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Abstract As global biodiversity declines, biodiversity and
conservation have become ever more important research
topics. Research in chemical ecology for conservation pur-
poses has not adapted to address this need. During the last
10–15 years, only a few insect pheromones have been devel-
oped for biodiversity and conservation studies, including the
identification and application of pheromones specifically for
population monitoring. These investigations, supplemented
with our knowledge from decades of studying pest insects,
demonstrate that monitoring with pheromones and other se-
miochemicals can be applied widely for conservation of rare
and threatened insects. Here, I summarize ongoing conserva-
tion research, and outline potential applications of chemical
ecology and pheromone-based monitoring to studies of insect
biodiversity and conservation research. Such applications in-
clude monitoring of insect population dynamics and distribu-
tion changes, including delineation of current ranges, the
tracking of range expansions and contractions, and determi-
nation of their underlying causes. Sensitive and selective mon-
itoring systems can further elucidate the importance of insect
dispersal and landscape movements for conservation.
Pheromone-based monitoring of indicator species will also
be useful in identifying biodiversity hotspots, and in charac-
terizing general changes in biodiversity in response to land-
scape, climatic, or other environmental changes.
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Introduction

Global agricultural and forestry practices frequently are in direct
conflict with biodiversity and associated ecosystem services,
and thus conservation issues are an increasingly important fo-
cus of research (Grove 2002; Kleijn et al. 2009; Ricketts et al.
2008). Measures to halt the decline of biodiversity often have
proven ineffective (Batary et al. 2015; Butchart et al. 2010),
which increases the need for evidence-based conservation strat-
egies. Insects represent the most diverse group of animals, and
include high numbers and proportions of threatened species
(Brooks et al. 2012; Conrad et al. 2006). They also constitute
essential components of food webs in terrestrial and aquatic
ecosystems, and provide important ecosystem services such
as pollination, pest control, and recycling of biomass.
However, monitoring their distribution and abundance is a for-
midable task that constitutes an important barrier to evidence-
based conservation efforts.

Ever since the first characterization of a sex pheromone in the
silk moth Bombyx mori (Butenandt et al. 1959), identification
and application of insect pheromones have focused on manage-
ment of insect pests (Smart et al. 2014; Witzgall et al. 2010).
Pheromones have been used sporadically by collectors and con-
servationists in their search for rare and cryptic species, for ex-
ample by using live females to attract males (Mari-Mena et al.
2016), or by utilizing single synthetic pheromone components or
partial pheromone blends (Buda et al. 1993). During the last 10–
15 years, however, increasing attention has been directed towards
exploiting the powerful attraction of insect pheromones as mon-
itoring tools in biodiversity and conservation research. The first
insect pheromone identified specifically as a tool for conserva-
tion was (R)-γ-decalactone, the sex or aggregation pheromone of
the threatened scarab beetle Osmoderma eremita (Larsson et al.
2003). Since then, several other pheromones have been identified
with explicit or implicit applicability for insect conservation
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(Barbour et al. 2011; Gago et al. 2013; Konig et al. 2016; Millar
et al. 2010; Ray et al. 2012, 2014; Tolasch et al. 2007, 2013; Yan
et al. 2015), with additional semiochemicals being the target of
ongoing studies (Harvey et al. 2011).

Pheromones may be more suitable for conservation moni-
toring than for their originally envisioned purpose of pest
management, simply because the bar for usefulness is much
lower. Pheromones excel at providing reasonably reliable in-
dicators of the presence of a target species at very low popu-
lation density, where other monitoring methods fall short.
Whereas there is probably less commercial value in conserva-
tion compared to pest management, public spending on bio-
diversity and conservation is nevertheless considerable and
growing. In addition, commercial enterprises in the agricultur-
al and forestry sectors, or certification programs, may also
benefit from evidence-based demonstrations of concrete re-
sults from their environmental policies. There is, therefore,
great societal value and a potential market for research and
development in monitoring systems specifically for use in
conservation efforts.

Given the great potential rewards from pheromone monitor-
ing within insect biodiversity and conservation research, it is
remarkable that there have been so few practical applications of
pheromones within this field. The reason for the persistent focus
on pest systems among chemical ecologists may be largely a
result of the difficulties in obtaining competitive funding for
identification of pheromones of non-pest species, which has cre-
ated a considerable barrier to the development of model systems
to demonstrate the benefits of these techniques for conservation.
Pest management also constitutes a diametrically opposing point
of view than that which conservationists bring to their respective
model systems, and this may have reinforced a lack of collabo-
rative efforts. The aim of the present paper is to encourage cross-
talk by informing conservation biologists about the possibilities
and practical aspects of using pheromones and other semiochem-
icals as tools, and conversely, to inform chemical ecologists
about the practical developments needed in order to answer crit-
ical questions within conservation biology. Here, I summarize
published and some as yet unpublished research on semiochem-
icals of species of general interest for biodiversity and conserva-
tion research, with an emphasis on systems inwhich pheromones
can be exploited to substantial benefit. I also address how these
systems have been utilized to answer questions regarding the
ecology and interactions ofmodel species, aswell as the potential
for future applications, with knowledge drawn from pest systems
where pheromones have been applied to answer similar ques-
tions for decades. The material presented on conservation man-
agement has a European bias because conservation management
as outlined here appears to be disproportionately practiced in
Europe. This may reflect traditions from long-term historical
integration of natural and cultivated ecosystems, which have
been heavily influenced by human activity in Europe, combined
with the large-scale structure of European conservation politics.

Usefulness of Different Semiochemicals
for Conservation Monitoring

Assessing the distribution, abundance, and population trends
of individual species, communities, and whole ecosystems
constitutes a core aspect of general ecology, biodiversity,
and conservation research. One absolutely fundamental task
for conservation is to estimate extinction risk, summarized as
red list status (Anonymous 2012), and to identify the key
factors responsible for the decline of species in order to halt
or reverse negative trends (Anonymous 2012; Mace et al.
2008; Miller et al. 2007). However, the scattered information
available regarding past and present distribution and abun-
dance of insects makes the evaluation procedure a mixture
of educated guesswork and evidence-based science
(Jeppsson et al. 2010; Lindhe et al. 2010).

Systematic surveys of insects, based on broad-spectrum,
stochastic collection methods such as light traps, window
traps, pan traps, or pitfall traps (Bates et al. 2014; Driscoll
2010; Jansson 2009; Samways et al. 2010) provide an over-
view of general trends, but their ability to provide fine-grained
information about individual species is limited (Driscoll
2010), and often requires intense efforts that combine several
methods (Ranius and Jansson 2002). Traps based on random
encounters also have a major sorting problem, i.e., reliable
identification of the target insect among all other insects
caught. Low probability of detection constitutes another gen-
eral problem in biodiversity research, and may lead to both
over- and underestimations of the true distributions and ex-
tinction risks (Kery and Schmidt 2008).

For a large number of insect species of conservation inter-
est, monitoring with pheromones or other semiochemicals has
the potential to completely reverse this situation. The attrac-
tiveness of many insect pheromones could facilitate monitor-
ing at an unprecedented spatiotemporal resolution with great
efficiency, while achieving a detection probability near 1.0
even for relatively sparse populations of insects that would
otherwise be difficult, or virtually impossible, to detect
(Fig. 1, and see below).

Ideal monitoring systems for conservation have properties
similar to those that would apply for pest management sys-
tems, specifically, highly efficient long-range attractants that
are easy to exploit for monitoring purposes, including large-
scale production of synthetic semiochemicals. Identification
of novel semiochemicals may be complicated by logistical
problems in obtaining unmated adults, particuarly for rare
and threatened species. To aid in the collection of enough
pheromone to identify, the insects’ pheromone production
can in principle be enhanced by hormonal treatment, even in
mated individuals (Dickens et al. 2002; Groot et al. 2005).

With a very rough generalization, canonical sex attractant
pheromones (which attract one sex only) typical of moths and
many other insect groups are released by females, with males
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as the responding sex. Females release pheromones in small
quantities, typically in nanogram or less quantities, exclusive-
ly or mainly while still unmated, and the pheromones elicit
obvious and rapid responses from males. The small quantities
of sex pheromones typically released by female insects fre-
quently constitute a considerable barrier to identification even
for highly abundant pest insects, because it can be difficult to
find the pheromone in crude extracts, unless techniques like
coupled gas chromatography-electroantennography are used.
It can be even more difficult and/or time consuming to obtain
enough of the pure compound(s) to identify.

In contrast, pheromones released by male insects often are
emitted in larger quantities (micrograms per male or more),
during longer periods of the male’s life if he is able to mate
multiple times, and they often work as sex-aggregation pher-
omones (attracting both sexes), though rarely with the same
efficiency as female-released sex pheromones (Larsson et al.
2003; Schlyter and Birgersson 1999). The relatively large
quantities released by males may facilitate identification of
these sex aggregation pheromones. However, because of the
relatively high release rates, lures for many male-produced
sex-aggregation pheromones must be loadedwith correspond-
ingly large doses of pheromone (often >100 mg/lure) in order
to provide a lure capable of releasing several milligrams per
day for periods of several weeks. Thus, these pheromones can
be used only for practical applications if the pheromones can
be synthesized cheaply and in large scale.

Almost all published pheromones of explicit conservation
interest have been female-produced sex attractant phero-
mones, including those of the Spanish moon moth Graellsia
isabellae (Millar et al. 2010) and other moths (Gago et al.
2013; Yan et al. 2015), the rust red click beetle Elater
ferrugineus (Svensson et al. 2012; Tolasch et al. 2007) and
related species (Konig et al. 2016; Tolasch et al. 2013), and
longhorn beetles in the genera Prionus (Barbour et al. 2011),
Tragosoma (Ray et al. 2012), and Desmocerus (Ray et al.
2014). The only exception so far is the male-produced sex-
aggregation pheromones of scarab beetles in the genus
Osmoderma (Larsson et al. 2003; Svensson et al. 2009;
Zauli et al. 2016). Identifications of several other sex-
aggregation pheromones of longhorn beetles of conservation
concern are ongoing (for an overview of potentially
interesting model genera see Hanks and Millar 2016).

Other semiochemicals useful for conservation monitoring
include various kairomones, i.e., attractants utilized by insects
to locate prey, hosts, or food. Generally, these compounds
attract a broader spectrum of species that exploit similar re-
sources, and are considerably less attractive than pheromones,
but may nevertheless be useful for monitoring. The complex
of saproxylic and xylophagous bark beetles, click beetles,
longhorn beetles, and other insects that are attracted to terpe-
noids and alcohols from various host trees constitute a classi-
cal example (Gandhi et al. 2009; Miller and Rabaglia 2009).
Other kairomonal attractants useful for practical conservation

Fig. 1 An example of the increased probability of detection of insect
populations using pheromone-based traps, compared to traditional
window and pitfall trapping. a. Jansson (2009) performed a large-scale
study of saproxylic insects in hollow oaks at a large number of localities.
Each oak was sampled with two traps over a whole season: one window
trap placed in front of the largest entrance, and one pitfall trap buried in
the wood mold material inside the hollow. b. At one site 20 different oaks
were sampled, which allowed an estimate of the proportion of all
saproxylic insects detected at a locality, based on the number of oaks
sampled. The average estimate for all species is displayed by a
rarefaction curve with 95% confidence intervals, showing that large
sampling efforts are needed: approximately 8 oaks need to be sampled
to detect 50% of all saproxylic insect species at the locality (Jansson
2009). The dot under the curve represents the corresponding detection

probability per locality (approximately 26%) for the rust red click beetle
Elater ferrugineus sampled with an effort of four oaks per locality at
many different localities where the species was known to be present
(Andersson 2012; Andersson et al. 2014). c. Representation of the
approximate corresponding probability of detecting a species such as
the rust red click beetle Elater ferrugineus at the same sites and
additional experimental sites, in relation to the number of pheromone
traps used per site (Andersson 2012; Andersson et al. 2014; Svensson
et al. 2012 and unpublished data). The curve is more of a general
conceptual illustration than actual data; in reality a single trap had a
100% detection rate at all known localities for E. ferrugineus in our
studies, but could presumably fail occasionally at extremely low
densities. Images a and b modified from Nicklas Jansson (with
permission)
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or pest management, either used as synthetic baits or natural
sources with potential for developing synthetic replacements,
may include carrion (Creighton and Schnell 1998; Hanski
et al. 2007), dung (Hanski et al. 2007), fruit and fermentation
baits (Benedick et al. 2006; Jonason et al. 2013), and floral/
plant volatiles (Bengtsson et al. 2009; Gregg et al. 2010; Ladd
and McGovern 1980). The Osmoderma spp. pheromone also
constitutes a kairomone that attracts female E. ferrugineus
(predators of larval Osmoderma spp.), and has been used for
monitoring E. ferrugineus females in the field (Larsson and
Svensson 2009, 2011; Svensson et al. 2004; Zauli et al. 2014).

Model Systems and Their Usefulness
for Conservation Monitoring

When selecting insect model systems for monitoring from a
perspective of biodiversity and conservation, it is important to
prioritize spending of limited resources. It is worth emphasiz-
ing, however, that when individual insect species are given
special priority for conservation, for example within specific
action plans or management schemes for critically endangered
species, it will almost always be a good investment to develop
an effective monitoring system based on pheromones. Any
management program intended to safeguard the long-term
persistence of a species will need to allocate resources for
continued evaluation of its success. An effective pheromone
monitoring system will drastically improve the cost-benefit
ratio of this process.

In most cases, individual species are not the main focus of
conservation efforts. Instead, the preservation of entire habitat
elements or whole communities at the larger landscape or
regional scale is usually the goal. Such large-scale conserva-
tion schemes affect hundreds or thousands of species, from
vascular plants to invertebrates and vertebrates. In these cases,
monitoring efforts are aimed at evaluating the overall process-
es affecting gain or loss of biodiversity rather than monitoring
the fate of individual species (Batary et al. 2015). Offering
monitoring systems for a handful of insect species may be a
hard sell, unless they actually advance our understanding of
these general processes beyond that offered by already
existing systems. In this context, in order for monitoring sys-
tems to make a difference in conservation efforts, one should
consider carefully which model systems are worth develop-
ing. Various types of natural and cultural ecosystems differ
markedly with regards to the potential model species they
offer, as well as their applicability to already established
frameworks of conservation schemes. Two general compari-
sons between different systems of conservation concern may
be useful in illustrating this point: cultivated agricultural and
semi-natural ecosystems, as compared to forest ecosystems
with insects associated with dead and decaying wood,
respectively.

Cultivated or semi-natural ecosystems associated with or
immediately affected by agricultural production and livestock
farming are of immediate concern for conservation, and con-
siderable resources have been diverted to their sustainable use,
including preservation of biodiversity and ecosystem services.
However, their short-term potential for establishing competi-
tive model systems for pheromone monitoring of biodiversity
may be limited. There are already well established insect mod-
el indicator groups for monitoring landscape-wide biodiversi-
ty within these agroecosystems, including representatives for
important ecosystem services such as pollination, and natural
enemies of agricultural pests. These indicator groups include
butterflies, moths, bees, hoverflies, and carabid beetles
(Bommarco et al. 2012; Brooks et al. 2012; Ekroos et al.
2013; Geiger et al. 2010; Kremen and M'Gonigle 2015).
Most of these groups of insects apparently do not use long-
range pheromones that could be exploited for monitoring,
they are often visually conspicuous, and/or they can be sam-
pled reasonably well through alternative means such as man-
ual surveys or unbaited pitfall or pan traps. Of these groups,
only moths could be immediately exploited as targets for pher-
omone monitoring, including the diurnal burnet moths (family
Zygaenidae), for which some pheromones are already avail-
able for European species (El-Sayed 2012; Priesner et al.
1984; Subchev 2014). In particular, as with many nectar-
feeding insects, these moths have been declining and could
be useful biodiversity indicators (Sarin and Bergman 2010).

Developing standardized floral or fermentation mimics for
monitoring floral visitors (Gregg et al. 2010), or specialized
lures for other groups like dung beetles, could significantly
expand the applicability of standardized monitoring with se-
miochemical attractants in these landscape systems. Provided
that the right species are targeted, there could be excellent
potential to develop monitoring systems that would provide
information about the effects of landscape change at much
finer-grained scales than those provided by large-scale moni-
toring schemes with light traps (Bates et al. 2014). There are
other potential groups of model species for habitats within
these landscape systems, such as root-feeding click beetles
associated with natural or semi-natural grasslands. Unlike
moths, these insects are not part of already established indica-
tor groups and would therefore need general evaluation of
their potential to reflect different processes associated with
landscape change. Indeed, they may have better potential to
illuminate relevant aspects of grassland ecosystems and their
associated communities than other more well-studied insect
groups.

In contrast to the indicator species in cultivated or semi-
natural ecosystems associated with agriculture or livestock
farming, insects from saproxylic (dead-wood-associated) or
xylophagous (wood-feeding) communities in forest or wood-
land ecosystems may offer a wider selection of tractable mod-
el species for monitoring with pheromones, in addition to
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already established attraction to host tree kairomones. Some
groups of forest insects that are already attracting considerable
interest as model systems for conservation are known to use
attractant pheromones, such as longhorn beetles (Hanks and
Millar 2016), click beetles (Toth 2013), scarabaeoids (Vuts
et al. 2014), and several groups of moths, although to date,
only a few pheromones have been identified for species of
conservation interest (Barbour et al. 2011; Konig et al. 2016;
Larsson et al. 2003; Ray et al. 2012, 2014; Svensson et al.
2012; Tolasch et al. 2007). There also is a diverse community
of additional saproxylic insects that are known or could be
expected to use pheromone communication, including beetles
in many other families (El-Sayed 2012; Francke and Dettner
2005) and also different species of saproxylic dipterans, in-
cluding some cranefly species that exhibit obvious antennal
sexual dimorphism. Because their chemical ecology is poorly
known, it is an open question as to whether these insect groups
might be amenable to development of their pheromones for
practical uses. Many saproxylic insects are frequently trapped
in various monitoring systems that are directed towards forest
insects, and as by-catch in semiochemical-baited traps for for-
est pest insects. Their general distribution and indicator poten-
tial are well known. Thus, there is great potential for integrat-
ing novel pheromone monitoring methods into existing con-
servation programs, and by doing so, providing fine-grained
spatiotemporal information to complement existing distribu-
tion records.

With respect to the logistics of obtaining specimens for
pheromone identification, some guilds of saproxylic insects
can be obtained (with some effort) as whole communities,
by sampling dead wood from specific tree species at the right
stage of decomposition. These insects often can be found ag-
gregating as larvae in relatively high densities in decaying
logs, which may be brought in during the winter season for
forcing the emergence of adults in the laboratory by warming
the logs. Moreover, we often have had good success with
controlled inoculation of substrates with whole groups of spe-
cies by placing logs at strategic locations and allowing them to
become infested naturally.

Estimating Change: Distributions and Population
Sizes

The most basic aspects of population ecology and conserva-
tion concern whether populations change their geographical
distribution and population sizes over time. Due to the afore-
mentioned difficulties with obtaining good quality data even
on presence and absence over time, it can be a serious chal-
lenge to demonstrate evidence-based changes in populations
for a large fraction of insect species. Metapopulation dynam-
ics, which deals with long-term persistence of populations in
scattered habitat fragments, is preferentially studied in a

limited selection of insects such as highly visible butterflies
and bees, for which true presence-absence patterns can be
established with some accuracy (Franzén and Nilsson 2009;
Ojanen et al. 2013). For many other insect species, significant
uncertainties regarding detection of their presence or absence
would mean that most of the dynamic changes observed could
be attributable to noise in detection, thus making questions
about metapopulation dynamics virtually unanswerable.

Judging from available data from a few conservation species
and a plethora of pest species, pheromone traps represent a
significant improvement on almost any other method of moni-
toring. The efficiency of a trap can be represented by a function
describing the proportion of individuals caught at different dis-
tances (Byers et al. 1989; Miller et al. 2010, 2015; Schlyter
1992; Turchin and Odendaal 1996). Trials may be performed
either as recaptures in traps at a single central position from a
single or several release points, or with a matrix of traps in
different directions around a single release point. One important
result from these trials is that, despite their high attraction, pher-
omone traps rarely capture most of the available insects at a
distance beyond a few tens of meters away from a trap.
Recapture rates for pheromone traps that target different insect
taxa, such as moths, various groups of beetles, and sawflies,
often range from around 10 to 30-40% (Kishita et al. 2003;
Larsson and Svensson 2009; Maki et al. 2011; Östrand et al.
2001; Weslien and Lindelow 1990), although they may reach
over 90% (Zhang and Schlyter 1996).

At the population level, any trapping system that can catch
10-30% of the individuals in the vicinity of the trap will be
highly efficient in detecting the presence of local populations,
even at very low population and trap densities. There is, thus,
every reason to believe that most sex or aggregation phero-
mone systems can provide accurate presence-absence esti-
mates, with absence of catches indicating a true absence of a
local population with near certainty. For example, the male-
released aggregation/sex pheromone of hermit beetles
(Osmoderma spp.) represents the least efficient pheromone
trapping system developed for conservation monitoring, and
is preferably used in combination with other methods such as
pitfall trapping in individual trees (Andersson et al. 2014;
Chiari et al. 2013b; Larsson and Svensson 2009; Zauli et al.
2014). Their sedentary nature inside tree hollows often ren-
ders only a small fraction of the beetle population available for
pheromone trapping in Sweden (Ranius and Hedin 2001),
whereas in warmer Mediterranean areas, beetles may be more
mobile and so more easily caught (Chiari et al. 2013a). The
sex pheromone system of E. ferrugineus, which lives in the
same hollow tree habitat, constitutes a stark contrast to the
Osmoderma pheromone, and represents one of the greatest
transformations in detection ability based on pheromones.
That is, E. ferrugineus is seldom observed or trapped in win-
dow or pitfall traps, leading to sparse observations of this
species even among experienced entomologists before the
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identification of sex pheromone lures (Svensson et al. 2004;
Tolasch et al. 2007). The first systematic trials using the sex
pheromone revealed not only that E. ferrugineus can be pres-
ent at high population densities at many sites, but that males
often respond immediately to the pheromone, aggregating
around baits in large numbers. Males are mobile and long-
lived, with a high capture probability making the detection
of local populations with pheromone-based monitoring
methods a virtual certainty (Fig. 2) (Andersson et al. 2014;
Kadej et al. 2015; Svensson et al. 2012; Tolasch et al. 2007;
Zauli et al. 2014).

As a consequence, the pheromone of E. ferrugineus has been
used successfully for large-scale landscape studies (Kadej et al.
2015; Musa et al. 2013; Oleksa et al. 2015) (J. Burman, D.
Harvey and coworkers, unpublished data). Regional surveys also
have been performed with the clearwing moth Synanthedon
vespiformis (Burman et al. 2016). In addition, the author and
his coworkers have unpublished data sets of red-listed saproxylic
moths (family Tineidae) (J. Burman, G. P. Svensson, N. Ryrholm
and coworkers), burnet moths (Zygaena spp.) (J. Burman and
coworkers), and several species of longhorn beetles (I. Winde,
M. Molander, and coworkers). These studies have demonstrated
that information from pheromone-based trapping during a single
field season generally can surpass the known information about
most rare species several times over, and that existing records
often provide an underestimation of their true distributions.
Pheromones also have been used for systematic DNA sampling
for phylogeographic studies of E. ferrugineus (Oleksa et al.
2015) and the Spanish moon moth G. isabellae (Mari-Mena
et al. 2016). In parallel with monitoring for conservation pur-
poses, monitoring systems with pheromones and other semio-
chemicals support the detection of invasive pest species at low
densities (Liebhold et al. 2016), including monitoring their range
expansion (Liebhold and Bascompte 2003; Suckling et al. 2014),
and the effectiveness of eradication efforts (Kean and Suckling
2005; Kikkert et al. 2006; Lance and Gates 1994).

For semiochemicals other than pheromones, uncertainties
of presence or absence have to be adjusted according to the
estimated capture probabilities of the respective systems; as
stated above, these generally are lower than detection by
pheromone-baited traps (Benedick et al. 2006; Creighton
and Schnell 1998; Jurzenski et al. 2014). Unless recapture
studies are performed, estimating the true probability of de-
tection for individual species may be difficult, but broad-
spectrum captures may still reveal trends for whole commu-
nities (Hanski et al. 2007).

In addition to presence/absence, pheromone traps also can
furnish quantitative measures of abundance, thus providing hard
evidence for change in the form of increases or decreases in local
populations. Standardized trap catches constitute the least com-
plicated and most commonly used indicator of abundance
(Blackshaw and Vernon 2006; Erbilgin et al. 2002; Gandhi
et al. 2009), althoughwith the important qualifier thatmany other
factors apart from population density will affect the number of
insects that are actually caught in a trap, with variation in relation
to climate, weather conditions, and dispersal (Larsson and
Svensson 2011; Zauli et al. 2014). Nevertheless, if traps are
deployed under similar conditions, for example, simultaneously
in areas in close proximity or with similar weather conditions,
local abundance measures between sites likely will reflect local
differences in population density (Collier et al. 2008). Mark-
recapture functions that describe recapture probability distribu-
tions at different distances, as described above, allow estimates of
absolute density based on captures in single traps (Miller et al.
2015). In pest management, pheromone-based monitoring is to a
great extent focused on indications of abundance in relation to
economic injury thresholds. Most of these studies deal with fu-
ture predictions of abundance and/or damage levels based on
host and pest phenology and weather conditions (Anderson
et al. 2012; Damos and Savopoulou-Soultani 2010; Dömötör
et al. 2007; Hayes et al. 2009; Mori et al. 2014). Nevertheless,
there are a considerable number of studies that relate trap catches
to abiotic conditions, which would constitute a platform for nor-
malizing catches between different occasions (Williams et al.
2008). Without independent information regarding population
density, however, it is difficult to differentiate between the effects
of flight activity and population density on trap catches.

When determining abundance via sampling, estimates of
absolute population density obtained by means of mark-
recapture models constitute the gold standard. Absolute pop-
ulation sizes can be estimated as a simple function of the total
catch and the proportion of recaptured individuals (Weslien
and Lindelöw 1989). Keeping track of individuals over suc-
cessive recapture events allows for more advanced statistical
models, assuming either closed populations without migration
or open population models that allow for migration or
emergence/death of individuals (Ranius 2001; Tikkamäki
and Komonen 2011). For rare and threatened insects, absolute
population density is highly relevant information, not only for

Fig. 2 The formidable attraction potential of sex pheromones, illustrated
by a single two-day catch of male rust red click beetles Elater ferrugineus
at Hallands Väderö in southern Sweden. Before the use of pheromone-
baited traps for E. ferrugineus, no entomologists would likely have
encountered this number of adult specimens during a life-time. Each
specimen in the trap has been individually marked before release, for
the purpose of recapture studies. Photo: Benjamin Forsmark
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relating trap catches to population abundance, but also be-
cause population levels of some species actually may be so
low that this in itself is a matter of concern. Nevertheless, their
low probability of capture in traps, that rely only on random
encounters with traps, renders this trapping method entirely
unfeasible for many insects. Consequently, population esti-
mates by mark-recapture studies that do not use pheromone-
based methods are heavily skewed towards some diurnal, con-
spicuous groups like butterflies (Ovaskainen 2004), dragon-
flies (Macagno et al. 2008), and other large, charismatic spe-
cies (Chiari et al. 2014; Drag et al. 2011). These can be
targeted in sufficient numbers by active surveys, whereas few-
er insect groups may be targeted by stochastic trapping
(Ranius 2001). Judging from a combination of studies of dif-
ferent insects from pests to threatened species, access to pher-
omonal attractants, or even weaker kairomonal attractants,
would increase immensely the potential for performing
mark-recapture studies, and consequently, thus obtaining reli-
able population estimates for many insect species of conser-
vation concern (Creighton and Schnell 1998; Larsson and
Svensson 2009; Torres-Vila et al. 2015; Zauli et al. 2014).

Movement, Dispersal, and Active Range of Traps

Animals are thought to evolve dispersal and colonization strate-
gies in relation to their habitat dynamics (Nilsson and
Baranowski 1997; Travis and Dytham 1999). Movement and
dispersal are crucial for long-term persistence of most species,
to counteract the effects of local extinctions and loss of genetic
diversity. The efficiency of ecosystem services such as natural
enemies and pollinators in habitats and landscapes is dependent
on the mobility of these insects and their interactions with under-
lying landscape features (Schellhorn et al. 2014). Understanding
movement patterns and dispersal biology of insects is thus of
major importance for their conservation, especially in landscapes
that have been altered significantly by human activity, which are
often heavily modified and fragmented to a degree for which
most organisms lack adaptations (Ranius 2006; Thomas 2000).

As with population estimates, studies of insect dispersal are
heavily skewed towards model systems that allow systematic
recapture of individuals. Apart from semiochemical attractants,
which mostly have been restricted to pest species (see below),
common insect groups targeted in a relevant context again in-
clude diurnal and visually conspicuous insects (Ovaskainen
2004; Samways and Lu 2007), and occasionally ground beetles
and other insects that may be trapped with sufficient recapture
rates (Allema et al. 2014; Elek et al. 2014; Martay et al. 2014;
Ranius and Hedin 2001). In addition, insect movement and dis-
persal have been studied by radio telemetry in relatively large
insects (Hedin et al. 2008; Rink and Sinsch 2007; Svensson et al.
2011; Vinatier et al. 2010), and by means of harmonic radar with
transponders (Martay et al. 2014; Ovaskainen et al. 2008).

Most studies of insect movement and dispersal by recap-
ture in semiochemical-baited traps have been done with pest
insects. These studies include characterization of recapture
rates at different distances from traps (see above), or investi-
gation of the landscape-based mobility of pest species in rela-
tion to area-wide pest management (Kishita et al. 2003;
Yamamura et al. 2003). Nevertheless, the experimental de-
signs and mathematical models developed for these systems
likely have general application to studies of patterns of insect
movement in response to pheromones.

Pheromone trapping could significantly improve our abili-
ty to detect movement of many species and guilds of rare and
threatened insects by drastically increasing the probability of
capture, and by using systematic capture-recapture points to
provide comparable estimates of movement distributions be-
tween different model systems. For example, carrion-baited
traps obtained recaptures of the carrion beetle Nicrophorus
americanus over distances of several kilometers (Creighton
and Schnell 1998). In contrast, for the scarab beetle
O. eremita, combined observations from pitfall trapping, pher-
omone monitoring, and telemetry studies have demonstrated
short average dispersal distances in Sweden, with 500 meters
as the longest dispersal distance ever observed (Hedin et al.
2008; Ranius and Hedin 2001; Svensson et al. 2011).
However, in Central and Southern Europe, this species is more
prone to dispersal, with individuals, and especially females,
dispersing over distances of hundreds of meters to over 1 km
(Chiari et al. 2013a; Dubois and Vignon 2008; Zauli et al.
2014). In contrast, recaptures of E. ferrugineus using sex
pheromone-baited traps have revealed similar dispersal dis-
tances in Sweden and Italy, with the longest observed dispers-
al distances frequently above 1 km, with flight distances pos-
sibly underestimated because of the spacing between traps
rather than actual flight capability (M.C. Larsson and G.P.
Svensson, unpublished observations from Svensson et al.
(2012) and other studies; Zauli et al. 2014).

One potential problem with using sex pheromone-baited
traps to study dispersal bymark-recapture is that they predom-
inantly trap only one sex, usually males. If the sexes differ
greatly in their dispersal patterns, collecting information from
only males may provide misleading information regarding the
colonization ability of populations in a landscape context, be-
cause females constitute the limiting sex for establishing new
reproductive populations. The possibility of performing area-
wide presence-absence studies with pheromones may never-
theless provide an indirect means of demonstrating the limits
of dispersal ability of a species, based on their absence from
ostensibly suitable habitat patches in the landscape matrix. For
at least two species where we have trapped only males with
species-specific sex pheromones (E. ferrugineus, Fig. 3; M.C.
Larsson, G.P. Svensson and coworkers, unpublished data, and
the longhorn beetle Prionus coriarius; I. Winde and co-
workers, unpublished data), we frequently have found empty,
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yet apparently suitable habitat patches near occupied sites,
which strongly suggests a limited dispersal ability of the spe-
cies at the landscape level. For the latter species, this may be
due in part to the differences in the propensities of the sexes to
fly. Similarly, Ray et al. (2014) have demonstrated with pher-
omone traps that the threatened longhorn beetle Desmocerus
californicus dimorphus is almost certainly absent from some
restored habitat patches, suggesting long lag phases before
recolonization.

It also must be mentioned that the presence of attractive
traps may constitute a potential confounding effect on the
dispersal behavior of the insects under study (Yamamura
et al. 2003). That is, traps may arrest dispersal, or conversely,
could in theory attract individuals from greater distances than
they would normally traverse. Ideally, from the perspective of

studies of movement patterns, the range of active attraction of
a trap should be a small fraction of the normal dispersal range
of the species. The true attractive range of a trap is difficult to
estimate because it is hard to know how much of the distance
between release and recapture sites constitutes random dis-
persal vs. active movement towards the source, respectively
(Byers 2008; Byers et al. 1989). Estimates from behavioral
observations or capture experiments around a pheromone
source vary widely from tens to a few hundred meters among
insect species and lure systems (Linn et al. 1987; Östrand et al.
2000; Sufyan et al. 2011), but sustained attraction over only
tens of meters appears more frequent than anecdotal reports
about attraction over vast distances. In studies of dispersal
between sites that are situated relatively far away from each
other, most observed dispersals probably constitute genuine

Fig. 3 Illustration of Bgaps^ in the local distribution of the click beetle
Elater ferrugineus based on pheromone trapping in the Blekinge
archipelago in southern Sweden. Green dots represent records of the
scarab Osmoderma eremita from many different surveys, which define
sites with hollow tree habitats that would be principally suitable for
E. ferrugineus. White dots represent pheromone traps that did not catch

E. ferrugineus, whereas black dots represent pheromone traps that caught
at least one specimen. Several of the sites around the main occupied sites
appear to be in principle suitable habitats, yet are unoccupied, suggesting
that the local distribution of the species could be limited by dispersal
ability (M.C. Larsson, G.P. Svensson, and coworkers, unpublished
data). Maps: Terrängkartan © Lantmäteriet

860 J Chem Ecol (2016) 42:853–868



dispersal events, with the lure being effective at close range,
rather than actively causing dispersal by long-range attraction
to a pheromone lure. If active attraction to pheromone-baited
traps is expected to seriously affect movement patterns of the
target insects, trapping should be limited to discrete periods
interspersed with trap-free periods to allow the insects to re-
distribute between trapping events.

Landscape and Habitat Interactions

A fundamental goal of most conservation efforts is to provide
sufficient suitable resources available at the landscape scale to
ensure long-term persistence of populations. This may include
specific habitats, food sources, host plants, or dead-wood sub-
strates at the right stage of decomposition. The core question
that conservation science has to answer concerns the amount of
provided resources that are indeed sufficient to sustain popula-
tions of target species at both different spatial and temporal
scales (Fahrig 2001; Holland et al. 2004). Evidence-based an-
swers to these questions often are obtained by relating the dis-
tribution of target species to various amounts of resources, hab-
itat types, and other landscape parameters (Buse et al. 2007;
Ranius and Nilsson 1997), or in relation to specific landscape
or habitat management measures (Collins et al. 1998; Görn and
Fischer 2015). As detailed above, however, the difficulty in
obtaining accurate data on distribution and abundance could
throw these estimates off by a wide margin. Large-scale trap-
pingwith pheromones or other semiochemicals provides a stan-
dardized way of simultaneously sampling a large number of
potential habitats, along broad gradients of differing landscape
variables, with considerable accuracy and minimal effort
(Gandhi et al. 2009; Jurzenski et al. 2014; Musa et al. 2013;
Schroeder 2013). Whereas passive sampling methods rely to a
great extent on hotspots or substrate elements where insects
aggregate (Brunet and Isacsson 2009), semiochemically-
baited traps can be dispersed systematically in the landscape
to provide a measure of abundance that is independent of the
underlying habitat structure (Benedick et al. 2006; Hanski et al.
2007; Jurzenski et al. 2014; Musa et al. 2013).

The need for highly attractive traps also is dependent on the
questions being asked and the model systems available. For
example, in Gandhi et al. (2008), stochastic pitfall trapping
was sufficient to characterize general changes among popula-
tions of common ground beetle species in response to cata-
strophic wind disturbance and contrasting management tech-
niques in forest stands. Conversely, describing the overall re-
sponses of common subcortical saproxylic insects to the same
disturbance events depended largely on traps baited with a
series of broad-spectrum pheromone-kairomone blends
(Gandhi et al. 2009).

In contrast, accurately describing the distribution of indi-
vidual rare species in relation to specific landscape features

represents a formidable challenge of an entirely different mag-
nitude, for which highly efficient large-scale trapping systems
may provide a distinct advantage (Burman et al. 2016; Kadej
et al. 2015; Musa et al. 2013; Oleksa et al. 2015) (D. Harvey
and coworkers, unpublished data). To date, the most illustra-
tive of the few examples available may be our single non-
destructive survey of the click beetle E. ferrugineus across
hundreds of sites in southeastern Sweden, which more than
doubled the number of known sites, with the result that the
distribution of this species now ranks among the best known
of the Swedish insect fauna (Andersson et al. 2014; Forsmark
2012; Musa et al. 2013) (J. Burman and coworkers, unpub-
lished data). A focused effort with more than 200 trap sites in
the county of Östergötland allowed sampling of abundance in
relation to the density of hollow trees surveyed across the
whole county, followed by the generation and testing of pre-
dictive models for critical habitat abundance thresholds (Musa
et al. 2013) (Fig. 4). This single effort thus improved on de-
cades of information gathering (Ranius et al. 2011).

Indicator Potential of Model Species

As discussed above, comprehensive characterization of land-
scape variables or biodiversity via broad surveys is time consum-
ing and expensive. Therefore, it is common to use proxy values
in the form of bioindicators, that is, limited selections of species
or groups of organisms that are believed to provide general in-
formation about important variables for conservation planning
(Lewandowski et al. 2010; Lindenmayer et al. 2000; McGeoch
1998). Some species that are especially charismatic and/or be-
lieved to be of special significance for certain habitats may be
designated umbrella or flagship species, and thus constitute both
public symbols and practical indicators for the conservation of
whole communities of organisms (Lambeck 1997). Osmoderma
eremita is designated as an umbrella species for giant oak habi-
tats, under the EC/EU Habitats Directive (Anonymous 1992).
The conservation value of both the indicator and umbrella spe-
cies concepts have been questioned (Andelman and Fagan
2000), but nevertheless have evidentiary support and remain
central tools in practical conservation.

It is obvious that pheromone-based trapping systems would
be an ideal tool for frequent monitoring of limited numbers of
indicator species, provided that suitable insect species could be
found for a given conservation target. A number of saproxylic
beetles dependent on old, mature trees have been suggested as
suitable indicators for the continuity of mature trees and old-
growth forest (Nilsson et al. 1995; Nilsson and Baranowski
1994; Ranius 2002). Unfortunately, many of these species are
themselves difficult to detect and/or would require invasive sam-
pling techniques, and so have been considered unsuitable for
practical use as indicators. However, many are known or expect-
ed to use long-range pheromones, and pheromone-based
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monitoring would transform sampling them from a formidable
specialist endeavor to an almost trivial task. Again, to date, this
type of transformation of monitoring effort is perhaps best exem-
plified by the click beetle E. ferrugineus, which recently was
confirmed to have high potential as an indicator for threatened
saproxylic fauna of mature trees entirely based on pheromone
monitoring (Andersson et al. 2014).

However, the specific relationship between various indica-
tor species and other insect fauna of hollow trees appears to be
highly dependent on region (Jansson et al. 2009). In

woodlands of both the Mediterranean (Zauli et al. 2014) and
the UK (D. Harvey and coworkers unpublished data), the
occupancy pattern of E. ferrugineus in different habitats and
in relation to other saproxylic insects appears to differ consid-
erably from that of Swedish populations. Nevertheless, it is
likely to constitute a valuable indicator of mature tree faunal
continuity across the species’ European range. More general-
ly, not all rare and endangered species constitute relevant in-
dicator species, even when they can be monitored efficiently
with pheromones. For example, large-scale pheromone

Fig. 4 Quantitative landscape
models predicting the presence of
the saproxylic click beetle Elater
ferrugineus at >25%, >50%,
>75% and >90% probability of
occurrence in relation to the
amount of habitat (mature trees)
in the landscape. Trap catches and
predictive models in the model
study area (a,b,c,d) and in the
county of Östergötland (e,f).
Empty traps are represented by
crosses (×) while occupied traps
are marked with open circles (O)
whose sizes are proportional to
the number of individuals caught.
The first column (a,c,e) shows
predictions from pooled density
of oak (Quercus) and other ´
noble´ hardwoods, while the
second column (b,d,f) is based on
the density of Quercus only. (a,b)
shows trap captures in
systematically placed traps used
to generate themodel, (c,d) shows
traps used for strategically
sampled validation data, (e,f)
represents a validation data set
sampled over the entire
Östergötland county. In each map,
the predictions are based on two
models, one for each
characteristic scale of best
response (blue tones represent a
smaller scale: 433 m (pooled
density of Quercus, Noble 1 and
Noble 2) and 327 m (density of
Quercus only), while orange
tones represent predictions at
larger scale: 4051 m (Quercus,
Noble 1 and Noble 2) and 4658 m
(Quercus). Figure from (Musa
et al. 2013)
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surveys of the clearwing moth Synanthedon vespiformis,
which is red-listed as Vulnerable in Sweden, revealed a
scattered distribution with no apparent correlation with the
local abundance of old oaks, which constitute its nominal
habitat (Burman et al. 2016).

More Harm Than Good?

Pheromonemonitoring of threatened insect species entails one
specific concern that is uniquely different from monitoring of
pest insects, namely whether trapping could harm the target
population. When dealing with endangered insects, which of-
ten have limited distributions and sometimes exist at very low
population densities, the potential for accidental population
extinctions becomes a real concern. Even in cases with negli-
gible risk to local populations, the prospect of killing substan-
tial numbers of rare insects in the process of monitoring them
may appear distasteful to many, and it certainly will not facil-
itate general acceptance or the process of obtaining necessary
permits. Fortunately, most insect species can be trapped live
with appropriate trap designs and released, and these sorts of
traps certainly can be used with sensitive species or popula-
tions. Nevertheless, opting for killing traps may avoid many
problems with inefficient retention of trapped insects and as-
sociated risks of unreliable quantitative data. Most important-
ly, the full potential of pheromone trapping systems for large-
scale surveys will be realized only if traps can be deployed for
long durations, without the need for frequent and costly visits
to release captured specimens.

In reality, most insect populations would likely be more at
risk of extinction from failure to act on good information than
from pheromone-based trapping. Knowledge of their exis-
tence is a prerequisite to prevent populations from going ex-
tinct due to habitat exploitation and destruction, or simply due
to failures to implement appropriate land management
(Balmer and Erhardt 2000; Bengtsson et al. 2000; Olff et al.
1999). Unfortunately, legal or bureaucratic procedures in the
United States and in some countries in Europe and many other
parts of the world, appear overly restrictive when it comes to
protecting even individual insect specimens of certain species
or at certain sites, without considering the actual risk to local
populations and the value of research for their preservation.
Pheromone trapping systems usually are efficient enough to
allow non-destructive sampling with sufficient statistical pow-
er to generate reliable data on population densities. The pos-
sibility of obtaining scientifically-based population estimates
should provide additional arguments that insect populations
generally are not being harmed by careful sampling.

Based on the capture rates observed in most pheromone
trapping systems (see above), low-density trapping should
be effective for detecting populations, but should not capture
enough individuals to harm the population. The risk can be

further limited by trapping during only a fraction of the ex-
pected activity period of the target species. The most efficient
pheromone trapping systems appear to be those that use sex
pheromones to attract males, which are rarely in short supply
due to the operational sex ratio, whereas pheromones
attracting the more critical females generally are less effective.
Decades of pest management have demonstrated that eradica-
tion and population control by means of mass trapping with
pheromones generally requires sustained, intensive efforts
(El-Sayed et al. 2006), suggesting that low numbers of traps
deployed for limited time periods should pose little risk to
most insect populations. On the other hand, rare and threat-
ened insects differ from pest insects in their overall lower
population densities, which may sometimes put them in the
range where even widely spaced traps could result in inadver-
tent mass trapping, in combination with other risk factors such
as Allee effects (El-Sayed et al. 2006; Liebhold et al. 2016). In
order to deploy pheromone monitoring systems for conserva-
tion with maximum efficiency and minimum risk, it would be
important to document capture rates and other important char-
acteristics, and evaluate their potential for other negative ef-
fects on the target insects (Oleander et al. 2015).

Conclusions

Monitoring of rare and threatened insects based on exploita-
tion of pheromones or other semiochemicals has the potential
to revolutionize the conservation of many insect groups.
Pheromone-baited traps could vastly improve our ability to
monitor specific species with unprecedented spatiotemporal
resolution, with minimum effort and limited risk to target pop-
ulations. They would provide an excellent means of identify-
ing biodiversity hotspots, tracking population changes, iden-
tifying habitat thresholds for persistence of target species at
the landscape level, and providing feedback to evaluate the
effects of conservation management efforts. Thus far, this po-
tential has only been realized to a limited extent. Further in-
corporation of pheromone-based monitoring systems into
mainstream conservation biology will require development
of model systems for strategic species, and further study of
their operational characteristics and their ability to provide
relevant information.
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