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Abstract. There are growing numbers of studies on climate
change impacts on forest hydrology, but limited attempts
have been made to use current hydroclimatic variabilities
to constrain projections of future climatic conditions. Here
we used historical wet and dry years as a proxy for ex-
pected future extreme conditions in a boreal catchment. We
showed that runoff could be underestimated by at least 35 %
when dry year parameterizations were used for wet year con-
ditions. Uncertainty analysis showed that behavioural pa-
rameter sets from wet and dry years separated mainly on
precipitation-related parameters and to a lesser extent on pa-
rameters related to landscape processes, while uncertainties
inherent in climate models (as opposed to differences in cali-
bration or performance metrics) appeared to drive the overall
uncertainty in runoff projections under dry and wet hydrocli-
matic conditions. Hydrologic model calibration for climate
impact studies could be based on years that closely approx-
imate anticipated conditions to better constrain uncertainty
in projecting extreme conditions in boreal and temperate re-
gions.

1 Introduction

There are growing numbers of studies on climate change im-
pacts on watershed hydrology, but these are usually based on
long-time series that depict average system behaviour (Bo-
nan, 2008; Lindner et al., 2010: Tetzlaff et al., 2013). As a re-
sult, limited attempts have been made to use extreme dry and

wet conditions to assess plausible future conditions. Increas-
ing numbers of studies are showing the importance of ensem-
ble projections to create a matrix of possible futures, where
the mean provides a statistically more reliable estimate than
can be obtained from a single realization of possible future
conditions (Bosshard et al., 2013; Dosio and Paruolo, 2011;
Oni et al., 2014a; Räty et al., 2014). However, the predic-
tive uncertainty of precipitation projections is still larger than
that for temperature (Teutschbein and Siebert, 2012). This
inherent uncertainty might further increase in the warmer fu-
ture as precipitation dynamics become less consistent due to
a shift in winter precipitation patterns toward rainfall domi-
nance (Berghuijs et al., 2014; Dore, 2005).

It is unequivocally believed that climate is a first-order
control on watershed hydrology (Oni et al., 2015a, b; Vörös-
marty et al., 2000). Although climate change is a global phe-
nomenon (IPCC, 2007), it will likely also alter local catch-
ment water balances (Oni et al., 2014b; Porporato et al.,
2004). Prolongation of drought regimes or increasing fre-
quency of storm events observed in different parts of the
world (Dai, 2011; Trenberth, 2012) calls for greater attention
on how to constrain uncertainty in predicting extreme dry
and wet conditions. While the frequency of hydroclimatic
extremes might be low under present-day conditions (Wellen
et al., 2014), there could be intensification of precipitation
events globally as climate changes (Chou et al., 2013). Oth-
erwise, preparations for the future could be undermined by
our inability to properly simulate or project new conditions
outside our current modelling conditions.
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Models are useful tools in hydrology and runoff has be-
come a central feature in the modelling community to as-
sess cumulative impacts (Futter et al., 2014; Lindström et
al., 2010). Hydrological modelling has benefitted immensely
from the use of long-term runoff series from monitoring pro-
grammes to gain insights into change in fundamental sys-
tem behaviour (Karlsson et al., 2014) and to aid our under-
standing of watershed responses to both short- and long-term
environmental changes (Wellen et al., 2014). While con-
ceptualization of many of these hydrologic models is based
on average natural rainfall–runoff processes derived from
long-term series, both simple and complex models still per-
formed well in simulating long-term dynamics at the water-
shed scale (Breuer et al., 2009; Li et al., 2015; Vansteenkiste
et al., 2014a). Growing complexity in hydrologic models has
led to increasing equifinality (Beven, 2006) due to multi-
dimensionality of compensatory parameter spaces. However,
extensive explorations of parameter spaces in complex mod-
els have also helped to gain further insights into system be-
haviour beyond simple models.

Uncertainty in model predictions depends on the length of
time series used for calibration and validation (Larssen et al.,
2007). Despite strong arguments against the use of the term
“validation” (Oreskes et al., 1994), it is still a norm in the
hydrologic modelling community to calibrate to one condi-
tion and reevaluate the model in different conditions (Cao
et al., 2006; Donigian, 2002; Wilby, 2005). This has made
split-sample testing a popular way of assessing the internal
working process of a model in hydrologic study (Klemeš,
1986) to ensure that the model is not over-tuned or over-
parameterized before embarking on future projections. While
modelling staged under this framework is usually based on
average system conditions depicted by long-term series, it
may not fully reflect processes operating under very dry and
wet hydroclimatic conditions. This can also be due in part
to inherent structural uncertainties in models (Butts et al.,
2004; Refsgaard et al., 2006; Vansteenkiste et al., 2014b) that
can stem from conceptualization, scaling and connectivity of
processes between the landscape mosaic patches of a water-
shed that the models are representing (Tetzlaff et al., 2008;
Ren and Henderson-Seller, 2006). This is the case in Karls-
son et al. (2014) that showed increasingly large predictive
uncertainty when their model was tested on over a century
long record due to non-stationarity of the historical series.
It is therefore inevitable that this level of uncertainty will
be amplified when projected into the unknown future where,
unlike at present, we have no data to confirm our findings
(Refsgaard et al., 2014). However, no consensus has yet been
reached regarding whether the uncertainty due to differences
in hydrologic model structures and/or calibration strategies
would be greater than the unresolved uncertainty inherent in
climate models when projecting hydrologic conditions in bo-
real or temperate ecozones.

One way to constrain the uncertainty in hydroclimatic pro-
jections is to utilize historical wet and dry years as a proxy

for the future conditions expected as climate changes. This
is analogous to differential split-sample test previously used
(Coron et al., 2012; Klemeš, 1986; Seibert, 2003; Refsgaard
and Knudsen, 1996), but is less commonly used in hydrol-
ogy (Andréassian et al., 2014; Refsgaard et al., 2014). Here
we used hydrological and meteorological observations in dry
and wet years in a long-term monitored headwater catchment
in northern Sweden. The objectives of this study were to
(1) utilize long-term field observations in Svartberget to gain
insights into hydroclimatic behaviour in dry and wet years as
a proxy to future climate extremes and (2) quantify the un-
certainty in our current predictive practices that is based on
such long-term series. Such uncertainty quantification will
allow us to assess the limitations and uncertainties in hydro-
logical model-based climate change impact analysis related
to the hydrological model calibration strategies and to com-
pare these with the uncertainty related to the climate models.

2 Data and method

2.1 Study site

This modelling exercise was carried out in Svartberget
(64◦16′ N, 19◦46′ E), a 50 ha headwater boreal catchment
within the Krycklan experimental research infrastructure in
northern Sweden (Fig. 1) (Laudon et al., 2013). Modelling
results presented here were based on the long-time series of
precipitation, air temperature and runoff (1981–2012) from
a weather and flow monitoring station at the outlet of Svart-
berget. Svartberget has two headwater streams, one of which
drains a completely forest landscape, while the other drains
a headwater mire. The catchment has a long-term mean an-
nual temperature of about 1.8 ◦C with minimum (January)
and maximum (July) mean monthly temperatures of −9.5
and 14.5 ◦C. The catchment receives a mean annual precipi-
tation of 610± 109 mm with more than 30 % falling as snow
(Laudon and Ottosson-Löfvenius, 2015). Snow cover usually
lasts from November to May (Oni et al., 2013). The catch-
ment has a long-term mean annual runoff of 320± 97 mm
with subsurface pathways dominating runoff delivery to
streams. Spring melt represents the dominant runoff event in
the catchment and lasts 4 to 6 weeks. Forest cover includes
a century old Norway spruce (Picea abies) and Scots pine
(Pinus sylvestris) with some deciduous birch species (Betula
spp.). Sphagnum sp. dominates the mire landscape and ri-
parian zones (Ledesma et al., 2016). Svartberget has gneis-
sic bedrock overlain by compact till of about 30 m thickness
to the bedrock. The catchment elevation ranges from 114 to
405 m above sea level and was delineated using a digital ele-
vation model (DEM) and lidar (Laudon et al., 2013).

2.2 Climate models

We used 15 different regional climate models (RCMs) from
the ENSEMBLES project (Van der Linden and Mitchell,
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Table 1. List of RCMs from the EU ENSEMBLES project used in
this study and their respective driving GCMs.

No. Institute RCM Driving GCM

1 C4I RCA3 HadCM3Q16
2 CNRM Aladin ARPEGE
3 DMI HIRHAM5 ARPEGE
4 DMI HIRHAM5 BCM
5 DMI HIRHAM5 ECHAM5
6 ETHZ CLM HadCM3Q0
7 HC HadRM3Q0 HadCM3Q0
8 HC HadRM3Q16 HadCM3Q16
9 HC HadRM3Q3 HadCM3Q3
10 ICTP RegCM ECHAM5
11 KNMI RACMO ECHAM5
12 MPI REMO ECHAM5
13 SMHI RCA BCM
14 SMHI RCA ECHAM5
15 SMHI RCA HadCM3Q3

2009, Table 1). All RCMs had a resolution of 25 km and were
based on Special Report on Emission Scenario (SRES) A1B
emission scenarios. The SRES A1B represents a balanced
growth of economy and greenhouse gas emission in the fu-
ture (IPCC, 2007). The old greenhouse gas scenario (SRES
based) became outdated in the meantime; the new Represen-
tative Concentration Pathway (RCP) based scenarios could
have been used in current climate change impact studies.
However, because the focus of this paper lies on the method-
ology rather than on the impact results, it is acceptable to rely
on an old SRES scenario in line with our other recent studies
in this region (Jungqvist et al., 2014; Oni et al., 2014, 2015b).
Precipitation and temperature values (2061–2090) were ob-
tained by averaging the values of the RCM grid cell with
centre coordinates closest to the centre of the catchment and
of its eight neighbouring grid cells. Due to systematic biases
in RCM data and the spatial disparity between the RCM grid
cell and a small catchment like Svartberget, post-processing
of RCM data is required (Teutschbein and Seibert, 2012;
Ehret et al., 2012; Muerth et al., 2013). The distribution map-
ping method (Ines and Hansen, 2006; Boe et al., 2007) was
used for bias correction of the 15 RCM-simulated precip-
itation and air temperature series on monthly bases using
data from a weather station (1981–2010) located within the
Svartberget catchment. This was achieved by adjusting the
theoretical cumulative distribution function (CDF) of RCM-
simulated control runs (1981–2010) to match the observed
CDF. The same transformation was then applied to adjust the
RCM-simulated scenario runs for the future (2061–2090). As
some RCMs tend to simulate a large number of days with
low precipitation (e.g. drizzle) instead of dry conditions, we
applied a specific precipitation threshold to prevent consid-
erable alteration of the distribution. RCM bias corrections

Figure 1. Svartberget, a long-term monitored headwater catchment
in the northern boreal ecozone of Sweden. The catchment (50 ha)
drains terrestrial area consisting of forest (82 %) and upland mire
(18 %). Streamflow measurements were taken at the downstream
confluence point.

presented here were fully described in Jungqvist et al. (2014)
and Oni et al. (2014, 2015b).

2.3 Modelling and analysis

The Precipitation, Evapotranspiraton and Runoff Simulator
for Solute Transport (PERSiST) is a semi-distributed bucket-
type rainfall–runoff model with a flexibility that allows mod-
ellers to specify the routing of water following the percep-
tual understanding of their landscapes (Futter et al., 2014).
This feature makes PERSiST a useful tool for simulating
streamflow from landscape mosaic patches at a watershed
scale. The model operates on a daily timescale with inputs
of precipitation and air temperature. The spatial interface re-
quires an estimate of area, land cover proportion and reach
length/width of the hydrologic response units. In the PER-
SiST application presented here, we used three buckets to
represent the hydrology of Svartberget. These include snow,
upper soil and lower soil buckets. In the snow routine bucket,
the model utilized a simple degree day evapotranspiration
and degree day melt factor (Futter et al., 2014). Although the
maximum rate of evapotranspiration could be independent of
wet and dry years as used in this study, the actual rate of evap-
otranspiration could be influenced by the amount of water in
the soil and by an evapotranspiration (ET) adjustment param-
eter. The latter is an exponent for limiting evapotranspiration
that adjusts the rate of evapotranspiration (depending on wa-
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Figure 2. Cumulative plots of (a) precipitation and (b) runoff in dry
(1995, 2002, 2005 and 2010) and wet (1987, 1992, 2000 and 2001)
hydrologic years. The hydrologic year is 1 September (day 1) to
August 31 of the following year (day 365). The cumulative plots
shown here represent the average for all the dry and wet years noted
above.

ter depth in the bucket or how much is evapotranspired). The
snow threshold partitions precipitation as either rain or snow.
The model also simulates canopy interception for snowfall
and rainfall to the uppermost bucket. In the modelling anal-
ysis presented here, we used three buckets to generate runoff
processes in Svartberget. The quick flow bucket simulates
surface or direct runoff in response to the inputs of rainfall or
snowfall depending on antecedent soil moisture status. The
runoff generation process was partitioned between the quick
flow and lower soil buckets (upper and lower) following the
square matrix described in Table 2.

We utilized Monte Carlo analysis to explore parameter
spaces using a range of parameter values listed in Table 3.
The evapotranspiration adjustment parameter sets the rate
at which ET can occur when the soil is no longer able to
generate runoff, and this was set to 1 in the upper soil box.
Maximum capacity is the field capacity of the soil that deter-
mines the maximum soil water content held. The time con-

Table 2. Square matrix used to partition runoff generation between
buckets in the PERSiST application presented here. For example,
we conceptualized that 40 % of the precipitation inputs are retained
in the upper box, 60 % are transferred to the lower box and 0 % are
transferred to the groundwater (row 1).

Upper box Lower box Groundwater

Upper box 0.4 0.6 0
Lower box 0 0.5 0.5
Groundwater 0 0 1

stant specifies the rate of water drainage from a bucket and
requires a value of at least 1 in PERSiST. The relative area
index determines the fraction of area covered by the bucket
and is also set to 1 for our simulations. Infiltration parameters
in each bucket determine the rate of water movement through
the soil matrix. The model is based on series of first-order dif-
ferential equations that are solved sequentially following the
bucket order in the square matrix. More detailed information
about PERSiST parameterization and equations is provided
in Futter et al. (2014).

The model was calibrated against streamflow to generate
present-day runoff conditions. Initial manual calibration was
performed on the entire time series to minimize the differ-
ence between the simulated and observed runoff based on
Nash–Sutcliffe (NS) statistics. The manual calibration also
helped to identify a suite of parameter ranges to be used in
the Monte Carlo analysis by varying each parameter value
following steps listed in Futter et al. (2014). The Monte Carlo
tool works in such a way that the model was calibrated on
NS-1 in line with other works (Senatore et al., 2011; Mas-
caro et al., 2013), so that the NS value for the overall period
of simulation tends toward 1. This helped to determine the
ranges to use in the subsequent Monte Carlo analysis for the
wet and dry year simulations. Starting from a random point,
we sampled each parameter space 500 times before jumping
to the next space (depending on whether the model perfor-
mance was better or worse). We specified 100 iterations dur-
ing the initialization of the Monte Carlo tool so that 100 en-
sembles of credible parameter sets could be generated. This
resulted in 50 000 (500× 100) runs. In addition to Nash–
Sutcliffe statistics, the Monte Carlo tool also takes note of
other metrics during sampling. The Monte Carlo tool utilizes
the Metropolis–Hastings algorithm and its mode of operation
was described in Futter et al. (2014).

The best parameter sets (100 in this case) were selected
based on the highest NS statistics from untransformed/log-
transformed data. The parameter sets were also analysed for
other metrics such as variance of modelled/observed series
(Var), absolute volume difference (AD), root mean square er-
ror (RMSE) and coefficient of determination (R2). These top
parameter sets derived from the Monte Carlo tool are referred
to as behavioural parameters henceforth. The behavioural pa-
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Table 3. Parameter notations, descriptions and ranges used in the Monte Carlo analyses in this study.

Notation Parameter description Min Max Units

SNOW

SMt Snowmelt temperature −3 5 ◦C
ISD Initial snow depth 40 120 mm SWE
DDM Degree day melt factor 1 4 mm ◦C day−1

DDE Degree day evapotranspiration 0.05 0.3 mm ◦C day−1

GDT Growing degree threshold −3 3 ◦C
Smult Snow multiplier 0.5 1.5 –
RM Rain multiplier 0.5 1.5 –
CI Canopy interception 0 4 mm day−1

Upper box

IWD_1 Initial water depth 40 100 mm
RWD_1 Retain water depth 100 250 mm
Infilt_1 Infiltration 1 15 mm day−1

DRF Drought runoff fraction 0 0.5 –
REI Relative evapotranspiration index 1 1 –
EA_1 Evapotranspiration adjustment 1 10 –

Lower box

IWD_2 Initial water depth 80 250 mm
Infil_2 Infiltration 1 15 mm day−1

RWD_2 Retain water depth 200 200 mm
TC_2 Time constant 2 50 days
EA_2 Evapotranspiration adjustment 0 0 -
InunT_2 Inundation threshold 80 150 mm

Groundwater

IWD_3 Initial water depth 80 250 mm
Infilt_3 Infiltration 0.1 10 mm day−1

EA_3 Evapotranspiration adjustment 0 0 –
RWD_3 Retain water depth 250 250 mm
TC_3 Time constant 2 50 days

Reach
a Flow multiplier 0.004 0.762 –
b Streamflow exponent 0.01 0.98 –
ST Snow threshold temperature −2 3 ◦C

rameters were subjected to further analyses to determine hy-
drologic behaviour in dry and wet years. These include the
cumulative distribution function (CDF) of behavioural pa-
rameters to determine the sensitive parameters and discrimi-
nant function analysis (DFA) to determine the dominant pa-
rameter(s) that separate the hydrology of wet from dry years.
Wet years were defined as hydrologic years with runoff ex-
ceeding 430 mm yr−1 or 40 % higher than average annual
runoff (1995, 2002, 2005 and 2010). Dry years were defined
as hydrologic years with runoff less than 150 mm yr−1 or less
than 50 % of average annual runoff (1987, 1992, 2000 and
2001). The hydrologic year was September 1 of a year to
31 August of the following calendar year. The bias-corrected
future climate series from the ensemble of climate models
(Table 1) were used to drive PERSiST so as to project future
hydrologic conditions under the long term, as well as dry and
wet year conditions.

3 Results

3.1 Long-term climate and hydrology series

Preliminary analysis showed that the Svartberget hydrocli-
mate was highly variable and thus helped partition the long-
term series into dry and wet years as shown in Supple-
ment Fig. 1. As a result, dry and wet year conditions dif-
fered in terms of climate and cumulative runoff patterns. The
cumulative distribution of the dry/wet year series (Fig. 2a)
showed that dry year precipitation (462± 102 mm) was only
64 % of precipitation observed in wet years (716± 56 mm).
Similar patterns were observed in runoff dynamics (Fig. 2b),
where total runoff in dry years (129± 35 mm) was 29 % of
total runoff observed in wet years (449± 19 mm). Runoff re-
sponse was 63 % of total precipitation in wet years and 28 %
of precipitation in the dry year regime (Table 4). Mean an-
nual temperature was 2.4 ◦C in wet vs. 1.8 ◦C in dry years.

When assessed on a seasonal scale, both precipitation and
runoff were higher in almost all months in wet compared to
dry year conditions (Fig. 3), but differed in terms of seasonal
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patterns. While runoff peaked in May in both wet and dry
years reflecting spring snowmelt dynamics that characterize
Svartberget, runoff magnitude differed. Peak precipitation
events occurred in summer months with additional autumn
peaks in wet years. However, there was a shift in precipi-
tation patterns, with lowest precipitation in February/March
in dry years compared to April in wet years. Winter months
were generally slightly warmer during wet years and sum-
mers slightly warmer in dry years (Fig. 3c).

3.2 Future climate projections

There was less agreement between the observed series and
uncorrected individual RCMs (Supplement Fig. 2a, b). How-
ever, bias correction helped to reduce the uncertainty on
the historical timescale by providing a better match for
the ensemble mean of the air temperature and precipita-
tion with their corresponding observed series (Supplement
Fig. 2c, d). The ensemble mean performed better in fitting
observed air temperature than precipitation. There is also a
possible increase in air temperature by 2.8–5 ◦C (median of
3.7 ◦C) and possible increase in precipitation by 2–27 % (me-
dian of 17 %). Although precipitation and temperature were
projected to increase throughout the year, the temperature
changes would be more pronounced during winter months
irrespective of whether it was a dry or wet year (Fig. 3c).
However, projected changes in precipitation followed similar
patterns to historical wet years, with more precipitation ex-
pected between late winter months through spring (Fig. 3a).
The result also showed that the winter period with tempera-
tures below 0 ◦C could be shortened as climate warms in the
future (Supplement Fig. 2).

3.3 Model calibrations and performance statistics

Model behavioural performance followed similar patterns
when metrics such as R2, NS and log NS were used (Supple-
ment Fig. 3a–c) and metrics could be used interchangeably
to measure model performances. The model performed bet-
ter when calibrated to wet and dry conditions (compared to
the long term) using NS metrics (Supplement Fig. 3b, c). It
may be clarified that this is logical because otherwise (using
the NS) too much weight is given to the central part of the
distribution (due to many more values in that part). Although
no major improvements to model efficiency above NS values
of 0.79 and 0.81 were obtained in dry and wet years, respec-
tively, we obtained a wider range of model performances in
wet relative to dry years. The patterns of other performance
metrics were different as we observed the highest RMSE in
dry years and lowest RMSE in wet year conditions (Supple-
ment Fig. 3d). There was a minimum AD range in the long-
term record and a maximum range in dry years (Supplement
Fig. 3e). Model performances based on the Var metric also
showed the largest variability in dry years compared to the
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Figure 3. Seasonal patterns of (a) present-day precipitation in dry
and wet years vs. the ensemble mean (bias-corrected) of future pre-
cipitation projections, (b) present-day runoff dynamics in dry and
wet years and (c) present-day temperature in dry and wet years rel-
ative to the ensemble mean (bias-corrected) of future temperature
projections. Note that the dry and wet years in these plots represent
the average of all the individual dry and wet years, respectively.

long-term record and least Var in the wet year (Supplement
Fig. 3f).

3.4 Runoff simulations and behavioural prediction
range

Using the best performing parameter sets based on the NS
statistic as an example, the model performed well in sim-
ulating interannual runoff patterns but underestimated the
peaks (Supplement Fig. 4). When resolved to their respec-
tive dry and wet year components, the model performed bet-
ter in simulating runoff conditions in wet years despite its
larger data spread and higher spring peaks than the dry year
regime (Supplement Fig. 5). When parameterization for dry
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Table 4. Quantification of runoff and precipitation dynamics in wet and dry years using the observed series and simulated series from
PERSiST.

Observed series (%) Simulated series (%)

Precipitation proportion (dry:wet year) 64
Runoff proportion (dry:wet year) 29 29
Runoff response to precipitation events
Dry year 28 30
Wet year 63 66
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Figure 4. Quantification of predictive uncertainty in runoff simula-
tions when the best parameter set (based on NS) calibrated for dry
years was used for wet year observed series.

years was used for runoff prediction in wet years, runoff was
underestimated by 35 % due to significant uncertainty that
stemmed from the growing season months (Fig. 4). Mod-
elling analysis also showed that no single metric can be an
effective measure of model performance under dry and wet
year conditions (Fig. 5a–c). However, utilizing a behavioural
mean of these different performance metrics (Fig. 5d–f) ap-
peared to be a more effective way of calibrating to extremely
dry and wet hydroclimatic conditions. While the behavioural
mean performed better in simulating runoff dynamics in win-
ter through spring in the long-term record and significantly
reduced the uncertainty in dry and wet years, larger uncer-
tainty existed in summer through autumn months in dry and
wet years compared to the long-term record.

3.5 Parameter uncertainty assessments

While we observed a wide prediction range from behavioural
parameter sets (Fig. 5), we have limited information on
the underlining processes. Therefore, we subjected the be-
havioural parameter sets to further analysis to identify sen-
sitive parameters and plausible patterns of hydrologic pro-
cesses that differentiate dry and wet years (Fig. 6). The cu-
mulative distribution function (CDF) of behavioural parame-
ter sets showed that both rain and flow multipliers were sen-
sitive parameters in dry years. The rain multiplier was less
sensitive in wet years, unlike the flow multiplier. Long-term

simulations showed no sensitivity to the rain multiplier, but
were sensitive to the flow multiplier. We observed similar
patterns of response to the flow multiplier in all three hydro-
logic regimes (Fig. 6b). The result also pointed to the sen-
sitivity of interception in wet years, but all three hydrologic
regimes showed similar patterns for the time constant (water
residence time) in lower soil.

We subjected the pool of behavioural parameters in dry
and wet year regimes to discriminant function analysis
(DFA) to identify the key parameters that separate the ex-
treme hydroclimatic conditions (Fig. 7). Results showed that
both dry and wet years separated well in canonical space.
However, the separation was driven mainly on quantitative
parameters related to precipitation, interception and evapo-
transpiration on canonical axis 1 (Rmult, Int and DDE). The
parameters separated to a lesser extent on processes related to
snow parameters on canonical axis 2 (Smult, SM and DDM).

3.6 Quantification of uncertainty in hydrologic
projections

We compared the effects of different performance metrics in
wet and dry year regimes to constrain uncertainty in runoff
projections under future hydroclimatic extremes in the Svart-
berget catchment (Supplement Fig. 6). Results showed that
differences in model representation of present-day conditions
might be minimal (compared to the observed conditions),
but a wide range of runoff regimes were projected in the
future. We also observed a small difference in the range of
runoff projections (derived from the minimum and maximum
of behavioural parameter sets) using different model perfor-
mance metrics. Uncertainties inherent in climate models (as
opposed to differences in calibration or performance metrics)
appeared to drive the overall uncertainty in runoff projections
under dry and wet hydroclimatic conditions. The wet year is
the closest to plausible projections of future conditions ex-
pected in the boreal ecozone. However, model results sug-
gested that the uncertainty in present-day long-term simula-
tions is mostly driven by dry years. We compared the runoff
predictions using dry year parameterization to parameteriza-
tion based on wet years to quantify our current predictive
uncertainty. Results showed that future runoff could be un-
derpredicted by up to 40 % (relative to the wet year ensemble
mean) if the projections are based on dry year parameteriza-
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Figure 5. Summary plots showing the prediction ranges of seasonal runoff dynamics of behavioural parameter sets using different per-
formance metrics in (a) dry years, (b) wet years and the (c) long term. (d) to (f) show the corresponding model performances using the
behavioural means of the metrics in (a) to (c).

tion alone (Fig. 8). Both parameterizations projected a shift
in spring melt from May to April in the future. However, en-
semble projections showed that summer months could be a
lot wetter (based on wet year parameterization compared to
dry years) and the wet year spring peak could be up to 43 %
more compared to projections based on the wet year ensem-
ble mean.

4 Discussion

4.1 Insights from long-term hydroclimatic series

Several studies have evaluated the impact of climate change
on surface water resources (Berghuijs et al., 2014; Chou et
al., 2013; Dore, 2005, among others), but most of these were

based on long-term series that depict mean system behaviour.
However, present-day hydroclimatic extremes, such as those
derived from historical wet and dry years, can be used as sim-
ple proxies to gain insights that will aid our understanding
of future hydroclimatic conditions. Using this approach we
found that standard calibrations can result in underestimation
of runoff by up to 35 % due to high variability of hydrocli-
mate series in northern boreal catchments. Several explana-
tions can be offered for the high variability in the long-term
hydroclimate series at the study site. First, snowmelt hydrol-
ogy is important in understanding the boreal water balances
due to their location in the Northern Hemisphere (Euskirchen
et al., 2007; Dore, 2005; Tetzlaff et al., 2011, 2013). As a re-
sult, northern headwater catchments tend to show high vari-
ability (Brown and Robinson, 2011; Burn, 2008).
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Figure 6. Cumulative distribution function (CDF) of behavioural parameters (top 100 iterations from the Monte Carlo runs) in wet and
dry years vs. the long-term record. (a) is the rain multiplier, (b) is the flow multiplier, (c) is the interception and (d) is the lower soil time
constant in the lower soil box. A rectangular distribution (straight line plot) defines parameter behaviours that were not sensitive (not left- or
right-skewed).

Figure 7. Separation of the behavioural parameter sets (top 100 iter-
ations from MCMC) in the dry and wet year hydrologic regimes us-
ing discriminant function analysis (DFA). Wet and dry year hydrol-
ogy separated mainly on parameters related to evapotranspiration
(DDE), interception (Int) and rain multiplier (Rmult) on canonical
1. Parameters were separated on snow multiplier (Smult), snowmelt
(SM) and degree day melt factor (DDM) on canonical 2. The circles
represent normal 50 % contours. Parameters are defined in Table 3.

We observed annual runoff yield to be 63 % of total pre-
cipitation in the wet years compared to 28 % of total precipi-
tation in dry years. More runoff yield in the wet year regime
could be seen as a result of near field capacity of the soils
throughout the year, leading to greater propensity for runoff
generation because hydrological conductivity increases to-
wards the soil surface in the catchment (Nyberg et al., 2001).
This can also imply more winter snow accumulation during
the long winter period, resulting in higher spring melt that
drives the overall water fluxes (Laudon et al., 2004). Less
runoff yield in dry years could be attributed to higher soil
moisture deficit and relatively more important evapotranspi-
ration rates (Dai, 2013).

We also observed differences in dry/wet year peak sum-
mer precipitation and a shift in the lowest precipitation in
late winter/early spring. Despite the differences in precipi-
tation, we observed similar patterns of runoff responses that
only differ in terms of magnitude. This suggested that there
was more effective rainfall (net available water) available
to infiltrate, continuously recharge groundwater systems and
generate runoff from upstream sources in wet years. Slightly
warmer temperatures in summer months could drive more of
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Figure 8. Example of the range of runoff projection using wet year parameterization that closely depicts the future vs. projected range based
on dry year parameterization. The projected range was simulated to constrain uncertainty in extreme wet and dry conditions in the future
using the behavioural parameter sets (top 100 iterations from MCMC) for each of the 15 RCM scenarios (100 parameters by 15 RCMs= 1500
runs each for dry and wet years). The ensemble mean represents the mean of the 1500 realizations, while long term depicts the mean of the
long-term series.

growing season evapotranspiration in dry years. Small dif-
ferences in temperature regime between wet and dry years,
unlike precipitation, also explained why larger uncertainty
and biases still exist during post-processing of precipitation
series in using any scenario-based GCMs as observed in Sup-
plement Fig. 2.

4.2 Multi-criteria calibration of hydrological models

There has been considerable discussion about the calibrat-
ing procedure in the hydrological modelling community (An-
dréassian et al., 2012; Booij and Krol, 2010; Efstratiadis and
Koutsoyiannis, 2010; Oreskes et al., 1994; Price et al., 2012).
One of the key reasons for this is the difference in goodness-
of-fit measures utilized in each model (Krause et al., 2005;
Pushpathala et al., 2012). The most common strategy is to
calibrate hydrologic models using the NS statistic (Nash and
Sutcliffe, 1970). However, many modellers believe that the
NS-based method alone tends to underestimate variance in
modelled time series as this metric could be biased toward
high or low flow periods (Futter et al., 2014; Jain and Sud-
heer, 2008; Pushpalatha et al., 2012; Willens, 2009). This
promotes our use of multi-criteria statistics in model calibra-
tions to constrain predictive uncertainty in hydrologic pro-
jections to extreme dry and wet hydroclimatic conditions.
Therefore, multi-criteria calibration objectives that assessed
model performances using different goodness-of-fit metrics
could aid our understanding of hydrologic behaviour in bo-
real catchments. Our observation of differences in model
performances in terms of NS and other metrics presented
here is expected as a three box model proposed by Seib-
ert and McDonnell (2002) similarly showed good fit for NS
but poor fit using other metrics. However, none of these fo-
cus on the extremes. Another way to evaluate a model for
its performance in describing extremes is the approach pre-
sented in Willems (2009) or the one by Van Steenberger and
Willems (2012). However, lower model performance (based

on NS) for the long-term record is explainable as most hy-
drologic models are based on mean system behaviour repre-
sented by long-term rainfall–runoff processes (Futter et al.,
2014; Oni et al., 2014b; Wellen et al., 2014).

The lower range of model performances in calibrating to
the observed runoff in dry years is an indication of vari-
able runoff generation processes associated with this wet-
ness regime. Dry years cause drought-like conditions (Dai,
2011; Mishra and Singh, 2010) as a result of less water avail-
ability that reduces hydrologic connectivity within the catch-
ment. However, the model performed better when applied to
wet and dry years individually compared to the long-term
record based on NS statistics. This suggested that the mech-
anisms driving hydrologic processes in dry and wet years
might be similar, but their relative magnitude differs from
long-term average conditions (Grayson et al., 1997). Better
performance under dry conditions (compared to the average
long term) can also be attributed to the bias of NS towards
baseflow (Futter et al., 2014; Jain and Sudheer, 2008; Push-
palatha et al., 2012). Durations of high flows associated with
wet years are typically shorter than the low flow durations;
as a result, higher flows receive lower weight because of the
squared flow terms in the NS computation. Therefore the un-
certainty is higher in extrapolating low flows (compared to
high flows) and was also shown by others (Bae et al., 2011;
Najafi et al., 2011; Maurer et al., 2010; Vansteenkiste et al.,
2014b; Vélazquez et al., 2013).

However, NS statistics alone are not enough to assess
model performances in climate-sensitive boreal headwater
streams such as Svartberget. Other metrics such as the RMSE
showed that dry years could be a major driver of the un-
certainty we observed in simulating the long-term record. A
possible explanation could be that the soil moisture deficit
is larger in dry years, leading to soil matrix or vertical flow
(Grayson et al., 1997) that can only generate runoff after fill-
ing soil pore spaces (McDonnell, 1990). For example, soil
pore spaces are usually not close to saturation under dry con-
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ditions due to (1) intermittent precipitation events throughout
the year and (2) several patchy source areas of high water
convergence that are characterized by local landscape terrain
or soil properties (Fang and Pomeroy, 2008; Jencso et al.,
2009). Also, higher rates of evapotranspiration coupled with
low precipitation can contribute to more spatially decoupled
antecedent soil moisture conditions and thus lower runoff in
dry years (Dai, 2013; Vicente-Serrano et al., 2010). There-
fore, no single model performance metric can be effective in
simulating the hydrology of dry and wet year conditions, as
our results showed that the mean of behavioural metrics out-
performed any individual metric in dry and wet years under
present-day conditions.

4.3 Parameter sensitivity in dry and wet year regimes

The robust uncertainty assessment conducted here showed
that extensive exploration of model parameter spaces sug-
gests how hydrologic behaviour differs between wet and dry
year regimes. A possible explanation for the non-sensitivity
of the rain multiplier in wet years could be attributed to (1) a
more consistent or stable precipitation feeding the system
throughout the year compared to intermittent precipitation in
dry years (Fang and Pomeroy, 2008; McNamara et al., 2005)
or (2) the effect of rainwater collector missing proportionally
more rain in dry than wet years. This can explain the smaller
spring peak that characterizes the dry year regime or its non-
sensitivity to interception, unlike its role in wet year regimes.

We observed that sensitivity of the lower soil time constant
followed similar patterns in dry and wet years, unlike the up-
per soil box. Therefore, we could expect a faster flow and
higher runoff ratio in the wet years due to rapid response to
precipitation events and more macropore flow (Peralta-Tapia
et al., 2015). This can lead to steady runoff generation due
to (1) near saturation of soils and (2) greater connectivity
between stream channels and upland areas (Bracken et al.,
2013; Ocampo et al., 2006) that become disconnected in dry
years. The patterns of the flow multiplier parameter showed
that both dry and wet year conditions followed similar runoff
generation processes. These suggested that the main physi-
cal mechanisms to explain parameter sensitivity and hydro-
climatic behaviour to dry/wet conditions were related to dif-
ferences in their precipitation patterns rather than landscape-
driven hydrologic processes.

4.4 Drivers of hydrologic behaviour in dry and wet
year regimes

Even though equifinality limits the use of CDFs alone in
identifying all sensitive parameters, DFA of behavioural pa-
rameters gave further holistic insights into plausible differ-
ences in wet/dry hydrologic behaviour when projected on
canonical space. This suggested that hydrological model pa-
rameterizations calibrated to high flow associated with wet
years differ from parameterizations for long-term or dry con-

ditions. Therefore, parameter separation primarily on quanti-
tative parameters (Rmult, Int and DDE) related to rainfall and
evapotranspiration on canonical axis 1 suggested that climate
is still a first-order control of dry and wet year hydroclimatic
regimes in the boreal forest. This is consistent with Wellen
et al. (2014), who showed that extreme conditions could be
triggered in a watershed when precipitation reaches a thresh-
old that can initiate saturation overland flow. This is because
soils are always near saturation capacity under prolonged wet
conditions (Grayson et al., 1997). This can explain the in-
crease in hydrologic model uncertainty in capturing the peak
runoff events in wet years unless parameter ranges that com-
bined different performance metrics are considered. Unfor-
tunately, we might face a new challenge of increased precip-
itation ranges in the future as climate changes (Chou et al.,
2013; Dore, 2005). The separations of wet and dry years on
snow process-related parameters (Smult, SM and DDM) and
to a lesser extent on canonical axis 2 suggested that indirect
landscape influences on snow processes could be important
but are a second-order control on runoff response to dry and
wet conditions. This agrees with Jencso et al. (2009), who
showed that landscape mosaic structures with their unique
source contribution areas control the overall watershed re-
sponse.

4.5 Implications for future climate projections

Climate change in many places of the world leads to more
extremes, both high and low flows. This study is not an ex-
ception, as all 15 RCMs considered here projected a range
of plausible futures in the Swedish boreal forest. Irrespective
of the model performance metrics, results suggested that the
future could be substantially wetter and could make drought
conditions less severe in boreal ecozones. This could explain
the large uncertainty in projecting runoff under wet condi-
tions. For example, dry year and long-term parameterizations
were similar and runoff was underpredicted by 35 % under
the present-day condition when parameterization in dry years
was used for wet years. This was due to large predictive un-
certainty in runoff dynamics (Fig. 4) that resulted from high
evapotranspiration rates during the snow-free growing sea-
sons in dry years. This suggests that wet year calibration
could give more credible projections of the future in the bo-
real ecozone as the distribution of precipitation in wet years
is closer to the precipitation pattern expected in the future.
While our modelling results suggested negligible differences
in runoff projections based on either dry year or long-term
parameterization, wetter conditions could become a more
dominant feature in the boreal ecozone.

These have implications for future climate change as both
dry and wet year parametrization showed a consistent shift
in spring melt patterns from May to April (Fig. 8). This
temporal advance in spring melt patterns could result from
altered distribution of snowfall and rainfall patterns in the
winter (Berghuijs et al., 2014; Dore, 2005), and may likely
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have effects on soil frost in the upper layer (Jungkvist et
al., 2014) or change in evapotranspiration rates (Jung et al.,
2010; Vicente-Serrano et al., 2010). Therefore, intensifica-
tion of hydroclimatic regimes as climate changes in the fu-
ture (Kunkel et al., 2013) could drive water quality issues to
a new level in the boreal forest due to changes in the flux of
organic carbon and aquatic pollutants. Furthermore, precip-
itation has been shown to have much larger biogeochemical
implications for the boreal carbon balance than previously
anticipated (Öquist et al., 2014).

The large spread of mean annual runoff projected by each
RCM in wet years is an indication of less agreement be-
tween RCMs when predicting future conditions. This sug-
gested that inherent uncertainty in climate models, rather
than differences in model calibrations, drives the overall un-
certainty in runoff projections. However, hydrologic model
calibration for climate impact studies should be based on
years that closely approximate anticipated conditions to bet-
ter constrain uncertainty in projecting extremely dry and wet
conditions in boreal and temperate regions.

The Supplement related to this article is available online
at doi:10.5194/hess-20-2811-2016-supplement.
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