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The Effect of Forest Information Quality on the Planning and 
Decision Process in Forestry 

Abstract 
Managing the forests is important for the provision of timber, environmental benefits, 
recreation, etc., to both forest owners and society. In order to manage the forests, 
information on the state of the forest is required. However, forest information is not free 
from errors, that is, it suffers from some degree of uncertainty leading to suboptimal 
decisions and potential economic losses.  

Remote sensing data are frequently used to acquire forest information. In this thesis 
the use of remote sensing techniques was elaborated further. In Paper I airborne laser 
scanning (ALS) data was used to estimate stand stem diameter distributions and, thus
improving forest information compared to traditional stand mean values. In Paper II ALS 
data was used first as auxiliary data when using the local pivotal method (LPM) and a 
micro-stand approach for locating reference plots. Second, ALS data was used as 
auxiliary data when imputing forest information to evaluation plots. The combined 
approached showed a potential for improvement and has the potential to be a competitive 
method when considering cost efficiency.

Improving forest information can be done through acquiring new information or 
through assimilating new with old information. Paper III presents the benefits of data 
assimilation process. It provides more accurate estimates as compared to traditional 
methods and it also provides the associated uncertainty. Paper IV presents a visual 
illustration method to incorporate estimates of uncertainty in forest planning. The method 
is applicable in current decision support systems (DSSs) for use in stand level decision
making situations.

The results of this thesis may also shed light on the reason why uncertainty so far is 
typically ignored in forest planning. Taking the results and the potential benefits of this 
thesis forward could lead to the development of new DSSs considering uncertainty. 
Moreover, the data assimilation process should be further investigated, as it is a
promising framework for assimilating different sources of information into a single 
useful source of information for forest planners and decision makers.
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1 Introduction 
Forests are important natural resources that provide the forest owner and society 
with timber and non-timber products and thereby forests involve large monetary 
and other social values. Therefore it is important to manage the forests to provide 
a high utility to forest owners and society. 

Information on the present state of the forest serves as the basis for the forest 
planning process and therefore plays an important role in planning and decision 
processes. However, forest information is not free from errors; therefore these 
errors are considered a source of uncertainty in the forest planning process. 
Uncertainty stemming from forest information or other sources typically leads 
to suboptimal decisions in forest planning (Duvemo and Lämås 2006;
Pasalodos-Tato et al. 2013). Therefore, considering and reducing uncertainty in 
forest information is of major importance for forest planners. Furthermore, the 
need for accurate (higher quality) forest information is increasing, in particular 
because forests may have multiple uses involving several spatiotemporal scales 
(Duvemo and Lämås 2006; Kangas 2010; Duvemo et al. 2014).   

This thesis concerns the effect of forest information quality on planning and 
decision processes; hence, the effect of different forest alternatives comprised of 
field data and remote sensing data used in forest planning were evaluated in 
terms of timing of actions and suboptimal losses. 

1.1 Forest planning and DSS 

The process of planning includes determining certain goals, managing actions 
and evaluating in order to achieve these goals. Similar processes occur in 
forestry, where the goal might be, for instance, maximizing timber production 
(Davis and Liu 1991; Randhawa et al. 1996; Pukkala 1998; Edwards and Steins 
1999; Kazana et al. 2003; Leskinen et al. 2009). However, forests pose a series 
of serious challenges to the forest planner that turns this kind of planning into a 
unique process that requires special attention. Such challenges would be, for 
example, complex growth models and inaccurate information of the current 
state. The complexities in forest planning can also potentially stem from the 
conflicting multiple goals, such as simultaneously maximizing economic value 
and forest conservation objectives for biodiversity purposes. Nevertheless, the 
most typical goal stated by forest owners is to achieve a high and sustained 
economic yield – often expressed in terms of net present value (NPV) – given 
restrictions based on nature conservation and other considerations. The result of 
the planning process is a series of management actions that satisfy the stated 
goal(s).  
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Forest planning generally considers at least two time horizons: long term and 
short term planning (Bettinger et al. 2009; Davis et al. 2001; Eriksson 2008). 
The long term planning process is an important step towards enabling 
sustainable forest management (i.e., that today’s forest management does not 
restrict possibilities of forest use in the future). This step requires consideration 
of several aspects such as nature conservation, carbon sequestration and 
balancing the volume, species composition, and assortment distribution of 
harvests. Moreover, the results of long term planning for the near future are 
actually the targets of short term planning; therefore, there is a strong linkage 
between long term planning and short term planning. In short term planning, in 
contrast to long term planning, the focus is shifted to facilitate timber 
procurement and logging procedures and that can be achieved by planning the 
harvest schedule for single stands. The industrial demands are heavily dependent 
on this step since the forest industries decide on the potential delivery of wood 
products beforehand (Bettinger et al. 2009; Davis et al. 2001; Eriksson 2008). In 
this thesis the effect of forest information quality was tested only in a long term 
forest planning setting (100 years). 

Since the 1970s (e.g. the US Timber RAM (Navon 1971) and FORPLAN 
systems (Alston and Iverson (1987))), computerized decision support systems 
(DSSs) became important tools for the support of forest planners in the planning 
process. The development of forest DSSs is an active research area, one example 
being the Heureka system (Gordon et al. 2013; Borges et al. 2014; Wikström et 
al. 2011) developed at the Swedish University of Agricultural Sciences (SLU). 
It enables forest planning for both long and short term, however, the system is 
developed more with long term planning in mind. Moreover, there are several 
successful systems similar to Heureka, for instance, the MELA system in 
Finland (e.g., Redsven et al. 2013), SGIS in Norway (e.g., Rørstad et al. 2010) 
and SADfLOR in Portugal (e.g., Garcia-Gonzalo et al. 2015).  

In the planning procedure, the Heureka DSS is used to simulate and evaluate 
different possible treatments, then maximize a goal stated by the user, such as 
maximum NPV subject to economic and environmental restrictions. In order to 
compute the NPV as a consequence of different actions and to evaluate them, 
forest information (either in terms of stand mean values such as basal area, 
number of stems, mean diameter and height, etc. or as individual tree data) is 
required to be imported into the DSS. The Heureka DSS was used in the studies 
included in this thesis where computation of NPV was required. 
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1.2 Forest information (field survey and remote sensing) 

Forest information is used in the planning process in order to predict future states 
and to determine optimal future actions. Typically forest information is often 
organized in databases, where relatively homogenous parcels of forested land 
are aggregated into stands. The stand is a concept used in forestry as both a 
description and treatment unit for a piece of homogenous forest land. Thereby 
forest information is typically contained in forest maps and can be found in forest 
stand databases. This type of information typically consists of stand level values 
in terms of mean values, for instance, mean age, mean stem number, and mean 
basal area per hectare. Nevertheless, it is not always straightforward to identify 
what information is most important for the forest planner; it is, however, 
common to assume that at least stem volume, variation of the stem diameter, 
stand age, and tree species composition are essential for the decision maker as 
these factors are closely related to the value of timber and pulp wood in a given 
forest stand (Bettinger et al. 2009; Davis et al. 2001; Eriksson 2008). Contrary 
to stand mean values, forest information can be in the form of individual tree 
data making up tree lists with stated species and size for each tree. This type of 
information is seldom available in stand databases. DSSs often use individual 
tree models in the calculations, therefore if only stand mean values are available 
these values are transferred to tree lists using built-in models in the DSSs,
typically based on assumptions on stand stem diameter distributions. As these 
stem distribution models are quite rough a potential improvement is to provide 
diameter distributions based on field surveys or remote sensing. 

Stand level forest information compiled in stand register databases is 
gathered using different methods, for instance, ocular methods (subjective 
choice of sample units and few guiding measurements) or field sample plots 
(objective approach). Estimation based on ocular methods typically contain 
systematic and random errors while estimates based on objective sampling, such 
as plot sampling, can be expected to contain random errors only and the data 
acquired are typically considered to be unbiased. Stand register databases are 
commonly updated on a 5 to 10 year rotation, or prior to planned management 
actions. In the last decade, the use of the remote sensing techniques, such as 
airborne laser scanning (ALS; McRoberts et al. 2010), for acquiring forest 
information is increasing rapidly and, subsequently, the challenges of using 
these data in an efficient way are also increasing. Remote sensing techniques, 
such as aerial photography or especially ALS, have the potential to capture high 
quality information for forest planning purposes (Gobakken & Næsset 2004; 
Næsset et al. 2004; McRoberts et al. 2010). This information is generally found 
to outperform traditional sources of information, such as data based on ocular 
methods and old and forecasted stand register data, for management planning. 
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Compared to traditional ocular estimates typically providing relative random 
errors of 20%, for example, for basal area and timber volume (Ståhl 1992), 
remote sensing techniques provide relative random errors of 3-15% (paper II). 
Recently, nationwide ALS campaigns in countries such as Denmark, 
Switzerland, the Netherlands, Finland and Sweden have been conducted and 
promoted in order to, among other purposes; provide remote sensing data to 
forest planners at a low cost (Nilsson et al. 2016).  

ALS data can be used for estimating stand variables, either as stand mean 
values or values for individual trees for each stand. ALS data can be acquired at 
a low number of laser pulses per area unit (≤5 pulses per m2) or at a higher 
number of laser pulses per area unit (typically >5 pulses per m2). In general the 
low number of laser pulses is used for the area-based method (providing forest 
data per raster cell, Næsset 2002) while a high number of pulses enables the 
estimation of individual tree data (e.g., Persson et al. 2002; Solberg et al. 2006; 
Breidenbach et al. 2010). 

Stand delineation is an important procedure aimed at reducing variation 
within the delineated units by aggregation of similar forest areas. Historically, 
forests have been delineated manually into stands, either by field survey or aerial 
photo interpretation. Since stand delineation is performed manually and 
subjectively, a high variation in forest characteristics within stands is often 
encountered. ALS data were found to be a data source for forest planning via 
automatic delineation of stands as (e.g. Olofsson and Holmgren (2014)). Stand 
delineation using ALS (Koch et al. 2009) potentially reduces the variation within 
the delineated stands, thus improving the forest information. Stand delineation 
using automatic delineation algorithms has also led to the introduction of the 
concept of “micro-stands” (Hyvönen et al. 2005; Pippuri et al. 2012). Micro-
stands in general are homogenous areas, but could be smaller than traditional 
stands. However, in forest planning new challenges can appear if the treatment 
units become smaller than traditional sizes. 

Until recently, when new forest information has been acquired, the old 
information was discarded. However, a new approach to merge data, termed 
Data assimilation (DA), allows the use of different sources of information 
acquired at different time points. In its essence, DA is a process which can merge 
data from different sources into a single usable source. DA has recently been 
advocated as a tool for improving the information from forest inventories 
(Czaplewski & Thompson 2008; Ehlers et al. 2013; Nyström et al. 2016). The 
DA procedure has the potential to increase the quality of forest information by 
assimilating all new sources of information (typically data from remote sensing) 
with existing information (typically forecasted data from field surveys).
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1.3 Uncertainty in forest planning 

It is difficult, if not impossible, to acquire forest information free from errors. 
These errors typically lead to suboptimal decisions and therefore are considered 
to be one of the sources of uncertainty in the forest planning process. Moreover, 
in a broader perspective, the sources of uncertainty in forest planning can be 
categorized as belonging to one of the following three sources: (i) uncertainty in
forest information, (ii) uncertainty in projection models and thus the future forest 
state, and (iii) uncertainty in exogenous factors such as timber prices, 
preferences of the decision maker, climate change and risks associated with 
natural or human caused external events or disasters (Pasalodos-Tato et al. 2013;
Yousefpour et al. 2012). The three sources of uncertainty have the potential to 
affect the forest planning process negatively. In the four studies which make up 
this thesis only uncertainty in forest information was addressed. However, 
uncertainty in forest information, such as forest inventory data, has the potential 
to affect other sources of uncertainty. That is, forest inventory data of high 
quality can make natural hazard risk assessment, such as risk of wind throw, 
more accurate. In addition, growth prediction results are negatively affected by
low quality inventory data and other sources of uncertainty. Studies of 
uncertainty however, often consider a single source of uncertainty where in 
reality uncertainties are often related. Contrary to a single source of uncertainty 
Holopainen et al. (2010) consider different uncertainties (forest inventory, 
growth model and timber prices) simultaneously given different interest rates in 
order to determine the importance of different source of uncertainties on the 
NPV. Another example is a study by Mäkinen et al. (2012) where a cost-plus-
loss analysis approach is applied to determine the optimal inventory interval 
where uncertainties stemming from both forest inventory and growth predictions 
are considered simultaneously. Considering different sources of uncertainties 
simultaneously was not addressed in this thesis.

Several studies have been performed on the topic of uncertainty in forest 
information, such as the review studies by Duvemo and Lämås (2006) and 
Kangas (2010), and this uncertainty has been found to have an important effect 
in the planning process. The uncertainty in forest information can cause 
inaccurate estimates to be made and therefore lead to wrong management actions 
and timing of actions. Wrong management actions have the potential to lead to 
economic losses. Nevertheless, the topic of uncertainty in forest information has 
so far not received proper attention (Duvemo and Lämås 2006) since this topic 
has been found to be complex. Kangas (2010) also emphasizes the complexity 
of the topic and suggests methods to improve the use of the available forest 
information (not to improve the forest information directly).  
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In forest information, one common way to control or reduce uncertainty is to 
simply carry out a new inventory (Ståhl et al. 1994). Carrying out a new 
inventory is a research topic in itself as there are several available methods to do 
this, such as by using remote sensing techniques combined with field survey 
(Næsset 2002, Gobakken and Næsset 2004). Remote sensing has become an 
essential part of forest inventory since it improves the accuracy of estimated 
forest variables compared to traditional data acquisition methods, such as ocular 
field surveys. Moreover, remote sensing can be utilized as auxiliary information 
in the sampling design and therefore improves the quality of forest information. 
However, it is not clear which inventory method is the optimal; therefore cost-
plus-loss analysis could be used in this case where the direct cost of carrying out 
the inventory is added to the expected loss from imperfect information. The cost-
plus-loss technique has been employed in several studies to evaluate the effects 
of uncertainty in forest information (Eid 2000; Holmström et al. 2003). 
Moreover, the mentioned DA process is a new approach to processing of forest 
information, and has the potential to reduce uncertainty in forest information 
(Ehlers et al. 2013).  

In case no new inventory is carried out to improve data quality, securing an 
even harvest volume and balanced age class distribution are considered ways to 
handle uncertainty in forest planning (Hahn et al. 2014). Another way of 
controlling uncertainty in an indirect way is to add risk premium to the discount 
rate when maximizing the NPV since it reduces the effects of outcomes far into 
the future and therefore reduces uncertainty.  

Another option is to use the errors in the available information; however, the 
errors are rarely known but can often be estimated or approximated through 
parametric distributions. If the errors are estimated then sensitivity analysis, 
scenario analysis or Bayesian decision theory could be used (Ståhl et al. 1994). 
Applications of stochastic methods for instance, where the uncertainty is 
integrated in the planning model, can be difficult due to intricate mathematical 
programming (Pukkala 1998; Pasalodos-Tato et al. 2013) and the ability of 
traditional mathematical programming methods, such as linear programming, to 
account for uncertainty. Nevertheless, in the last study of this thesis an attempt 
was made to develop a simple application that takes into account the estimated 
error in the forest planning. 

1.4 Objectives of the thesis 

The aim of this PhD thesis is to improve the forest planning process by 
improving forest information and by suggesting ways to use this information in 
a forest DSS. Improving forest information was conducted either through field 
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surveys and remote sensing (Papers I and II) or through applying the DA 
procedure (Paper III). Improving the decision processes in the forest DSS was 
conducted through proposing methods to deal with uncertainty in the forest DSS 
(Paper IV). It will throughout be assumed that the forest owners’ objective is 
maximum NPV. 

The specific objectives of Papers I-IV were: 

Paper I. The purpose of the study was to estimate diameter distributions using 
ALS information and to determine if these distributions notably improved 
decision making in terms of reduced suboptimal losses compared to traditional 
methods of simulating tree lists from stand mean values. 

Paper II. The purpose of the study was to test the efficiency of (i) the new sample 
design referred to as the Local Pivotal Method (LPM; Grafström et al. 2012), 
combined with a micro-stand approach and then compared with a (ii) traditional 
layout of reference plots in a systematic grid over the forest area.  

Paper III. The objective of this study is to explore, highlight and discuss the 
potential benefits in forest management planning of using DA processes in forest
inventories. The information provided by the DA process contains novel 
features, but there are also challenges in applying DA.

Paper IV. The purpose of this study was to examine methods of incorporating 
risk and uncertainty in a forest DSS at stand level. The methods are illustrated 
by taking uncertainty stemming from measurement errors of the initial state as a 
case. For the stochastic approach, we highlighted two different approaches of 
managing risk besides the expected value approach. 
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2 Paper summary 

2.1 Paper I - Improving data quality by utilizing ALS in forest 
information estimation 

Data obtained from ALS are frequently used for acquiring forest data in terms 
of stand mean values. DSSs typically use individual tree models in their 
calculations in case stand mean values are the input data to the DSS. These 
individual tree models are required to simulate tree lists from the stand mean 
values. 

In Paper I ALS information was used also to estimate stem diameter 
distribution and tree lists were then elaborated and imported to the DSS. Thereby 
the rough model within the DSS to simulate tree lists could be avoided. 
Moreover, the improvement in terms of reduced inoptimality losses of this 
approach compared to a mean value approach was analyzed in a long term (100 
years) planning setting. 

2.1.1 Field survey and laser data 
The study was performed in a boreal forest area in northern Sweden. A field 
survey was performed in 2008 and 2009 in which all stands (in total 124) were 
surveyed using 2–15 (mean 7.33) circular sample plots in each stand. Plot radii 
for the stands included were 10 m (117 stands) and 5 m (7 stands). The stem 
diameter at breast height and species of all trees on the plots were registered. 
The height and age of at least three trees on each plot were also registered (Table 
1).  

Table 1. Characteristics of the stands used in the study according to the field survey (124 stands, 
total area 1,135 hectares).  

Variable Mean Minimum Maximum

Area (ha) 9 0.14 66.7
Age (year) 2) 591) 20 169
Stem volume (m3 ha-1) 1461) 24 569
Stem diameter 2) (cm) 19.721) 11.27 34.2
1)  Area weighted mean, stand area as the weight. 
2) Basal area weighted within stand. 

The surveyed area was scanned using the ALS system TopEye (S/N 425) carried 
out using a helicopter platform (August 2008). Flying height was 500 m above 
ground and pulse intensity was approximately 5 pulses per m2. The height above 
ground was determined for all returns, using a digital elevation model produced 
from the classified ALS data. A set of fundamental ALS metrics was then 
computed from the ALS data in accordance to the area-based method (Næsset 
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2002). These metrics correspond to the height above ground (i.e., the 10th, 20th,
…, 90th, 95th and 100th height percentiles), mean and standard deviation of 
height above ground. 

2.1.2 Methodology 

In order to analyze the usefulness of diameter distributions estimated from ALS 
data three alternatives were used in this study. The first alternative was acquired 
through a sample plot field survey of 124 stands which is referred to as “the 
observed alternative”. The second alternative was based on the ALS metrics. 
Stand mean values estimated from the second alternative (corresponding to 
traditional stand register information) made up the third alternative, termed later 
as “the mean values alternative”. 

Based on the observed data and the ALS data, functions estimating plot level 
forest variables including stem diameter distribution, in the form of a Weibull 
distribution (two parameters), were elaborated. Along with the ALS metrics the 
proportion of basal area of pine was also used as it turned out to be an important 
variable. In order to estimate the parameters of the Weibull distribution, linear 
regression was employed (after applying stepwise regression) where the 
dependent variables were the variables in the observed alternative and the 
independent variables were the ALS independent variables and the proportion 
pine. 

An essential step in the processing of the ALS alternative was the generation 
of tree lists. This was achieved by using the fitted Weibull distribution 
parameters to generate a diameter distribution for each plot and incorporating 
the fitted number of stems per hectare (estimated for each plot separately). 

2.1.2.1 Accuracy measurement 

The estimated diameter distribution accuracy was determined using two error 
indices, computed for each stand separately using the diameter classes’ absolute 
differences. The first error index (e) gives one measure of the degree of the 
diameter distribution errors, in which the total number of the trees is taken into 
account. Its value can range between 0 and 200, where 0 represents a perfect 
match between two compared distributions. The second error index (δ) termed 
the total variation distance index (Levin et al. 2009), measures the degree of the 
diameter distribution errors that are independent of the total number of trees. 
Each diameter class in each stand was divided by the total number of stand trees 
in order to obtain a diameter probability distribution. The value of index δ can 
range between 0 and 1, where 0 represents a perfect match of two compared 
distributions. 
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2.1.2.2 Suboptimal loss 

The observed alternative and ALS alternative were imported as tree lists, while 
Heureka simulated tree lists for the mean value alternative. In Heureka, a set of 
potential management alternatives is generated. A management alternative is a 
sequence over time of management actions such as regeneration, thinning and 
final felling. Each action has a calculated net cost or income, and an NPV is 
calculated for each potential management alternative. Then for each stand the 
alternative providing the highest NPV is selected. The optimal management 
strategies selected for the ALS and mean values alternatives were applied to the 
forest information in the observed alternative. The differences between the NPV 
of the observed alternative and the NPV of the applied programs on the forest 
information in the observed alternative were considered to be the suboptimal 
losses. The applied treatment programs were fixed only for the two first periods 
(10 years) since it is expected that in the future new and better information is 
probable after a period of time (Holmström et al. 2003). 

2.1.3 Results 
The ALS alternative provided a better match to observed diameter distributions 
compared to the mean values approach. The ALS alternative had about 35% 
lower error indices and these results are in line with the previous studies (Table 
2).  

Table 2. Summary of error indices indicating the accuracy of diameter distributions estimated using the 
ALS and mean values approaches compared to the measured diameter distributions.  and  
are Reynold indices (range 0 – 200), while  and  are total variation distance indices (range 
0 -1) for the ALS and mean values approaches, respectively. The index value 0 in both indices present 
perfect matches of the compared distributions. 

 Error indices 

 Reynolds index Total variation distances index  
     
Mean 50.896 79.160 0.251 0.388 
Maximum 123.529 159.191 0.542 0.777 
Minimum 23.348 39.021 0.090 0.145 
Standard deviation 17.454 25.262 0.088 0.122 

Using the Heureka DSS the suboptimal losses in terms of net present value due 
to erroneous decisions were compared (Table 3). Although no large difference 
was found, the ALS approach showed smaller suboptimal loss than the mean 
values approach. These suboptimal losses were calculated based on two different 
pulpwood and sawn timber price lists. The first price list was the default price 
list used by Heureka and second was the hypothetical price list. The latter price 
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list was constructed to emphasize the increase in the sawn timber as the log 
diameter size increased, where in the default price list the sawn wood price was 
not very sensitive to the size of the log diameter. 

Table 3. Calculated NPVs (3% real discount rate). NPVObserved is the NPV of the observed alternative. 
NPVALS and NPVMean are the NPV based on the forest information in the observed alternative where the 
two first period’s management alternatives from the ALS and mean values alternatives were applied on 
the observed alternative, respectively. The difference between NPVALS and NPVMean is considered to be 
the suboptimal loss when ALS information is utilized. 

 NPV results (SEK ha-1) 

 NPVObserved NPVALS NPVMean Decrease in suboptimal loss utilizing the 
ALS information compared to the mean 
values alternative 

Default price list 38,824 38,778 38,712 66 
Hypothetical 
price list 

34,139 
 

34,090 
 

33,979 111 

 

2.1.4 Discussion 

The ALS derived tree lists yielded smaller - although not large - suboptimal 
losses than the lists generated from stand mean values. Thus, in addition to 
providing robust estimates of stand characteristics such as tree height and basal 
area, ALS can provide valuable estimates of diameter distributions, thereby 
improving forest planning. Furthermore the use of error indices also showed that 
the stand level ALS-based tree lists were closer to the observed diameter 
distributions than the Heureka derived tree lists. 

A potential way to further improve the approach is to use non-parametric 
methods to estimate plot level diameter distributions, as described by Gobakken 
and Næsset (2005) and Maltamo et al. (2009). In such a case no parametric 
diameter distribution is assumed (in contrast to our assumption of Weibull 
distributions), and in operational applications today, imputation techniques, 
based for instance on kMSN methods (Maltamo et al. 2009), are usually applied. 
In this approach, predictions are made using the actual diameter measurements 
in the reference data and no smoothing or distribution assumptions are needed. 
Such methods can be further evaluated in future studies to assess their potential 
for improving data to be used in forest DSSs. 

In conclusion, the results of the study indicate that ALS-based estimates of 
diameter distributions have the potential to further improve the planning process, 
although in this study the gain in NPV was not very high. Use of ALS data 
should reduce losses from suboptimal decisions, but the level of reduction 
depends on, for example, the design of timber price list. 
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2.2 Paper II - Improving data quality by utilizing ALS in the 
sampling process 

Estimation of forest variables obtained through the use of remote sensing 
requires field reference plots. The allocations of the reference plots are a major 
challenge since these reference plots are supposed to represent the field in an 
efficient way. Traditionally allocations of reference plots were performed 
systematically within the field or within pre-stratified traditional stands. 
However, a high variability in the forest variables within the forest area and 
stands is often encountered. For this reason, acquiring a representative sample 
through reference plots is a difficult task. Recent developments in automatic 
segmentation using ALS data for forest delineation (Olofsson and Holmgren 
2014) have led to introduction of the micro-stand approach which can potentially 
reduce variation within the forest units. Methods that can potentially reduce the 
variation within the forest treatment units (i.e., stands) are of major interest to 
test and therefore increase the forest information quality.  

In Paper II a new sampling design, named the local pivotal method (LPM) 
(Grafström et al. 2012), was combined with the micro-stand approach and 
compared with the traditional systematic sampling design for estimation of 
forest stand variables. The LPM uses the distance between units in an auxiliary 
space to obtain a well spread sample, i.e., it is unlikely that two similar units (in 
the auxiliary space) will be selected in the sample and therefore guarantee a well 
spread sample.   

The ALS data were used in this study for three main steps. First for 
delineating the stands (Olofsson and Holmgren 2014), second the ALS were 
used as the auxiliary space in order to obtain a well spread sample once the LPM 
(Grafström et al. 2012) was utilized, and third for estimating the forest 
information using the non-parametric method MSN (Moeur and Stage 1995).  

The effect of the new sampling design on long term forest planning (100 
years) was evaluated through relative root mean square error (RelRMSE), stem 
diameter distribution error index and suboptimal losses.

2.2.1 Field survey and laser data 

This study was performed using data obtained from the Remningstorp estate 
located in southern Sweden. This forest holding covers about 1200 ha of 
productive forest land. ALS data acquisition was performed by scanning from a 
helicopter on August and September 2010 with a Riegl LMS-Q560 system. The 
area was scanned from a flight height of approx. 400 m above ground level and 
the pulse density was at least 10 measurements per square meter. The metrics 
derived using the height distribution of laser returns from ALS were as follows:
(1) average height (AH), (2) standard deviation of heights (SDH), (3) vegetation 
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ratio (VR), (4), average crown height (ACH), (5) 10th height percentile (P10), 
(6) 50th height percentile (P50), and (7) 90th percentile (P90). 

Two sets of surveyed reference plots were acquired by the two sampling 
designs and used for imputing data to evaluation plots. The first set of reference 
plots, acquired by LPM, made up four imputation alternatives (with varying 
number of reference plots) and the second set of reference plots, acquired by 
systematic sampling design, made up two alternatives (with variable plot radius). 

In the LPM sampling design, the forest area was first delineated into micro-
stands based on ALS data using the segmentation algorithm developed by 
Olofsson and Holmgren (2014). Five meter radius plots were allocated to a sub-
sample of 100 micro-stands selected using the LPM (Grafström et al. 2012). In 
this study, the LPM was applied using the standardized ALS metrics AH, SDH, 
VR, ACH, P10, P50, and P90 for measuring the distance between units, i.e., the 
selected micro-stands were spread in the auxiliary data (ALS metrics) space. The 
probability of selecting a particular micro-stand was set proportionally to the 
sum of ACH for all raster cells within the micro-stand because this sum was 
correlated to the total stem volume. The reason for this selection was to ensure 
that a sufficient amount of reference data were obtained in micro-stands with a 
high economic value. The number of 5 m circular sample plots surveyed in each 
selected micro-stand was selected proportionally to the variation of P90 within 
the micro-stand in order to allocate more plots in micro-stands with a high 
variation of tree height. Thus, the number of 5 m plots was not necessarily evenly 
distributed among the micro-stands but depended on the variation of P90 in each 
micro-stand. The LPM was also utilized in a second step to locate (geographi-
cally) plots inside each micro-stand using the same ALS metrics as used in the 
first step to ensure that a high variation was captured. Within the LPM sampling 
design all trees with a diameter at breast height larger than 4 cm were calipered 
and the species recorded, but no other data were collected. Heights of the 
calipered trees on the plots were estimated using allometric models relating tree 
height to diameter (Söderberg 1992). The plots (originally 981 plots in total) 
serving as the ALS training data were allocated over the original 100 micro-
stands. The number of plots actually surveyed was 881 because nine micro-
stands were excluded from study. This number was later reduced to 856 as some 
plots were considered to be outliers when analyzing the field survey data and the 
ALS data relationships (Table 4). 

The systematic sample included 10 m radius plots surveyed in 2010 and 
located in a 200 m × 200 m grid over the major part of the estate, resulting in 
263 plots located on forest land. The plots were surveyed using the methods and 
models estimating the state of the forest available in the Heureka system by 
employing the modules Ivent and PlanStart (Wikström et al. 2011). All trees 
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greater than 4 cm in diameter at breast height were callipered and a sub-sampling 
of trees to measure height and age was performed. Heights of the remaining 
calipered trees on the plots were estimated using allometric models relating tree 
height to diameter (Söderberg 1992). In total, the final data set used consisted of 
216 plots. Table 4 provides a summary of the data collected. 

The 40 m radius evaluation plots, measured between 2010 and 2013, were 
allocated subjectively in mature and old forest using stand data from the existing 
forest management plan. This was done in order to obtain data for several tree 
species compositions and a range of mean stem volume per hectare. The 
allocation also ensured that each 40 m plot was placed well inside the boundaries 
of the selected stand in order to avoid any influence of edge effects. In total, 30 
40 m radius plots were surveyed (Table 4). 

Table 4. Summary statistics of the datasets (min; mean; max)  

Dataset  Number 
of plots 

  Tree height 
[m] 

Stem 
diameter 
[cm] 

Stem 
volume 
[m3/ha] 

Age [yr] 

Micro stand 
and LPM 
approach 

 856*   3.5;19.2;34 4;27.1;67.9 1;284;2058 10;50;168 

Systematic 
design  

 216**   4.9;18.2;31.6 5.2;24.1;51.9 2;229;655 14;51;160 

Evaluation 
plots 

 30***   15.8;24;32.4 20;30.6;42.3 157;360;685 33;60;112 

        *5 m radius 
           ** 10 m radius 
           *** 40 m radius  

2.2.2 Methodology 

Based on the ALS data, rasters of estimated forest data were created by 
imputation of survey data (i.e., calipered diameters, tree height measurements 
and recorded tree species) from the reference survey plots to each cell in the 
evaluation plot raster. The raster cell sizes were chosen to approximate the size 
of the reference plot data used. The plots having a 5 m (LPM sampling design) 
radius were imputed to the raster cells having a size of 10 m × 10 m, and the 
plots having a 10 m radius (systematic sampling design) were imputed to the 
raster cells having a size of 18m  × 18 m. Data for each 40 m radius evaluation 
plot were generated by aggregation from the estimated rasters, either 10 m × 10 
m or 18 m × 18 m, covering the evaluation plot and imported into the Heureka 
DSS as if it were data surveyed on site. 

Seven alternatives were examined in the study following the imputation 
technique (non-parametric method). The first alternative, termed the observed 
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alternative, comprised the field survey observations of the 30 evaluation plots 
with 40 m radius. In the second to the fifth alternatives the 5 m radius reference 
plots from the micro stand and LPM approach were used. The number of 
reference plots was reduced from the original 856 to 500, 250 and 91, 
respectively, to test how the sampling intensity affected the accuracy. The 
alternatives are hereafter termed S500, S250, and S91, respectively. The fifth 
alternative – termed subS91 –also contained 91 reference plots sampled using 
the LPM, but given the condition that one plot was sampled from each micro 
stand. The sixth and seventh alternatives used 216 reference plots from the 
systematic grid design sampling, the alternatives hereafter termed syst10m and 
syst5m, respectively. For the syst10m alternative, the original 10 m radius plots 
were used, from which 5 m radius plots were constructed and served as reference 
plots for the syst5m alternative. Table 5 provides a summary of the data in the 
six alternatives. 

2.2.3 Validation, accuracy measurement and suboptimal loss 

The imputations (forest variables) were validated using the relative root mean 
square error (RelRMSE) and relative bias (RelBias) for each forest variable.  

The accuracy of the estimated stem diameter distributions was assessed using 
the total variation distance index (Levin et al. 2009) computed for each of the 
evaluation plots (40 m radius) using the diameter classes’ absolute differences.
The value of the error index can range between 0 and 1, where 0 represents a 
perfect match of two compared distributions. 

Suboptimal losses of the imputed alternatives were computed in the same 
way as it is described in the summary of the I paper using the Heureka system 
(Wikström et al. 2011). 

Table 5. Summary statistics of the different alternatives (min; mean; max)

Dataset Number of 
plots

Tree height [m] Stem diameter
[cm]

Stem volume
[m3/ha]

Age [yr]

S500 500* 3.5;19.2;33.7 4;27.1;62.3 2;287;2058 12;50;131
S250 250* 3.5;19.1;32.3 4;26.9;59.7 2;276;930 13;49;131
S91 91* 3.5;19.3;32.4 4;27.7;59.4 2;301;1510 12;50;131
subS91 91* 3.5;19.6;33.7 4;27.7;62.3 2;303;2058 13;50;100
syst5m 216** 4.4;18;37.1 4.6;23;51.4 3;226;748 14;51;160
syst10m 216*** 4.9;18.2;31.6 5.2;24.1;51.9 2;229;655 14;51;160

*5 m radius
           ** 5 m radius extracted from the 10 m radius plots 
           *** 10 m radius 
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2.2.4 Results 

When comparing the LPM alternatives with the systematic design alternatives, 
the latter gave a lower RelRMSE for three (BWH, BWD and MA) out of the five 
variables. When comparing the approaches with a similar number of plots and 
the same plot radius, i.e., S250 vs. Syst5m, the RelRMSE was roughly equal 
except for mean stem volume per hectare (MSV), for which S250 showed a 
much lower RelRMSE (18.6% vs. 27.3% for Syst5m; Table 6).  

Table 6. Summary of the relative root mean square error (RelRMSE) and relative bias (within 
parenthesis) values, for the forest variables basal area weighted mean tree height (BWH), basal area 
weighted mean tree diameter (BWD), mean stem volume per hectare (MSV), basal area (BA) and stand 
mean age (MA), indicating the accuracy of the airborne laser scanning based imputation of the reference 
plot data to the 40 m radius evaluation plots for the six different estimated alternatives.   

 RelRMSE (%) 

Alternative BWH BWD MSV BA MA 
S500 9.6(-6.8) 8.7(5.7) 24.7(9.9) 26.8(17.1) 21.6(-7.7) 
S250 10.8(-7.8) 9.0(4.7) 18.6(-2.1) 16.2(8.1) 20.4(-9.6) 
S91 13.6(-9.5) 10.7(3.4) 23.3(-3.1) 20.5(8.5) 28.7(-13.2) 
subS91 10.6(-7.0) 11.9(5.8) 38.8(11.9) 38.2(19) 25.0(-7.9) 
Syst10m 8.4(-5.6) 8.0(0.0) 23.8(-10.6) 18.3(-8.0) 20.0(-4.0) 
Syst5m 10.1(-8.0) 8.7(-4.2) 27.3(-14.9) 18.3(-8.0) 23.1(-6.2) 

Error indices of the estimated stem diameter distributions are presented in Table 
7. For the LPM alternatives, the mean error indices increased with decreasing 
number of reference plots; S91 and subS91 showed equal mean error indices. 
Among the systematic sampling design, Syst10m gave a lower mean error index 
than Syst5m, and Syst10m also performed better than the micro-stand and LPM  

Table 7. Summary of error indices of the estimated diameter distributions indicating the accuracy of the 
estimated diameter distributions using the two different sampling methods, local pivotal method and 
systematic, with different reference plot intensity. The index value 0 indicates a perfect match of the 
compared distributions.  

 Error indices of the estimated diameter distributions - total variation 
distance index 

Alternative Mean Minimum Maximum sd* 
S500 0.27 0.12 0.64 0.11 
S250 0.29 0.15 0.62 0.1 
S91 0.35 0.13 0.69 0.12 
subS91 0.35 0.2 0.54 0.1 
Syst10m 0.24 0.12 0.48 0.08 
Syst5m 0.28 0.15 0.53 0.09 
* sd: standard deviation 
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alternatives. The alternatives with roughly the same number of plots and plot 
radius (i.e., S250 and Syst5m) gave similar mean error indices. 

The suboptimal losses were calculated for each imputation alternative 
separately. The suboptimal losses using the LPM sampling design were 47, 62, 
39 and 28 euros ha–1 for the S500, S250, S91 and subS91 alternatives, 
respectively. The suboptimal losses using the systematic sampling design were 
61 and 63 euros ha–1 for the syst10m and syst5m alternatives, respectively. The 
alternative subS91 yielded the lowest suboptimal loss but the highest error index 
of the estimated diameter distributions (along with S91) and the highest mean 
stem volume RelRMSE. 

2.2.5 Discussion 

According to the results – RMSE, bias (Table 6), stem diameter distribution error 
indices (Table 7) and suboptimal losses – none of the sampling designs (i.e., 
LPM vs. systematic) showed a clear advantage over the other. Both the random 
and systematic errors showed large variations among the imputation alternatives. 
This was, to some degree, expected because the inference method does not 
utilize weighting (i.e., smoothing of several observations), unlike in the kMSN 
method (k > 1), to reduce the prediction errors. Thus, the few extreme reference 
observations may have had a very large influence.  

Among the systematic sample design alternatives (i.e., syst10m and syst5m),
the RelRMSE, stem diameter distribution error index and suboptimal loss were 
smaller for the 10 m radius reference plots than for the 5 m radius plots, 
indicating higher accuracy for syst10m then expected. Among the alternatives 
using the LPM sampling design, i.e., S500, S250, S91 and subS91, the stem 
diameter distribution error index increased as the number of reference plots 
decreased, indicating decreasing accuracy. This pattern of lower estimation 
accuracy (as for the error index) as the sample size was reduced did not hold for 
all estimated variables regarding the values of the RelRMSE, RelBias (Table 6)
and suboptimal loss. It is likely that the obtained results were a consequence of 
the small evaluation dataset used in the study (n = 30). If the number of 
evaluation plots had been larger, the effect of a few extreme values on the 
RelRMSE and RelBias for some imputation alternatives would have been 
smaller. 

Overall, the results of this study showed the great potential for improving 
data acquisition methods by employing the new sampling design LPM and 
micro-stand delineation techniques. One reason for choosing the LPM sampling 
design is its cost efficiency compared to the systematic sampling design. 



29

2.3 Paper III- Improving data quality by assimilating different 
sources of forest information 

Paper III is a concept paper where the idea of DA is highlighted as a novel idea 
for the utilization of forest information and thus for improving forest planning 
and decision making. The potential benefits of DA information were explored 
and the challenges were discussed for different forest planning contexts.  
Uncertainty in forest information typically results in economic losses, 
ecological, and social values as a consequence of suboptimal management 
decisions. Incorporating uncertainty into the planning process can be difficult 
due to intricate mathematical algorithms and the ability of traditional 
mathematical programming methods, such as linear programming (Pukkala 
1998; Pasalodos-Tato et al. 2013) to account for uncertainty. If the results of 
planning and decision processes are complicated, managing uncertainty may be 
hard to interpret and apply (Mowrer 2000). Therefore forest planners in practice 
ignore uncertainty for the sake of simplicity. Moreover, uncertainty, for instance, 
in inventory information increases through time as growth models are used to 
update forest information (Nyström & Ståhl 2001; Fig 2). While the growth 
models are of high quality, predictions are simplifications, and there are no 
techniques available to remove the uncertainty of predictions of the future forest 
state (Pietilä et al. 2010). The tool for controlling this uncertainty is to collect 
new information. Traditionally once new forest information is acquired the old 
forest information would no longer be used in the forest planning process, and 
the potential value of the old information was ignored. 

DA is an approach to merge data acquired at different time points, as well as 
data acquired using different acquisition techniques. In the realm of forest 
inventory data, DA has the potential of improving accuracy of the information 
as well as providing an estimate of the uncertainty of the data (Figure 1). 

Recent developments in remote sensing have allowed for the possibilities of 
acquiring forest information from distance at reduced cost (Næsset 2002; 
Gobakken & Næsset 2004). Regardless of how forest information is acquired, it 
is not free from errors and these errors are one of the many sources of uncertainty 
in forest planning. By using DA as new information arrives, the DA process can 
update the existing information, and provide new estimates of forest information 
variables, and their estimated uncertainty. Through this process the quality of 
the information will be improved by assigning less importance to the information 
with lower quality, updating both the estimate and the estimates of uncertainty 
are also updated. This provides the forest planner with information on both the 
point estimate of the study variable and its corresponding uncertainty. In this 
way, DA can be a cost efficient process of producing forest information. 
Therefore, DA can be seen as a continuous procedure where the information in 
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any point of time will be up-to-date (either by forecasting or by new information) 
which improves the planning possibilities. 

Figure 1. The forecasted information of the timber volume (dotted line), i.e., prior distribution, is 
combined with the new information (dashed line) in order to obtain the posterior distribution (solid 
line), which results in an updated estimate of the timber volume. As shown the posterior distribution 
is narrower compared to the prior distribution. 

2.3.1 Potential of using DA in forest planning 

DA can improve all optimization methods; however the information generated 
by DA can be more fully utilized with optimization methods which incorporate 
estimates of uncertainty. For instance, robust optimization (Bertsimas and Sims 
2004) can integrate estimates of uncertainty through the utilization of a two-
point error distribution while stochastic programming can model any 
distributions through a Monte Carlo process (Birge and Louveaux 2011). Thus 
by improving the estimation of uncertainty and integrating this information into 
the decision process using stochastic optimization models, improvements can be 
expected and calculated (Chapter 4 of Birge and Louveaux 2011). 

Five major potential benefits in forest management planning when using DA 
procedures were identified: (i) The accuracy of the information will be 
improved, (ii) The information will be kept up-to-date even though no new 
measurement is made, (iii) The DA procedure will provide information with 



31

estimated accuracy, (iv) Stochastic decision making can be applied, which can 
integrate the estimated uncertainty of the information into the decision making 
process and (v) DA data allow for the analysis of optimal data acquisition 
decisions. 

2.3.2 Conclusions 

Improving forest information through the DA process offers several benefits to 
forest planners. The primary benefits are the improved accuracy of the current 
forest information and the provision of uncertainty estimates surrounding this 
information. To realize the benefits of DA, current DSS tools require the ability 
to explicitly incorporate information about the uncertainty of forest information 
and make modifications so that stochastic optimization tools can be used. There 
are several techniques applied in research which can handle uncertainty, but that 
implementation in DSSs in practice seems to be missing except in the Finnish 
SIMO DSS (e.g., Rasinmäki et al. 2009); however, the application that consider 
uncertainty in SIMO is not yet widely used. Thus there is a need to develop DSSs 
that can incorporate uncertainty in the decision making process, for instance, 
Bayesian approaches where the probability distribution of true values can be 
utilized in the decision making. Furthermore, DA systems in forestry need to be 
further investigated and developed in order to be implemented properly in 
forestry. Only a few empirical studies of using DA for forest information (e.g., 
Nyström et al. 2015) have been conducted so far and it is recommended to 
further assess the benefits of DA in forest inventories. 

2.4 Paper IV - Incorporating risk and uncertainty through a 
forest DSS at stand level 

This paper is designed to be a methodological paper where it aims to study the 
incorporation of uncertainty and managing risk through a forest DSS at stand 
level. The majority of the DSS designs to support forest planning are done 
through point estimate of the forest information in the initial state. That implies 
that even if the quality of information is available through empirical studies it is 
not used in the current DSS systems. Therefore, we highlight two options for 
portraying how differing decisions can relate to decision makers with varying 
risk preferences and then incorporate estimates of uncertainty into current forest 
DSSs. 

2.4.1 Methods 

Estimates of uncertainty can be evaluated from empirical data provided by 
specific forest inventory methods. Additionally, new methods (e.g., data 
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assimilation) are being introduced to provide additional information regarding 
the uncertainty of forest information. The description of uncertainty in most 
forest applications assumes that the forest information consists of continuous 
variables. To be able to use these data in the DSS structure, the underlying 
estimate of uncertainty needs to be approximated through scenarios. Each 
scenario represents a realization of possible forest attribute values. The 
probability for each scenario (posterior) is calculated given the estimate of 
uncertainty (prior). 

Given that the error refers to the initial state, each scenario can be represented 
as a stand in the DSS. As the data are in the same format as with a single point 
estimate, this does not require fundamental changes to the structure of the stand 
management program generated by the current DSS. Then, a range of 
management programs over the planning horizon is computed for each pseudo 
stand.  

The most proliferous measure involving risk and uncertainty is probably the 
expected value; in this case the maximum expected NPV, which is defined as 

E(NPV)=max[jϵJ, E(NPV(j)) ]

where J is the set of management programs and E(NPV(j)) is the expected NPV 
of management program j, which in turn is defined as 

E(NPV(j)) = sum [nϵN, p(n)*NPV(j,n) ]

where N is the set of scenarios, p(n) the probability of scenario n, and NPV(j,n)
the NPV of program j under scenario n. The maximum expected NPV can of 
course be complemented by information of variance as an assessment of its 
uncertainty. 

Two different methods of incorporating uncertainty and managing risk 
through a forest DSS at stand level are proposed: 

1. The first option relates to the quantifiable risk measures, namely the 
conditional value at risk and the value at risk (VAR/CVAR). Being 
able to manage downside risk may be of value for risk averse decision 
makers. At the stand level it is possible to analyze the trade-offs 
between managing risk and maximization of NPV utilizing the Value-
at-Risk (VaR) or the Conditional Value-at-Risk (CVaR) in 
combination with the expected NPV. 

2. The second option is based on the decision maker’s view of what the 
forest inventory could be. A visual representation is provided to 
highlight which decision would be most beneficial dependent on the 



33

decision maker’s opinion of the forest inventory results. By focusing 
on the stand level, risk preferences can be rather easily incorporated 
into the current forest decision support software. One benefit would be 
that it gives the forest owner a visual illustration of the relation 
between erroneous variable and optimal management program. 

2.4.2 Case study 

Eight stands were used in this small case study from the Jönköping area in 
southern Sweden. These stands were inventoried in 2011, using a plot sampling 
inventory method. The original stands’ variables consist of mean values 
(corresponding to the stand register’s mean values). The selection of the stands 
was done subjectively, with an aim of having different stands to cover the variety 
in stand age, different species and site index (Table 8).

In this study errors were simulated for the basal area value of each stand. The 
simulated errors were replicated with 100 scenarios of a normal distribution with 
a mean corresponding to the point estimate and variance 30 % of the 
corresponding stand’s basal area. The 100 different pseudo stands were imported 
to the Heureka DSS and a maximum of 100 management programs were created 
for each scenario. 

For the VAR/CVAR measures the results (please refer to Table 3 and 4 in 
the paper) show a tendency to favor longer rotations with increased risk 
aversion. This shift to longer rotations allows for the stand to grow, allowing the 
possibility for harvesting a stand with rather low BA to be less unfavorable in 
comparison with the stand being more heavily stocked. 

Table 8. Characteristics of the eight stands used in the study.

Stand Basal area Site index Age Dominant species

1 30 27 37 Pine
2 20 24 53 Pine
3 16 28 73 Pine
4 27 24 36 Spruce
5 18 31 50 Spruce
6 27 24 53 Spruce
7 43 35 58 Spruce
8 24 22 87 Spruce

Figure 2 presents the management programs yielding maximum NPV for 
different scenarios (i.e., different BA values). For each stand the 100 BA 
scenarios were divided into broader intervals where in each interval the 
dominant management plan is presented. The BA intervals were here selected 
subjectively based on the list of best programs over the scenarios. Additionally, 
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from Figure 2 it can be noted that for almost all stands, the same management 
programs are suggested by the VaR/CVaR measure (refer to Table 3 and 4 in the 
paper). The results from the E(NPV) method (refer to Table 2 in the paper) and 
the results from the CVaR and VaR can be seen to provide similar management 
suggestions. The tendency that increased risk aversion implies longer rotations 
observed for VaR/CVaR is here associated with smaller BA. 

2.4.3 Conclusions 

The results of this study highlight the potential of incorporating estimates of 
uncertainty into forest DSSs. To be of practical use, tools to manage uncertainty 
should be integrated into the application of forest DSSs. The advantage of 
incorporating estimates of uncertainty, such as the proposed method in this 
study, is that decision makers will be able to consider his/her risk preferences,
such as risk-neutral or risk-averse, and adjust forest management decisions to 
reflect these attitudes toward risk. For instance, if we examine the decisions 
taken for the second stand, the E(NPV) and point estimate decision is to conduct 
a thinning in period two and a final felling in period six. If the decision maker is 
risk averse the option to conduct the final felling in period 7 or 8 may be 
preferable. Even though the E(NPV) is lower, during that delay the BA will 
increase and the probability of harvesting the forest with a low NPV is reduced. 

To make forest planning under risk and uncertainty among practitioners more 
prevalent will require that analytical tools are part of the same DSS where other 
planning tasks are performed. To add the functionality of conducting this type 
of analysis within the DSS, an applicable software package should be developed. 
This package should allow for running the same management program for a set 
of scenarios which incorporates a variety of uncertainty estimates, and should 
integrate this information for ease of analysis. The proposed methods are chosen 
in order to be easily implementable in existing DSSs. From a programming point 
of view, a visual illustration method is probably the easiest approach since each 
scenario, or pseudo stand, can be treated separately and only the maximum value 
program needs to be kept. Probably, the most demanding part to arrange is the 
visual illustration, where a mechanism for aggregating programs is needed. With 
the E(NPV) and the CVaR and VaR methods the maximum value program for 
each scenario is kept and the only subsequent operation is to sort the kept 
management programs according to the criteria.  
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Figure 2. Optimal management plans for different BA (m2ha-1) for stand 1-8. (F= final felling; T=
thinning; number = 5-year period for the action). 
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3 Discussion 
Managing forest holdings relies to a large degree on the quality of forest 
information. Typically, forest information is uncertain; therefore suboptimal 
decisions are expected to occur even with recently acquired forest information. 
In general, the uncertainty in forest information can be addressed from two 
different fronts. The first front can be seen as a direct intervention where forest 
information quality is improved by collecting new information, utilizing ALS 
data in the sampling design and in the estimation and/or by combining new 
information with existing (old) information. The second front can be seen as 
indirect intervention where the existing planning methods and decision making 
processes that account for uncertainty are improved. Both approaches can be 
studied simultaneously to compare their efficiency and suitability. This kind of 
study was, however, not considered in this thesis. Papers I to III address the 
uncertainty directly by improving forest information quality where Paper IV 
addresses indirectly the uncertainty by incorporating an estimate of the 
uncertainty in the existing planning and decision making process. 

The second front which was just mentioned can be seen as an alternative to 
acquiring higher quality information by improving existing planning processes
and tools by incorporating and considering estimates of uncertainty in the DSS. 
The outcome of such an approach is presented in Paper IV where a visual 
illustration method is proposed to account for the risk preference of the decision
maker. This idea of visual illustration is of interest for further studies as it 
potentially helps decision makers and forest owners to understand and observe 
the effect of risks. As it is hard to explain as well as to understand the tradeoff 
between the E(NPV) and what in the worst case might happen (VaR and CVaR), 
a visual illustration may be of interest. To the best of my knowledge visual 
illustration methods have not been considered in previous literature in forestry, 
and it is therefore likely to be an innovative approach in forest planning.  

To combine both fronts to handle uncertainty is of interest but was, however, 
not covered in this thesis. Nevertheless there is evidence (e.g., Ståhl et el. 1994) 
that combining different methods for handling uncertainty can increase the 
chance of reducing the magnitude of the suboptimal loss. One example of this is 
from Bayesian decision theory where the error, lower though, of the new 
information combined with the old information can be utilized in a system that 
takes decisions based on information in term of distributions and not point 
estimates. 

The DSSs nowadays rely on the deterministic assumptions regarding the 
simulator and optimization models. Therefore, giving estimates of uncertainty 
cannot be utilized in the planning process in such systems since they cannot 
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handle estimates of uncertainty. In Papers III and IV this problem was addressed 
and discussed and scenario analysis (deterministic equivalent) was proposed as 
a solution. The method can potentially be implemented in existing DSSs. It 
seems that such solutions are in their early stage of development. One example 
is the implementation of scenario analysis in the Finnish SIMO DSS (Rasinmäki 
et al. 2009); however, actual use of the solution seems so far not to be fully 
utilized by the forest planners. 

In Papers I and II ALS data were utilized in the empirical analysis and shown 
to have a high potential as using these data reduced suboptimal losses due to 
suboptimal decisions. The information stemming from ALS data has been 
proven to provide robust and valuable estimates of forest information, for 
example, stand mean values or stem diameter distributions (McRoberts et al. 
2010). Incorporating stem diameter distribution in the planning process was 
shown in Paper I to improve the planning process compared to stand mean values 
only.  

In Paper II ALS data were also used in data acquisition as they were used as 
auxiliary information in a LPM approach to design a field sample. ALS data 
were used in mapping (delineation of micro-stands) and for selecting micro-
stands to be sampled. Moreover, ALS data and LPM were used to allocate field 
plots with selected micro-stands. Micro-stands have the potential to reduce 
within stand variation and therefore potentially improve the planning process. 
An automatic segmentation technique was used to delineate the micro-stands. 
For example, spectral data or mean tree height within raster elements can be used 
for segmentation. The idea of micro-stands is to provide a good description of 
the forest, where after the micro-stand should be aggregated into treatment units 
(e.g., harvest units) at some stage in the planning process. Hence, the optimal 
micro-stand size is of interest and the effect of stand delineation is also of interest 
for future studies. Approaches for clustering of micro-stands into treatment units 
should be developed further (Packalen et al. 2011). It is of interest also to study 
the effect of incorporating estimates of uncertainty stemming from growth 
forecasts (Nyström and Ståhl, 2001) in the same way as was done in Paper IV 
for the initial state of forest information. 

In this thesis data quality was considered in forest planning without any 
restrictions or interactions between stands in a forest holding which is the 
simplest approach to manage forest. Using this approach the best treatment for 
each stand is optimized in order to maximize the NPV of each individual stand 
within the forest. Nevertheless, the results of this thesis have the potential to 
affect forest level planning including restrictions and/or interactions between 
stands. In such forest level planning, a best combination of treatments for the 
stands is optimized in order to reach a general goal for the landscape as a whole. 
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However, the potential to do this was not assessed in this thesis. For instance, 
the micro-stand approach might have an impact if the planning were to be 
performed at the landscape level since the clustering process performed at that 
level to generate a new layout for harvest operations may result in different 
treatment units as compared to traditional stands. This has to be further analyzed 
and tested to see whether new challenges would arise. 
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4 Concluding remarks 
For future studies and in order to utilize the benefits of this thesis, new DSSs 
that are able to account for estimates of forest information uncertainty have to 
be developed. These kind of DSSs should be built in a dynamic way that will 
allow new information to be input into the system at any point of time. Thus, a 
Bayesian decision process can then be applied. 

Nowadays, enormous amounts of forest information stemming from remote 
sensing techniques and harvesting machines are available; however, the use of 
these different sources of information is poor. Rather than improving or 
investing in one source of information, assimilating these sources seems to be a 
promising approach. The DA process should be further investigated as it seems 
to be a promising framework that can make use of many different sources of 
information, and provide output that can be useful for forest planners. 

As discussed in Paper III, the DA process has potential to provide several 
main benefits to forest planning by improving performance both in short as well 
as long term planning setting. Without modifying the existing DSSs, the 
improvements provided by DA include better information accuracy, as well as 
estimates of the uncertainty of the information. These factors are important, but 
in order to benefit fully from DA there is a need to develop DSSs towards 
incorporating procedures which will allow them to benefit from Bayesian 
decision making in the later stages of the decision process. This also involves 
making growth forecasts which account for the uncertainty of the projected 
information (e.g., Nyström & Ståhl 2001).  

In regards to practical forestry the use of remote sensing data and 
consideration of uncertainty in forest information is essential. Remote sensing 
data improve the quality of forest information through increasing the accuracy 
and as a consequence have the potential to reduce suboptimal losses. The use of 
the remote sensing data in practical forestry is presently applied on a broad scale, 
contrary to the use of information about uncertainty. Typically, uncertainty in 
forest information was ignored for simplicity; however, uncertainty can lead to 
unwanted or unexpected results and subsequently to the forest planner 
retrospectively wishing they had considered uncertainty at an earlier stage. 
Therefore, while the current DSSs is still using the deterministic optimization 
methods, the use of visual illustration (Paper IV) through scenario analysis 
(deterministic equivalent) can be utilized in practical forestry in order to 
facilitate for forest planners to better understand and account for uncertainty. 
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