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Psychological and physiological factors, including pain, can induce a stress response. All 

today’s available methods for evaluating stress in dogs have shortcomings and it is 

therefore necessary to identify and evaluate new biomarkers. Chromogranin A (CgA) is 

a useful biomarker for stress assessment in humans. In dogs, the CgA epitopes catestatin 

(CST) and vasostatin (VS) can be measured. This thesis aimed to evaluate the potential 

use of the CgA epitopes CST and VS as biomarkers for psychological and pain-induced 

stress in dogs in a clinical setting.  

Reference ranges of plasma CST, VS, and saliva CST concentrations in healthy low-

stressed dogs were determined. Age, gender, breed, and time of day did not significantly 

affect CST and VS concentrations. CST and VS were evaluated as biomarkers for 

psychological stress. CST and VS in associated with other stress evaluation methods were 

compared in healthy dogs where one group was stressed and the other was not. In the 

stress group, saliva CST, serum cortisol, and stress scores increased significantly and 

saliva CST did not overlap with the reference range. Plasma CST and VS did not change 

significantly. CST and VS were further tested as biomarkers for pain-induced stress by 

comparing the concentrations in different surgical settings. CST, VS, and other pain and 

stress monitoring methods were investigated in healthy dogs that received analgesia and 

were subjected to elective ovariohysterectomy. Compared with before surgery, plasma 

CST decreased significantly during anesthetic recovery and at recall for suture removal 

and serum cortisol decreased significantly at recall, suggesting that CST may be a possible 

pain-induced stress biomarker. CST and VS were measured in dogs with fractures prior to 

and after morphine treatment and evaluated in association with other pain and stress 

evaluation methods and compared with control dogs. Circulating CST and cortisol 

decreased significantly in dogs with fractures, but did not differ significantly between 

before and after morphine analgesia. Plasma CST overlapped with the reference ranges 

but plasma VS did not differ significantly throughout the studies.  

In conclusion, saliva CST may have potential as a psychological stress biomarker in 

dogs. Repeated sampling of plasma CST may be of interest for evaluating pain within the 

same patient. Plasma VS has no potential as a stress biomarker in dogs. 
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Syftet med denna avhandling var att utvärdera om catestatin (CST) och vasostatin (VS) 

kan användas som biomarkörer för psykisk och smärtinducerad stress hos hundar. 

Referensvärden för CST och VS i plasma och CST i saliv hos friska hundar med låg 

stressnivå bestämdes. Resultatet visade att ålder, kön, ras, och tid på dagen för 

provinsamlingen inte hade någon signifikant påverkan på CST och VS vare sig i plasma 

eller saliv. CST och VS potential som biomarkörer för psykisk stress utvärderades genom 

att jämföra koncentrationerna hos friska hundar med låg stressprofil med friska hundar 

med hög stressprofil. Hos hundarna med hög stressprofil uppmättes signifikant högre 

koncentrationer av CST i saliv och kortisol i serum jämfört med hundarna med låg 

stressprofil. CST i saliv var också högre än fastställda referensvärden, men ingen 

signifikant skillnad kunde påvisas a VS eende koncentrationerna av CST och VS i plasma 

hos hundar med låg och hög stressprofil. CST och VS testades ytterligare som möjliga 

biomarkörer för smärt-inducerad stress genom att jämföra koncentrationer vid olika 

kirurgiska ingrepp. Koncentrationerna av CST och VS tillsammans med andra metoder för 

monitorering av smärta och stress utvärderades hos friska hundar före och efter 

ovariohysterektomi. Alla hundar fick smärtlindring i samband med operationerna. 

Resultaten visade att koncentrationen av CST i plasma var signifikant lägre efter avslutad 

operation jämfört med innan operationen. Koncentrationen var också fortsatt låg vid 

återbesöken för stygntagning liksom kortisol. Resultaten antyder att CST möjligen kan ha 

potential som en biomarkör för smärtinducerad stress hos hund. För att vidare utvärdera 

om smärta påverkar koncentrationerna av CST och VS mättes nivåerna hos en grupp friska 

hundar och en grupp hundar som drabbats av benfrakturer. Prover togs före och efter 

smärtlindring med morfin. Resultatet visade att cirkulerande koncentrationer av CST och 

kortisol var signifikant lägre hos hundar med benfrakturer jämfört med friska hundar, 

men ingen signifikant skillnad kunde ses i prover tagna före jämfört med prover tagna 

efter morfingivan. Ingen signifikant förändring av koncentrationerna av VS kunde 

uppmätas vid någon tidpunkt i studien. Sammanfattningsvis tyder resultaten på att CST i 

saliv kan ha en viss potential som en biomarkör för psykisk stress hos hund. Upprepade 

mätningar av plasma CST kan möjligen användas för att evaluera smärtutveckling hos en 

enskild hund. 

Keywords: Biomarker, Bone fracture, Catestatin, Dog, Pain, Stress, Surgery, Vasostatin 

Author’s address: Thanikul Srithunyarat, SLU, Department of Clinical Sciences,  

P.O. Box 7054, 750 07 Uppsala, Sweden  

Chromogranin A Epitopes Catestatin and Vasostatin. Evaluation 
of their Potential Use as Clinical Biomarkers for Psychological 
and Pain-induced Stress in Dogs 

Abstract 



 

 

To King Bhumibol the Great, the ninth monarch of Thailand from the Chakri 

Dynasty 

 

To my family, teachers, and all our dogs 

Focus on the journey, not the destination. Joy is found not in finishing an activity 

but in doing it. 

Greg Anderson 

 

 

  

Dedication 



 

 

 

List of publications 11 

List of tables 13 

List of figures 15 

Abbreviations 19 

1 Introduction 21 

1.1 Background 21 

1.2 Stress and pain 21 

1.2.1 Stress and stress response 21 

1.2.2 Pain-induced stress response 22 

1.3 Assessment of stress and pain 23 

1.3.1 Subjective assessment 23 

1.3.2 Objective assessment 24 

1.3.3 Multimodal assessment 26 

1.4 Chromogranin A 26 

1.4.1 Background 26 

1.4.2 Chromogranin A derived peptides 27 

1.4.3 Measurement of chromogranin A 28 

1.4.4 Usefulness of chromogranin A in humans 29 

1.4.5 Chromogranin A as stress biomarker in humans 30 

1.4.6 Chromogranin A in dogs 31 

2 Aims and hypothesis of the thesis 33 

3 Materials and methods 35 

3.1 Study design and ethical permission 35 

3.2 Animals 35 

3.3 Study protocol 36 

3.3.1 Physical examination 40 

3.3.2 Sample collection 41 

3.3.3 Subjective stress and pain assessments 43 

Contents 



 

 

3.4 Laboratory analysis 43 

3.4.1 Analysis of chromogranin A epitopes catestatin and vasostatin 43 

3.4.2 Cortisol analysis 43 

3.5 Statistical analysis 44 

4 Results 47 

4.1 Assessments in healthy dogs accustomed to the sampling procedures 47 

4.1.1 Chromogranin A epitopes catestatin and vasostatin 47 

4.1.2 Cortisol 48 

4.1.3 Visual analog scale 48 

4.2 Assessments in dogs undergoing elective ovariohysterectomy 48 

4.2.1 Chromogranin A epitopes catestatin and vasostatin 48 

4.2.2 Cortisol 49 

4.2.3 Physiological assessments 49 

4.2.4 The short form of Glasgow composite measure pain scale 49 

4.2.5 Visual analog scale 49 

4.3 Stress and pain assessments in dogs with traumatic bone fractures 49 

4.3.1 Chromogranin A epitopes catestatin and vasostatin 50 

4.3.2 Cortisol 50 

4.3.3 Physiological assessments 50 

4.3.4 The short form of Glasgow composite measure pain scale 51 

4.3.5 Visual analog scale 51 

4.4 Assessments for psychological stress in healthy dogs 51 

4.4.1 Chromogranin A epitopes catestatin and vasostatin 51 

4.4.2 Cortisol 52 

4.4.3 Visual analog scale 52 

5 Discussion 59 

5.1 Chromogranin A epitopes catestatin and vasostatin in healthy dogs 59 

5.1.1 Reference ranges of catestatin and vasostatin in low-stressed 

healthy dogs 59 

5.1.2 Catestatin and vasostatin in healthy dogs subjected to 

psychological stress 61 

5.2 Chromogranin A epitopes catestatin and vasostatin in dogs experiencing 

pain 62 

5.3 Other assessments for psychological and pain-induced stress in dogs 64 

5.3.1 Subjective assessment 64 

5.3.2 Objective assessment 65 

6 Conclusions 67 



 

 

7 Future perspectives 69 

Popular science summary 71 

Populärvetenskaplig sammanfattning 73 

References 75 

Acknowledgments 83 
 

 

  



 

 

 

 

 



11 

 

This thesis is based on the work contained in the following papers, referred to 

by Roman numerals in the text: 

 

I Srithunyarat, T.*, Hagman, R., Höglund, O.V., Olsson, U., Stridsberg, M., 

Jitpean, S., Lagerstedt, A.S., Pettersson, A. (2017). Catestatin and vasostatin 

concentrations in healthy dogs. Acta Veterinaria Scandinavica 59 (1), p. 1. 

 

II Srithunyarat, T.*, Höglund, O.V., Hagman, R., Olsson, U., Stridsberg, M., 

Lagerstedt, A.S., Pettersson, A. (2016). Catestatin, vasostatin, cortisol, 

temperature, heart rate, respiratory rate, scores of the short form of Glasgow 

composite measure pain scale and visual analog scale for stress and pain 

behavior in dogs before and after ovariohysterectomy. BMC Research Notes 

9 (1), p. 381. 

 

III Srithunyarat, T.*, Hagman, R., Höglund, O.V., Stridsberg, M., Olsson, U., 

Hanson, J., Nonthakotr, C., Lagerstedt, A.S., Pettersson, A. (2017). 

Catestatin, vasostatin, cortisol, and pain assessments in dogs suffering from 

traumatic bone fractures. BMC Research Notes 10 (1), p. 129. 

 

IV Srithunyarat, T.*, Hagman, R., Höglund, O.V., Stridsberg, M., Hanson, J., 

Lagerstedt, A.S., Pettersson, A. Catestatin, vasostatin, cortisol, and visual 

analog scale scoring for stress assessment in healthy dogs (submitted) 

Papers I–III are reproduced with the permission of the publishers. 

* Corresponding author. 

 

List of publications 



12 

 

 

I Conception and design of the study, sample collection, analysis and 

interpretation of data, drafting the article, and critical revision of the article. 

 

II Conception and design of the study, sample collection, analysis and 

interpretation of data, drafting the article, and critical revision of the article. 

 

III Conception and design of the study, sample collection, analysis and 

interpretation of data, drafting the article, and critical revision of the article. 

 

IV Conception and design of the study, sample collection, analysis and 

interpretation of data, statistical analysis, drafting the article, and critical 

revision of the article. 

 

 

 

  

The contribution of Thanikul Srithunyarat to the papers included in this thesis 

was as follows: 



13 

 

 

Table 1. Reference ranges of Chromogranin A epitopes catestatin and 

vasostatin in 33 healthy dogs accustomed to sampling procedures 47 

Table 2. Data (mean ± SD) of the assessed parameters in blood donor dogs, 

dogs undergoing elective ovariohysterectomy, and dogs with 

traumatic bone fractures 58 

 

 

  

List of tables 



14 

 

 



15 

 

 

Figure 1. Stress and pain responses. Stress and pain induce similar responses 

through main axes of sympatho-adreno-medullary (SAM) and 

hypothalamic-pituitary-adrenal (HPA). 23 

Figure 2. Schematic model of chromogranin A epitopes catestatin and 

vasostatin. Abbreviations: CgA: chromogranin A; VS: vasostatin; CST: 

catestatin; Number: amino acid sequence. 27 

Figure 3. Study protocols of the four dog groups. Abbreviations: CMPS-SF: the 

short form of Glasgow composite measure pain scale; OP-VAS: overall 

pain behavior visual analog scale; S-VAS: stress behavior visual 

analog scale; Airplane: sample transportation with temperature 

control (–20 °C). 37 

Figure 4. Short form of the Glasgow composite measure pain scale (CMPS-SF) 

(Reid et al., 2007) 39 

Figure 5. Overall pain behavior visual analog scale (OP-VAS) 39 

Figure 6. Criteria for scoring subjective saliva and blood sampling stress 

behavior visual analog scale (S-VAS). A: criteria used during saliva 

sampling; B: criteria used during blood sampling. 40 

Figure 7. Physical examination chart. Abbreviations: HN: hospital number; BCS: 

body condition score; CRT: capillary refill time; NPO: nothing per oral; 

RtFL: right forelimb; LtFL: left forelimb; RtHL: right hind limb; LtHL: 

left hind limb; bpm: beats/breaths per minute; CBC: complete blood 

count; BP: blood parasites; Crea: creatinine; BUN: blood urine nitrogen; 

ALT: alanine aminotransferase. 42 

Figure 8. Boxplot of plasma catestatin concentrations in dogs. Dogs were 

grouped into healthy dogs with low stress (Control, n = 33), healthy 

dogs before ovariohysterectomy (OHE before, n = 30), after 

ovariohysterectomy at 3 hours after extubation (OHE 3 h, n = 30), and 

at recall (OHE recall, n = 27), dogs with fractures before morphine 

List of figures 



16 

 

treatment (Fracture before, n = 14), and after morphine treatment 

(Fracture after, n = 14). * Significant difference between groups (p < 

0.05) 52 

Figure 9. Boxplot of plasma vasostatin concentrations in dogs. Dogs were 

grouped into healthy dogs with low stress (Control, n = 33), healthy 

dogs before ovariohysterectomy (OHE before, n = 30), after 

ovariohysterectomy at 3 hours after extubation (OHE 3 h, n = 30), and 

at recall (OHE recall, n = 27), dogs with fractures before morphine 

treatment (Fracture before, n = 14), and after morphine treatment 

(Fracture after, n = 14). * Significant difference between groups (p < 

0.05) 53 

Figure 10. Boxplot of saliva catestatin concentrations in dogs. Dogs were 

grouped into healthy dogs with low stress (Control, n = 33), healthy 

dogs before ovariohysterectomy (OHE before, n = 30), after 

ovariohysterectomy at 3 hours after extubation (OHE 3 h, n = 30), and 

at recall (OHE recall, n = 27), dogs with fractures before morphine 

treatment (Fracture before, n = 14), and after morphine treatment 

(Fracture after, n = 14). * Significant difference between groups (p < 

0.05) 53 

Figure 11. Boxplot of serum cortisol concentrations in dogs. Dogs were 

grouped into healthy dogs with low stress (Control, n = 33), healthy 

dogs before ovariohysterectomy (OHE before, n = 30), after 

ovariohysterectomy at 3 hours after extubation (OHE 3 h, n = 30), and 

at recall (OHE recall, n = 27), dogs with fractures before morphine 

treatment (Fracture before, n = 14), and after morphine treatment 

(Fracture after, n = 14). * Significant difference between groups (p < 

0.05) 54 

Figure 12. Boxplot of rectal temperature in dogs. Dogs were grouped into 

healthy dogs with low stress (Control, n = 33), healthy dogs before 

ovariohysterectomy (OHE before, n = 30), after ovariohysterectomy at 

3 hours after extubation (OHE 3 h, n = 30), and at recall (OHE recall, n 

= 27), dogs with fractures before morphine treatment (Fracture 

before, n = 14), and after morphine treatment (Fracture after, n = 14). 

* Significant difference between groups (p < 0.05) 54 

Figure 13. Boxplot of respiratory rate in dogs. Dogs were grouped into healthy 

dogs with low stress (Control, n = 33), healthy dogs before 

ovariohysterectomy (OHE before, n = 30), after ovariohysterectomy at 

3 hours after extubation (OHE 3 h, n = 30), and at recall (OHE recall, n 

= 27), dogs with fractures before morphine treatment (Fracture 



17 

 

before, n = 14), and after morphine treatment (Fracture after, n = 14). 

* Significant difference between groups (p < 0.05) 55 

Figure 14. Boxplot of heart rate in dogs. Dogs were grouped into healthy dogs 

with low stress (Control, n = 33), healthy dogs before 

ovariohysterectomy (OHE before, n = 30), after ovariohysterectomy at 

3 hours after extubation (OHE 3 h, n = 30), and at recall (OHE recall, n 

= 27), dogs with fractures before morphine treatment (Fracture 

before, n = 14), and after morphine treatment (Fracture after, n = 14). 

* Significant difference between groups (p < 0.05) 55 

Figure 15. Boxplot of subjective assessments of the short form of Glasgow 

composite measure pain scale (CMPS-SF) in dogs. Dogs were grouped 

into healthy dogs with low stress (Control, n = 33), healthy dogs 

before ovariohysterectomy (OHE before, n = 30), after 

ovariohysterectomy at 3 hours after extubation (OHE 3 h, n = 30), and 

at recall (OHE recall, n = 27), dogs with fractures before morphine 

treatment (Fracture before, n = 14), and after morphine treatment 

(Fracture after, n = 14). * Significant difference between groups (p < 

0.05) 56 

Figure 16. Boxplot of overall pain behavior visual analog scale (OP-VAS) in 

dogs. Dogs were grouped into healthy dogs with low stress (Control, 

n = 33), healthy dogs before ovariohysterectomy (OHE before, n = 30), 

after ovariohysterectomy at 3 hours after extubation (OHE 3 h, n = 30), 

and at recall (OHE recall, n = 27), dogs with fractures before morphine 

treatment (Fracture before, n = 14), and after morphine treatment 

(Fracture after, n = 14). * Significant difference between groups (p < 

0.05) 56 

Figure 17. Boxplot of saliva sampling stress behavior visual analog scale (S-

VAS) in dogs. Dogs were grouped into healthy dogs with low stress 

(Control, n = 33), healthy dogs before ovariohysterectomy (OHE 

before, n = 30), after ovariohysterectomy at 3 hours after extubation 

(OHE 3 h, n = 30), and at recall (OHE recall, n = 27), dogs with 

fractures before morphine treatment (Fracture before, n = 14), and 

after morphine treatment (Fracture after, n = 14). * Significant 

difference between groups (p < 0.05) 57 

Figure 18. Boxplot of blood sampling stress behavior visual analog scale (S-

VAS) in dogs. Dogs were grouped into healthy dogs with low stress 

(Control, n = 33), healthy dogs before ovariohysterectomy (OHE 

before, n = 30), after ovariohysterectomy at 3 hours after extubation 

(OHE 3 h, n = 30), and at recall (OHE recall, n = 27), dogs with 

fractures before morphine treatment (Fracture before, n = 14), and 



18 

 

after morphine treatment (Fracture after, n = 14). * Significant 

difference between groups (p < 0.05) 57 

 

 

 

 

 

  



19 

 

 

ASA American Society of Anesthesiologists 

ANP Atrial Natriuretic Peptide 

BNP Brain Natriuretic Peptide 

CgA Chromogranin A 

CMPS Glasgow Composite Measure Pain Scale 

CMPS-SF Short Form of Glasgow Composite Measure Pain Scale 

CST Catestatin 

CV Coefficient of Variation 

DEA Dog Erythrocyte Antigen 

EIA Enzyme Immunoassay 

ELISA Enzyme Linked Immunosorbent Assay 

HPA Hypothalamic-pituitary-adrenal 

KKU Khon Kaen University 

NRS Numeric Rating Scale 

OHE Ovariohysterectomy 

OP-VAS Overall Pain Behavior Visual Analog Scale 

RIA Radioimmunoassay 

RPM Revolution per minute 

SAM Sympatho-adreno-medullary  

SD Standard Deviation 

SDS Simple Descriptive Scale 

SLU Swedish University of Agricultural Sciences 

S-VAS Stress Behavior Visual Analog Scale 

UDS University Animal Hospital at SLU 

VAS Visual Analog Scale 

VS Vasostatin 

 

  

Abbreviations 



20 

 

 

 



21 

 

1.1 Background 

Stress is essential for coping with acute changes in the body’s homeostasis, but 

stress and particularly prolonged stress reactions can also be detrimental 

(Hekman et al., 2014; Goldstein, 2003; Sapolsky et al., 2000; Roizen, 1988). 

Psychological and physiological factors including pain can induce a similar 

stress response in humans and in animals (Tranquilli et al., 2007; Grant, 2006). 

Early detection of psychological and pain-induced stress is essential for animal 

welfare reasons, and for minimizing recovery time and duration of 

hospitalization in animals undergoing surgery or intensive care (Phillips, 2000). 

Stress is, however, difficult to evaluate in animals and therefore reduces the 

possibility of proper identification, prevention, and treatment. All documented 

methods for stress assessment in dogs have shortcomings (Rialland et al., 2012; 

Fink, 2010; Tranquilli et al., 2007; Mathews, 2000), and new reliable objective 

biomarkers for stress evaluation in dogs, suitable for use in a clinical setting, are 

needed. 

1.2 Stress and pain 

1.2.1 Stress and stress response 

Stress, a normal physiological response essential for survival, is modulated by 

the sympatho-adreno-medullary (SAM) axis and the hypothalamic-pituitary-

adrenal (HPA) axis. Stress and stress response are, however, integrated and 

complex (Fink, 2010; Goldstein, 2003). Stress can be classified as acute or 

chronic depending on its duration (Hansel et al., 2010; Dhabhar, 2009; Dhabhar 

1 Introduction 
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& McEwen, 1997), and as physiological, psychological, or the combination of 

both depending on the cause (Eiden, 2013; Moberg & Mench, 2000).  

The SAM and HPA axes have important roles on stress response. The SAM axis 

is promptly activated leading to the secretion of catecholamines from chromaffin 

granules (Hekman et al., 2014; Goldstein, 2003; Derbyshire & Smith, 1984; 

Blaschko et al., 1967), followed by activation of the HPA axis leading to changes 

in cortisol secretion. The physiological stress response, necessary for coping 

with different stressful situations, is characterized by changes in the body’s 

homeostasis such as increased heart rate, vascular resistance, oxygen 

consumption, catabolism of glucose and lipid, and decreased anabolism. In 

addition to the physiological responses, stress induces psychological reactions 

leading to behavioral changes in dogs such as restlessness, lethargy, anorexia, 

sleeplessness, avoidance, aggression, shaking, and growling (Reid et al., 2007; 

Holton et al., 2001; Moberg & Mench, 2000). 

1.2.2 Pain-induced stress response 

Pain has been defined by the International Association for the Study of Pain as 

“an unpleasant sensory and emotional experience associated with actual or 

potential tissue damage, or described in terms of such damage” (McKelvey et 

al., 2003). Pain pathways are similar in humans and dogs suggesting that all 

causes of pain in humans can be applied to dogs (Tranquilli et al., 2007; 

McKelvey et al., 2003). However, because pain perception is individual, each 

patient must be assessed individually (Epstein et al., 2015; Tranquilli et al., 

2007; McKelvey et al., 2003; Moberg & Mench, 2000). 

Pain can induce similar physiological, psychological, and behavioral 

responses as stress (Cremeans-Smith et al., 2015; Epstein et al., 2015; Tennant, 

2013; Reid et al., 2007; Holton et al., 2001), leading to changes in catecholamine 

and cortisol concentrations as well as changes in behavioral expressions (Figure 

1). In effect, pain can activate both the SAM and HPA axes (Giannoudis et al., 

2006; Tennant & Hermann, 2002; Desborough, 2000). 
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Figure 1. Stress and pain responses. Stress and pain induce similar responses through main axes of 

sympatho-adreno-medullary (SAM) and hypothalamic-pituitary-adrenal (HPA). 

1.3 Assessment of stress and pain 

Traditionally, both subjective parameters, such as changes in behaviors and 

objective parameters, such as measurable physiological responses, have been 

used for stress and pain assessment in humans and animals. However, as stated 

previously, no single method is completely reliable and all currently available 

methods have shortcomings (Rialland et al., 2012). 

1.3.1 Subjective assessment 

Behavioral change is a common sign of stress and pain in animals and these 

changes can be monitored by observation (Epstein et al., 2015; Tranquilli et al., 

2007; Grant, 2006). However, behavior can vary between species, breed, gender, 

age, and individuals. Further, different stimuli may lead to different behavioral 

changes (Epstein et al., 2015).  

Several methods and criteria have been used for monitoring stress and pain 

behavior. In human medicine, self reporting, where each individual rates their 

own experience using numeric rating or questionnaires, is widely used (Rapo-

Pylkko et al., 2016; Herr & Garand, 2001). However, self reporting has limited 

value for stress and pain assessment in infants, children, and animals due to 

impaired ability to describe their situation (Epstein et al., 2015; Tranquilli et al., 

2007; Lee et al., 2006). 
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In veterinary research, behavioral expression, monitored by an examiner, has 

been used for stress and pain assessment. Many scoring systems are available 

using different protocols and scales such as simple descriptive scale (SDS), 

numeric rating scale (NRS), visual analog scale (VAS), Glasgow composite 

measure pain scale (CMPS), short form of Glasgow composite measure pain scale 

(CMPS-SF), Melbourne Pain Scale, and Colorado State University canine acute 

pain scale (Epstein et al., 2015; Reid et al., 2007; Holton et al., 2001; Firth & 

Haldane, 1999; Holton et al., 1998a; Holton et al., 1998b). The VAS, SDS, and 

NRS are simple methods for assessing pain using a linear scale and has been 

widely used in humans and dogs (Rapo-Pylkko et al., 2016; Holton et al., 

1998b). The CMPS and CMPS-SF are validated for acute pain assessment e.g. 

postoperative pain in dogs (Reid et al., 2007; Holton et al., 2001). Different 

methods for monitoring pain that combine observations with computer 

technology such as analysis of facial expression, gait analysis, and intensive of 

activity may be found to be useful in the future. However, each protocol and 

criteria may only be suitable for specific situations. The advantages of behavioral 

assessment are speed and simplicity, but the limitations are that the method is 

examiner sensitive and many subjective assessment methods are not yet 

validated (Holton et al., 2001). Monitoring behavior as a sole method may 

therefore be insufficient. 

1.3.2 Objective assessment 

Stress and pain-induced stress can be evaluated objectively by measuring 

physiological parameters and neuroendocrine biomarkers. In essence, 

physiological parameters are measured to assess sympathetic tone as a surrogate 

measure of stress. Although measurement and evaluation of objective responses 

are generally observer independent, they may be affected by the animal’s 

perception of the monitoring procedure. This perception can in itself elicit a 

stress response, often referred to as the white coat effect, and must therefore be 

interpreted carefully. 

Physiological parameters 

The stress response causes changes in physiological parameters, which can be 

objectively measured such as heart rate, respiratory rate, blood pressure, and 

blood glucose concentrations (Bragg et al., 2015; Höglund et al., 2012; Marino 

et al., 2011). The values, however, can also be altered because of various 

reasons, e.g., exercise, acute pain, heart disease, lung disease, kidney disease, 

and also by the white coat effect from psychological stress of the visit to the 

animal hospital. 
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Neuroendocrine biomarkers 

Stress stimulates SAM and HPA axes, leading to the release of several 

neuroendocrine biomarkers such as catecholamines, cortisol, serotonin, 

vasopressin, and chromogranin A. These neuroendocrine biomarkers can also be 

used to objectively monitor stress. 

Catecholamines (adrenaline and noradrenaline), are secreted from the 

sympathetic system and the adrenal medulla. The adrenaline and noradrenaline 

response is rapid when SAM is activated. Catecholamines are useful for 

monitoring the initial stage of stress and pain-induced stress. However, the 

degradation of circulating catecholamines is rapid, the half-life is short, and 

requires special handling procedures which limit the usefulness of 

catecholamines in a clinical setting (Goldstein, 2003; Crout, 1968). 

Cortisol has traditionally been used as a sensitive biomarker for stress in 

humans and animals. Cortisol can be measured in blood, saliva, feces, hair and 

urine (Giannetto et al., 2014; Hekman et al., 2014; Jung et al., 2014; Russell et 

al., 2012; Dreschel & Granger, 2009; Schatz & Palme, 2001). Plasma cortisol 

will react in 4–30 minutes after stimulation of the HPA axis (Jung et al., 2014). 

Circulating cortisol passively infiltrates into saliva, and saliva cortisol 

concentrations correlate with concentrations in blood (Vincent & Michell, 

1992). Cortisol concentrations in both saliva and plasma vary during the day 

because of pulsatile secretion and circadian rhythms (Giannetto et al., 2014; 

Fink, 2010; Hanson et al., 2006; Kemppainen & Sartin, 1984). Daily variation 

have less effect on cortisol concentrations in feces, hair, and urine and rather 

more reflect secretion of cortisol over time (Hekman et al., 2014). Cortisol 

concentrations can differ between species, individuals, gender, and age (Fink, 

2010). Because concentrations of circulating cortisol can vary both within and 

between individuals, cortisol is unspecific and difficult to interpret for stress 

assessment. Further, the concentrations of cortisol can be influenced by many 

factors such as the white coat effect, pain, illness, or physiological and 

psychological changes further limiting the usefulness of cortisol as a stress and 

pain biomarker in a clinical setting (Höglund et al., 2015; Bovens et al., 2014; 

Jung et al., 2014; Perego et al., 2014; Muhtz et al., 2013; Tennant, 2013; 

Haverbeke et al., 2008; Hanson et al., 2006; Fries et al., 2005). However, due to 

the lack of better alternatives, cortisol is still used as a biomarker for stress and 

pain-induced stress responses. 



26 

 

1.3.3 Multimodal assessment 

Multimodal assessments such as the Melbourne Pain Scale, combines results 

from both subjective and objective methods to assess acute pain in dogs (Firth 

& Haldane, 1999). No multimodal assessment protocol have yet been validated 

for stress and pain monitoring in dogs (Epstein et al., 2015). 

1.4 Chromogranin A 

1.4.1 Background 

Chromogranin A (CgA) is an acidic glycoprotein belonging to the Granin 

family. Its molecular weight is about 48–52 kDa and it consists of 431–439 

amino acids depending on the species (Metz-Boutigue et al., 1993). CgA is 

stored and released together with catecholamines from chromaffin granules 

(O'Connor & Bernstein, 1984; Blaschko et al., 1967). Although distribution of 

CgA is widespread in several organs, CgA is largely found in and secreted from 

the adrenal medulla, neuroendocrine system, and sympathetic nerves (Winkler 

& Fischer-Colbrie, 1992; Smith & Winkler, 1967). CgA plays an important role 

in the formation of intracellular secretory granules and, when SAM is activated, 

exocytosis of secretory granules occurs leading to CgA being extracellularly 

coreleased with catecholamines (D'Amico M et al., 2014; O'Connor & 

Bernstein, 1984; Blaschko et al., 1967). Plasma norepinephrine and CgA 

concentrations correlate when the sympathochromaffin system is intensively 

stimulated. This suggests that CgA secretion may depend on the intensity of 

stimuli (Mahata et al., 2004; Kanno et al., 1999; Mahata et al., 1997; Cryer et 

al., 1991; O'Connor & Bernstein, 1984).  

In mammals, CgA has also been found in exocrine tissues such as saliva 

glands, i.e. parotid, submandibular, and sublingual glands. However, the 

concentrations are much lower than found in endocrine cells particularly when 

compared to adrenal medulla (Saruta et al., 2005; Sato et al., 2002; Kanno et al., 

1999). Although the mechanism can differ, active secretion of saliva CgA has 

been demonstrated in different species of mammals. In humans, saliva CgA is 

produced in acinar cells of the submandibular gland, mainly in serous and ductal 

cells and secreted into ductal cavity (Saruta et al., 2005) whereas, in rats, saliva 

CgA is produced in the exocrine cells of the granular convoluted tube (Saruta et 

al., 2005; Sato et al., 2002; Kanno et al., 1999). No studies of saliva CgA 

production, however, have so far been performed in dogs.  

The intact CgA molecule includes N- and C-terminal parts (Figure 2). Several 

factors may stimulate the biosynthesis and proteolytic processes in both N- and 
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C-terminals either by intragranular or extracellular mechanisms (Hendy et al., 

1995; Metz-Boutigue et al., 1993; Tatemoto et al., 1986). In general, CgA 

influences and modulates homeostasis of several systems such as the endocrine, 

cardiovascular, immunological, and neurological systems (D'Amico M et al., 

2014; Mahata et al., 2010; Taupenot et al., 2003; Jiang et al., 2001; O'Connor & 

Bernstein, 1984).  

CgA and its derived peptides have been suggested as sensitive biomarkers 

for stress in humans as well as in different animal species (Escribano et al., 2013; 

Akiyoshi et al., 2005; Nakane H, 1998). CgA can be proteolytically cleaved into 

several peptides with different biological activities including vasostatin, 

pancreastatin, catestatin, parastatin, and serpinin (Bandyopadhyay et al., 2015; 

D'Amico M et al., 2014; Tota et al., 2012; Mahata et al., 2010; Sanchez-

Margalet et al., 2010; Gayen et al., 2009; Mahata et al., 2004; Wen et al., 2004; 

Mahata et al., 2003; Jiang et al., 2001; Fasciotto et al., 2000; Metz-Boutigue et 

al., 1998; Corti et al., 1997; Mahata et al., 1997; Hendy et al., 1995; Aardal et 

al., 1993; Helle et al., 1993; Metz-Boutigue et al., 1993; Aardal & Helle, 1992; 

Fasciotto et al., 1992; Tatemoto et al., 1986). 

 
Figure 2. Schematic model of chromogranin A epitopes catestatin and vasostatin. Abbreviations: 

CgA: chromogranin A; VS: vasostatin; CST: catestatin; Number: amino acid sequence. 

1.4.2 Chromogranin A derived peptides 

The CgA derived active peptides contain different amino acid sequences and 

have various bioactivity, e.g. vasorelaxant and cardiosuppressive effects, 

inhibition of glucose-induced insulin secretion, inhibition of hypertension, 

inhibition of catecholamines secretion, and modulation of calcium and 

parathormone secretion (D'Amico M et al., 2014; Helle, 2010; Mahata et al., 

2010; Hendy et al., 1995). Catestatin and vasostatin, the two CgA-derived 

peptides (Figure 2), have multifunctional roles in a wide range of tissue systems; 

however, little is known about their degradation, secretion, function, and 

clearance rate in different species (Helle, 2010). 
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Catestatin 

Catestatin (CST) modulates catecholamine secretion via a negative feedback 

mechanism and has been shown to have antihypertensive, antimicrobial, and 

cardiosuppressive effects (Imbrogno et al., 2010; Mahata et al., 2010; Radek et 

al., 2008; Rangon et al., 2003; Mahata et al., 1999; Kennedy et al., 1998; Mahata 

et al., 1997). CST acts noncompetitively on nicotinic cholinergic receptors in 

inhibiting the secretion of catecholamines. The response, however, depends on 

the degree of stimuli (Mahata et al., 2004; Mahata et al., 1997). Concentrations 

of CST are decreased in the early stage of hypertension in human patients and in 

hypertensive patients (O'Connor et al., 2002). Increased blood pressure in rats 

after target ablation of the CgA gene as well as in stress situations were cured 

by CST administration (Mahapatra et al., 2005). CST regulates peripheral and 

baroreceptors for hypertension and stimulates histamine release from mast cells, 

which leads to vasodilation and relief of hypertension (Mahapatra, 2008; Rao et 

al., 2007; Kruger et al., 2003). In addition, in in vitro studies, CST has been 

shown to have an antimicrobial effect against Gram-positive and Gram-negative 

bacteria, fungi, and yeast (Mahata et al., 2010; Briolat et al., 2005; Metz-

Boutigue et al., 1998; Takiyyuddin et al., 1993). 

Vasostatin 

Vasostatin (VS) has been shown to influence plasma calcium secretion, 

vasodilation, and have cardiosuppressive effects (Helle, 2010; Zhang et al., 

2009; Imbrogno et al., 2004; Brekke et al., 2002; Corti et al., 2002; Aardal et 

al., 1993). VS is the N-terminal fragment of the CgA molecule and has an in vitro 

antimicrobial effect on Gram-positive bacteria, fungi, and yeast (Helle, 2010; 

Lugardon et al., 2000). VS has shown promise as a prognostic biomarker in 

critically ill patients where an increased concentration in the circulation 

indicated poor outcome (Schneider et al., 2012). 

1.4.3 Measurement of chromogranin A 

Concentrations of CgA can be quantitatively measured in blood and saliva 

(Saruta et al., 2005; Sato et al., 2002; Yanaihara et al., 1999; Nakane H, 1998; 

Winkler & Fischer-Colbrie, 1992; O'Connor & Bernstein, 1984). The 

measurement of CgA can be performed using immunoassays such as 

radioimmunoassay (RIA), enzyme linked immunosorbent assay (ELISA), and 

enzyme immunoassay (EIA) (Stridsberg et al., 2004; Yanaihara et al., 1999; 

O'Connor & Bernstein, 1984). However, the method for analyzing CgA and the 

measured sequences of CgA differ between studies, which needs to be 
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considered when comparing results. In effect, CgA is proteolytically cleaved 

into several biological peptides both before and after release to circulation. The 

measurement by a region specific RIA allows for assessment of different CgA 

epitopes by measuring their specific amino acid sequences both in the intact 

molecule and the biological peptides (Stridsberg et al., 2004; Yanaihara et al., 

1999).  

CgA and its active peptides contain amino acid sequences which differ 

between species. The interspecies cross reactivity of intact CgA has been 

compared between humans, cattle, sheep, goats, pigs, and horses showing that 

human intact CgA assay is not suitable for measuring CgA in these species 

whereas the VS epitopes of CgA molecule have a highly conserved amino acid 

sequence and can be analyzed using RIA (Stridsberg et al., 2000). A study on 

interspecies cross reactivity between human and dog showed that CST (CgA 

361–372) and VS (CgA 17–38), but not the intact CgA molecule, could be 

measured in dogs using region specific RIA (Stridsberg et al., 2014). In a 

previous study in dogs, saliva CgA sequence 344–374 was measured by use of 

a human ELISA kit (Human chromogranin A ELISA, Yanaihara, Tokyo, Japan) 

(Kanai et al., 2008). This region includes the sequence of CST (CgA 361–372) 

which can be measured using region specific RIA (Stridsberg et al., 2014; Kanai 

et al., 2008). The measurement of the region specific RIA reflects both the intact 

CgA molecule and the peptide. 

1.4.4 Usefulness of chromogranin A in humans 

Evaluation of CgA concentrations in blood and saliva has shown promise as a 

biomarker for stress in addition to diagnosis of neuroendocrine tumors, 

cardiovascular disease, periodontal disease, critical illness, gastritis, and organ 

failure (D'Amico M et al., 2014; Lindahl et al., 2013; Reshma et al., 2013; 

Schneider et al., 2012; Zhang et al., 2008; Campana et al., 2007; Ferrari et al., 

2004; Ferrari et al., 1998; Nakane H, 1998).  

Circulating CgA is the most reliable diagnostic and prognostic biomarker for 

neuroendocrine tumors such as pheochromocytoma. In these cases, the tumor 

itself produces CgA. CgA concentrations have been used for evaluation of 

treatment effectiveness, metastasis, and prognosis (Schneider et al., 2012; 

Ferrari et al., 2004; Ferrari et al., 1998).  

CgA has shown promise as a biomarker for cardiovascular diseases such as 

hypertension, hypertrophic cardiomyopathy, and dilated cardiomyopathy in 

humans (D'Amico M et al., 2014; Pieroni et al., 2007; Taupenot et al., 2003). 

CgA can be produced by myocardium in rats colocalized with atrial natriuretic 

peptide (ANP) and brain natriuretic peptide (BNP) (Angelone et al., 2012; Pieroni 
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et al., 2007). Increased levels of circulating CgA have been measured in human 

patients with cardiovascular diseases and patients undergoing cardiac arrest 

(D'Amico M et al., 2014; Pieroni et al., 2007; Taupenot et al., 2003). The 

increased levels in cardiac arrest patients are probably due to a combination of 

SAM stimulation and release from the cells that produce ANP and BNP. 

CgA concentrations are increased in patients with enterochromaffin-like cell 

hyperplasia in the gastric mucosa which can be seen in atrophic gastritis with 

Helicobacter pylori infection, and in conjunction with proton pump inhibitor 

treatment (D'Amico M et al., 2014; Campana et al., 2007; Kleveland et al., 

2001). In a patient with organ failure, CgA is increased due to renal and hepatic 

dysfunction (O'Connor et al., 1989), which suggests that CgA may be 

metabolized in the liver and excrete into urine. CgA concentrations may 

therefore be unreliable as stress biomarkers in patients with renal and hepatic 

dysfunction, atrophic gastritis, as well as in those who have received medication 

with proton pump inhibitor (Gut et al., 2016; D'Amico M et al., 2014). 

Whether there is a circadian variation in CgA secretion is still controversial 

and different studies have shown conflicting results (Den et al., 2011; Den et al., 

2007; Takiyyuddin et al., 1991). Although an active secretion of CgA into saliva 

has been demonstrated, the correlation between CgA in plasma and saliva is still 

unclear (Den et al., 2011; Den et al., 2007; Kanamaru et al., 2006; Toda et al., 

2005; Giampaolo et al., 2002; Takiyyuddin et al., 1991).  

1.4.5 Chromogranin A as stress biomarker in humans 

Although catecholamines are indicators of sympathoadrenal activity, rapid 

degradation and circadian rhythm limit their usefulness as biomarkers in a 

clinical setting (Derbyshire & Smith, 1984; Crout, 1968). CgA is coreleased with 

catecholamines and CgA concentrations have been found to correlate with 

catecholamines when SAM is activated (Akiyoshi et al., 2005; Nakane H, 1998; 

Cryer et al., 1991; Takiyyuddin et al., 1990). CgA is distributed in several tissues 

and measurable from both blood and saliva samples. Moreover, CgA is heat 

stable and has a longer half-life than catecholamines suggesting that CgA may 

be advantageous over catecholamines in a clinical setting (D'Amico M et al., 

2014; Hendy et al., 1995; Winkler & Fischer-Colbrie, 1992; Takiyyuddin et al., 

1990; O'Connor et al., 1989; O'Connor & Bernstein, 1984). Further, CgA 

concentrations are stable during storage and tolerate several freeze-thaw cycles 

(Escribano et al., 2014; O'Connor et al., 1989), and the concentration is 

unaffected by age (Toda et al., 2005). 

Blood sampling may induce a stress reaction because of anticipated pain or 

fear during the sampling procedure in humans. Saliva sampling has been 
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advocated because it is a noninvasive technique where samples are obtained by 

voluntarily spiting into a container without eliciting fear (D'Amico M et al., 

2014; Kanno et al., 1999; Nakane H, 1998). Several studies have been performed 

evaluating saliva and plasma CgA in human; however, the results have been 

conflicting. Saliva CgA has been shown to increase in a response to acute 

psychological stress. Prior to saliva cortisol concentrations, an immediate 

increase in saliva CgA concentration can be measured in response to acute stress 

(Nakane H, 1998). In response to short-term psychological stress, such as 

experienced by children immediately after blood collection, in students before 

examination, and during cognitive tests, saliva CgA has been found to increase 

whereas saliva cortisol did not change significantly (Takatsuji et al., 2008; 

Kanamaru et al., 2006; Lee et al., 2006). However, saliva CgA did not change 

significantly during brief intensive physical stress (Nakane H, 1998). Plasma 

CgA increase significantly in response to short-term intensive physical exercise, 

but not to prolonged low intensive exercise (Takiyyuddin et al., 1990). Saliva 

CgA responded immediately and the changes were still present after 20–30 

minutes (Yamakoshi et al., 2009; Kanamaru et al., 2006; Nakane H, 1998). 

Because saliva cortisol correlates with circulating cortisol, increased saliva 

cortisol may occur first after 15–30 minutes. However, normal reference range 

in humans with lower-stress profiles in relation to age, gender, and time of day 

are lacking. 

1.4.6 Chromogranin A in dogs 

Although few studies on CgA, prior to those studies included in this thesis, have 

been reported in dogs, CgA and its derived peptides have been presented as 

potential biomarkers for neuroendocrine tumors, sepsis, and stress (Jitpean et al., 

2015; Srithunyarat et al., 2015; Byström, 2014; Srithunyarat, 2014; Stridsberg 

et al., 2014; Kanai et al., 2008; Akiyoshi et al., 2005; Myers et al., 1997). CgA 

has been found in endocrine tissue, endocrine tumors, and pancreatic tumors in 

both the original tissues and metastasis in dogs. The high concentrations of 

plasma CgA found in dogs with insulinoma shows that CgA can be useful in 

diagnosing of neuroendocrine tumors (Myers et al., 1997). In one study, CST 

concentrations were significantly decreased in dogs with pyometra compared to 

a healthy control group whereas no changes were found in VS concentrations 

(Jitpean et al., 2015). This study suggested a possible role for CST as a biomarker 

for sepsis. Moreover, in dogs exhibiting severe stress by experimentally insulin-

induced hypoglycemia, plasma CgA significantly increased and correlated with 

plasma cortisol and catecholamine (Akiyoshi et al., 2005). In a study evaluating 

surgical stress in dogs undergoing ovariohysterectomy, plasma VS did not 



32 

 

change in response to surgical stress induced by ovarian removal (Höglund et 

al., 2015). No circadian variation in canine saliva CgA has been demonstrated 

and saliva CgA seems unaffected by gender (Kanai et al., 2008). 
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The general aims of this thesis were to evaluate the potential use of the CgA 

epitopes CST and VS as biomarkers for psychological and pain-induced stress in 

dogs in a clinical setting. We hypothesized that the concentrations of CST and VS 

would differ in dogs during psychological and pain-induced stress compared 

with low-stressed healthy dogs. Furthermore, we hypothesized that the changes 

in CST and VS concentration would agree with other stress and pain assessments. 

 

The specific aims were to: 

 

 Investigate concentrations of and establish reference ranges for the CgA 

epitopes CST and VS in healthy dogs accustomed to sampling procedures 

(Paper I). 

 Investigate and compare concentrations of the CgA epitopes CST and VS, 

cortisol, VAS, CMPS-SF, and physiological assessment parameters in dogs 

before and after a standardized ovariohysterectomy procedure receiving 

analgesia (Paper II). 

 Investigate and compare concentrations of the CgA epitopes CST and VS, 

cortisol, VAS, and CMPS-SF before and after morphine analgesia in dogs 

suffering from traumatic bone fractures, and to compare the results to healthy 

control dogs to evaluate CST and VS potential as biomarkers for pain-induced 

stress (Paper III). 

 Investigate and compare concentrations of the CgA epitopes CST and VS, 

cortisol, and stress VAS between two groups of healthy dogs of which one 

group was accustomed and the other unaccustomed to being handled in an 

animal hospital environment to evaluate the potential use of CST and VS as 

psychological stress biomarker (Paper IV). 

 

 

 

2 Aims and hypothesis of the thesis 
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An overview of the general materials and methods are described. For more 

information see Paper I–IV.  

3.1 Study design and ethical permission 

The studies included in this thesis were performed in a clinical environment. 

Studies occurred at two locations: Swedish University of Agricultural Sciences 

(SLU) and Khon Kaen University (KKU). All studies were ethically approved by 

either the Uppsala Ethical Committee (C301/12) or the KKU Ethical Legislation 

(AEKKU 26/2557) depending on the location for the study. All dog owners were 

informed and gave their consent prior to participation of the dogs. 

3.2 Animals 

Four groups of dogs were included in this thesis: research Beagle dogs, blood 

donor dogs, dogs undergoing elective ovariohysterectomy (OHE), and dogs with 

traumatic bone fractures. No dogs had other concurrent diseases or a history of 

receiving steroidal or proton pump inhibitor drugs prior to inclusion. 

Research Beagle dogs: Ten dogs, three males and seven females, were 

included. All dogs were familiar with and trained for sampling procedures. They 

were fed twice daily with ad libitum water access and were housed at the 

research division at the Department of Clinical Sciences, SLU. All dogs were 

examined and deemed healthy and classified in accordance with the American 

Society of Anesthesiologists (ASA) physical status classification system as ASA 

I.  

Blood donor dogs: Thirty three privately-owned dogs, twenty four males and 

nine females, which routinely donated blood during April 2014 and from 

September 2014 to February 2015 at the University Animal Hospital (UDS), SLU, 

3 Materials and methods 
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were included. All dogs were familiar to the sampling procedures and the animal 

hospital environment. They were healthy and classified as ASA I based on 

physical examination and blood screening tests prior to blood donation in 

accordance with the routines for blood donation at UDS as described in Paper I.  

Dogs undergoing elective OHE: Thirty privately-owned intact female dogs 

that underwent elective OHE at KKU Veterinary Teaching Hospital during March 

to June 2015 were included. The dogs were healthy and classified as ASA I before 

inclusion based on a complete physical examination and blood screening tests 

prior to the surgery as described in Paper II.  

Dogs with traumatic bone fractures: Fourteen privately-owned dogs, nine 

males and five females, suffering from traumatic bone fractures limited to the 

hind limb or pelvis, admitted to KKU Veterinary Teaching Hospital during March 

to June 2015, were included. All dogs underwent a complete physical 

examination, blood screening tests, and radiological examination as described in 

Paper III. Only dogs with ASA I–II and, based on history taking at the time of 

admission, had bone fractures within a 4-day period and an analgesic withdrawal 

period over 6 hours, were included. On admission, all dogs with bone fractures 

received a prompt intramuscular injection with 0.5 mg/kg morphine sulfate 

(Morphine Sulfate injection, M & H manufacturing, Samutprakan, Thailand). 

Dogs were also categorized based on cause of trauma, duration of injury, fracture 

site and number of bone fractures, prior analgesic treatments, and withdrawal 

period from previous analgesia.  

3.3 Study protocol 

The study procedures of each group of dogs are illustrated in Figure 3.  

Paper I: In this study, saliva and blood were collected from both research 

Beagle dogs (n = 10) and blood donor dogs (n = 33). In the research Beagle dogs, 

samples were collected twice daily (6:30 a.m. to 7:30 a.m. and 1:00 p.m. to 2:00 

p.m.) for a five-day period. These time points were selected based on the results 

from a previous pilot study (Srithunyarat, 2014). Blood donor dogs, in 

association with routine blood donation, were sampled at one time point between 

8:00 a.m. to 3:00 p.m. During the study period, dogs donated blood between 1–

3 times, leading to a total of 50 collection occasions. In association with each 

saliva and blood collection, stress behavior was scored using visual analog scale 

(S-VAS). Blood was analyzed for plasma CST and VS and serum cortisol, and 

saliva for CST. 
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Figure 3. Study protocols of the four dog groups. Abbreviations: CMPS-SF: the short form of 

Glasgow composite measure pain scale; OP-VAS: overall pain behavior visual analog scale; S-VAS: 

stress behavior visual analog scale; Airplane: sample transportation with temperature control (–20 

°C). 
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Paper II: Healthy dogs undergoing elective OHE (ASA I) were included (n = 

30). Complete physical examination, pain behavior assessments using the short 

form of the Glasgow Composite Measure Scale (CMPS-SF) (Figure 4) and overall 

pain behavior VAS (OP-VAS) (Figure 5), and saliva and blood sample collection 

were performed before surgery (before premedication), 3 hours after extubation, 

and once at recall for removal of external stitches and control of wound healing 

(day 7 to 15 after surgery). Stress behavior using VAS scores (S-VAS) assessed at 

each saliva and blood sampling occasion (Figure 6) were also recorded. Blood 

was analyzed for plasma CST, plasma VS, and serum cortisol, and saliva for CST. 

Paper III: Previously healthy dogs with traumatic bone fractures (ASA I–II) 

(n = 14) and healthy dogs before elective OHE (ASA I) (Paper II) (n = 30) were 

included. Complete physical examination, pain behavior assessments using 

CMPS-SF and OP-VAS, and saliva and blood sample collection were performed 

immediately before and 35–70 minutes after morphine administration in dogs 

suffering from traumatic bone fractures. Stress behavior was scored using S-VAS 

in all dogs. Blood was analyzed for plasma CST, plasma VS, and serum cortisol, 

and saliva for CST. 

Paper IV: Blood donor dogs (Paper I) (n = 33) and healthy dogs before 

elective OHE (Paper II) (n = 30) were included in the study. The control group 

consisted of the blood donor dogs that were familiar with the animal hospital 

environment and sampling collection procedures. The stress group consisted of 

healthy dogs unfamiliar with the animal hospital environment and sampling 

procedure that were admitted to the animal hospital for elective OHE. For the 

blood donor dogs, one sampling occasion was included. For dogs that donated 

blood on repeated occasions during the study period, one sample was randomly 

selected. For the stress group, preoperative data were used as a reflection of dogs 

subjected to psychological stress. Saliva and blood samples, saliva and blood S-

VAS scores were included in this study. Blood was analyzed for plasma CST, 

plasma VS, and serum cortisol, and saliva for CST. 

 



39 

 

 
Figure 4. Short form of the Glasgow composite measure pain scale (CMPS-SF) (Reid et al., 2007) 

 

 
Figure 5. Overall pain behavior visual analog scale (OP-VAS) 
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Figure 6. Criteria for scoring subjective saliva and blood sampling stress behavior visual analog 

scale (S-VAS). A: criteria used during saliva sampling; B: criteria used during blood sampling. 

3.3.1 Physical examination 

Research Beagle dogs: The physical examination protocol included mental 

status, general attitude, appetite, mucus membrane appearance, capillary refill 

time, rectal temperature, body weight, body condition score, hydration status, 

auscultation of heart and respiratory rate and sounds, abdominal palpation, 

musculoskeletal system palpation, lymph node palpation, hair and skin 

condition, mouth, ear, and eye examination. All physical examinations were 

performed. 
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Blood donor dogs: Dogs were routinely physical examined in accordance 

with the UDS routines by a veterinarian prior to blood donation. 

Dogs undergoing elective OHE and dogs with traumatic bone fractures 

dogs: A complete physical examination using a standardized protocol including 

mental status, general attitude, appetite, mucus membrane appearance, capillary 

refill time, rectal temperature, body weight, body condition score (9 scales), 

hydration status, auscultation of heart and respiratory rate and sounds, 

abdominal palpation, musculoskeletal system palpation, lymph node palpation, 

hair and skin condition, mouth, ear, and eye examination was performed (Figure 

6).  

3.3.2 Sample collection 

Saliva was collected using a salimatrics swab (SalivaBio Children’s swab, 

Salimetrics, PA, USA) placed into the buccal cavity of the dog’s mouth for 60–90 

seconds. The swab was then transferred into a swab storage tube (Swab storage 

tubes, Salimetrics, PA, USA) and centrifuged at 3000 RPM for 15 minutes. The 

deposited saliva was freeze stored until the analysis.  

Blood was collected from the distal cephalic vein using a butterfly needle 

into lithium heparinized tubes and clot activator tubes (BD Vacutainer, Becton-

Dickson, Plymouth, United Kingdom). Plasma and serum samples were 

obtained after centrifugation at 3300 RPM for 5 minutes. Samples were then 

frozen until analysis.  

Saliva and blood samples were collected at time points and stored as follows:  

Research Beagle dogs: Saliva samples were collected prior to blood 

collection by the same veterinarian (the author). Blood samples were collected 

by the same veterinarian. Saliva and plasma samples were directly freeze stored 

at –70 °C. 

Blood donor dogs: Blood was collected by two certified veterinary nurses 

for routine health screening prior to blood donation and the remaining blood was 

used for Paper I and IV. Saliva samples were collected by the same veterinarian 

(the author). The order of blood and saliva sampling was randomized for 

practical reasons. Saliva, plasma, and serum samples were freeze stored at –70 

°C. 

Dogs undergoing elective OHE and dogs with traumatic bone fractures: 

Saliva and blood samples were collected by the same veterinarian (the author). 

Saliva, plasma, and serum samples were initially stored at –20 °C at KKU, then 

transported at a temperature below –20 °C to SLU (Temperature control, World 

Courier, Bangkok, Thailand) and freeze stored in –70 °C until analysis. 
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Figure 7. Physical examination chart. Abbreviations: HN: hospital number; BCS: body condition 

score; CRT: capillary refill time; NPO: nothing per oral; RtFL: right forelimb; LtFL: left forelimb; 

RtHL: right hind limb; LtHL: left hind limb; bpm: beats/breaths per minute; CBC: complete blood 

count; BP: blood parasites; Crea: creatinine; BUN: blood urine nitrogen; ALT: alanine 

aminotransferase. 
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3.3.3 Subjective stress and pain assessments 

In all dogs, stress and pain behavior were scored by the same observer (the 

author).  

Pain behavior was scored in dogs undergoing elective OHE and in dogs with 

traumatic bone fractures using the CMPS-SF and OP-VAS prior to sample 

collection. The CMPS-SF had a total score of 24 in dogs undergoing elective OHE. 

In accordance to the instructions for use of the CMPS-SF, a total score is 20 in 

dogs with traumatic bone fractures. Scores ≥ 6/24 and ≥ 5/20 indicate pain and 

that analgesic treatment is required (Reid et al., 2007). The OP-VAS was scored 

using a 100-mm VAS line where one end indicated “no pain” and the other end 

“worst possible pain” (Figure 5).  

Stress behavior was also scored shortly after each saliva and blood sampling 

occasion using a 100-mm line of visual analog scale (S-VAS) in all dogs. The 

criteria for saliva and blood sampling S-VAS, modified from a study by Norling 

(Norling et al., 2012), are illustrated in Figure 6.  

3.4 Laboratory analysis 

3.4.1 Analysis of chromogranin A epitopes catestatin and vasostatin 

CgA, in this study, was analyzed using rabbit antibodies to the human CgA 

sequence 17–38 for VS and 361–372 for CST, as previously reported (Stridsberg 

et al., 2014). This method has been developed for both tissue and circulating 

concentrations. The limit of detection is 0.01 nmol/L for plasma CST and VS and 

0.04 nmol/L for saliva CST and coefficient of variation (CV) was < 10% 

(Stridsberg et al., 2004). Samples were analyzed for CST and VS in duplicate 

using region specific RIA at the Clinical Chemistry Laboratory, Uppsala 

University Hospital, Uppsala, Sweden. The overall CV in all studies was < 10%. 

A volume of 300 µL saliva and 100 µL plasma was required for each analysis. 

Saliva volumes were unpredictable and often insufficient for analyzing of CST 

and VS. When saliva was obtained, only saliva CST was analyzed. 

3.4.2 Cortisol analysis 

Serum samples were analyzed in duplicate for cortisol using solid-phase 

competitive chemiluminescent enzyme immunoassay (Immulite 2000, Siemens, 

Erlangen, Germany) at the Clinical Chemistry Laboratory, UDS, SLU. The overall 

CV was < 5 %. 
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3.5 Statistical analysis 

Data were first checked for normality and homoscedasticity and parameters with 

skewness were transformed by natural log. In Paper I, both CST and VS 

concentration were natural log transformed and, in Paper II–IV, only plasma VS 

concentrations were natural log transformed. All statistical analysis were 

performed using SAS package (SAS Institute, 2014) and the p value of < 0.05 

was considered significant. 

Paper I: Plasma CST, plasma VS, saliva CST, saliva S-VAS, and blood S-VAS 

scores were analyzed in the research Beagle dog group and blood donor dog 

group. Reference ranges for plasma CST, plasma VS, and saliva CST were 

calculated from natural log transformed data using percentile 2.5 to 97.5 and 

then back-transformed to the original scale. Age, gender, breed, and time of 

collection were calculated using Mixed Model procedure and Tukey adjustment 

for multiplicity (SAS Institute, 2014). Independent sample t-test was also used 

to analyze the difference between the dog groups. Correlation between 

parameters was analyzed using Proc Corr in SAS package. Serum cortisol 

concentration was presented as mean ± SD.  

Paper II: Plasma CST, plasma VS, saliva CST, serum cortisol, CMPS-SF, OP-

VAS, saliva S-VAS, blood S-VAS score, temperature, respiratory rate, and heart 

rate were compared between three different time points including before surgery, 

3 hours after extubation, and at recall using Mixed Model procedure, where dog 

was a random factor, and Tukey adjustment was used for multiplicity.  

Paper III: Parameters including plasma CST, plasma VS, saliva CST, serum 

cortisol, CMPS-SF, OP-VAS, saliva S-VAS, blood S-VAS scores, temperature, 

respiratory rate, and heart rate in dogs with traumatic bone fractures were 

compared between before and after morphine administration using Mixed Model 

procedure with dog as a random factor. Parameters in dogs with traumatic bone 

fractures were also compared with dogs before elective OHE as a control group 

using two independent sample t-test. All assessed parameters were also analyzed 

based on cause of trauma (unknown or car accident), duration of injury (< 48 

hours or ≥ 48 hours), fracture site (femur, tibia, both femur and tibia, or pelvis) 

and number of bone fractures (1–7), last analgesic drug received (no analgesia, 

unknown/not specified analgesia, carprofen, or morphine), and withdrawal 

period from previous analgesia (≤ 12 hours or > 12 hours) in dogs with traumatic 

bone fractures using Mixed Model procedure. Pairwise comparisons were 

adjusted for multiplicity using Tukey’s method. However, saliva samples were 

insufficient, and saliva CST therefore could not be determined in this study. 

CMPS-SF, OP-VAS, serum cortisol, and plasma CST concentrations were 

calculated for delta values by subtracting post treatment values from baseline 

values prior to morphine treatment. Absolute values were also defined for serum 
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cortisol, and plasma CST concentrations as the delta values without + or – signs. 

The correlation were calculated using Proc Corr between analgesia group, the 

delta values for CMPS-SF and OP-VAS scores, and the absolute delta values for 

serum cortisol and plasma CST concentrations. 

Paper IV: Plasma CST, plasma VS, saliva CST, serum cortisol, saliva S-VAS, 

and blood S-VAS scores were compared between two dogs groups using 

independent sample t-test. Correlation of parameters were also calculated using 

Proc Corr. 
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The results in Paper I–IV are summarized as follows. 

4.1 Assessments in healthy dogs accustomed to the 
sampling procedures 

Age, gender, body weight, and general information of included dogs and 

concentrations of plasma CST, plasma VS, and saliva CST and saliva and blood S-

VAS scores in both research Beagle and blood donor dog groups are presented in 

Paper I.  

4.1.1 Chromogranin A epitopes catestatin and vasostatin 

Reference ranges of plasma CST, plasma VS, and saliva CST concentrations were 

established as the reference ranges measured in 33 healthy dogs accustomed to 

the sampling procedures and are shown in Table 1. 

Table 1. Reference ranges of Chromogranin A epitopes catestatin and vasostatin in 33 healthy dogs 

accustomed to sampling procedures 

 
Chromogranin A epitope Reference range (nmol/L) 

Plasma catestatin 

Plasma vasostatin 

Saliva catestatin 

0.53–0.98 

0.11–1.30 

0.31–1.03 

The mean ± SD plasma CST, plasma VS, and saliva CST concentrations were 0.81 

± 0.08, 0.57 ± 0.55, and 0.83 ± 0.12 nmol/L, respectively, in research Beagle 

dogs, and 0.76 ± 0.10, 0.44 ± 0.39, and 0.64 ± 0.21 nmol/L, respectively, in 

blood donor dogs. There was no significant correlation between plasma CST, 

plasma VS, and saliva CST. Furthermore, CST and VS differed significantly (p < 

4 Results 
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0.0001) in both dog groups. Concentrations of plasma CST, plasma VS, and saliva 

CST did not differ significantly between research Beagle and blood donor dog 

groups. Concentrations of plasma CST, plasma VS, and saliva CST did not differ 

significantly by age, gender, breed, or time of collection as well as between dogs 

with different DEA 1.1 or between dogs with and without antibodies against 

Borrelia burgdorferi.  

4.1.2 Cortisol 

The mean ± SD serum cortisol concentration was 39.9 ± 6.1 nmol/L in the 

research Beagle dog group and 65.8 ± 28.2 nmol/L in the blood donor dog group.  

4.1.3 Visual analog scale 

The mean ± SD saliva and blood sampling S-VAS scores in research Beagle dogs 

were 11.1 ± 7.8 and 8.9 ± 10.5 mm, respectively, and in blood donor dogs were 

21.2 ± 16.7 and 19.1 ± 17.3 mm, respectively. In this study, the S-VAS scores in 

all dogs were low, which indicates minimal stress behavior (Paper I). No 

significant differences based on sampling method (saliva and blood sampling), 

age, gender, breed, time of collection or between research Beagle and blood 

donor dog groups were found. 

4.2 Assessments in dogs undergoing elective 
ovariohysterectomy 

Data on age, gender, body weight, and general information of included dogs and 

concentrations of plasma CST, plasma VS, and saliva CST, temperature, heart rate, 

respiratory rate, CMPS-SF, OP-VAS, saliva and blood S-VAS scores from each time 

point are presented in Paper II and Table 2.  

4.2.1 Chromogranin A epitopes catestatin and vasostatin 

Plasma CST concentrations were significantly decreased at 3 hours after 

extubation (p = 0.002) and at recall (p = 0.04) compared with before surgery 

whereas no significant difference between 3 hours after extubation and at recall 

(p = 0.56) was found (Figure 8). No significant changes in plasma VS and saliva 

CST were reported at any of the time points (Figure 9–10 and Table 2). 
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4.2.2 Cortisol 

Serum cortisol concentrations at recall were significantly decreased compared 

with before surgery (p = 0.009). No significant differences were found between 

before surgery and 3 hours after extubation (p = 0.73) and between 3 hours after 

extubation and at recall (p = 0.06) (Figure 11 and Table 2). 

4.2.3 Physiological assessments 

Rectal temperature and respiratory rate were significantly lower at 3 hours after 

extubation compared with before surgery and at recall (p < 0.0001) while no 

significant difference was found between before surgery and at recall (p = 0.9) 

(Figure 12–13). Heart rate did not differ significantly between any time points 

(Figure 14). 

4.2.4 The short form of Glasgow composite measure pain scale 

The CMPS-SF scores were significantly higher at 3 hours after extubation than 

before surgery and at recall (p < 0.0001) (Figure 15 and Table 2). No significant 

differences were found between CMPS-SF scores before surgery and at recall (p 

= 0.07). 

4.2.5 Visual analog scale 

The OP-VAS results were in agreement with the CMPS-SF where scores at 3 hours 

after extubation were significantly higher than before surgery and at recall (p < 

0.0001). Saliva and blood S-VAS scores were significantly lower than before 

surgery (p < 0.0001 for saliva and p = 0.0001 for blood S-VAS) and at recall (p = 

0.003 for saliva and p = 0.03 for blood S-VAS). No significant difference was 

found between before surgery and at recall regarding OP-VAS, saliva and blood 

S-VAS results (Figure 16–18 and Table 2). 

4.3 Stress and pain assessments in dogs with traumatic 
bone fractures 

Data of the included dogs regarding the parameters age, gender, body weight, 

and general information of included dogs, concentrations of plasma CST, plasma 

VS, serum cortisol, temperature, heart rate, respiratory rate, CMPS-SF, OP-VAS, 

saliva and blood S-VAS scores from each time point, are presented in Paper III 

and Table 2. Cause of trauma, duration of injury, fracture site and number of 

bone fractures, and withdrawal period from previous analgesia in dogs with 
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traumatic bone fractures did not significantly affect any of the assessed 

parameters for all comparisons in this study. 

4.3.1 Chromogranin A epitopes catestatin and vasostatin 

In dogs with fractures before morphine administration, concentrations of plasma 

CST were significantly decreased (p = 0.009) compared with the healthy dogs 

prior to OHE (Figure 8 and Table 2). After morphine administration, plasma CST 

concentrations were still lower compared with the healthy dogs (p = 0.002) and 

no significant changes were found between before and after morphine 

administration (p = 0.30). No significant changes of plasma VS were detected 

between any of the sampling time points (Figure 9). Plasma CST and VS 

concentrations overlapped to a large degree with the reference ranges in low-

stressed healthy dogs, as established in Paper I. The absolute delta values for 

plasma CST significantly correlated with the delta values for CMPS-SF (r = 0.31, 

p = 0.04). Plasma CST did not significantly differ between the different analgesia 

groups (p = 0.3) (Paper III). Saliva was not obtained in a sufficient volume to be 

able to analyze saliva CST. 

4.3.2 Cortisol 

Serum cortisol concentrations were significantly lower in dogs with bone 

fractures prior to morphine administration compared with the healthy dogs (p = 

0.01) (Figure 11 and Table 2). No significant differences were found between 

before and after morphine treatment (p = 0.3) and between healthy dogs and dogs 

with fractures after morphine treatment (p = 0.1). Cortisol concentrations were 

significantly lower in dogs without prior analgesia treatment than in dogs that 

had received unknown, carprofen, or morphine analgesia more than 6 hours prior 

to inclusion in the study (p = 0.02) (Paper III).  

4.3.3 Physiological assessments 

The physiological parameters of temperature, respiratory rate, and heart rate did 

not differ significantly between healthy dogs and dogs with traumatic bone 

fractures (Figure 12–14). After morphine administration, temperature and heart 

rate (p = 0.001) decreased significantly, whereas no changes was found in 

respiratory rate, compared with before morphine treatment. 
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4.3.4 The short form of Glasgow composite measure pain scale 

Scores of the CMPS-SF in dogs with bone fractures both before and after 

morphine administration were significantly higher than in the healthy dogs (p < 

0.0001). After morphine administration, the CMPS-SF scores had decreased 

significantly (p = 0.005) compared with before the treatment (Figure 15 and 

Table 2). 

4.3.5 Visual analog scale 

The OP-VAS scores, similar to the CMPS-SF, were significantly higher in dogs 

with fractures both before and after morphine treatment compared with the 

healthy dogs (p < 0.0001). After morphine administration, OP-VAS scores were 

significantly decreased compared with before treatment (p = 0.02) (Figure 16 

and Table 2).  

The saliva and blood S-VAS scores were significantly lower in dogs with bone 

fractures before morphine administration than in healthy dogs (p = 0.048 for 

saliva and p = 0.02 for blood S-VAS, respectively). After morphine treatment, 

saliva and blood S-VAS scores were significantly lower than in healthy dogs (p 

= 0.002 for saliva and p = 0.0005 for blood S-VAS, respectively) and dogs with 

bone fractures before morphine administration (p = 0.02 for saliva and p = 0.01 

for blood S-VAS, respectively) (Figure 17–18 and Table 2). 

4.4 Assessments for psychological stress in healthy dogs 

Data of the parameters age, gender, body weight, general information of 

included dogs, concentrations of plasma CST, plasma VS, serum cortisol, saliva 

and blood S-VAS scores are presented in Paper IV and Table 2. 

4.4.1 Chromogranin A epitopes catestatin and vasostatin 

Saliva CST concentrations were significantly higher in the stress group than in 

the control group (p = 0.003) and higher than the reference ranges for the low-

stressed healthy dogs reported in Paper I (Figure 10 and Table 2). Plasma CST (p 

= 0.88) and VS (p = 0.09) concentrations did not differ significantly between dog 

groups (Figure 8–9 and Table 2). 

Saliva and plasma CST correlated significantly with serum cortisol 

concentrations (r = 0.34, p = 0.04 for saliva CST and r = 0.29, p = 0.03 for plasma 

CST). Additionally, saliva CST also correlated significantly with saliva S-VAS 

score (r = 0.47, p = 0.003). No significant correlation was found between saliva 

and plasma CST. 
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4.4.2 Cortisol 

Serum cortisol concentrations were significantly higher in the stress group 

compared with the healthy group (p < 0.0001) (Figure 11 and Table 2). Serum 

cortisol concentrations were significantly correlated to both saliva and plasma 

CST concentrations. 

4.4.3 Visual analog scale 

Saliva S-VAS and blood S-VAS scores were significantly higher in the stress group 

compared with the control group (p = 0.0009 for saliva and p = 0.002 for blood, 

respectively) (Figure 17–18 and Table 2). Saliva S-VAS scores significantly 

correlated with blood S-VAS scores (r = 0.86, p < 0.0001). 

 

 
 

Figure 8. Boxplot of plasma catestatin concentrations in dogs. Dogs were grouped into healthy 

dogs with low stress (Control, n = 33), healthy dogs before ovariohysterectomy (OHE before, n = 

30), after ovariohysterectomy at 3 hours after extubation (OHE 3 h, n = 30), and at recall (OHE recall, 

n = 27), dogs with fractures before morphine treatment (Fracture before, n = 14), and after morphine 

treatment (Fracture after, n = 14). * Significant difference between groups (p < 0.05) 
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Figure 9. Boxplot of plasma vasostatin concentrations in dogs. Dogs were grouped into healthy 

dogs with low stress (Control, n = 33), healthy dogs before ovariohysterectomy (OHE before, n = 

30), after ovariohysterectomy at 3 hours after extubation (OHE 3 h, n = 30), and at recall (OHE recall, 

n = 27), dogs with fractures before morphine treatment (Fracture before, n = 14), and after morphine 

treatment (Fracture after, n = 14). * Significant difference between groups (p < 0.05) 

 

 
Figure 10. Boxplot of saliva catestatin concentrations in dogs. Dogs were grouped into healthy 

dogs with low stress (Control, n = 33), healthy dogs before ovariohysterectomy (OHE before, n = 

30), after ovariohysterectomy at 3 hours after extubation (OHE 3 h, n = 30), and at recall (OHE recall, 

n = 27), dogs with fractures before morphine treatment (Fracture before, n = 14), and after morphine 

treatment (Fracture after, n = 14). * Significant difference between groups (p < 0.05) 
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Figure 11. Boxplot of serum cortisol concentrations in dogs. Dogs were grouped into healthy dogs 

with low stress (Control, n = 33), healthy dogs before ovariohysterectomy (OHE before, n = 30), 

after ovariohysterectomy at 3 hours after extubation (OHE 3 h, n = 30), and at recall (OHE recall, n 

= 27), dogs with fractures before morphine treatment (Fracture before, n = 14), and after morphine 

treatment (Fracture after, n = 14). * Significant difference between groups (p < 0.05) 

 

 
Figure 12. Boxplot of rectal temperature in dogs. Dogs were grouped into healthy dogs with low 

stress (Control, n = 33), healthy dogs before ovariohysterectomy (OHE before, n = 30), after 

ovariohysterectomy at 3 hours after extubation (OHE 3 h, n = 30), and at recall (OHE recall, n = 27), 

dogs with fractures before morphine treatment (Fracture before, n = 14), and after morphine 

treatment (Fracture after, n = 14). * Significant difference between groups (p < 0.05) 



55 

 

 
Figure 13. Boxplot of respiratory rate in dogs. Dogs were grouped into healthy dogs with low stress 

(Control, n = 33), healthy dogs before ovariohysterectomy (OHE before, n = 30), after 

ovariohysterectomy at 3 hours after extubation (OHE 3 h, n = 30), and at recall (OHE recall, n = 27), 

dogs with fractures before morphine treatment (Fracture before, n = 14), and after morphine 

treatment (Fracture after, n = 14). * Significant difference between groups (p < 0.05) 

 

 
Figure 14. Boxplot of heart rate in dogs. Dogs were grouped into healthy dogs with low stress 

(Control, n = 33), healthy dogs before ovariohysterectomy (OHE before, n = 30), after 

ovariohysterectomy at 3 hours after extubation (OHE 3 h, n = 30), and at recall (OHE recall, n = 27), 

dogs with fractures before morphine treatment (Fracture before, n = 14), and after morphine 

treatment (Fracture after, n = 14). * Significant difference between groups (p < 0.05) 
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Figure 15. Boxplot of subjective assessments of the short form of Glasgow composite measure pain 

scale (CMPS-SF) in dogs. Dogs were grouped into healthy dogs with low stress (Control, n = 33), 

healthy dogs before ovariohysterectomy (OHE before, n = 30), after ovariohysterectomy at 3 hours 

after extubation (OHE 3 h, n = 30), and at recall (OHE recall, n = 27), dogs with fractures before 

morphine treatment (Fracture before, n = 14), and after morphine treatment (Fracture after, n = 14). 

* Significant difference between groups (p < 0.05) 

 
Figure 16. Boxplot of overall pain behavior visual analog scale (OP-VAS) in dogs. Dogs were 

grouped into healthy dogs with low stress (Control, n = 33), healthy dogs before 

ovariohysterectomy (OHE before, n = 30), after ovariohysterectomy at 3 hours after extubation (OHE 

3 h, n = 30), and at recall (OHE recall, n = 27), dogs with fractures before morphine treatment 

(Fracture before, n = 14), and after morphine treatment (Fracture after, n = 14). * Significant 

difference between groups (p < 0.05) 
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Figure 17. Boxplot of saliva sampling stress behavior visual analog scale (S-VAS) in dogs. Dogs 

were grouped into healthy dogs with low stress (Control, n = 33), healthy dogs before 

ovariohysterectomy (OHE before, n = 30), after ovariohysterectomy at 3 hours after extubation (OHE 

3 h, n = 30), and at recall (OHE recall, n = 27), dogs with fractures before morphine treatment 

(Fracture before, n = 14), and after morphine treatment (Fracture after, n = 14). * Significant 

difference between groups (p < 0.05) 

 
Figure 18. Boxplot of blood sampling stress behavior visual analog scale (S-VAS) in dogs. Dogs 

were grouped into healthy dogs with low stress (Control, n = 33), healthy dogs before 

ovariohysterectomy (OHE before, n = 30), after ovariohysterectomy at 3 hours after extubation (OHE 

3 h, n = 30), and at recall (OHE recall, n = 27), dogs with fractures before morphine treatment 

(Fracture before, n = 14), and after morphine treatment (Fracture after, n = 14). * Significant 

difference between groups (p < 0.05) 



58 

 

Table 2. Data (mean ± SD) of the assessed parameters in blood donor dogs, dogs undergoing elective ovariohysterectomy, and dogs with traumatic bone fractures 

 
Parameters Blood donor dogs Dogs undergoing elective ovariohysterectomy Dogs with traumatic bone fractures 

Time point Donation Before surgery 3 h after extubation Recall Before morphine After morphine 

Time 8:00 a.m.–3:00 p.m. 8:30 a.m.–11:20 a.m. 1:00 p.m.–5:30 p.m. 8:50 a.m.–6:15 p.m. 9:05 a.m.–7:00 p.m. 9:40 a.m.–7:47 p.m. 

n 33 30 30 27 14 14 

Plasma catestatin (nmol/L) 0.76 ± 0.10 0.76 ± 0.17 0.72 ± 0.16 0.74 ± 0.17 0.61 ± 0.15 0.58 ± 0.16 

Plasma vasostatin (nmol/L) 0.42 ± 0.39 1.12 ± 2.16 1.17 ± 2.49 1.45 ± 2.93 0.39 ± 0.12 0.39 ± 0.07 

Saliva catestatin (nmol/L) 0.64 ± 0.24 1.17 ± 0.48 0.74 1.09 ± 0.59 NA NA 

Serum cortisol (nmol/L) 65 ± 28 175 ± 79 162 ± 88 123 ± 64 108 ± 69 131 ± 94 

Temperature (°C) - 38.9 ± 0.4 37.5 ± 0.6 38.9 ± 0.4 38.7 ± 0.5 38.1 ± 0.5 

Respiratory rate (bpm) - 93 ± 63 29 ± 15 88 ± 63 101 ± 60 118 ± 63 

Heart rate (bpm) - 124 ± 31 110 ± 33 126 ± 32 137 ± 33 109 ± 24 

CMPS-SF - 0 4 ± 3 (/24) 1 ± 1 (/24) 6 ± 3 (/20) 4 ± 2 (/20) 

OP-VAS (mm) - 0 29 ± 11 1 ± 2 40 ± 14 33 ± 13 

Saliva S-VAS (mm) 22 ± 19 42 ± 24 22 ± 16 35 ± 22 28 ± 11 20 ± 8 

Blood S-VAS (mm) 19 ± 20 38 ± 22 20 ± 20 29 ± 21 22 ± 12 14 ± 9 

Data from dogs undergoing ovariohysterectomy at all time points (before surgery, 3 hours after extubation, and at recall) are compared in Paper II, dogs with traumatic bone fractures 

both before and after morphine treatment compared with dogs undergoing elective ovariohysterectomy before surgery are compared in Paper III, and blood donor dogs compared with 

dogs undergoing ovariohysterectomy before surgery in Paper IV. Abbreviations: NA: not assessed due to limited saliva volume; bpm: beats/breaths per minute; CMPS-SF: the short form 

of Glasgow composite measure pain scale; OP-VAS: overall pain behavior visual analog scale; S-VAS: stress behavior visual analog scale  
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To evaluate their potentials, reference ranges were initially established in healthy 

low-stressed dogs. The potential and usefulness of CST and VS in different 

clinical settings were thereafter evaluated by comparing CST and VS 

concentrations, as well as other stress and pain assessments, in dogs 

experiencing psychological and pain-induced stress.  

5.1 Chromogranin A epitopes catestatin and vasostatin 
in healthy dogs 

5.1.1 Reference ranges of catestatin and vasostatin in low-stressed 

healthy dogs 

Reference ranges of plasma CST, VS, and saliva CST concentration were 

established in dogs experiencing minimal stress. Complete avoidance of stress 

is difficult to achieve; it is however imperative to minimize when establishing 

reference ranges for further studies on stress in both animals and humans. In this 

study, only dogs that were accustomed to the sampling procedures and 

environment were included. The stress levels were deemed minimal based on 

low S-VAS scores and serum cortisol concentrations. Concentrations of stress 

biomarkers may be influenced by biological variations i.e. rapid degradation in 

catecholamines and confounding factors of age, gender, pulsatile secretion, and 

circadian variations in cortisol. Our findings showed that CST and VS 

concentrations were not significantly affected by age, gender, and breed in dogs. 

Further, by analyzing repeated samples within individuals over time, we showed 

that CST and VS did not vary depending on time at which the sample was 

obtained. These findings are in agreement with a study on saliva CgA in dogs 

over a 24-hour period where no circadian rhythm was found (Kanai et al., 2008). 

The reference ranges of plasma CST, plasma VS, and saliva CST established in 

5 Discussion 
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this thesis, therefore, can be used as a baseline for low-stressed healthy dogs and 

will be important in further studies on CST and VS in dogs. 

The range for plasma CST found in this study was lower than in a control 

group in a previous study using the same region specific RIA (Jitpean et al., 

2015). However, in the previous study, samples had been stored for over 5 years 

with repeated thawing cycles. Although CgA has been found to be stable during 

storage, temperature variations, and through thawing and freezing cycles in 

several species (Escribano et al., 2014; Taupenot et al., 2003; O'Connor et al., 

1989), no long-term studies have been performed in dogs. In addition, because 

the region specific RIA measured both the degradation peptide and the intact 

molecule, it is possible that the sensitivity to storage may vary between these 

two parameters.  

Although both CST and VS are derived from CgA, CST and VS concentrations 

differed significantly and did not significantly correlate. This was unexpected 

and possibly the significant differences in concentrations seen in Paper I reflect 

different functions and clearance rates of the two epitopes.  

An active secretion of CgA has been found in saliva glands in humans, rats, 

and horses (Saruta et al., 2005; Sato et al., 2002; Kanno et al., 1999). In rats, 

saliva CgA concentration has been shown to depend on the intensity of stimuli 

and less likely to be affected by saliva flow (Mahata et al., 2004; Kanno et al., 

1999; Mahata et al., 1997; Cryer et al., 1991; O'Connor & Bernstein, 1984). The 

lack of correlation between saliva CST and plasma CST in our studies suggests an 

active secretion of CST also from canine salivary glands. According to our 

findings, it is important to evaluate different CgA epitopes separately, whether 

from blood and saliva. 

Saliva sampling is a well-known noninvasive sampling technique commonly 

used in humans because it induces less stress than other sampling techniques. 

Stress behavior during blood and saliva sampling was scored in all the included 

studies using an S-VAS. All the S-VAS scoring was performed by the same person. 

Blood sampling S-VAS scores were similar to saliva sampling S-VAS, and no 

significant difference was found between blood and saliva sampling S-VAS in 

any of the dog groups. Although saliva sampling is noninvasive, it may induce 

a similar degree of psychological stress as blood sampling in dogs. However, 

obtained saliva volumes were unpredictable and often insufficient for analyzing 

both CST and VS in dogs, making saliva sampling difficult to use in a clinical 

setting. 
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5.1.2 Catestatin and vasostatin in healthy dogs subjected to 

psychological stress 

The potential of CST and VS as psychological stress biomarkers was further 

evaluated by comparing concentrations between healthy low-stressed and 

stressed dogs (Paper IV). Commonly, psychological stress, often referred to as 

the “white coat effect”, is elicited when dogs are exposed to an environment and 

treated at a veterinary hospital. This psychological stress can stimulate SAM and 

HPA axes (Hekman et al., 2014; Höglund et al., 2012). In Paper IV, the control 

group was composed of dogs familiar with the sampling procedures and the 

animal hospital environment. The dogs perceived minimal stress based on their 

low S-VAS scores and serum cortisol concentrations. In contrast, dogs in the 

stress group were unfamiliar with the sampling procedures and the animal 

hospital environment and, based on the S-VAS and cortisol concentrations, 

experienced significantly higher psychological stress. In a comparison between 

the control and stress group, the mean saliva CST concentrations doubled in the 

stress group and significantly differed from the controls. Additionally, the 

overall saliva CST concentration in the stress group was over the reference range 

reported in healthy low-stressed dogs in Paper I.  

In humans, several studies have indicated that saliva CgA shows promise as 

a sensitive biomarker for psychological stress (Takatsuji et al., 2008; Kanamaru 

et al., 2006; Lee et al., 2006; Nakane H, 1998). Although it was difficult to 

obtain a sufficient saliva volume, our results suggest that saliva CST shows some 

promise as a biomarker for psychological stress also in dogs. 

The plasma CST concentrations in the psychologically stressed dogs did not 

significantly differ from the controls and did not significantly correlate with 

saliva CST concentrations. These findings further indicate an active secretion of 

CST in saliva in dogs.  

The concentrations of plasma CST and VS in the stress group overlapped to a 

large degree with the reference ranges for healthy low-stressed dogs, suggesting 

that plasma CST and VS may be unaffected by psychological stress in a clinical 

setting. Little is known about CgA and its degradation peptides’ secretion (onset, 

peak, and duration) in dogs. All samples included in Paper IV were collected 

within 60 minutes after arrival at the veterinary hospital. In humans, different 

studies have reported half-life varying from 18–257 minutes (Stridsberg et al., 

2008; O'Connor & Bernstein, 1984). However, no studies on CST and VS half-

life have yet been reported. Possibly we missed the peak values when sampling. 

However, all dogs still showed behavior signs of ongoing psychological stress 

based on the S-VAS evaluation in conjunction with sampling.  

Intensity of stress stimuli may be one factor influencing the CgA secretion. 

In humans, prolonged low-intensive physical stress has been shown not to 
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significantly change plasma CgA concentrations, while intensive physical stress 

i.e. a marathon may lead to increased concentrations (Nickel et al., 2012; Nakane 

H, 1998; Takiyyuddin et al., 1990). Additionally, plasma CgA increased 

significantly in dogs, under experimental conditions, experiencing severe stress 

induced by hypoglycemia after insulin injection (Akiyoshi et al., 2005). The 

degree of psychological stress in Paper IV may have been insufficient to change 

plasma CST and VS concentrations in the stress group. One of our aims was, 

however, to evaluate CST and VS potential as biomarkers for stress in a clinical 

setting. This degree of stress experienced by the dogs in our studies is probably 

more indicative of the level of stress that needs to be identified in a clinical 

setting.  

Our findings illustrated that saliva CST may have potential as a psychological 

stress biomarker whereas plasma CST and VS concentrations have limited 

potential in dogs. The findings further show the importance and usefulness of 

the established reference ranges in healthy dogs in a clinical setting.  

5.2 Chromogranin A epitopes catestatin and vasostatin 
in dogs experiencing pain 

The potential of CST and VS as biomarkers for pain-induced stress was 

investigated by comparing concentrations in dogs experiencing different painful 

situations with healthy control dogs without pain (Paper II and III). In Paper II, 

CST and VS concentrations were compared in healthy dogs before and after 

undergoing elective OHE. The OHE procedure was chosen because this is a 

surgical technique that can be reasonably standardized and has been used in 

previous studies on pain and surgical stress in dogs (Morgaz et al., 2013; Kim et 

al., 2012; Kongara et al., 2012; Shih et al., 2008; Devitt et al., 2005; 

Mastrocinque & Fantoni, 2003). In Paper III, previously healthy dogs with 

traumatic bone fractures were included and CST and VS concentration compared 

before and 35–70 minutes after morphine administration. Although difficult to 

standardize, we chose to perform this study on patients rather than using research 

animals to reduce the need for inflicting pain experimentally. If the results were 

to show that CST and VS significantly deviated from the reference range, further 

studies would be warranted using more standardized experimental protocols. In 

both Paper II and III, CST and VS concentrations were compared with serum 

cortisol levels, S-VAS, OP-VAS and CMPS-SF. 

Although the dogs in the OHE study received preemptive morphine analgesia, 

CMPS-SF and OP-VAS indicated some degree of pain at 3 hours after extubation. 

Plasma CST but not VS significantly decreased at 3 hours after extubation 

compared with before surgery but the concentrations were within the previously 
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established normal reference range for low-stressed dogs. At recall for suture 

removal, plasma CST and serum cortisol concentrations significantly decreased 

compared with before surgery, but not at 3 hours after extubation. All subjective 

assessments of stress and pain (decreased S-VAS, increased CMPS-SF and OP-VAS 

scores) at 3 hours after extubation differed significantly with before surgery and 

at recall; however, no significant differences were found between before surgery 

and at recall. Catestatin has an inhibitory role as a negative feedback for the 

release of catecholamines and CgA (Mahata et al., 2004), which may contribute 

to the decreased concentrations of plasma CST seen in this study. Many different 

stimuli can induce stress reactions, including fear and psychological anxiety. 

The high concentrations of serum cortisol and saliva CST seen before surgery 

could possibly be due to the white coat effect with less response at recall, perhaps 

because the dogs were more accustomed to the animal hospital environment. 

However, the S-VAS scores did not differ significantly between before surgery 

and at recall. Because both the CMPS-SF and the OP-VAS scores indicated pain at 

3 hours after extubation, it is tempting to attribute the significant decrease in 

circulating CST to be indicative of a pain-induced stress. However, although not 

in line with CMPS-SF and OP-VAS, there was no significant difference in plasma 

CST levels between 3 hours after extubation and at recall. The CMPS-SF and OP-

VAS differed significantly between 3 hours after extubation but not before 

surgery and at recall. Further studies with more subjects are needed to fully 

evaluate plasma CST potential for monitoring pain within an individual. 

Plasma CST, serum cortisol concentrations, CMPS-SF, and OP-VAS scores 

differed significantly in dogs with traumatic bone fractures compared with 

healthy dogs without fractures. Plasma CST concentrations overlapped largely 

with previously established normal ranges in dogs. Morphine treatment partially 

relieved pain and stress according to the subjective pain assessments. Circulating 

levels of CST and cortisol did not differ significantly before and 35–70 minutes 

after morphine treatment. The absolute delta values for plasma CST, however, 

correlated significantly with the delta values for CMPS-SF. Dogs with lower delta 

values for CMPS-SF scores, indicating good pain relief, had higher absolute delta 

values for plasma CST. Although our results indicated a possible future use of 

plasma CST for monitoring pain progression, further studies are needed. 

On the other hand, plasma VS did not significantly differ between any of the 

dog groups and time points. This is in line with previous studies in dogs 

undergoing OHE and in dogs with pyometra where plasma VS concentrations 

were also found not to change significantly (Höglund et al., 2015; Jitpean et al., 

2015). Further, plasma VS concentrations in all of our studies were largely within 

the reference range established in Paper I. Our findings indicated that plasma VS 

has no potential as a biomarker for pain-induced stress in dogs.  
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Obtaining saliva samples was difficult in dogs with CMPS-SF and OP-VAS 

indicating pain. Too few samples were obtained to be able to fully evaluate saliva 

CST and VS concentrations and therefore we could not completely assess their 

potential as biomarkers for pain-induced stress. However, if methods for 

analyzing CST and VS that required smaller volume of saliva become available, 

it would be interesting to pursue further studies because saliva CST has shown 

promise as a biomarker for psychological stress in dogs. 

5.3 Other assessments for psychological and pain-
induced stress in dogs 

Multimodal assessments and compilation of currently available assessment 

methods may be beneficial for improving psychological and pain-induced stress 

evaluation in dogs. In this thesis, behavioral, physiological, and neuroendocrine 

parameters including CMPS-SF, OP-VAS, S-VAS, temperature, respiratory rate, 

heart rate, serum cortisol, together with CST and VS concentrations have been 

used for assessing psychological and pain-induced stress in dogs. 

5.3.1 Subjective assessment 

Subjective assessments are sensitive and accessible for assessing stress and pain 

in dogs. The subjective assessments, used in this thesis, for evaluating stress 

behavioral changes were S-VAS scores and for pain, CMPS-SF and OP-VAS scores. 

In this thesis, the S-VAS criteria were based on observed avoidance behavior. 

Because the S-VAS scores significantly correlated with saliva CST and serum 

cortisol concentrations in stressed and low-stressed healthy dogs, our results 

indicated that S-VAS may be useful for evaluating psychological stress (Paper 

IV). However, subjective assessment is technique sensitive which requires a 

trained and preferably blinded single observer (Holton et al., 2001). 

In dogs undergoing elective OHE (Paper II), at 3 hours after extubation, CMPS-

SF and OP-VAS scores were significantly increased compared with the baselines, 

indicating some degree of pain. However, the S-VAS scores were significantly 

decreased at this time point. Dogs with traumatic bone fractures (Paper III) also 

had significantly decreased S-VAS scores compared with the healthy control 

group and, further, S-VAS scores significantly decreased after morphine 

treatment. CMPS-SF and OP-VAS scores clearly indicated pain prior to morphine 

treatment. After morphine treatment, CMPS-SF and OP-VAS scores decreased 

significantly but still indicated some degree of pain. Moreover in these dogs, S-

VAS scores were significantly decreased after analgesia. Sedatives, analgesia, 

and anesthetic drugs can reduce anxiety and stress in dogs. However, the 
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sedative effect may inhibit the dogs’ ability to show avoidance behaviors. S-VAS 

should therefore be interpreted with caution in dogs receiving sedative or 

analgesic drugs. Although subjective assessments are sensitive and useful, their 

interpretation may have limitation as a sole assessment for monitoring 

psychological and pain-induced stress in dogs. 

5.3.2 Objective assessment 

Cortisol is secreted when the HPA axis is stimulated and has traditionally been 

used for stress and pain evaluation in both humans and animals (Höglund et al., 

2015; Hekman et al., 2014; Mastrocinque et al., 2012; Michelsen et al., 2012; 

Tennant & Hermann, 2002). Acute stress induces hypersecretion of cortisol 

leading to increased circulating concentrations. However, circadian variation, 

age, gender, and episodic secretion may affect serum cortisol concentrations in 

dogs (Giannetto et al., 2014; Kemppainen & Sartin, 1984). Therefore, serum 

cortisol as a sole biomarker for stress should be interpreted cautiously. In this 

thesis, cortisol was used for evaluating psychological and pain-induced stress 

together with subjective assessments to evaluate the potential of CST and VS as 

psychological and pain-induced stress biomarkers. In Paper IV, both serum 

cortisol concentrations and S-VAS scores were significantly higher in dogs 

unaccustomed to the animal hospital environment indicating that the dogs were 

in fact experiencing psychological stress. Further, dogs accustomed to the 

animal hospital environment had significantly lower serum concentrations and 

S-VAS scores. Our findings suggest that the combination of S-VAS scores and 

serum cortisol concentrations may be useful for monitoring stress in dogs. In 

Paper II, serum cortisol concentrations did not differ significantly between 

before surgery and at 3 hours after extubation in dogs undergoing elective OHE. 

The sustained high serum cortisol concentrations seen in this study may reflect 

HPA axis stimulation both due to psychological stress and surgical stress induced 

by tissue damage (Desborough, 2000). At recall, unlike S-VAS scores, serum 

cortisol concentrations were significantly decreased compared with before 

surgery. Although sampling may have occurred at a peak or trough in plasma 

cortisol secretion (Giannetto et al., 2014; Rijnberk & Kooistra, 2010; Kooistra 

et al., 1997; Kemppainen & Sartin, 1984), it cannot be excluded that the dogs 

might have experienced slightly decreased psychological stress due to “the white 

coat effect” at recall.  

Long-standing pain can lead to a downregulation of the HPA axis resulting in 

decreased circulating cortisol concentrations (Muhtz et al., 2013; Tennant, 2013; 

Rijnberk & Kooistra, 2010; Fries et al., 2005). In Paper III, serum cortisol 

concentration were significantly lower in dogs with traumatic bone fractures 
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compared to healthy dogs. Furthermore, serum cortisol concentrations in dogs 

that had not received analgesia before inclusion were significantly lower than 

those that had received analgesia. CMPS-SF and OP-VAS scores indicated pain in 

dogs with traumatic bone fractures and differed significantly from healthy dogs. 

However, unlike CMPS-SF, and OP-VAS scores, circulating cortisol did not differ 

significantly after morphine administration. Although CMPS-SF and OP-VAS 

scores indicated a decreased level of pain after morphine administration, trauma-

induced tissue damage may still have influenced the HPA axis. However, as 

stated previously, because of the episodic and pulsatile secretion, single 

measurements of cortisol must be evaluated cautiously. 

Physiological parameters, including heart rate, respiratory rate, and 

temperature, may, in addition to SAM and HPA stimulation, be affected by several 

factors limiting their used as a sole assessment for stress and pain. These 

parameters are, however, included in some multimodal assessments such as 

Melbourne Pain Scale (Firth & Haldane, 1999). In dogs undergoing elective 

OHE, temperature and respiratory rate, but not heart rate, significantly decreased 

at 3 hours after extubation. Premedication, anesthesia, and analgesia can 

influence several physiological parameters. Morphine may induce 

cardiovascular and respiratory depression, hypothermia, hypotension, sedation, 

anxiety, and bradycardia (Martin et al., 1976). In dogs with traumatic bone 

fractures, temperature and heart rate significantly decreased after morphine 

treatment. However, temperature, respiratory rate, and heart rate did not differ 

significantly between dogs with traumatic bone fractures prior to morphine 

treatment and healthy dogs without fractures further illustrating the limitation of 

these physiological parameters for monitoring stress and pain.  
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 Reference ranges of the CgA epitopes CST and VS in plasma and CST in saliva 

were first established in healthy dogs accustomed to the sampling procedures. 

CST and VS were unaffected by age, gender, breed, and time of day. Plasma 

CST and VS concentrations differed significantly, did not correlate, and should 

therefore be evaluated separately. 

 The CgA epitopes CST and VS were studied in association with serum cortisol 

concentrations, CMPS-SF, OP-VAS, S-VAS, and different physiological 

parameters in dogs undergoing a standardized elective OHE receiving 

analgesia. At 3 hours after extubation the subjective measurements suggested 

pain requiring additional analgesia. At this time point, only plasma CST had 

changed significantly suggesting that it might be useful for monitoring pain 

progression in a canine patient undergoing surgery. However, because CST 

concentrations to a large degree overlapped with the reference range, a single 

measurement of plasma CST has limited potential as a pain-induced stress 

biomarker for monitoring pain in dogs receiving analgesia. 

 In dogs with acute traumatic bones fractures, the CgA epitopes CST and VS 

were studied in association with serum cortisol concentrations, CMPS-SF, OP-

VAS, S-VAS, and different physiological parameters before and after 

morphine administration, and the results were further compared with healthy 

control dogs. In addition to the subjective measurements, plasma CST and 

serum cortisol differed significantly between dogs with bone fractures and 

the healthy control dogs. However, unlike the subjective parameters, neither 

plasma CST nor serum cortisol changed significantly between before and after 

morphine administration. CST concentrations again overlapped to a large 

degree with the reference range. Therefore, the use of plasma CST as a sole 

biomarker for pain-induced stress was of limited potential.  

 The CgA epitopes CST and VS were studied in association with serum cortisol 

concentrations and S-VAS in healthy dogs experiencing psychological stress. 

Dogs experiencing psychological stress, saliva CST, serum cortisol, and 

6 Conclusions 
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subjective assessments were in agreement and significantly differed from the 

low-stressed healthy dogs. Neither plasma CST nor plasma VS differed 

significantly between stressed and low-stressed healthy dogs. Saliva CST 

concentrations were above the reference range established in healthy low-

stressed dogs; therefore, saliva CST may have potential as a biomarker for 

psychological stress in dogs. 

 Based on the results of studies in the thesis, plasma VS is not useful for 

monitoring stress and pain progression in dogs. 
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Stress and pain are complex responses and the limitation of communication in 

animals make evaluations challenging. Both subjective and objective assessment 

methods have been used for monitoring stress and pain in humans and animals. 

All today’s available methods, including the parameters evaluated in this thesis, 

have both advantages and disadvantages. Currently, there is still no gold 

standard for assessing stress and pain in humans and animals, therefore the 

search for new methods continues. 

Ideally, it would be preferable to have a single reliable biomarker that can be 

collected without inducing a stress reaction in patients that is both sensitive, 

specific, and inexpensive. There is a growing interest in establishing novel 

objective biomarkers for stress and pain. To evaluate the potential of clinical 

biomarkers, the analyzing methods first need to be validated and then further 

studies in specific standardized situations and finally in a clinical setting be done.  

Although CgA is a sensitive stress biomarker in humans, the studies in this 

thesis found that VS has no potential as a stress biomarker in dogs. Saliva CST 

shows some promise as a potential stress biomarker, but due to difficulties in 

saliva sampling in dogs, its clinical use today seems limited. Few studies on CgA 

have been performed in dogs and more future studies are needed to improve the 

understanding of CgA and its degradation peptides.  

In humans, CgA has shown promise as a reliable biomarker for diagnosing 

neuroendocrine tumors. CgA concentration can discriminate healthy and non-

adrenal diseased patients from adrenal tumor patients. In dogs, CgA can be found 

in neuroendocrine tumor tissues (Myers et al., 1997). Whether or not CST and VS 

can be used as biomarkers for neuroendocrine tumor in dogs is still unknown. 

CgA, in humans, has also shown promise as a prognostic biomarker in critically 

ill patients and patients suffering of cardiovascular disease (D'Amico M et al., 

2014; Helle, 2010; O'Connor et al., 1989). It would be interesting to investigate 

whether CST and VS have similar potentials also in dogs. The reference ranges 

7 Future perspectives 
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for CST and VS in low-stressed healthy dogs established here will be useful in 

future studies in dogs.  

Evaluation of different biomarkers for pain would be interesting to 

investigate. For instance, tissue damage may induce pain and therefore studies 

on different acute phase proteins in association with other subjective and 

objective pain assessments methods may be a way forward in the future. Further 

studies on psychological stress in different situations may also be interesting to 

pursue in the future.  

Although CST and VS have been found in this thesis to have limited value as 

a stress biomarker in dogs, there is a clear need for better methods to identify 

pain and stress in animals to improve animal welfare and it is imperative that the 

search continues.  
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Animals can experience and perceive the unpleasant feeling of stress and pain in 

a similar manner to humans. Stress and pain can therefore affect animal welfare 

and need to be addressed and managed properly, illustrating the need for early 

detection. Humans can report their own feelings and perception of stress using 

different scoring systems whereas animals’ ability to convey their feelings is 

limited.  

Stress and pain evoke similar body responses and can be evaluated using 

behavioral observation, and physiological and biological testing. Each 

assessment method has its own advantages and limitations and as yet there is no 

gold standard for assessing stress and pain either humans or animals. Therefore, 

new biomarkers for evaluating stress and pain are still needed. Chromogranin A 

(CgA) is a protein containing different sections called catestatin (CST) and 

vasostatin (VS) that can be analyzed in dogs. The aim of this thesis was to 

investigate CST and VS potential as biomarkers for stress and pain assessments 

in dogs. 

Normal ranges of CST and VS in blood and saliva need to be established before 

assessing their usefulness for evaluating stress. We established reference levels 

for healthy dogs that were familiar with the sampling and hospital environment. 

While saliva sampling is less stressful for humans, we found that for dogs the 

degree of stress seems to be similar independent of the sampling method used. 

We have compared CST and VS levels in dogs with low stress profiles and dogs 

experiencing stress and found that CST in blood to a large degree overlapped with 

the levels in low-stressed dogs whereas CST in saliva was significantly higher. 

However, saliva sampling was difficult because the dogs produced very little 

saliva when stressed leading to often inadequate volumes for analysis. VS was 

not useful.  

To evaluate whether CST and VS can be used to identify pain in dogs, we 

examined levels in blood and saliva in dogs before and after spaying and in dogs 

with bone fractures before and after receiving pain relief. Although the levels 

Popular science summary 
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were still within the normal range, blood CST showed some potential for 

monitoring pain progression in individual dogs whereas VS in blood had no 

potential as a biomarker for pain assessment in dogs.  
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Precis som människor upplever djur obehag i samband med stress och smärta, 

och för att säkerställa god djuromvårdnad krävs tidig upptäckt och förebyggande 

åtgärder. Vi människor kan oftast själva förmedla våra känslor, medan djur i 

stället är beroende av vår förmåga at upptäcka deras obehag. 

Stress och smärta kan ge upphov till liknande fysiologiska förändringar, som 

i sin tur kan ge förändringar i beteende, hjärt- och andningsfrekvens och olika 

blodparametrar. Tyvärr har alla idag tillgängliga metoder för att utvärdera smärta 

och stress både för- och nackdelar och det finns ännu ingen enskild perfekt 

metod att tillgå varken för människor eller djur. Därför bedrivs forskning för att 

hitta nya objektiva markörer. Chromogranin A är ett protein som är lovande som 

markör för stress hos människor. Catestatin (CST) och vasostatin (VS) är två 

områden på proteinet chromogranin A som kan mätas i blod och saliv hos hund. 

Syftet med denna avhandling var att utröna om CST och VS har potential att 

användas som markörer för stress och smärta hos hundar. 

I ett första steg har normala nivåer av CST och VS i blod och saliv kartlagts 

hos hundar med låg stressprofil. Salivinsamling är en ofta använd metod inom 

humanmedicinen för att undersöka olika stressmarkörer utan att orsaka oro hos 

patienten eftersom patienten frivilligt spottar saliven i ett uppsamlingskärl. Vi 

upptäckte att hundar inte reagerar på samma sätt utan att de upplevde 

salivinsamling lika stressande som blodprovstagning. Vi har jämfört CST och VS 

nivåer hos hundar med låg stressprofil och stressade hundar och fann att 

blodnivåerna av CST var i stort sätt inom referensområdet till skillnad från 

nivåerna i saliv som var signifikant högre vid stress. Salivinsamling är dock 

oberäkneligt på hund då salivutsöndringen minskar i samband med stress och 

detta leder till svårigheter att samla tillräckliga volymer av saliv för 

undersökningar. VS var inte användbar som markör för stress. 

Vi ville också undersöka om CST och VS kan användas för att upptäcka smärta 

hos hundar. Vi undersökte nivåerna i blod och saliv innan och efter kastration av 

friska hundar och hos hundar, som innan ankomst till kliniken, hade drabbats av 

Populärvetenskaplig sammanfattning 
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frakturer. Hos hundarna med benbrott undersöktes nivåerna direkt vid ankomst 

till kliniken i samband med att djuren stabiliserades och direkt efter 

smärtlindring med morfin. CST i blod tycks ha en viss potential att användas för 

att utvärdera smärtlindringseffekt hos en enskild individ men även här var 

koncentrationerna till viss del inom referensspannet för friska hundar. VS i blod 

saknar potential som biomarkör för smärta hos hund. 
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