairs test).

doi:10.1371/journal.pone.0165742.g006
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Discussion

Our results show that one minute of light touching of potato leaves, can induce changes in bio-

mass allocation and increase trichome production on adjacent leaves via a systemic effect. The

touching also induced changes in the blend of volatile organic compounds released by plants,

and this resulted in reduced olfactory attraction of insect herbivores. The results suggest that

plant responses to even light contact can reprogram the growth of individual organs.

Plant adaption to touch stimuli

The ability of plants to modify their growth and morphology is fundamental to reproductive

performance and fitness [37]. A recent analysis of plant biomass distribution in 1200 species

found that Solanaceae have a well-developed capacity to distribute biomass among above

ground parts [38]. Our results show that application of light mechanical stimuli simulating

touching between leaves of neighbouring plants induces changes in the growth pattern of

potato. Touching modified the pattern of biomass distribution, reducing SMF and increasing

BMF and LMF. This is a common plant response to mechanical stimulation observed in other

species [14, 39, 40]. The brief touching of terminal potato leafs also affected above ground bio-

mass distribution. As a result, the number of internodes was reduced, making touched plants

more compact with increased radial expansion. Further, compact plants are more resistant to

mechanical stress and potential mechanical damage caused by environmental factors such as

wind [41, 42], but the response may also represent an adaptation to meet competition for

space from neighbouring plants. It has been shown that touching reduces leaf surface area [43]

which may depress plant competitiveness with neighbours [21, 44]. In contrast, the increase in

leaf surface on touched plants observed in our study suggests that brief and light contact with

neighbours can potentially induce responses that prepare plants for imminent competition.

The changes in trichome number observed on touched plants did not affect the number

and average weight of fresh tubers per plant. These findings are consistent with those of Kaplan

et al. who found no evidence for trade-offs between potato tuber yield and higher trichome

production [45]. In contrast, a positive correlation between trichome density and soybean

yield has been demonstrated [46]. Plant stress induced by damage or drought can increase

overall trichome density [47]. In our study an increase was not observed on the touched, ter-

minal leaves, but rather on untouched primary leaves on the same branches as the touched

leaves. It has been shown that trichomes, one of the most fragile structures on the leaf surface,

can be damaged by gentle forms of mechanical stimulation [48]. However, we did not find evi-

dence that our touching treatment damaged trichomes. One minute per day of light touching

was enough to increase the production of glandular trichomes on untouched leaves of treated

plants. A similar systemic enhancement of trichome production on undamaged leaves has

been observed after insect feeding [49, 50], suggesting that it may be a common plant response

to stress. An expected reduction in trichome occurrence due to a dilution effect caused by

increase in the leaf surface of touched plants was not observed.

Trichomes on the leaf surface may play multiple functional roles important for plant

growth. For example, increase in trichome production is negatively correlated with transpira-

tion rate [51, 52], implying that the presence of trichomes can be important in reducing water

loss. Trichomes can also reduce the absorption of sunlight, dissipate absorbed heat and

decrease the rate of carbon dioxide diffusion [53], thereby interfering with the rate of photo-

synthesis [54, 55]. Thus, increase in the number of trichomes suggests that light, periodical

contact between plants may have implications for plant resource use. Greater leaf reflectivity

can reduce transpiration, because it lessens the solar radiation load on the sunlit canopy sur-

face, and can also enhance photosynthesis if more radiation is reflected to the shaded leaves in
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the lower part of the canopy. In light of these leaf morphological changes, touched plants are

more likely to outperform untouched neighbours in resource poor habitats. It is generally con-

sidered that plants adapted to such habitats are expected to deploy conservative resource-use

strategies (characterized by more efficient resource use), but at the expense of fast growth [56].

Insect response to touch stimulated plants

The brief and light touching resulted in significant changes in emission of volatile organic

compounds by the plant. A similar effect has been found in maize and bean plants [28]. Three

sesquiterpene compounds were released in higher amounts by touched plants, (E)-caryophyl-

lene, (E)-nerolidol and germacrene-4D-ol, and release of two terpenes (E)-ocimene and linal-

ool was reduced. Most of the compounds identified in our study have been previously detected

from potato leaves [34, 35]. Potato trichomes are known to contain sesquiterpenes, including

(E)-caryophyllene [57], and the increase in these compounds could be related directly to the

touching of terminal leaves and/or to the systemic increase in trichomes on untouched pri-

mary leaves. The decrease in emission of the two terpenes is less likely to be due directly to

touching itself, and could be related to changes in the plant’s underlying physiology.

Plant volatiles are used by arthropod herbivores to locate hosts, discriminate hosts from

non-hosts and gain information on plant quality and condition [58]. For aphids volatiles play

a vital role in the host location process [59, 60]. In our study, M. euphorbiae and M. persicae
were less attracted to odour of touched plants than to odour of untouched plants. This could

be due to aphid responses to individual compounds such as (E)-nerolidol, which has been

shown to repel M. persicae [5]. It has been also shown that increased levels of (E)-nerolidol and

(E)-β-caryophyllene within volatile blends can repel herbivores and enhance the recruitment

of biological control agents [61–63]. Since aphids are known to discriminate small changes in

ratios of volatile compounds [60], the changes in the overall blend induced by touching in our

study may be responsible for the effects on aphid attraction. Thus plant mechanical interaction

may have ecological effects beyond the plant itself, affecting organisms at higher trophic levels.

This may be a parallel to plant-plant interaction via chemicals, which has been shown to have

extensive effects on insects [25, 64].

Leaf trichomes may also serve as mechanoreceptors or sensors of insect movement on the

leaf surface even in the absence of leaf rupture. Insect contact with trichomes on the leaf was

shown to be sufficient to up-regulate defence transcripts and activate defences that provide

extra protection against newly hatched larvae [65, 66]. Such an early detection system of light

mechanical stimuli may induce plant defences against subsequent herbivory or other herbivore

species that later colonize the host [65, 67]. An increase in trichome frequency can create a

mechanical barrier that interferes with insect movement and redirects damage from the most

valuable parts of the plant to less valuable parts [55], or to nearby plants. On the other hand,

trichomes present an important factor that provides resistance to viruses by reducing the max-

imum incidence of virus infection [68].

The number of pavement cells was also increased by touching in our study, showing that

the epidermal cells structure that provides mechanical strength and protection for inner tissues

was also affected by the treatment. The pavement cells are a barrier for most piecing insects

that puncture the leaves between epidermal cells such as aphids [69].

Concluding remarks

Interaction between plants by light touching can regulate patterns of biomass distribution

between different organs, enabling plants to establish a competitive above ground habitus. The

capacity of potato plants to respond to touching may potentially be a trait that enables them to
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redirect growth into organs from which they may benefit most in competitive situation with

neighbours. These responses appear to induce the side effects of making potato plants less

attractive to aphids through the changes in released volatile blend. Our findings, together with

other recent studies [15, 28], suggest a potential for broader implications of plant responses to

mechanical stimuli, extending to organisms at higher trophic levels. The ecological and evolu-

tionary significance of these effects in nature remain to be investigated.
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