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Abstract
A rich structural diversity in forests promotes biodiversity. Forests are dynamic and there-

fore it is crucial to consider future structural potential when selecting reserves, to make

robust conservation decisions. We analyzed forests in boreal Sweden based on 17,599

National Forest Inventory (NFI) plots with the main aim to understand how effectiveness of

reserves depends on the time dimension in the selection process, specifically by consider-

ing future structural diversity. In the study both the economic value and future values of 15

structural variables were simulated during a 100 year period. To get a net present structural

value (NPSV), a single value covering both current and future values, we used four dis-

counting alternatives: (1) only considering present values, (2) giving equal importance to

values in each of the 100 years within the planning horizon, (3) applying an annual discount

rate considering the risk that values could be lost, and (4) only considering the values in

year 100. The four alternatives were evaluated in a reserve selection model under budget-

constrained and area-constrained selections. When selecting young forests higher struc-

tural richness could be reached at a quarter of the cost over almost twice the area in a bud-

get-constrained selection compared to an area-constrained selection. Our results point to

the importance of considering future structural diversity in the selection of forest reserves

and not as is done currently to base the selection on existing values. Targeting future values

increases structural diversity and implies a relatively lower cost. Further, our results show

that a re-orientation from old to young forests would imply savings while offering a more

extensive reserve network with high structural qualities in the future. However, caution must

be raised against a drastic reorientation of the current old-forest strategy since remnants of

ancient forests will need to be prioritized due to their role for disturbance-sensitive species.
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Introduction
There is a widely recognized need to protect structurally diverse forests since they may host a
rich biodiversity [1]. Such forests are declining globally due to fragmentation and reduction of
natural habitats caused by anthropogenic disturbances [2]. An important part of conservation
is to establish reserves, which ideally should be persistent and representative of natural habitats
in their respective areas [3]. However, the requirements for reserves, in terms of areas needed
to protect all threatened habitats, is large. For instance the Aichi target of Convention on Bio-
logical Diversity states that at least 17% of the terrestrial land area should be protected until
year 2020 [4] implying large economic costs to establish and maintain them. Thus, reserves
need to be planned as effectively as possible to maximize fulfillment of conservation targets.
Use of a systematic approach can increase the effectiveness of these procedures [3], and there
have been rapid developments, theoretical and methodological, concerning ways to improve
reserve selection during the last 20 years [5,6].

Most Northern European boreal forests are intensively managed, and have been so for a
long time, leading to even-aged forests with small amounts of features that are common in nat-
ural forests [7–9]. A forest reserve network should ideally represent the natural range of forest
structures and composition as well as successional stages in its geographic area [10,11]. Conser-
vation qualities will change over time within the selected reserves. A time discounting strategy
is therefore needed to enable evaluation of both present and future effects of different conserva-
tion strategies on states and properties of the reserves. Further, if the conservation qualities are
believed to be degenerating in the landscape and assuming a decreasing marginal utility of the
qualities, they will be more valuable to protect for future generations than the present (in con-
trary to the wealth effect justifying economical discounting [12]), motivating a smaller discount
rate for environmental change than consumption change [13]. Key factors to inform conserva-
tion decisions include differences in the economic value of the land [14], and the variability of
conservation targets [15]. Environmental variables can serve as surrogates for biodiversity [16–
18] for forests represented by factors like dead wood and old trees [19–21]. Climate change fur-
ther complicates effective conservation planning, as it could alter habitat conditions sufficiently
seriously to drive species from protected areas [22,23].

In a previous paper, we identified the most cost-effective age composition of reserves in
boreal Sweden based on a reserve selection model and a set of structural indicators [24]. The
results indicated that it would be cost-effective to select a large proportion of young forests,
since they host all indicators and are cheaper to purchase than older forests, where the indica-
tors are denser but the price is much higher. However, the model did not consider the future
development of the indicators in the candidate reserves.

The aim of the study presented here was to investigate the effects of considering future habi-
tat potential, expressed as structural richness, on the effectiveness of reserves by adding a time
dimension to the selection process [24]. We recalculated future structural values back in time,
(i.e. discounted values), to handle uncertainties [25,26], by adapting the net present biodiver-
sity value (NPBV) [27] to net present structural value (NPSV). The current practice of forest
reserve selection is almost exclusively based on current forest structure and composition. Thus,
our study contributes to the development of a selection strategy based on forest protection
goals set for future generations. Our hypotheses were as follows. First, conservation effective-
ness (estimated as accumulated structural indicator score over 100 years) will be higher if
future values are heavily weighted in the NPSV. Second, young forests are more cost-effective
reserve options if their future structural value is taken into account. The rationale for this
hypothesis is that young forests are cheaper than older forests so a larger total area can be
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purchased, increasing the potential growth of indicators, and some indicators will increase
more rapidly in young than in old forests.

Materials and Methods

Study area
Our study was confined to boreal Sweden [28], which covers approximately 14 million ha of
productive forest land. Boreal forests, both natural and managed, have low tree species diversity
and are dominated by the conifers Scots pine Pinus sylvestris L and Norway spruce Picea abies
(L) Karst. [29]. The main deciduous trees are silver birch Betula pendula Roth., downy birch B.
pubescens Ehrh., and aspen Populus tremula L. [30].

We used forest data from 17,599 temporary and permanent Swedish National Forest Inven-
tory (NFI) plots on all types of productive forest land, outside existing reserves and inventoried
in 2003–2007 (S1 Dataset). The NFI is an annual survey, which started in 1923, of circular
plots with a radius of 7 or 10 m placed along borders of tracts distributed in a systematic cluster
design across all land in Sweden [31].

We aggregated the NFI plots in the Boreal region into 112 larger 50x50 km squares for the
analyses to get a more realistic representation of the forest, since a small plot can have extreme
values. Each aggregated 50x50 km square had to contain at least 30 NFI plots, leading to the
exclusion of 292 NFI plots at the edges of the study area. We divided the forest within each
aggregated 50x50 km square into five age classes: 0–14, 15–39, 40–69, 70–99 and�100 years.
We selected the 100-year timeframe and unequal class ranges because the normal rotation time
in the region is about 100 years and large-scale tree retention practices, i.e. retention of living
and dead trees during forestry operations for conservation purposes, [32] were introduced
approximately 15 years before the study [33]. Older managed forests have much less retained
structures [34], and thus different initial characteristics.

We considered all NFI variables and identified 15 of these as structural variables that reflect
qualities that are important for a substantial proportion of the forest species [17,35,36]. The
value of each indicator was translated into a point between 0 and 100 (Table 1) to enable calcu-
lations. Each aggregated 50x50 km square was assigned a point per hectare for each of the 15
variables and age-class based on the points from the including NFI-plots. We assumed that
maximizing the points for the 15 indicators would increase the potential for high species rich-
ness, including rare species.

Stand development simulations
The future development of the 15 structural indicators in each NFI plot was simulated for 100
years using the Heureka system which is a decision support system developed for planning and
analysis of multiple-use forestry [37]. Heureka is based on projections of the tree cover devel-
opment. To predict the future state of the forest, data on current conditions, applied manage-
ment actions (e.g. thinning, clear-cutting and appropriate regeneration measures following
harvest), and known ecological processes (e.g. tree growth, mortality and climate change) are
used. For a more detailed description see Wikström et al. [37]. The 15 indicators’ future esti-
mated values were projected in 5-year periods for 100 years. The value of each indicator was
translated into the corresponding points (Table 1) for each 5-year period. In this paper we use
value when referring to the measured value in an NFI plot, points when referring to an assigned
value, and score when referring to a sum of points. We aggregated the points for the 50x50 km
squares divided into the five forest age classes, i.e. each aggregated 50x50 km square was
assigned points per ha for each indicator, forest age class and period.
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The opportunity cost of each age class and aggregated 50x50 km square was also estimated
per ha based on the cost of setting aside the including NFI plots. The cost of setting aside the
NFI plots was based on the estimated economic value of the most profitable forestry connected
to the plot. For each NFI plot we simulated up to 50 different treatment schedules (i.e.
sequences of future treatments, such as thinning, clear-cutting or doing nothing) with the
Heureka system. For each schedule the net present value (NPV), i.e. the predicted income from
future activities in the plot minus the predicted cost of future activities from period 1 to infin-
ity, discounted back to today with a 3% interest rate, was calculated. The schedule yielding the
highest NPV was then chosen to represent the opportunity cost for that plot. The cost and
income were based on Heureka’s default timber price list for northern Sweden, and if only neg-
ative NPVs were obtained for a plot we set its opportunity cost to 0, since it would not be realis-
tic to have negative values in the model.

Net Present Structural Value
We adapted the net present biodiversity value concept NPBV [27] to estimate a single struc-
tural value NPSV that included the values from future time periods for each indicator. This
was done by applying a time discount to future values.

Table 1. List of forest structural indicators, criteria for points, and the discount rate used in the discount function 3 (see Material and Methods).

Indicator 100 points 50 points 0 points Discount rate (%)

Uneven agea Uneven-aged Even-aged 0.1

Tree layerb Gini coefficient > 0.5 Gini coefficient � 0.5c 0.1

Ground structured* Very uneven/fairly uneven Fairly even Very even 0.1

Large pine >40 cm dbh >30 cm dbh Not present 1

Large spruce >40 cm dbh >30 cm dbh Not present 2

Large birch >40 cm dbh >30 cm dbh Not present 0.5

Large aspen >40 cm dbh >30 cm dbh Not present 0.5

Large deciduous tree (other than birch or aspen) >40 cm dbh >30 cm dbh Not present 0.5

Dead conifer tree lying 1 m3/ha dead trees >20 cm dbhe Not present 0.5

Dead deciduous tree lying 1 m3/ha dead trees >20 cm dbhe Not present 0.5

Dead conifer tree standing 1 m3/ha dead trees >20 cm dbhe Not present 1

Dead deciduous tree standing 1 m3/ha dead trees >20 cm dbhe Not present 1

Presence of rowan* Present Not present 0.1

Affected by water (moving water/spring/temporarily flooded)* Yes No 0.1

Volume of dead woodf >20 m3/ha � 20 m3/hac 0.5

a If at least 80% of the volume is within a 20-year age range the stand is even aged, otherwise uneven-aged.

b Based on the Gini coefficient, which is a measure of heterogeneity and can be used to describe size hierarchies and to quantify the deviation from

perfect equality. The Gini coefficient ranges from 0 to 1, where 0 is perfect equality and 1 is maximal inequality

c Normalized points from 0–100.

d Ground structure: Classification based on height and frequency of landscape feature irregularities (rocks, hillrocks and holes) on the ground.

e 1 m3/ha corresponds to approximately one tree per ha, and the dbh limit is based on data in Sweden’s statistical yearbook of forestry [54].

fThe indicator “volume of dead wood” was assigned 100 points when the volume was >20 m3/ha in a 50x50 km square, and normalized points ranging

from 0–100 when the volume was lower. This difference in point setting was motivated by indications that 20 m3/ha could be a threshold level for many

species associated with dead wood [55,56].

*Variables only registered in period 0 and not projected.

doi:10.1371/journal.pone.0148960.t001
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We calculated NPSVs for each indicator (e) as follows:

NPSVe ¼ pn � f ðnÞ ð1Þ

Where pn is the projected value n years from now and the function f(n) is the discount
function.

We used four versions of the discount function. Discount function 1): (f1) (Eq 2) only today
´s value was used, i.e. only the first period (j0) was considered, ignoring future values and risks
of future losses:

f1ðnÞ ¼ jn j0 ¼ 1; jn ¼ 0; n ¼ 1; . . . ; 100 ð2Þ

Discount function 2): (f2) (Eq 3) the same weight was applied to every time period, i.e. future
values were considered, but not risk:

f2ðnÞ ¼ 1 n ¼ 0; . . . ; 100 ð3Þ

Discount function 3): (f3) (Eq 4) risk was considered by applying a discount rate. Discount
rate is an economic concept that can be interpreted as the fraction of the value of a resource
that is lost when choosing to consume it in the future instead of today, in a similar manner to
our use of an interest rate in the net present value calculations to establish the opportunity cost.
Each indicator was assigned a discount rate based on the likelihood of it being negatively
affected by a storm (Table 1); the major kind of disturbance in boreal Sweden today [30].
Deciding appropriate discount rates is inherently problematic because of the uncertainties
regarding the magnitude (or even nature) of possibly influential variables, and discounting
environmental variables is a new idea for which no consensus regarding suitable methodologies
has been reached yet [27,13,38]. However, we assigned discount rates of 2%, 1% and 0.5% to
spruce, pine and deciduous tree species, respectively. The discount rates were based on findings
by Peltola et al. [39] regarding the relative sensitivity of tree species to storms and indications
that discount rates for ecological changes probably is lower than the generally used economical
interest rate 3% [13,27]. We assumed that standing dead trees would be more sensitive than
fallen trees, and the remaining indicators were assigned a small discount rate of 0.1% to
account for the risk of indirect effects. There are indications that tree damage caused by storms
will increase in the future due to climate change [40], thus the discount rate for all indicators
was increased linearly by 1% over 100 years (i.e. by 0.01% for each year). In this version of the
discount function a discount rate (d) that increases with time was applied, i.e. we added an
additional risk rate that differed for each indicator (e) (Table 1), but for simplicity we still
describe the function as:

f3ðnÞ ¼ 1� de þ
0:01� n

100

� �� �n

ð4Þ

Discount function 4): (f4) (Eq 5) only the projected value for year 100 was used, i.e. neither
risk nor any present or future values until year 100 where considered:

f4ðnÞ ¼ jn j100 ¼ 1; jn ¼ 0; n ¼ 0; . . . ; 99 ð5Þ

Reserve-selection model
The approach for selecting nature reserves was based on the model presented in Lundström
et al. [24], including structural indicators (Table 1). However, here the original model is com-
plemented with a time dimension and the option to add a discount function. The model is
based on a goal programming approach, where the objective is to select areas that maximize
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structural potential, considering all indicators simultaneously. The solution to the problem is
divided into two phases: in the first a maximal value for all indicators is established, and in the
second a solution is found that minimizes the sum of the deviations from each indicator’s max-
imal value and the final value. The linear programming (LP) problem used in phase one [P1]
can be formulated as follows (see Table 2 for parameters and decision variables):

bP1cmax z ¼
X
e2E

X
j2J

X
i2I

X
t2T

wepjitxit fej ð6Þ

Subject to the following constraints:X
i2I

X
t2T

citxit � b ð7Þ

X
i2I

X
t2T

xit � q
X
i2I

X
t2T

ait ð8Þ

xit � ait; 8i 2 I; t 2 T ð9Þ

xit � 0; 8i 2 I; t 2 T ð10Þ

In the objective function (Eq 6), the sum of the indicator points in the selected areas is maxi-
mized (this sum is referred to as the indicator score). The constraints applied are a budget con-
straint that limits the total cost (b) of the selected areas (Eq 7), an area constraint that prevents
the selected area from exceeding a certain proportion (q) of the total area (Eq 8), a constraint
that ensures that the selected area is smaller than the total area (Eq 9) and a non-negativity
constraint (Eq 10). Phase one is solved 15 times; once for each indicator when that indicator
has weight 1 (we = 1) and all other indicators have zero weight. Those 15 goal values are
denoted ze.

Table 2. Parameters and decision variables used in the reserve selection model.

Notation Description

Parameters:

I Set of 50x50 km squares (i = 1,. . .,n)

T Set of age classes (t = 1,. . .,m)

E Set of structural indicators (e = 1,. . .,o)

J Set of time periods (j = 1,. . .,q)

we Weight of structural indicator e

pejit Point of structural indicator e in time period j, square i and age class t

ait Area (ha) of square i in age class t

cit Cost ha-1 of square i and age class t

fej Discounting function of indicator e in time period j

Q maximum proportion that can be selected

B available budget (SEK)

Decision variable:

xit area (ha) selected in square i and age class t

Objectives:

ze The maximized goal values from phase one

Y The minimized goal value from phase two

doi:10.1371/journal.pone.0148960.t002
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Phase two [P2] gives a solution that minimizes the sum of the quadratic percentage devia-
tion from each indicator’s goal value and the final value, and is formulated as:

bP2c min y ¼
X
e2E

ze �
X
j2J

X
i2I

X
t2T

pejitxit
� �

=ze
� �2 ð11Þ

Subject to: Eqs 7–10
This second objective function (11) minimizes the squared difference between the goal and

the score for each structural indicator. The deviation is measured as a percentage, so all goals
are treated equally. This second problem is convex [41] to guarantee a global optimal solution.

Selection approaches
We used two selection approaches to evaluate the four discounting functions, one where a bud-
get constrained the selection and one where area constrained the selection. When a budget lim-
ited the selection, the area constraint (Eq 8) was omitted, and when area limited the selection
the budget constraint (Eq 7) was omitted. We set the budget for selecting reserves at an arbi-
trary level of 10 billion SEK, which we deemed plausible based on current conservation policy
in Sweden, where 6 billion SEK was allocated for establishing reserves during the period 1998–
2008 [42]. An area constraint that generated approximately the same indicator score in the first
three versions of the discount function was at 5%, (of the total area), hence we chose that level
in the area -constrained selections.

Results

Development of structural indicators over time
Changes with time in the indicator scores of the selected areas in both the budget-constrained
and area-constrained selections were strongly influenced by the discount functions used (Fig
1). Comparisons of indicator scores in the selected areas (based on the simulated points from
all age classes and time periods) showed that in the budget-constrained selection the total indi-
cator score over 100 years was highest when only values in year 100 were considered (function
4; see Methods) and lowest when using a discount rate (function 3) (Table 3). In contrast, in
the area-constrained selection the total indicator score was highest when only present values
were considered (function 1), and lowest when only projected values in year 100 were consid-
ered (function 4) (Table 3).

The structural indicator score per period was highest for the alternative considering only
current values (function 1) for the first 30 years in both budget- and area-constrained selec-
tions. For the period>30–100 years the changes in indicator scores yielded by the discounting
functions varied. In the budget-constrained selection the indicator score increased most rapidly
when considering only values in year 100 (function 4) (Fig 1A), while in the area constrained
selection all alternatives generated similar periodic indicator scores (Fig 1B).

Analysis of the development of the individual indicators when giving equal importance to
all time periods (function 2) showed that points increased more rapidly for the budget-con-
strained selection than for the area-constrained selection. For the budget-constrained selection
points for lying dead wood, standing dead wood and large trees increased rapidly while those
for total volume dead wood, tree layer and uneven age did not change much over time (Fig
2A–2D).
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Age distribution
The age distribution of the selected forest varied depending on the discounting function, and
differed strongly between budget-constrained and area-constrained selections. In the budget-
constrained selection, the age class 0–15 years dominated in all cases with a proportion
between 76% (function 4) and 60% (function 3) (Fig 3A). Proportions of the three oldest age
classes (41–70, 71–100 and>100 years) selected were low under all of the discounting func-
tions in the budget-constrained selection, ranging from 0.3% to 11% (Fig 3A).

In contrast, in the area-constrained selection the proportions of age class 0–15 years were
consistently low and at most 8%, when only the values for year 100 (function 4) were consid-
ered (Fig 3B). The oldest age class was more prominent in this selection approach, and highest
when only current values were considered (function 1) (57%), but considerably lower in the
other alternatives, ranging from 13% (function 4), to 25% (function 3) (Fig 3B). For the area-

Fig 1. Changes with time of the structural indicator score per period over 100 years in (a) the budget-constrained selections and (b) the area-
constrained selections for each of the four variants of the discount function, year 0 is the initial state based on NFI data inventoried between 2003 and 2007.

doi:10.1371/journal.pone.0148960.g001
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constrained selections forests>40–100 years old dominated the selections for discount func-
tions 2,3,4 while for discount function 1 forests>70 years old comprised 95% of the area.

Budget-constrained versus area-constrained selections
Outputs of the area-constrained models were approximately four times more costly and
selected only 70% of the area compared with the budget-constrained models (Table 3). Dis-
count function 4 in the budget-constrained models yielded the largest area and the highest
total score of all selections. For the area-constrained models, there were small differences
between functions. The variations in total score between functions were smaller for the area-
constrained models than the budget-constrained models (Table 3).

Discussion

Considering future states is important
Overall, our study shows that the most efficient selection of reserves strongly depends on
whether current or future structural diversity is considered. This was especially true for the
budget-constrained models in which the most efficient solution, in the sense of a high accumu-
lated structural score and a large selected area, was when only year 100 was considered (dis-
count function 4). According to the applied models the structural diversity of young and
middle-aged forests can clearly increase substantially in a long-term perspective, and thus the
100 year target was important to consider. Discount functions also affected forest-age distribu-
tions with the proportion forest<15 years old varying between 60% and 76% for the budget-
constrained selections, and between 0% and 8% for the area-constrained selections.

Hypotheses
Our first hypothesis, that the total scores over 100 years would be higher if larger weighting
was applied to future values than current values in the selection, was only partly supported. In

Table 3. The total cost (billion SEK), area selected (10 000 ha), and total indicator scores over 100
years (10 million points) of selections yielded bymodels incorporating the four variants of the dis-
count function for the budget -constrained selections and area-constrained selections.

Budget-constrained selection Area-constrained selection

Discount function 1: current values

Cost 10 44

selected area 106 73

total score 154 148

Discount function 2: all periods

Cost 10 43

selected area 105 73

total score 146 140

Discount function 3: discount rate

Cost 10 45

selected area 91 73

total score 131 141

Discount function 4: only year 100

Cost 10 39

selected area 127 73

total score 170 137

doi:10.1371/journal.pone.0148960.t003
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the budget-constrained selection, this was true for the alternative only considering the value in
year 100 (function 4) but not for functions 2 and 3. Further, our results were not consistent
with our second hypothesis, that young forests would be selected to an even higher degree if
future values were stressed in the budget-constrained selection alternatives. Instead, the

Fig 2. Changes with time of the structural indicators in the selected area over 100 years.Measured as the proportion of the total accumulated points
reached in each time step for each indicator or group of indicators: dead wood variables in the (a) budget-constrained selection and (c) area-constrained
selection, and other variables in (b) the budget- and (d) area -constrained selections. Year 0 is the initial state based on NFI data inventoried between 2003–
2007. Discount function 2 (giving all time periods equal weighting) was applied. To make the figure clearer we grouped the following variables: dead conifer
tree standing and dead deciduous tree standing into standing dead wood; dead conifer tree lying and dead deciduous tree lying into lying dead wood; large
pine and large spruce into large conifer tree; and large birch, large aspen and large deciduous tree (other than birch or aspen) into large deciduous tree.

doi:10.1371/journal.pone.0148960.g002

Fig 3. Optimal age distribution of reserves in boreal Sweden obtained by applying the four variants of the discount function in (a) the budget-constrained
selections and (b) the area-constrained selections.

doi:10.1371/journal.pone.0148960.g003
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proportion of young forest was lower in the two alternatives considering all time periods (func-
tions 2 and 3). However, we found a marginal increase when only the value in year 100 (func-
tion 4) was considered. This could be attributed to the relatively rapid increases in most
structural indicators in the middle aged forests, which today are highly impoverished due to
previous management practices.

Structures and species
We only analysed selections based on structural variables due to the large body of scientific evi-
dence pointing to a strong connection between high structural diversity and rich species diver-
sity [1], and also that high-quality structural data are available through the Swedish NFI.
However, forest history and connectivity also influence species’ occurrences [43], and the prob-
ability of finding associated species at a site with high structural diversity will vary over time
and space. If a forest landscape has a history of low structural diversity and a site is very iso-
lated, species diversity will probably be relatively low. An interesting extension of our study
would therefore be to repeat the analyses with data on species to capture how the history and
spatial location of possible habitats affect species occurrences over time and space [44]. Exten-
sive databases on species occurrences in Sweden are available in citizen-science based databases
that could be used in such analyses [45]

Young forests in reserve networks
The solutions when the target was to limit the cost included a considerably larger total area
than when the target was to only reach a certain area limit. In the budget-constrained models a
much higher proportion of young forest was collected than in area-constrained models where
old forests prevailed. This is because young forests are much cheaper than old forest, due to
their low tree volumes (the net present value per ha for forest>100 years old was approxi-
mately three times higher than for forest<15 years old). Higher structural richness could be
reached at a quarter of the cost and over almost twice the area in the budget-constrained model
than in the area-constrained model when the discount function only considered the values in
100 years (function 4) Thus, the cost-efficient solutions could apparently provide both major
current savings for taxpayers and a much more extensive reserve network with high structural
qualities in the future. Nevertheless, caution must be raised against a drastic reorientation of
the current forest strategy, i.e., from prioritizing protection of old forest to setting aside young
age stages. In regions with long histories of industrial forestry, like northern Europe, landscapes
have become highly fragmented with few remnant old forests, and relatively intact landscapes
that are still present need to be prioritized due to their unique composition. However, in
regions where there is a lack of high-quality old forests, younger forests may provide important
alternatives for reservation.

The choice of time-span is also crucial, and can affect judgments of possible options, espe-
cially in a dynamic and changing world, but there is no simple scientific guide for choosing the
optimal time horizon [46]. Mönkkönen et al. [47] evaluated alternative strategies for conserva-
tion in managed boreal forest landscapes over time and found that their relative effectiveness
depended on the time-frame. We chose 100 years because this is a normal rotation time in a
managed boreal forest in northern Europe, and also structural features like dead wood and
large-diameter trees develop substantially during this time span [34,48,49] Still, for some struc-
tures, like old trees, considerably longer time periods would be needed since the life span may
exceed several hundred years for most tree species. Nevertheless, a shorter time horizon may
be more appealing for decision-makers, since it is easier to relate to a closer, future end point.
However, we also found variations in relative effectiveness with time. If we had chosen a
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shorter time-period, e.g. 30 years, alternatives that consider future values would have been dis-
favored since the discount function including only present values generates the highest total
score per period in the first 30 years in both the budget- and area-constrained models.

Incorporating future risks
We used storm as an example of future risk, since a storm would reduce the projected future
values of the indicators linked to living trees. We also assumed that this risk would increase
with time since the frequency and intensity of storms are expected to increase due to climate
change [50,51]. However, the relationships between storms and our indicators are not simple,
since storms would lead to raised levels of dead wood, a substrate important to many species.
Thus, attempts should be made to account for both positive and negative effects of risk factors
in future analyses. Climate change is expected to have major effects on all levels of biodiversity,
but there are large variations in projected responses [52]. Despite those uncertainties, climate
change should still be considered in conservation planning [53], for example by applying a sys-
tematic replacement of protected areas over time to adjust for changes in the environment
[23]. Conservation planners need to adapt and search for alternative approaches to be able to
cope with the large uncertainties ahead, and reflect our desire to protect biodiversity for today
or for future generations.

Practical implications
Reserves in boreal northern Europe could be selected more rationally. A key possibility
addressed here that has been largely neglected to date [22,46,47], is that the effectiveness of
selections could potentially be enhanced by considering future values. We have found clear
indications that optimal strategies differ depending on the applied discounting functions and
time-frames. In Swedish boreal forests considered here, this strongly affects the age-distribu-
tion of the selected areas, particularly favoring young and middle-aged forests when time-
frames are long. Future studies should develop planning approaches that can consider future
development of the selected areas and refine the measure of structural indicators, which in turn
can be used as a foundation for conservation planners to formulate more effective conservation
decisions.
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