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ABSTRACT 

The tree height growth from three vegetation seasons were fitted to height growth curves in order 

to estimate the site index, which is a variable related to forest site productivity. The tree height 

growth was evaluated for four different cases, in which remote sensing data from TanDEM-X and 

airborne laser scanning were evaluated. The evaluated method requires a digital terrain model and 

knowledge about the tree species. Furthermore, the remote sensing data were calibrated using 

Lorey's heights or airborne laser scanning data.  

It was found that four annual acquisitions of calibrated TanDEM-X data covering three vegetation 

seasons could be used for estimating the site index on twenty-seven 0.5 ha field plots with 4.4 m 

(12.1%) RMSE. The site index could in a similar manner be estimated from only two airborne laser 

scanning acquisitions, before and after four vegetation seasons, with 2.3 m (6.3%) RMSE.  

I. INTRODUCTION 

The forest has many different values for many different interest groups, but in Sweden wood 

production plays a vast role in share of the total amount of available forest. Planning of silvicultural 



treatments is necessary in order to optimize the wood production and to support this planning, 

fundamental data about the forest are necessary; for example tree species, stem volume ha-1, and 

age of the forest. It is vital to also have accurate data about the forest site productivity, as it 

influences the forecasted forest yield. Forest site productivity is defined as the soil’s inherent 

capacity to produce wood volume, i.e. the mean annual production of stem volume ha-1 for well 

managed forest growing on the particular site. A commonly used indirect measurement of forest site 

productivity is the site index (SI). It can be computed in different ways, depending on the forest state 

(e.g., mature forest or clear-cut forest) at a certain time point [1], [2]. If no trees are present (e.g., 

because of a clear-cut), local soil and vegetation properties can be used, for example soil moisture 

and field layer vegetation, and the SI is then denoted SIS [3]. This can become a very subjective 

estimate, highly dependent on the inventorying person, and it is therefore easier to obtain 

comparable objective data using a different definition, where SI is defined as the average height of 

the dominant trees ha-1 at a given reference age (in Sweden commonly the 100 thickest trees at 100 

years). The SI can then in practice be computed from the age and height measured for the two 

largest trees within a circular field plot with 10 m radius. In this case, SI is denoted SIH when it is 

computed from the age and height, and hereafter SI refers to SIH if nothing else stated. 

The SI has historically been described from field inventories, and is thus, limited to sample plots 

representing stands in silvicultural decision plans. Sometimes, it is even expressed at site-level or 

vaguely expressed for the entire region. The strong reliance on tree height for SI estimation makes it 

a crucial variable to measure and the chances of succeeding have never been better, as many 

remote sensing techniques offer ideal platforms for height measurements.  

There are some studies which show the potential of using the remote sensing techniques airborne 

laser scanning (ALS) [4]–[6] or airborne photographs [7] in order to estimate the SI. However, they 

often require the stand age to be known or several (expensive) ALS acquisitions. In 2008, Véga and 

St-Onge presented a method for mapping the site index from long term aerial photographs [7]. They 



evaluated different combinations of four acquisitions of scanned aerial photographs between 1945 

and 2003 to create time series of canopy height models, from which they derived the SI. They used a 

test site which burned in 1923 which established even age, homogenous forest, in which they chose 

solitary single-species forest (jack pine). They found that aerial photographs could be used to 

quantify both SI and stand age, with an average bias of 0.76 m (2.41 m RMSE) and 1.86 years (7 

years RMSE). Tompalski et al. (2015), presented a method for combining time series of Landsat 

imagery to attain the age, and in addition to this only one acquisition of height – acquired from ALS – 

was needed, in order to estimate the SI for young forest [8]. Their approach led to 5.55 m RMSE and 

0.70 m bias. 

Swedish forests grow rather slow in an international context and optical satellite images are rarely 

available from the time when the forest last time was clear-cut. Nevertheless, satellite data have 

some excellent advantages because of its availability, coverage and cheap acquisitions. The X-band 

radar system TanDEM-X has showed to deliver images that can be processed interferometrically 

with good quality, offering a couple of meters resolution and geolocation on the order of meters 

[9]–[14]. The interferometric phase as well as the coherence contain important information for tree 

height and biomass estimations [15]–[18].  

To compute canopy height models from satellite data, an accurate digital terrain model (DTM) is 

required, to describe the ground. This is now available in Sweden as well as in many other countries.  

The authors of the current paper presented preliminary results, where TanDEM-X data were 

calibrated against ALS percentile 99 (p99) elevation data [19]. In this study, the same data set has 

been further evaluated and extended. 

The main hypothesis tested in this study is that the site index can be estimated for mature 

homogenous coniferous forest from very short time-series (three vegetation seasons) of the forest 

height by using satellite X-band radar data, in this case TanDEM-X, when an accurate terrain model is 



available. This is the first study known to the authors, where short-term satellite radar data solely 

are used for SI estimations. The tree height change was expressed species wise, in terms of SI.   



II. STUDY AREA AND DATA 

Several data sets were available for the hemi-boreal forest in Remningstorp (Lat. 58°30’ N, Long. 

13°40’ E), Sweden, between 2011 and 2014 (Figure 1). After the vegetation season 2010, an 

inventory with 32 field plots with 40 m radius was carried out. The locations were chosen such that 

mature homogenous forest could encompass the entire field plots. Trees with diameter at breast 

height (DBH) ≥ 0.04 m were calipered and the height was measured on a sub-sample of about 10% 

of the trees. These plots were inventoried again in 2014, with the only difference that height was 

now measured on about 25% of the trees. In total, 27 plots contained unchanged (no forestry 

actions or extensive injuries) forest during the evaluated time period. On the unchanged plots, the 

two largest trees within 10 m from the plot center were calipered and drilled at breast height, and 

consequently, SI could be computed on 27 coniferous field plots that were not influenced by forestry 

actions (Figure 2). Four of the plots were pine dominated and the remaining ones spruce. The 

inventoried age and SI distribution for the plots are presented in Figure 3. 

In addition to the 40 m plots, there were 10 m plots available, which were inventoried late 2010 and 

again in 2014. Out of the data set of about 200 systematically distributed plots, only unchanged plots 

(during the investigated time period), with known species and site index were chosen, which made 

75 plots with 10 m radius available for calibration purposes. 

ALS data were collected in the fall 2010 (before the first evaluated vegetation season) and in the fall 

2014 (after the last evaluated vegetation season), with > 10 m-2 point density (Table 1). Rasters with 

5 m pixel size were computed for percentiles p99 and p60, above a 1.37 m threshold. The DTM 

utilized was produced by the Swedish National Land Survey (Lantmäteriet) from ALS data, with 0.5 

m-2 point density, and 2 m pixel size [20], [21] .  

Four TanDEM-X images were acquired in strip-map mode annually from June 2011 until June 2014, 

with VV-polarization and 135 m to 216 m across-track baselines (suitable for forest mapping [22], 

Table 2). The images were chosen because of their similar acquisition conditions in terms of 



baseline, polarization and incidence angle. The first image was acquired in the beginning of the first 

evaluated vegetation season and the last one in the beginning of the vegetation season 2014. The 

2013 acquisition was acquired slightly later than the others, though still in the middle of the 

vegetation season. However, the biggest part of height growth takes place during May, June and July 

in this region, which might cause a smaller detected height growth between 2013 and 2014, and 

conversely a slightly larger growth between 2012 and 2013. 

III. METHODS 

A. Field data preparation 

The SI was computed for the 27 field plots (Figure 2) using established tree height growth curves, 

applicable for Swedish forests, which have been published by Johansson et al. in [23]. They are 

based on difference equations and a special case of Hossfeld’s growth functions from 1822 [24]. The 

solution can be presented in its general form as 

𝐻𝐻2 =  (𝐻𝐻1+𝑑𝑑+𝑟𝑟) 
 2 + (4·𝛽𝛽·𝐴𝐴2𝑏𝑏2) / (𝐻𝐻1−𝑑𝑑+𝑟𝑟)

 (Eq. 1) 

d =  β · asib2   (Eq. 2) 

𝑟𝑟 =  �(𝐻𝐻1− 𝑑𝑑)² +  4 · 𝛽𝛽 · 𝐻𝐻1 · 𝐴𝐴1𝑏𝑏2 (Eq. 3) 

where H1 and A1 are the measured height and total age, H2 is the dominant height at the chosen 

reference age (100 years in Sweden), and A2 is the reference age. asi, β and b2 are the parameters 

estimated species wise [23].  

Based on these formulas, species wise growth curves can be plotted as in Figure 4.  



B. Canopy height model generation 

Canopy height models were created for each year, both from ALS and from TanDEM-X data. In all 

cases, ALS data were used for creating the DTM. Four different cases were investigated, where the 

following data sources were used for estimating the SI. 

1. TanDEM-X height data were calibrated against field sampled Lorey’s mean height. 

2. TanDEM-X height data were calibrated against ALS p99 (used as “true” height). 

3. ALS data with p99 and p60 were used to first estimate Lorey’s mean height, from which the 

estimated heights then were used to estimate the SI [25], [26].  

4. ALS p99 was solely used as input for the SI estimation. 

The TanDEM-X images were processed interferometrically in a traditional way, using the software 

Gamma [27], [28], to generate interferometric height and coherence maps with 5 m pixel size. The 

SLCs were already co-registered, hence the following steps were interferogram generation (including 

common spectral band filtering), 3x3 pixels multilooking, removal of flat Earth phase trend and 

removal of the additional topographic phase trend (computed from ALS data). Hereafter, estimation 

of interferometric correlation, phase unwrapping using a branch cut algorithm, and finally 

generation and interpolation of topographic height and coherence maps were accomplished [29], 

[30]. The maps were geocoded by using a look-up table (LUT), which was computed for the 

coordinate transformation between the range-Doppler coordinates (RDCs) and orthonormal map 

coordinates. The initial LUT transformation was calculated based on the orbital data and ancillary 

SAR image information, but was improved by an iterative process where the ellipsoidal DTM was 

matched against a multilooked TanDEM-X intensity image, by using cross-correlation analysis. 

The geocoded height and coherence maps were used to generate height models (negative heights 

were filtered out), using non-linear regression on the form of (Eq. 4) and the parameters where 

chosen to fit either Lorey’s mean height or ALS p99 for the 75 plots with 10 m radius as good as 



possible (the same parameters were used for the entire test site). This is the calibration mentioned 

in the cases 1 and 2 above. As illustration for case 2 above, the relation looked like: 

p99 =  C ∙ Hα ∙ Cohβ (Eq. 4) 

where C is a scaling constant, H is the interferometric height, Coh is the interferometric coherence, 

and α and β are exponent variables to be fitted by the model.  

For case 3, multiple linear regression was used and for case 4 where solely p99 was used, no training 

plots were needed. The parameter values for alfa, beta and C are presented in Table 3 and the 

resulting RMSEs of the calibrations are presented in Table 4.  

In the process of estimating SI (described in the next section), the initial estimated height value is 

crucial (or correspondingly the age), and therefore the calibration of TanDEM-X data against some 

reference data was necessary, as a clear penetration also from X-band radar is known [9], [18], [31]. 

The calibration was made against Lorey’s mean height, since it is commonly used in the Swedish 

forest industry and it is also simply attained from computations of the normally sampled metrics 

DBH and height. However, neither Lorey’s mean height, nor the other reference metrics, is the same 

metric as the dominant height which is used in the definition of SI. Therefore, an error (bias) is 

expected, and the results are also presented with and without bias correction.  

ALS data were only available at time 0 (before the vegetation season 2011) and time 4 (after the 

vegetation season 2014). This explains the empty columns in Table 4 for 2012 and 2013. To evaluate 

tree height growth annually, ALS height data had to be interpolated to get successive heights and to 

give the residual computation the same conditions as with TanDEM-X data. The linear assumption is 

likely to hold during short time intervals, which here is the case (about three years).  

C. SI model fitting 

The procedure for determining the SI from the remote sensing height models used the following 

approach (Figures 5 and 6). The SI was simply estimated by applying a “closest-fit” of remote sensing 



heights to published tree height growth curves. The following steps were carried out for each SI 

curve.  

1. Determine the initial age and height from the remote sensing height data. The initial age was 

computed from the age/height relation for each height growth curve (giving different ages 

for each curve). This was done, by first averaging all four height measurements (also for 

interpolated ALS based height models, in order to avoid different residual accumulations), 

from which the middle age was obtained, and then the initial age could be computed by 

subtracting half of the evaluated time period (1.5 years). Each height curve corresponds to 

the SI for a specific species.  

2. Compute annual residuals. The theoretical height growth during the evaluated three years 

period was computed from the initial height, and compared with the estimated heights 

attained from TanDEM-X or ALS for the four time points, to compute annual residuals.  

3. Find the best SI curve. The best SI estimation was found from minimizing the square root of 

the sum of squared residuals, i.e. the height curve for which the current height development 

fits the best.  

The main measure for determining the estimation quality was RMSE, which was expressed as the 

square root of the average squared residuals. The bias was computed as the mean of the differences 

between the estimated and true SI values, and the RMSE is therefore presented both with and 

without bias corrected SI values. In addition, the Pearson correlation coefficient r was computed. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

The results are presented in Table 5 with and without bias correction, as an obvious bias could be 

noticed in the models, probably stemming from the bias in field measured age (measured at breast 

height, while the computation of SI curves require total age), and possibly also from the slightly 

inaccurate height models attained. The corresponding scatter plots for the four bias corrected cases 



are presented in Figures 7 a-c, e, and one un-corrected scatter plot for case 4 is presented in Figure 

7d. The Figures 7b and 7e are most important, as they represent the products applicable in forestry.  

The results showed that the SI could be estimated rather accurate, considering the short time 

period. By using only two time points, ALS p99 (case 4, Table 5) was the best estimator of SI, when 

bias corrected RMSE was concerned (2.3 m, 6.3%, r=0.61,). Considering the space-borne alternative 

with TanDEM-X data, the RMSE was about twice as high with 4.4 m, 12.1%, and r=0.32 (Table 5), but 

still usable considering that only three vegetation seasons was concerned to describe the past 

maybe 50 to 80 years of tree growth. The strongest correlation r=0.70 between the estimated SI and 

the reference SI, was found for the bias-corrected TanDEM-X that were calibrated against ALS p99 

(case 2). The RMSEs between two and six meters for cases 1, 2 and 4 are well in line with the results 

by [4] and [5], despite the considerably shorter time series used in the current study. The relative 

RMSEs appear rather low , partly as a result of the true site indexes being rather high (29 to 40 m, 

Figures 7a to 7e).  

A bias was noticed in all four cases. A large part can likely be originating from the difference in how 

the field measured age and height were used in the site index models. The tree height growth curves 

described in [23] (which were used also for this study) expect the total age and height as input and in 

the current study, only age at breast-height together with total height were available. No attempt 

was made to compensate for the bias caused by this difference, as this would be difficult to model, 

and it would also introduce additional uncertainties. Instead the results are presented with and 

without bias correction. This should be further considered in future studies. 

The bias noticed in the cases 2, 3 and 4 which relates to ALS data (Table 5), are larger than in [4] and 

[5] (0.76 m and 0.70 m). This might partly be explained by the case, that the ALS acquisition 2014 

was obtained in the fall 2014, which is clearly after the vegetation season. The TanDEM-X acquisition 

was acquired June 8, 2014, which is in the beginning of the growing season, and therefore the ALS 



acquisition is actually measuring almost an entire vegetation season more, despite it was handled in 

the same way as all data. 

As age estimation is the first step of the residual estimation, this step is crucial for the outcome and 

a few options were considered. The option chosen (described in Section III.C) uses all measurements 

to create a robust estimation of the height, and therefore making the method less vulnerable against 

poor first year image data, which would be a different option: to let the first remote sensing image 

solely define the initial age, and thereafter the difference compared to the theoretical tree height 

growth is computed. It was shown in [19] that this could lead to a lower RMSE, however, this might 

be dependent only on the specific dataset evaluated.  

The estimated age residuals are generally larger for older trees (Table 6), which likely depends on 

the much smaller difference in expected height change for three succeeding years, as the height 

curves flattens over time (Figure 4). Moreover, all age estimations contain large errors, also from ALS 

data, especially at ages > 60 years. For Case 1, where TanDEM-X data were calibrated against Lorey’s 

height, the RMSE for age was 17.8 years and for Case 3, where ALS p99 were calibrated against 

Lorey’s height, the RMSE was 18.0 years. Better data about the tree age could greatly improve the SI 

estimations.  

The SI computed from the field data were used as estimations for the SI for the entire 40 m plots. 

According to the definition, the two dominant trees are used for a 10 m radius plot, and 

correspondingly more trees should be measured for larger plots. However, such measurements 

were not available and past experience from the test region pointed towards that the SI should not 

vary too much within the relatively homogenous plots.  

Radar data have an inherent instability at pixel level (speckle) and this probably evolved, as a few 

plots turned out to have slightly negative height changes between a few single years (Figure 8). 

Radar data also have to be calibrated in order to attain appropriate heights, and in this study this 



calibration was tested both against field sampled height data and ALS data, which preferably would 

not be necessary for an operative circumstance. Estimation methods and accuracy evaluation of 

forest heights derived from radar based processing is currently vastly investigated by different 

research groups. It was noticed, that several plots with the largest residual SI values contained the 

tallest forest and they were located in slopes without buffer to neighboring clear-cuts during the 

investigated time period. Two of the TanDEM-X acquisitions possessed height-of-ambiguities 

between 32 m and 38 m, which seemed to cause some unwrapping problems at pixel level. This was 

tried to be taken care of during the interferometric processing, but nevertheless, the evaluated 

method might be sensitive to the local site conditions. 

This method of estimating SI from a very short (in this time perspective) time period requires current 

height changes to be similar to those that have characterized the trees development for maybe the 

last fifty years, which might not be true. Better data about the tree age would likely improve the SI 

estimations. However, this study shows that the similarities are large enough to gain increased value 

of the current decision basis for planning forest management. The potential to estimate SI is 

understandable from the use of vast sequential radar data available each year. Nevertheless, there 

still does not exist a perfect model of how estimated tree heights could be corrected because of the 

natural yearly fluctuations (e.g., because of freezing/thawing or leaf-on/off).  

In this study, the TanDEM-X data were used to calibrate the height models to Lorey’s height or ALS 

p99, while site index relates to the dominant trees. Therefore, an improved approach should focus 

on skipping the demand of calibration, and instead consider both radar penetration and the 

different reasons for bias, to attain an improved model for estimating the SI.  

SUMMARY AND CONCLUSIONS 

This study shows the potential of using radar for developing large wall-to-wall maps of site index, 

which is an additional variable, important for among others, forest management planning. The site 



index was estimated from remote sensing data extending three vegetation seasons at 27 field 

inventoried plots with 40 m radius. Four acquisitions of TanDEM-X data covering three vegetation 

seasons were calibrated against Lorey’s mean height. The height growth extracted from the canopy 

height models were fitted to height growth curves to find the site index. The estimation accuracy in 

terms of RMSE using TanDEM-X data was 4.4 m, 12.1%, while solely ALS p99 data were acquired at 

two time points (before and after the three vegetation seasons), and the corresponding RMSE was 

2.3 m, 6.3%. The presented approach requires a DTM and knowledge about the tree species 

composition to be used correctly. Furthermore, the required time span to accurately estimate the SI 

should be further evaluated as well as the use of height estimations at different moments within the 

same year.  
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TABLES 

Table 1. List of ALS data utilized. 

Data source Date Wavelength Point density Pulse Repetition 
Frequency 

TopEye MkIII (S/N700) 2010-08-29 1550 nm >10 returns m-2 160 kHz 
Riegl LMS-Q680i 2014-11-25 1550 nm >100 returns m-2 266 kHz 

 

Table 2. List of satellite radar data utilized. 

Data source Date Across-track 
baseline [m] 

Incidence angle 
[°] 

Polarization Precipitation 
[mm] 

TanDEM-X 2011-06-04 141 41 VV 0 
TanDEM-X 2012-06-01 216 41 VV 11.0 
TanDEM-X 2013-07-02 135 41 VV 0 
TanDEM-X 2014-06-08 179 41 VV 0 

 

Table 3. Parameter values C, 𝛂𝛂 and 𝛃𝛃 for the generated CHM rasters. 

Height 

model 

Reference 2011 

C, 𝛂𝛂, 𝛃𝛃 

2012 

C, 𝛂𝛂, 𝛃𝛃 

2013 

C, 𝛂𝛂, 𝛃𝛃 

2014 

C, 𝛂𝛂, 𝛃𝛃 

1 HLorey 5.36, 0.44, -

0.30 

5.97, 0.42, -

0.11 

6.89, 0.37, -

0.24 

9.17, 0.31, -

0.13 

2 ALS p99 4.79, 0.47, -

0.37 

6.51, 0.38, -

0.12 

7.01, 0.37, -

0.28 

8.98, 0.31, -

0.12 

 

Table 4. Relative RMSE from cross-validation on 75 plots with 10 m radius for the investigated cases in this study. 

Case Calibration 2011 2012 2013 2014 

1 TanDEM-X vs. HLorey 12.4% 10.7% 10.1% 9.7% 

2 TanDEM-X vs. p99 11.1% 12.8% 10.9% 11.4% 

3 ALS vs. HLorey 8.4% - - 5.5% 

4 ALS p99 vs - - - - - 

 



Table 5. Results from site index estimation with and without bias correction. 

 No bias correction Bias corrected 

Case Calibration RMSE 

(m) 

RMSE 

(%) 

Bias 

(m) 

RMSE 

(m) 

RMSE (%) r 

1 TanDEM-X vs. HLorey 4.7  12.8 1.6 4.4 12.1 0.32 

2 TanDEM-X vs. p99 9.6 26.6 7.8 5.6 15.5 0.70 

3 ALS vs. HLorey 11.9 32.9 11.4 10.4 28.7 -0.25 

4 ALS p99 vs - 9.2 25.4 8.9 2.3 6.3 0.61 

 

Table 6. Ages measured from field vs. estimated from two remote sensing cases (best options for respective sensor).  

 Age 

(years) 

Case 1: TanDEM-X vs. HLorey (bias 

corrected for height) 

Case 3: ALS vs. HLorey (bias 

corrected for height) 

Plot Field measured 

(years) 

Estimated  

(years) 

Residual 

(years) 

Estimated 

(years) 

Residual 

(years) 

1 44.5 34.0 10.5 40.1 4.4 

2 34.5 27.9 6.6 36.2 -1.7 

3 30.0 16.0 14.0 28.0 2.0 

4 55.0 29.0 26.0 41.1 13.9 

5 42.5 21.8 20.7 29.9 12.6 

6 52.0 72.4 -20.4 55.9 -3.9 

7 88.0 43.8 44.2 34.6 53.4 

8 30.0 21.6 8.4 27.0 3.0 

9 92.5 48.6 43.9 47.6 44.9 

10 36.0 25.9 10.1 37.6 -1.6 

11 35.5 20.4 15.1 36.8 -1.3 



12 40.0 30.5 9.5 34.4 5.6 

13 38.0 27.6 10.4 35.1 2.9 

14 84.5 57.9 26.6 54.1 30.4 

15 35.0 41.0 -6.0 33.7 1.3 

16 43.5 36.5 7.0 44.5 -1.0 

17 67.5 46.0 21.5 37.7 29.8 

18 47.0 53.9 -6.9 41.8 5.2 

19 32.5 20.5 12.0 31.9 0.6 

20 30.0 16.2 13.8 31.7 -1.7 

21 63.0 63.3 -0.3 36.1 26.9 

22 37.5 40.5 -3.0 39.6 -2.1 

23 51.0 41.3 9.7 38.4 12.6 

24 42.5 53.3 -10.8 35.6 6.9 

25 52.0 44.1 7.9 - no data - no data 

26 47.5 37.3 10.2 - no data - no data 

27 36.0 24.1 11.9 34.0 2.0 

 

  



FIGURES 

 

Figure 1. The test site is located in southern Sweden, 58°30’ N, 13°40’ E, and contains hemi-boreal forest. 

 



 

Figure 2. TanDEM-X height map, after calibration against Lorey’s height. The 27 evaluation plots are marked with stars. 

 

 

Figure 3. Left: Age distribution of the plots. Right: Site Index-distribution of the plots. 



 

Figure 4. Site index curves for Norway Spruce in Swedish forests, according to Johansson et. al [23]. Each curve 
represents a different site index. 

 

 

Figure 5. Flow chart of the plot-wise determination of site index from the series of remote sensing based heights 
(TanDEM-X or ALS data). 
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Figure 6. Illustration of how the height measures are tested against the height development of different site index 
curves and then the min of squared residuals is found. 

 

 

Figure 7 a). Scatter plot of the site index estimation in coniferous forest based on bias corrected TanDEM-X data 
calibrated against Lorey’s mean height. RMSE=4.4 m, 12.1%, r=0.32. 



 

Figure 7 b). Scatter plot of the site index estimation in coniferous forest based on bias corrected TanDEM-X data 
calibrated against ALS p99. RMSE=5.6 m, 15.5%, r=0.70. 

 

 

 



Figure 7 c). Scatter plot of the site index estimation in coniferous forest based on bias corrected ALS data calibrated 
against Lorey’s height. RMSE=10.4 m, 28.7%, r=-0.25. 

 

Figure 7 d). Scatter plot of the site index estimation in coniferous forest based on ALS p99 data with no calibration and 
no bias correction. RMSE=9.2 m, 25.4%. 

 

 



Figure 7 e). Scatter plot of the site index estimation in coniferous forest based on bias corrected ALS p99 data with no 
calibration. RMSE=2.3 m, 6.3%, r=0.61. 

 

 

Figure 8. Bar plots of detected height change from TanDEM-X data throughout the years. 2012-2014 show only the 
height growth compared to 2011. 
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